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Preface

The CRC Handbook of Finite Fields (hereafter referred to as the Handbook) is a reference
book for the theory and applications of finite fields. It is not intended to be an introductory
textbook. Our goal is to compile in one volume the state of the art in research in finite
fields and their applications. Hence, our aim is a comprehensive book, with easy-to-access
references for up-to-date facts and results regarding finite fields.

The Handbook is organized into three parts. Part I contains just one chapter which is
devoted to the history of finite fields through the 18-th and 19-th centuries.

Part II contains theoretical properties of finite fields. This part of the Handbook contains
12 chapters. Chapter 2 deals with basic properties of finite fields; properties that are used
in various places throughout the entire Handbook. Near the end of Section 2.1 is a rather ex-
tensive list of recent finite field-related books; these books include textbooks, books dealing
with theoretical topics as well as books dealing with various applications to such topics as
combinatorics, algebraic coding theory for the error-free transmission of information, and
cryptography for the secure transmission of information. Also included is a list of recent
finite field-related conference proceedings volumes.

Chapter 2 also provides rather extensive tables of polynomials useful when dealing with
finite field computational issues. The website http://www.crcpress.com/product/isbn/

9781439873786 provides larger and more extensive versions of the tables presented in Sec-
tion 2.2.

The next two chapters deal with polynomials such as irreducible and primitive poly-
nomials over finite fields. Chapter 5 discusses various kinds of bases over finite fields, and
Chapter 6 discusses character and exponential sums over finite fields.

In Chapter 7, results on solutions of equations over finite fields are discussed. Chapter
8 covers permutation polynomials in one and several variables, as well as a discussion of
value sets of polynomials, and exceptional polynomials over finite fields. Chapter 9 discusses
special functions over finite fields. This discussion includes Boolean, APN, PN, bent, kappa
polynomials, planar functions and Dickson polynomials, and finishes with a discussion of
Schur’s conjecture.

Sequences over finite fields are considered in Chapter 10. This chapter includes material
on finite field transforms, LFSRs and maximal length sequences, correlation and autocorre-
lation and linear complexity of sequences as well as algebraic dynamical systems over finite
fields.

Chapter 11 deals with various kinds of finite field algorithms including basic finite field
computational techniques, formulas for polynomial counting, irreducible techniques, fac-
torizations of polynomials in one and several variables, discrete logarithms, and standard
models for finite fields.

In Chapter 12, curves over finite fields are discussed in great detail. This discussion
includes elliptic and hyperelliptic curves. Rational points on curves are considered as well
as towers and zeta functions over finite fields. In addition, there is a discussion of p-adic
estimates of zeta and L-functions over finite fields.

Chapter 13 discusses a variety of topics over finite fields. These topics include relations
between the integers and polynomials over finite fields, matrices over finite fields, linear
algebra and related computational topics, as well as classical groups over finite fields, and
Carlitz and Drinfeld modules.

Part III of the Handbook, containing four chapters, discusses various important appli-
cations, including mathematical as well as very practical applications of finite fields. Latin
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squares and the polynomial method, useful in various areas of combinatorics, are considered.
In addition, affine and projective planes, projective spaces, block designs, and difference sets
are discussed in detail. In each of these areas, since these topics contain an immense num-
ber of papers, we discuss only those techniques and topics related to finite fields. Other
topics included in Chaper 14 are (t,m, s)-nets useful in numerical integration, applications
of primitive polynomials over finite fields, and Ramanujan and expander graphs.

Chapter 15 is another important chapter in the Handbook. It discusses algebraic coding
theory and includes a long introductory section dealing with basics properties of codes.
This is followed by sections on special kinds of codes including LDPC codes, turbo codes,
algebraic geometry codes, raptor codes, and polar codes.

Chapter 16 deals with cryptographic systems over finite fields. In the first section various
basic issues dealing with cryptography are discussed. Next to be discussed are stream and
block ciphers, multivariate cryptographic systems, elliptic and hyperelliptic curve crypto-
graphic systems as well as systems arising from Abelian varieties over finite fields.

Finally, in Chapter 17 we discuss several additional applications of finite fields including
finite fields in biology, quantum information theory, and various applications in engineer-
ing including topics like optimal orthogonal codes, binary sequences with small aperiodic
autocorrelation, and sequences with small Hamming correlation.

In the bibliography, we have included for each reference, the pages where that reference
is discussed in the Handbook. There is also a large index to help readers quickly locate
various topics in the Handbook.

The Handbook is not meant to be read in a sequential way. Instead, each section is meant
to be self-contained. Basic properties of finite fields are included in Chapter 2. Proofs are
not included in the Handbook ; instead authors have given references where proofs of the
important results can be found. In an effort to help the reader locate proofs and important
results for each section, at the end of each section we have provided a list of references
used in that section. Those reference numbers refer to the main bibliography at the end of
the Handbook which contains over 3,000 references. A short “See also” section is included
for most sections; these are intended to provide the reader with references to other related
sections and references of the Handbook.

The following numbering system is in effect in the Handbook. Within a given section, all
results, theorems, corollaries, definitions, examples, etc., are numbered consecutively (with
the exception of tables and figures). For example, the result numbered 2.1.5 happens to be
a theorem which is the fifth listing in Section 2.1 of Chapter 2. We have also included many
remarks in each section. These are also numbered as part of the same system so that for
example, Remark 2.1.4 is the fourth listing in Section 2.1.

Readers are encouraged to make us aware of corrections to the material presented here.
Readers should contact the author(s) of the section involved, as well as both of the Editors-
in-Chief.

We would of course like to first thank the authors of the various sections for their time
and effort. Without their help, the Handbook would, quite simply, not exist. We also greatly
appreciate the authors’ willingness to use our style and format so that the entire Handbook
has a consistent and uniform style and format. While we appreciate the help of all of the
authors, we would especially like to thank Ian Blake, Steve Cohen, Cary Huffman, Alfred
Menezes, Harald Niederreiter, Henning Stichtenoth, and Arne Winterhof who not only wrote
several sections, but who also provided the Editors-in-Chief with valuable input in numerous
aspects of the Handbook. Every section was reviewed by at least two external reviewers, in
addition to the Editors-in-Chief. We also would like to thank the many reviewers who took
the time to read and send us comments on the various sections and drafts. Without their
help, we would of course have ended up with a volume of considerably diminished quality.
We would like to thank Brett Stevens and David Thomson for their help with various
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LATEX and file issues. Finally, we would like to thank Shashi Kumar for his invaluable help
in setting up, reworking, and running the style files that define the overall look of the entire
Handbook. His efforts were of tremendous help to us. We would also like to thank Bob Stern
for his continued support.

Needless to say, this project has involved many, many hours. We thank Bevie Sue Mullen
and Lucia Moura for their encouragement, support, love, and patience during the entire
process.

Gary L. Mullen
Daniel Panario
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Department of Mathematical Sciences
University of Delaware
Newark, DE 19716-2553
U.S.A.
Email: cioaba@math.udel.edu

xxix



xxx Contributors

Stephen D. Cohen
School of Mathematics & Statistics
University of Glasgow
Glasgow G12 8QW
Scotland
Email: Stephen.Cohen@glasgow.ac.uk

Charles J. Colbourn
School of CIDSE
Arizona State University
Tempe, AZ 85287-8809
U.S.A.
Email: Charles.Colbourn@asu.edu

Robert Coulter
Department of Mathematical Sciences
University of Delaware
520 Ewing Hall
Newark, DE 19716
U.S.A.
Email: coulter@math.udel.edu

Jintai Ding
Department of Mathematical Sciences
University of Cincinnati
2815 Commons Way
Cincinnati, OH 45221-0025
U.S.A.
Email: jintai.ding@gmail.com

Jeff Dinitz
Department of Mathematics and Statistics
University of Vermont
Burlington, VT 05405
U.S.A.
Email: Jeff.Dinitz@uvm.edu

Christophe Doche
Department of Computing
Macquarie University
North Ryde, NSW 2109
Australia
Email: christophe.doche@mq.edu.au

Jean-Guillaume Dumas
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José Felipe Voloch
The University of Texas at Austin
Mathematics Dept, RLM 8.100
2515 Speedway Stop C1200
Austin, Texas 78712-1202
U.S.A.
Email: voloch@math.utexas.edu

Daqing Wan
Department of Mathematics
University of California
Irvine, CA 92697-3875
U.S.A.
Email: dwan@math.uci.edu

Zhe-Xian Wan
Academy of Mathematics and Systems
Science
Chinese Academy of Sciences
No 55, Zhongguancun East Road
Zhongguancun, Beijing 100190
P. R. China
Email: wan@amss.ac.cn

Qiang Wang
School of Mathematics and Statistics
Carleton University
Ottawa ON K1S 5B6
Canada
Email: wang@math.carleton.ca

Arne Winterhof
Johann Radon Institute for Computational
and Applied Mathematics
Austrian Academy of Sciences
Altenbergerstr. 69
4040 Linz, Austria
Email: arne.winterhof@oeaw.ac.at

Joseph L. Yucas
68 Rock Springs Rd.
Makanda, IL 62958
U.S.A.
Email: joeyucas@yahoo.com

Michael E. Zieve
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1043
U.S.A.
Email: zieve@umich.edu



This page intentionally left blankThis page intentionally left blank



I
Introduction

1 History of finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Finite fields in the 18-th and 19-th centuries

2 Introduction to finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Basic properties of finite fields • Tables

1



This page intentionally left blankThis page intentionally left blank



1
History of finite fields

1.1 Finite fields in the 18-th and 19-th centuries . . . . 3
Introduction • Early anticipations of finite fields •

Gauss’s Disquisitiones Arithmeticae • Gauss’s
Disquisitiones Generales de Congruentiis • Galois’s
Sur la théorie des nombres • Serret’s Cours d’algèbre
supérieure • Contributions of Schönemann and
Dedekind • Moore’s characterization of abstract finite
fields • Later developments

1.1 Finite fields in the 18-th and 19-th centuries

Roderick Gow, University College Dublin

1.1.1 Introduction

While the theory of finite fields emerged as an independent discipline at the end of the
19-th century, aspects of the subject can be traced back at least to the middle of the 17-th
century. It is our intention to present here a survey of highlights of finite field theory as they
emerged in the 18-th and 19-th centuries, culminating in a description of Eliakim Hastings
Moore’s [2139], which began the study of abstract finite fields.

Leonard Eugene Dickson (1874-1954), in the first volume of his History of the Theory
of Numbers [851] gives many references to works that can be interpreted as dealing with
finite fields, although not always described explicitly as such. Chapters VII and VIII are
especially relevant, and give remarkably complete listings of what had been achieved before
1918. Chapter VIII, entitled Higher Congruences, occasionally uses the language of finite
fields, although the emphasis is largely number theoretic. Dickson had already written a
textbook, entitled Linear Groups with an Exposition of the Galois Field Theory [850] which
is probably the first work devoted exclusively to finite fields. This book remained without
any serious rival until the emergence in the 1950s of more geometric, less computational,
methods, such as those pioneered by Artin in his Geometric Algebra [135]. The first 71 pages
of Dickson’s work constitute a very full account of finite fields, and its exercises, partly based
on the work of earlier researchers, are still a valuable source of problems and ideas.

Of course, finite fields are mentioned in general histories of algebra, such as that of van
der Waerden [2848]. Furthermore, Finite Fields by Lidl and Niederreiter [1939] contains
much historical information and a very extensive bibliography, especially of the older litera-
ture. Another brief but useful source of information is found in the historical notes scattered
throughout Cox’s Galois Theory [749].

3
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The first use of the English expressions field of order s and Galois-field of order s = qn

occurs in a paper of E. H. Moore (1862-1932), which he presented in 1893. Moore states that
the term field was an equivalent to the German term endlicher Körper, used by Heinrich
Weber (1842-1913). We observe that Richard Dedekind (1831-1916) had already introduced
such a term as Zahlenkörper, which can be traced back to lectures he gave in 1858. The 1933
edition of the Oxford English Dictionary does not include a definition of the mathematical
term field, although it does define group in its mathematical meaning, but more recent
editions of the dictionary include the mathematical use of field, with an attribution to
Moore.

The name Galois field is synonymous with finite field, and it signifies the importance
to the subject of an innovatory paper by Évariste Galois (1811-1832), published in 1830
[1168], when the author was only 18. We will comment in greater detail on Galois’s work
later in this article, but we will briefly mention here that Galois lays the foundations of
finite field theory by showing that for each prime p and positive integer n, there is a finite
field of order pn, and its multiplicative group of non-zero elements is cyclic of order pn − 1.

Galois’s arguments are rather sketchy, but there is no doubt that he understood the fun-
damental principles of the structure of a finite field, including the role of the automorphism
given by raising elements to the p-th power. As has proved to be the case on a number of
occasions, it seems that most of Galois’s discoveries were already known to Gauss, in this
case, in the late 1790s, but as Gauss never published an account of his work, Galois was
unaware of Gauss’s priority. (Gauss is credited with the discovery of non-Euclidean geome-
try before Bolyai and Lobachevsky, with the discovery of quaternions before Hamilton, and
the discovery of the method of least squares before Legendre.) We will also give a sketch of
Gauss’s approach to finite fields, which he called the theory of higher congruences, as it is
described in Volume 2 of his Werke [1259].

1.1.2 Early anticipations of finite fields

Our approach to the early history of finite fields will be largely chronological. An early
occurrence of a theorem that may be interpreted in the language of finite fields is Fermat’s
Little Theorem, that xp−1 − 1 is divisible by p when p is a prime and x an integer not
divisible by p. Dickson states that the special case when x = 2 was already known to the
ancient Chinese around 500 BCE. As was usual with Fermat (1601-1665), he did not give a
formal proof, but he communicated his conjecture that the theorem holds true, in a letter to
Bernard Frénicle de Bessy (1605-1675), dated 18 October, 1640. Leonhard Euler (1707-1783)
gave a complete proof of the theorem in 1736, but unpublished manuscripts of Gottfried
Wilhelm Leibniz (1646-1716) show that he was in possession of a similar proof by 1680.

In the 18-th century, further theorems, expressed in terms of congruences modulo a
prime, that we can see as precursors of basic facts in finite field theory were discovered
by mathematicians such as Euler, Joseph-Louis Lagrange (1736-1813), and Adrien-Marie
Legendre (1752-1833). However, the first complete account of that body of knowledge that
relates to the finite field of prime order was presented by Carl Friedrich Gauss (1777-1855)
in Sections I-IV of his Disquisitiones Arithmeticae [1258], which we describe in the next
section.

1.1.3 Gauss’s Disquisitiones Arithmeticae

Gauss’s Disquisitiones Arithmeticae [1258] was an epoch making work in mathematics,
introducing totally new ideas and demanding far higher standards of proof than had hitherto
been required or expected. The book also serves as a commentary on the discoveries and
shortcomings of his predecessors. For a very full account of the contents and influence of
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Gauss’s magnum opus, we refer to the book The Shaping of Arithmetic [1297].
Gauss introduces the concept of congruence in Article (Art.) 1, and designates congru-

ence by means of the now familiar symbol ≡. This is the first published use of this symbol,
which seems to have entered into conventional use quite rapidly. It occurs for instance in C.
Kramp’s Éléments d’arithmétique universelle [1804] an elementary work much influenced
by Gauss’s masterpiece (the use of the exclamation mark in n! makes its first appearance
here). In Section 2, Gauss proves in Art. 14 that if p is a prime integer and a, b are integers
not divisible by p, then p does not divide the product ab. This basic result is fundamental
for the proof that the integers modulo p form a field. Gauss comments that the theorem
was already in Euclid’s Elements. Oddly enough, for a person as notoriously meticulous as
Gauss, he mistakenly says that it is Proposition 32 of Book VII, when it is in fact Propo-
sition 30. Concerning this result, Gauss wrote magisterially: However we did not wish to
omit it because many modern authors have employed vague computations in place of proof
or have neglected the theorem entirely, and because by this very simple case we can more
easily understand the nature of the method which will be used later for solving much more
difficult problems. He uses Art. 14 to prove Art. 16, a result often called the fundamental
theorem of arithmetic: a composite number can be resolved into prime factors in only one
way. This basic result is not in Euclid.

Gauss describes Euler’s totient (or phi) function, which he denotes by the symbol φ
(following Art. 38). (We recall that the totient function measures the number of totitives of
a positive integer n, that is, the number of integers lying between 1 and n that are relatively
prime to n.) This is again the first occurrence of a now familiar symbol in mathematics.
Euler himself, although introducing the idea of the function in 1760, did not use such
notation. Art. 43 is a proof that an integer polynomial of degree m cannot have more than
m incongruent roots modulo a prime. This basic theorem on polynomial arithmetic was
first published by Lagrange in 1768. Euler had shown that the congruence xn − 1 ≡ 0
modulo a prime has at most n roots in 1774, and Gauss notes that Euler’s method is easily
generalized.

Section III, on residues of powers, contains Art. 49: if p is a prime number that does
not divide a, and at is the lowest power of a that is congruent to unity to the modulus p,
the exponent t will either = p − 1 or be a factor of this number. Gauss notes that this
implies Fermat’s Little Theorem, and he gives some of the history of this theorem that we
described above. Art. 55 is the fundamental statement: There always exist numbers with the
property that no power less than the p − 1st is congruent to unity. This of course amounts
to saying that the multiplicative group of the integers modulo a prime p is cyclic of order
p − 1. Again, it is interesting to observe the authority of Gauss’s language as he describes
earlier approaches to Art. 55: This theorem furnishes an outstanding example of the need
for circumspection in number theory so that we do not accept fallacies as certainties. . . .
No one has attempted the demonstration except Euler . . . See especially his article 37 where
he speaks at great length of the need for demonstration. But the demonstration which this
shrewdest of men presents has two defects. . . . In Art. 57, Gauss adopts the nomenclature
primitive roots, due originally to Euler, for the integers, or residues, described in Art. 55.

1.1.4 Gauss’s Disquisitiones Generales de Congruentiis

Gauss had intended to include an eighth section of Disquisitiones Arithmeticae, and he
even refers to this section at least twice in the published version. However, the section
was omitted, possibly for reasons of saving space in an already long work. A manuscript
of the missing section was found after Gauss’s death, and an edited version, with notes
by Dedekind, was published in volume 2 of Gauss’s Werke [1259] in 1863, under the title
Disquisitiones Generales de Congruentiis. A German translation followed in 1889.
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Günther Frei, [1103], has given a lengthy description of the genesis and contents of the
unpublished Section Eight, and we will make use of some of his analysis here, since it has
considerable bearing on the early theory of finite fields. Gauss’s work on finite fields can be
traced back at least to 1796, as there are references to it in his Mathematical Diary [1257].
It is well known that Gauss was particularly fascinated by the law of quadratic reciprocity,
and he gave several different proofs of this fundamental theorem, the first dating from 1796.
The third and fourth of these proofs drew Gauss into the study of polynomials modulo a
prime, and his surviving investigations enable us to discern much of the theory of finite
extensions of a field of prime order.

In Frei’s translation, Gauss wrote But at the same time one sees that the solution of
congruences constitutes only a part of a much higher investigation, namely the investigation
of the decomposition of functions into factors. Accordingly, Gauss developed a theory of
factorization of polynomials whose coefficients are integers modulo a prime p, including the
determination of greatest common divisors by Euclid’s algorithm. He introduced the concept
of a prime polynomial, corresponding to irreducible polynomial in modern terminology, and
showed that arbitrary polynomials can be factored into products of prime polynomials.

Among the highlights of his discoveries, we may mention his proof that every irreducible
polynomial modulo p, different from x, and of degree m, is a divisor of xp

m−1 − 1. Further-
more, xp

m−1 − 1 is the product of all monic irreducible polynomials of degree d dividing
m, apart from x. From this fact, he obtained a formula for the number of irreducible monic
polynomials of degree n with coefficients integers modulo p. Frei also notes that Gauss ap-
preciated the importance of the Frobenius automorphism, and came close to discovering a
form of Hensel’s Lemma, significant in p-adic analysis.

The idea of using the imaginary roots of such irreducible polynomials to simplify some
of his work had occurred to Gauss, and, in Frei’s translation, Gauss wrote Indeed, we could
have shortened incomparably all our following investigations, had we wanted to introduce
such imaginary quantities by taking the same liberty some more recent mathematicians
have taken, but nevertheless, we have preferred to deduce everything from first principles. It
should be recalled that Gauss sometimes displayed a conservative approach to new concepts
in mathematics, and his public aversion to using imaginary roots of congruences is akin to
his disinclination to use complex numbers. Thus, for example, his thesis, published in 1799,
states that every real polynomial is a product of real factors of degree one or two, rather
than stating that every complex polynomial is a product of factors of degree 1.

1.1.5 Galois’s Sur la théorie des nombres

We turn now to presenting a synopsis of Galois’s 1830 paper [1168] Sur la théorie des
nombres on finite fields since it is a landmark in the subject. In Frei’s opinion, Galois
establishes the additive and multiplicative structure of finite extensions of the field of prime
order. It certainly seems that the spirit of Galois’s paper is closer to the modern presentation
of finite field theory than Gauss’s version. It is worth noting that there are several misprints
in the paper, which would have made it difficult to follow for the uninitiated, and Galois’s
attempts to illustrate the theory are hopelessly flawed.

Rather than translating the original French literally, we will instead try to convey some
idea in modern terms of what Galois must have intended. For example, when Galois talks
of a function, he means a polynomial in a single variable, with integer coefficients. (This
convention was common among mathematicians before the twentieth century.) He notes
that we usually look for integer roots of the polynomial modulo a prime p, say. We call
these real roots of the polynomial congruence. He proceeds to generalize the notion of real
roots, and begins by introducing the concept of an integer polynomial F (x) being irreducible
modulo p, meaning that it is impossible to find three integer polynomials φ(x), ψ(x) and
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χ(x) such that
F (x) + pχ(x) = φ(x)ψ(x).

(Galois does not use the term irreducible for this concept, but later in the paper speaks of
an irreducible congruence.)

Such an irreducible polynomial F (x) obviously has no integer roots modulo p, nor any
irrational roots of degree less than that of F (x) (Galois does not explain these terms). He
states that we must regard the roots of the congruence F (x) ≡ 0 (notation he attributes to
Gauss) as a type of imaginary symbols, and opines that such imaginary roots will prove to
be as useful as

√
−1 is in conventional analysis. These imaginary roots were subsequently

called Galois imaginaries by later writers.
Let i be a root of the congruence F (x) ≡ 0, where F has degree ν. (Galois does not

justify why we may assume that F (x) ≡ 0 has roots, a point Serret attempted to rectify.)
Galois then considers a general expression

a+ a1i+ a2i
2 + · · ·+ aν−1i

ν−1,

where a, a1, . . . , aν−1 are integers modulo p. There are pν different values for these expres-
sions.

Let α be an expression of the form above. If we raise α to the second, third, etc, powers,
we obtain a sequence of expressions of the same form. Thus we must have αn = 1 for a
certain positive integer n, which we choose to be as small as possible. We then have n
different expressions

1, α, . . . , αn−1.

Galois shows that n divides pν − 1, and thus αp
ν−1 = 1. Galois next aims to prove that

there is some α for which the corresponding n is pν − 1. He makes an analogy at this stage
with existence of primitive roots modulo p in the theory of numbers. We did not find that
Galois provided a convincing argument for this key issue.

Galois then draws the remarkable conclusion that all the algebraic quantities that arise
in this theory are roots of equations of the form xp

ν

= x. Furthermore, if F (x) is an integer
polynomial of degree ν irreducible modulo p, there are integer polynomials f(x) and φ(x)
such that

f(x)F (x) = xp
ν − x+ pφ(x).

Galois also notes that if α is a root of the irreducible congruence F (x) ≡ 0, then the other
roots are

αp, αp
2

, . . . , αp
ν−1

.

This is a consequence of the fact that

F (x)p
n ≡ F (xp

n

).

We remark that this is an early indication of the role of the so-called Frobenius mapping
as a generator of the associated Galois group. Galois later notes that all the roots of the
congruence xp

ν ≡ x depend only on the roots of a single irreducible polynomial of degree
ν.

To illustrate all this theory, Galois attempts to find a primitive root of the congruence

x73 ≡ x (mod 7).

He aims to do this by exhibiting elements having orders 9 and 19. In fact, he makes several
noteworthy errors, which may have confused any readers of this exposition of the new
theory. He begins by noting that x3 ≡ 2 (mod 7) is irreducible, and lets i be a root of the
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congruence. He claims that −1 − i has order 19, but this is false, as it has order 9 × 19.
He then claims that α = i+ i2 is primitive, but this is again false, as it has order 114, not
342 = 73 − 1. Finally, Galois claims that his α satisfies

α3 + 3α+ 1 = 0,

but this is again incorrect, as in truth it satisfies

α3 + α+ 1 = 0.

Indeed, the polynomial x3 + 3x + 1 is not even irreducible modulo 7, as 4 is a root of it.
As we mentioned earlier, the paper contains several misprints, possibly because the com-
positor found the notation difficult to handle, but Galois’s errors are not just typographical
(although they are of course ultimately trivial and in no way invalidate his theory).

Joseph-Alfred Serret gives a treatment of this problem of finding a primitive root in the
second edition of Cours d’algèbre supérieure [2596], pp. 367-370, following Galois’s methods.
The required primitive element Galois might have had in mind was β = i − i2, not i + i2.
This element β is a root of x3−x+2, which is certainly an irreducible primitive polynomial.
While i+ i2 may have replaced i− i2 because of a typographical error, Galois nonetheless
made further mistakes which are difficult to explain. Serret himself made no comment on
this strange aspect of Galois’s paper.

As justification for introducing this theory, Galois explains that it is required in the
theory of permutations which arise in the study of primitive (rational) polynomials which
are solvable by radicals. He alludes, in effect, to what is the affine group of the finite field
of order pν , which must be the Galois group of such a polynomial when the action on the
roots is doubly transitive. He excludes degrees 9 and 25, where he must have known that
there exist exceptional doubly transitive solvable permutation groups. There is another one
in degree 49, which he did not mention.

1.1.6 Serret’s Cours d’algèbre supérieure

The early editions of Serret’s textbook mentioned above provide us with a good opportunity
to gauge the progress of the project to publicize Galois’s research, considered very advanced
at the time. In the first edition [2596], Serret writes that his (Serret’s) work was a summary
of lectures given at the Sorbonne, Paris, where he had been appointed to a chair in 1848.
On p. 4, he notes that the difficult problem of when an equation can be solved algebraically
had been resolved, at least in the case of irreducible equations of prime degree, by Évariste
Gallois (sic), in a memoir of 1831. This memoir had been published in 1846 by Joseph
Liouville in his Journal, and Liouville had wanted Serret to communicate part of Galois’s
findings. Lesson 23 of this first edition is devoted to the theory of congruence modulo a
prime, but it includes nothing that was not already known at the time of Lagrange or
Euler.

The second edition of Serret’s work (1854) gives a fairly complete account of Galois’s
theory of finite fields, as presented in his 1830 paper. Serret devotes almost 30 pages (the
whole of Lesson 25) to the material that Galois had covered in six pages, with a view to
making a difficult part of the writings of this great mathematician more intelligible. Thus, for
example, he proves a uniqueness theorem for factoring polynomials into irreducible factors,
and also gives a lengthy discussion of why primitive elements exist. On the other hand, he
does not attempt to give a rigorous explanation of why roots of irreducible congruences may
be taken to exist. Lesson 25 seems to be the first exposure of finite fields at the textbook
level.

Serret devotes 68 pages of the third edition of his textbook (1866) to the theory of finite
fields. He considered his approach to be new, and based it on a memoir he had presented in
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1865. In fact, it bears many similarities to Gauss’s unpublished Section 8 (itself published
for the first time in Latin in 1863), and to Dedekind’s 1857 paper (for details, see later
in this section). Serret was presumably unaware of this material, as he made no mention
of it. We can recognize several classical theorems of finite field theory described clearly in
Serret’s Chapter 3 of Volume 2 of the third edition. Thus for example, if the integer g is
not divisible by the prime p, the polynomial (later said to be of Artin-Schreier type)

xp − x− g

is irreducible modulo p. Art. 372 presents six theorems summarizing Galois’s findings of
1830, Art. 349 gives a formula for the number of monic irrreducible polynomials modulo a
prime p, and Art. 350 gives upper and lower bounds for their number.

1.1.7 Contributions of Schönemann and Dedekind

Another early contribution to finite field theory is a paper by Theodor Schönemann,
Grundzüge einer allgemeinen Theorie der Höheren Congruenzen, deren Modul eine reele
Primzahl ist [2556] published in 1845. Schönemann is described as an oberlehrer (head
teacher) at the Gymnasium in Brandenburg. He begins his paper with an apology, acknowl-
edging that Gauss’s unpublished Section 8 was to contain contributions to the theory of
higher congruences, and that he (Schönemann) may have inadvertently rediscovered some
of Gauss’s results. Schönemann starts with a monic integer polynomial f of degree n which
is irreducible modulo a prime p. He then takes a complex root α of f and considers in effect
the quotient ring, Z[α]/pZ[α], which is a finite field of order pn. In this way, he avoids the
question of whether imaginary roots of irreducible congruences may be taken to exist. This
is described well in Cox [749], p. 296. One of Schönemann’s main theorems is that if we
allow α also to represent a root of f modulo p, then

f ≡ (x− α)(x− αp) · · · (x− αpn−1

) (mod p).

He also obtained a formula for the number of monic irreducible polynomials of degree n
modulo p. Schönemann’s paper is long (56 pages) and not very clear. It is also written in a
very formal style, each result being presented in the form of Erklärung and Lehrsatz, followed
by Beweis, in imitation of the approach characteristic of Euclid’s Elements. Nonetheless,
Schönemann did innovatory work, which, even if anticipated by Gauss, was quoted reason-
ably frequently in the second half of the nineteenth century, for instance, by Kronecker.

In his paper Abriss einer Theorie der Höheren Congruenzen in Bezug auf einen reellen
Primzahl-Modulus [793] written in late 1856, and published in 1857, Dedekind covered much
of the same ground pioneered by Gauss in Disquisitiones Generales de Congruentiis. While
we pointed out above that Dedekind was responsible for editing Gauss’s manuscript for
publication in 1863, Frei presents several strong reasons to suppose that, at the time he
wrote, Dedekind was unacquainted with this key work, and did not see it until 1860. Frei
suggests that Dedekind was more concerned to give a solid foundation to Kummer’s theory of
ideal numbers. In any case, Dedekind notes that there is a strong analogy between the theory
of polynomials modulo a prime and elements of number theory. By way of illustrating this
analogy, let p be an odd prime and let P and Q be different irreducible monic polynomials
of degrees m and n, respectively. Then working modulo Q, P determines an element of the
field of order pn, and this element is either a square or a non-square. By analogy with the
Legendre symbol, we set (PQ ) equal to 1 if P is a square modulo Q, and (PQ ) equal to −1

if it is a non-square. Working modulo P , we may likewise define (QP ). Then, in complete
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analogy with the law of quadratic reciprocity, we have(
P

Q

)(
Q

P

)
= (−1)( p−1

2 )mn.

In his proof, Dedekind uses a version of Gauss’s Lemma, employed in one of Gauss’s proofs
of the quadratic reciprocity theorem.

1.1.8 Moore’s characterization of abstract finite fields

Towards the end of the 19th century, finite fields began to assume a more prominent position
in contemporary algebraic research, partly because of their importance in the construction of
finite analogues of the classical linear groups. Camille Jordan, in his Traité des substitutions
[1621] had investigated classical groups, such as the general linear group (also called the
linear homogeneous group), over finite fields of prime order. E. H. Moore observed that
certain of these constructions could be extended to arbitrary finite fields and he discovered
the simple groups usually denoted by PSL2(qn). (He became aware by 1895 that these
groups were already known to Émile Mathieu, who had come across them in 1860, [2021],
pp. 38-42.) In any case, Moore was led to the investigation of abstract finite fields.

We quote from Moore’s paper A doubly infinite system of simple groups, read on August
25, 1893, at the International Mathematical Congress held in Chicago [2139]. This paper
gives the details of Moore’s discoveries.

Suppose that we have a system of s distinct symbols or marks (s being some positive
integer) and suppose that these marks may be combined by the four fundamental operations
of algebra–addition, subtraction, multiplication, and division–these operations being subject
to the ordinary abstract operational identities of algebra

µi + µj = µj + µi; µiµj = µjµi; (µi + µj)µk = µiµk + µjµk; etc,

and that when the marks are so combined the results of these operations are in every case
uniquely determined and belong to the system of marks. Such a system of marks we shall
call a field of order s, using the notation F [s]. . . .

We are led at once to seek [t]o determine all such fields of order s, F [s].
Moore notes that Galois had defined a field of order qn, for each prime q and each positive

integer n. Moore denotes this field by GF [qn], presumably in honor of Galois. This GF [qn]
is defined via an irreducible polynomial of degree n modulo q, and is unique, in the sense
that such irreducible polynomials exist for all q and n, and the GF [qn] so constructed is
independent of the particular irreducible polynomial chosen. Moore’s main theorem is then
stated as: Every existent field F [s] is the abstract form of a Galois field GF [qn]; s = qn.
Moore remarks: This interesting result I have not seen stated before.

Moore’s proof occupies pages 212-220 of his paper, and he derives further properties
of GF [qn] in the next few pages. We feel that Moore’s paper marks the beginning of the
abstract theory of finite fields. In 1896, Dickson was awarded the first doctorate in mathe-
matics at the new University of Chicago, for a thesis written under Moore’s direction, the
subject matter being permutation polynomials over finite fields. Dickson’s 1901 book gave
a streamlined proof of Moore’s uniqueness theorem on pp. 13-14.

1.1.9 Later developments

Following the work of his thesis, Dickson was to extend Jordan’s analysis of classical groups
to their counterparts over arbitrary finite fields, and his research was the subject of his
monograph of 1901. Dickson even generalized ideas of Élie Cartan on continuous groups
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and their Lie algebras, and published in 1901 (with later additions) details of his discovery
of versions of the groups of type E6 and G2 over finite fields [842, 848, 843, 844]. It was
not until later work of Chevalley in 1955 that further finite analogues of the exceptional
continuous groups were constructed in a uniform way.

The theory of finite fields may be said to have acquired a more conceptual form in the
twentieth century after Emil Artin (1898-1962) introduced the notion of a zeta function
for a quadratic extension of the rational function field Fp(t), where p is a prime. Artin
formulated a version of the Riemann hypothesis for these zeta functions, and verified the
hypothesis for a number of curves in his dissertation, published in 1924. Helmut Hasse
(1899-1979) subsequently proved the Riemann hypothesis for function fields of genus 1
in 1934, but the complete proof for arbitrary non-singular curves by André Weil (1906-
1998) in 1948 employed sophisticated methods of algebraic geometry. The analogy between
counting rational points on algebraic varieties over finite fields and the cohomology theories
of complex varieties has been a powerful motivating force in the more recent theory of finite
fields.

References Cited: [135, 749, 793, 842, 843, 844, 848, 850, 851, 1168, 1257, 1258, 1259,
1297, 1621, 1804, 1939, 2021, 2139, 2556, 2596, 2848]
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2.1 Basic properties of finite fields

Gary L. Mullen, The Pennsylvania State University

Daniel Panario, Carleton University

Proofs for most of the results in this chapter can be found in Chapters 2 and 3 of [1939];
see also [1631, 1938, 2017, 2049, 2077, 2179, 2921]. We refer the reader to Section 2.1.8 for
a comprehensive list of other finite field related books.

2.1.1 Basic definitions

2.1.1 Definition A ring (R, +, ·) is a nonempty set R together with two operations, “+” and
“·” such that:

(1) (R, +) is an abelian group;

(2) · is associative, that is for all a, b, c ∈ R, a · (b · c) = (a · b) · c;
(3) left and right distributive laws hold: for all a, b, c ∈ R

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

2.1.2 Definition Let R be a ring.
(1) R is a ring with identity if the ring has a multiplicative identity;
(2) R is commutative if “·” is commutative;
(3) R is an integral domain if it is commutative with identity and a · b = 0 implies a = 0
or b = 0, for any a, b ∈ R;
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14 Handbook of Finite Fields

(4) R is a division ring (also called a skew field) if the nonzero elements of R form a
group under “·”;
(5) R is a field if it is a commutative division ring.

2.1.3 Definition The order of a finite field F is the number of distinct elements in F.

2.1.4 Remark The following theorem is a famous result due to Wedderburn.

2.1.5 Theorem Every finite division ring is a field.

2.1.6 Definition If R is a ring and there exists a positive integer n such that nr = 0 for all
r ∈ R, then the least such positive integer n is the characteristic of the ring, and R has
positive characteristic. Otherwise, R has characteristic zero.

2.1.7 Theorem A ring R 6= {0} of positive characteristic having an identity and no zero divisors
must have prime characteristic.

2.1.8 Corollary A finite field has prime characteristic.

2.1.9 Proposition For a commutative ring R of characteristic p, we have

(a1 + · · ·+ as)
pn = ap

n

1 + · · ·+ ap
n

s

for every n ≥ 1 and ai ∈ R.

2.1.2 Fundamental properties of finite fields

2.1.10 Lemma Suppose F is a finite field with a subfield K containing q elements. Then F is a
vector space over K and |F | = qm, where m is the dimension of F viewed as a vector space
over K.

2.1.11 Definition A field containing no proper subfield is a prime field.

2.1.12 Theorem Let F be a finite field. The cardinality of F is pn, where p is the characteristic of
F and n is the dimension of F over its prime subfield.

2.1.13 Remark We denote by Fq a finite field with q elements. We note that by Remark 2.1.34
there is only one finite field (up to isomorphism) with q elements.

2.1.14 Remark Another common notation for a field of order q is GF (q), where GF stands for
Galois field. This name is used in honor of Évariste Galois (1811–1832), who in 1830 was the
first person to seriously study properties of general finite fields (fields with a prime power
but not necessarily a prime number of elements).

2.1.15 Remark The recent publication of The Mathematical Writings of Evariste Galois by Neu-
mann [2223] will make Galois’s own words available to readers.

2.1.16 Lemma If Fq is a finite field with q elements and a 6= 0 ∈ Fq, then aq−1 = 1, and thus
aq = a, for all a in Fq.

2.1.17 Remark An immediate consequence of the previous lemma is that the multiplicative inverse
of any a 6= 0 in a field of order q is aq−2, because aq−2 · a = aq−1.

2.1.18 Theorem The sum of all elements of a finite field is 0, except for the field F2.
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2.1.19 Definition A polynomial f over Fq is an expression of the form f(x) =
∑n
i=0 aix

i, where
n is a nonnegative integer, and ai ∈ Fq for i = 0, 1, . . . , n. A polynomial is monic if the
coefficient of the highest power of x is 1. The ring formed by the polynomials over Fq
with sum and product of polynomials is the ring of polynomials over Fq and is denoted
by Fq[x].

2.1.20 Definition A polynomial f ∈ Fq[x] is an irreducible polynomial over Fq if f has positive
degree and f = gh with g, h ∈ Fq[x] implies that either g or h is a constant polynomial.

2.1.21 Remark Both Fq[x] and the ring of polynomials in n ≥ 1 variables, Fq[x1, . . . , xn], have
unique factorization into irreducibles.

2.1.22 Definition The Möbius µ function is defined on the set of positive integers by

µ(m) =


1 if m = 1,

(−1)k if m = m1m2 · · ·mk, where the mi are distinct primes,

0 otherwise, i.e., if p2 divides m for some prime p.

2.1.23 Definition The number of monic irreducible polynomials of degree n over Fq is denoted
by Iq(n).

2.1.24 Theorem For all n ≥ 1 and any prime power q, we have

Iq(n) =
1

n

∑
d|n

µ(d)qn/d.

2.1.25 Remark We have that Iq(n) > 0 for all prime powers q and all integers n > 1:

Iq(n) =
1

n

∑
d|n

µ(d)qn/d ≥ 1

n

(
qn − qn−1 − qn−2 − · · · − q

)
> 0.

2.1.26 Remark For a polynomial f ∈ Fq[x], we have (f(x))q = f(xq). This property is of great
use in finite field calculations.

2.1.27 Lemma If Fq is a finite field with q elements then in Fq[x] we have

xq − x =
∏
a∈Fq

(x− a).

2.1.28 Remark The next theorem is crucial for fast polynomial irreducibility testing and factor-
ization algorithms over finite fields; see Sections 11.3 and 11.4.

2.1.29 Theorem Let f be an irreducible polynomial of degree n over Fq. Then f(x)|(xqr − x) if
and only if n|r.
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2.1.30 Definition Let f ∈ F [x] be of positive degree and E an extension of F . Then f splits
in E if f can be written as a product of linear factors in E[x], that is, there exist
α1, α2, . . . , αn ∈ E such that

f(x) = a(x− α1)(x− α2) · · · (x− αn),

where a ∈ F is the leading coefficient of f and E is the smallest such field. The field E
is a splitting field of f over F if f splits in E.

2.1.31 Theorem If F is a field, and f any polynomial of positive degree in F [x], then there exists
a splitting field of f over F . Any two splitting fields of f over F are isomorphic under an
isomorphism which keeps the elements of F fixed and maps the roots of f into each other.

2.1.32 Theorem For every prime p and positive integer n ≥ 1 there is a finite field with pn elements.
Any finite field with pn elements is isomorphic to the splitting field of xp

n − x over Fp.

2.1.33 Remark The previous theorem shows that a finite field of a given order is unique up to
field isomorphism because splitting fields are unique up to isomorphism. Thus we speak of
“the” finite field of a particular order q.

2.1.34 Remark We note that when p is a prime the field Fp is the same as (isomorphic to) the
ring Zp of integers modulo p. The ring Zp is also denoted by Z/pZ. When n > 1 the finite
field Fpn is not the same as the ring Zpn of integers modulo pn. Indeed, Zpn is not a field if
n > 1.

2.1.35 Theorem Let Fpn be the finite field with pn elements. Every subfield of Fpn has pm elements
for some positive integer m dividing n. Conversely, for any positive integer m dividing n
there is a unique subfield of Fpn of order pm.

2.1.36 Remark The subfields of Fq36 are illustrated in the following diagram:

Fq18Fq18

Fq2

Fq6

Fq12

Fq3

Fq4Fq9

Fq36

Fq1

Figure 2.1.1 The subfields of Fq36 .

2.1.37 Theorem The multiplicative group F∗q of all nonzero elements of the finite field Fq is cyclic.

2.1.38 Definition An element α ∈ Fq which multiplicatively generates the group F∗q of all nonzero
elements of the field Fq is a primitive element, sometimes also a primitive root.

2.1.39 Remark Let θ be a primitive element of a finite field Fq. Then every nonzero element of Fq
can be written as a power of θ. This representation makes multiplication of field elements
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very easy to compute. However, in general, it may not be easy to find the power s of θ such
that θt + θr = θs; see Subsection 2.1.7.5. Conversely, as we will see later in our discussion
of bases for finite fields, representations which make exponentiation easy to compute often
have a more complex multiplicative structure.

2.1.40 Definition Let α ∈ F∗q . The order of α is the smallest positive integer n such that αn = 1.

2.1.41 Remark We use the notation (a, b) or gcd(a, b) to represent the greatest common divisor
(gcd) of a and b, where a and b belong to a Euclidean domain (usually integers or polyno-
mials).

2.1.42 Lemma If g is a primitive element of Fq then gt is a primitive element of Fq if and only if
(t, q − 1) = 1.

2.1.43 Definition The number of positive integers e ≤ n such that (n, e) = 1 is denoted by φ(n),
and is the Euler function.

2.1.44 Remark The Euler function is multiplicative: if (m,n) = 1, then φ(mn) = φ(m)φ(n).

2.1.45 Remark It follows from Lemma 2.1.42 that there are exactly φ(q − 1) primitive elements
in Fq.

2.1.46 Definition A monic polynomial all of whose roots are primitive elements is a primitive
polynomial.

2.1.47 Remark Primitive polynomials are treated in Chapter 4.

2.1.48 Definition The reciprocal f∗ of a monic polynomial f of degree n is defined by f∗(x) =
xnf(1/x). The polynomial f is self-reciprocal if f∗ = f .

2.1.49 Remark The reciprocal polynomial of an irreducible polynomial f , f(x) 6= x, over Fq is
again irreducible over Fq. In addition, the monic reciprocal polynomial defined by f(x)/f(0)
of a primitive polynomial is also primitive.

2.1.50 Remark If f is a self-reciprocal irreducible polynomial of degree n > 1, in Fq[x], then n
must be even.

2.1.51 Definition Let f ∈ Fq[x] be a nonzero polynomial. If f(0) 6= 0, the order of f is the least
positive integer e such that f |xe − 1. If f(0) = 0, let f(x) = xrg(x) for some integer
r ≥ 1 and g ∈ Fq[x] with g(0) 6= 0. In this case, the order of f is the order of g.

2.1.52 Remark We denote the order of f by ord(f). The order of a polynomial is also called the
period or exponent of the polynomial.

2.1.53 Theorem Let f ∈ Fq[x] be an irreducible polynomial over Fq of degree n with f(0) 6= 0.
Then ord(f) is equal to the order of any root of f in the multiplicative group of F∗qn .

2.1.54 Corollary If f ∈ Fq[x] is an irreducible polynomial over Fq of degree n, then ord(f)|(qn−1).

2.1.55 Theorem Let Fq be a finite field of characteristic p, and let f ∈ Fq[x] be a polynomial

of positive degree with f(0) 6= 0. Let f = af b11 · · · f bkk be the canonical factorization of f
into irreducibles in Fq[x], where a ∈ Fq, b1, . . . , bk ∈ N, and f1, . . . , fk are distinct monic
irreducible polynomials in Fq[x]. Then ord(f) = ept, where e is the least common multiple
of ord(f1), . . . , ord(fk) and t is the smallest integer with pt ≥ max(b1, . . . , bk).
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2.1.3 Extension fields

2.1.56 Definition Let K be a subfield of F and let M be a subset of F . Then K(M) denotes the
intersection of all subfields of F containing K and M as subsets. This field is K adjoin
M . When M is finite, say M = {α1, . . . , αk}, we write K(α1, . . . , αk) for K(M).

2.1.57 Definition Let K ⊆ F , α ∈ F , and f(α) = 0 where f is a monic polynomial in K[x]. Then
f is the minimal polynomial of α if α is not a root of any nonzero polynomial in K[x]
of lower degree.

2.1.58 Proposition The minimal polynomial of any extension field element is irreducible over the
base field. This result provides a method by which one can obtain irreducible polynomials.

2.1.59 Definition A field F is a finite extension of K if K ⊆ F and F is a finite dimensional
vector space over K. In this case we refer to the dimension m of F over K as the degree
of the extension, and we write [F : K] = m.

2.1.60 Theorem Let F be a finite extension of K and let E be a finite extension of F . Then E is
a finite extension of K. Moreover, we have [E : K] = [E : F ][F : K].

2.1.61 Definition Let K ⊆ F and let α ∈ F . Then α is algebraic over K if there is a nonzero
polynomial f ∈ K[x] such that f(α) = 0 in F [x]. An extension field is algebraic if every
element of the extension field is algebraic.

2.1.62 Theorem Every finite extension of a field is algebraic.

2.1.63 Theorem Let K be a subfield of F with α ∈ F algebraic of degree n over K and let g be
the minimal polynomial of α over K. Then:

1. The field K(α) is isomorphic to the factor ring K[x]/(g).

2. The dimension of K(α) over K is n.

3. The set {1, α, α2, . . . , αn−1} is a basis for K(α) over K.

4. Every element of K(α) is algebraic over K with degree dividing n.

2.1.64 Remark An extension obtained by adjoining a single element is a simple extension. The
next theorem gives an important property of finite fields which is not shared by infinite
fields (there are finite extensions of infinite fields which are not simple).

2.1.65 Theorem Let Fq be a finite field and let Fr be a finite extension of Fq. Then Fr is a simple
algebraic extension of Fq, and for any primitive element α of Fr the relation Fr = Fq(α)
holds.

2.1.66 Corollary For any prime power q and any integer n ≥ 1 there is an irreducible polynomial
of degree n over Fq.

2.1.67 Example Consider q = 2100. We can identify the elements of Fq with polynomials of the
form a0 +a1α+a2α

2 + · · ·+a99α
99, where 0 ≤ ai < 2 for each i and where α is a root of an

irreducible polynomial of degree 100 over the field F2. Corollary 2.1.66 shows that such an
irreducible polynomial always exists. Using Theorem 2.1.24 we have that there are exactly

1

100

(
2100 − 250 − 220 + 210

)
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irreducible polynomials of degree 100 over F2.

2.1.68 Remark Corollary 2.1.66 can also be derived using the formula for the number of irreducible
polynomials in Theorem 2.1.24.

2.1.69 Example Consider the polynomial f(x) = x2 +x+1 over the field F2. Since f does not have
a root in F2, f is irreducible over F2. Let α be a root of f so that α2 + α + 1 = 0, that is,
α2 = −(α+1) = α+1. The field F4 = F22 can be represented as the set {aα+ b : a, b ∈ F2}.
We give the addition and multiplication tables for the field F22 . We note that α is a primitive
element in the field F4, so α1 = α, α2 = α+ 1 and α3 = 1.

+ 0 1 α α+ 1
0 0 1 α α+ 1
1 1 0 α+ 1 α
α α α+ 1 0 1

α+ 1 α+ 1 α 1 0

× 0 1 α α+ 1
0 0 0 0 0
1 0 1 α α+ 1
α 0 α α+ 1 1

α+ 1 0 α+ 1 1 α

2.1.70 Example Consider the field F9, which is a vector space of dimension 2 over F3. Consider
f(x) = x2 +x+2 in F3[x]. This polynomial has no roots in F3 so it is irreducible over F3. Let
α be a root of f , so α2 +α+2 = 0. Hence α2 = −α−2 = 2α+1. The field F32 is isomorphic
to the set {aα+ b | a, b ∈ F3} with its natural operations. We can compute the addition and
multiplication tables by hand. For example, 2α(α+2) = 2α2 +4α = 2(2α+1)+α = 2α+2.
The following addition and multiplication tables are obtained. We can use the multiplication
table to check that the multiplicative order of α in F9 is 8, and thus α is a primitive element
of F9.

+ 0 1 2 α α+ 1 α+ 2 2α 2α+ 1 2α+ 2
0 0 1 2 α α+ 1 α+ 2 2α 2α+ 1 2α+ 2
1 1 2 0 α+ 1 α+ 2 α 2α+ 1 2α+ 2 2α
2 2 0 1 α+ 2 α α+ 1 2α+ 2 2α 2α+ 1
α α α+ 1 α+ 2 2α 2α+ 1 2α+ 2 0 1 2

α+ 1 α+ 1 α+ 2 α 2α+ 1 2α+ 2 2α 1 2 0
α+ 2 α+ 2 α α+ 1 2α+ 2 2α 2α+ 1 2 0 1

2α 2α 2α+ 1 2α+ 2 0 1 2 α α+ 1 α+ 2
2α+ 1 2α+ 1 2α+ 2 2α 1 2 0 α+ 1 α+ 2 α
2α+ 2 2α+ 2 2α 2α+ 1 2 0 1 α+ 2 α α+ 1

× 0 1 2 α α+ 1 α+ 2 2α 2α+ 1 2α+ 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 α α+ 1 α+ 2 2α 2α+ 1 2α+ 2
2 0 2 1 2α 2α+ 2 2α+ 1 α α+ 2 α+ 1
α 0 α 2α 2α+ 1 1 α+ 1 α+ 2 2α+ 2 2

α+ 1 0 α+ 1 2α+ 2 1 α+ 2 2α 2 α 2α+ 1
α+ 2 0 α+ 2 2α+ 1 α+ 1 2α 2 2α+ 2 1 α

2α 0 2α α α+ 2 2 2α+ 2 2α+ 1 α+ 1 1
2α+ 1 0 2α+ 1 α+ 2 2α+ 2 α 1 α+ 1 2 2α
2α+ 2 0 2α+ 2 α+ 1 2 2α+ 1 α 1 2α α+ 2

2.1.71 Example Let f(x) = x2 + 1 ∈ F3[x]. It is straightforward to check that f is irreducible over
the field F3. Let α be a root of f . We compute α2 = −1 and α4 = 1. Hence no root of f can
have order 8, that is, no root of f can be a primitive element. Nevertheless, the splitting
field of f over F3 is F9. It can be seen that α+ 1 has order 8 and is thus a primitive element
for F9 over F3.
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2.1.72 Remark Tables of irreducible and primitive polynomials can be found in Section 2.2. In
that section is a discussion of some computer algebra packages for implementing finite field
arithmetic.

2.1.73 Theorem If f is an irreducible polynomial of degree n over Fq then f has a root α in Fqn .

Moreover all of the roots of f are simple and are given by α, αq, αq
2

, . . . , αq
n−1

.

2.1.74 Definition Let α ∈ Fqn . Then α, αq, αq
2

, . . . , αq
n−1

are the conjugates of α over Fq.

2.1.75 Lemma Let α ∈ Fqn and let the minimal polynomial of α over Fq have degree d. Consider

the set α, αq, αq
2

, . . . , αq
n−1

of conjugates of α. The elements of this set are distinct if n = d;
otherwise each distinct conjugate is repeated n/d times.

2.1.76 Theorem The distinct automorphisms of Fqn over Fq are given by the functions

σ0, σ1, . . . , σn−1 where σj : Fqn → Fqn and is defined by σj(α) = αq
j

for any α ∈ Fqn .

2.1.77 Remark The set of automorphisms of Fq forms a group with the operation of functional
composition. This group is called the Galois group of Fqn over Fq. It is a cyclic group
with generator σ1 : Fqn → Fqn that maps α ∈ Fqn to αq, and is called the Frobenius
automorphism. The conjugates of α are thus the elements to which α is sent by iterated
applications of the Frobenius automorphism.

2.1.78 Remark The subfields of Fqn are exactly the fields of the form Fqm where m|n. The sub-
groups of the Galois group of Fqn over Fq are exactly the groups generated by σm1 where
m|n. Moreover, σm1 (α) = α if and only if α ∈ Fqm . Thus there is a one-to-one correspondence
between the subfields of Fqn and the subgroups of its Galois group.

2.1.79 Remark In general, if F is an extension of a field K then the set of automorphisms of F
that leave K fixed pointwise is the Galois group of F over K. The field of Galois theory is
the study of Galois groups. Thus, if K is finite and F is a finite extension of K then the
Galois group is cyclic. When K is infinite, the Galois group need not be cyclic, even if F is
a finite extension of K.

2.1.4 Trace and norm functions

2.1.80 Definition Let K = Fq and F = Fqn . For α ∈ F , we define the trace of α over K as

TrF/K(α) = α+ αq + · · ·+ αq
n−1

. Equivalently, TrF/K(α) is the sum of the conjugates
of α. If K is the prime subfield of F then the trace function is the absolute trace.

2.1.81 Example Let K = F2 and F = F24 . Then TrF/K(α) = α+ α2 + α4 + α8. For K = F4 and
F = F16 we have TrF/K(α) = α+ α4.

2.1.82 Remark Since
(
TrF/K(α)

)q
= TrF/K(α) the trace of an element always lies in the base

field K.

2.1.83 Theorem Let K = Fq and F = Fqn . The trace function has the following properties:

1. for any α ∈ F , TrF/K(α) ∈ K;

2. TrF/K(α+ β) = TrF/K(α) + TrF/K(β) for α, β ∈ F ;

3. TrF/K(cα) = cTrF/K(α) for α ∈ F and c ∈ K;

4. the trace function is a K-linear map from F onto K;
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5. TrF/K(α) = nα for α ∈ K;

6. TrF/K(αq) = TrF/K(α) for α ∈ F ;

7. for any α ∈ K, we have |{β ∈ F | TrF/K(β) = α}| = qn−1;

8. Suppose that K ⊆ F ⊆ E are finite fields; then for any α ∈ E

TrE/K(α) = TrF/K(TrE/F (α)).

2.1.84 Theorem For β ∈ F let Lβ be the map α 7→ TrF/K(βα). Then Lβ 6= Lγ if β 6= γ. Moreover
the K-linear transformations from F to K are exactly the maps of the form Lβ as β varies
over the elements of the field F .

2.1.85 Remark The result in Theorem 2.1.84 provides a method to generate all of the linear
transformations from the extension field F to the subfield K.

2.1.86 Definition Let K = Fq and F = Fqn . The norm over K of an element α ∈ F is defined by

NormF/K(α) = ααq · · ·αqn−1

=
n−1∏
i=0

αq
i

= α(qn−1)/(q−1).

2.1.87 Remark The norm of an element α is thus calculated by taking the product of all of the
conjugates of α, just as the trace of α is obtained by taking the sum of all of the conjugates
of α.

2.1.88 Theorem Let K = Fq and F = Fqn . The norm function has the following properties:

1. NormF/K(α) ∈ K;

2. NormF/K(αβ) = NormF/K(α) NormF/K(β) for α, β ∈ F ;

3. the norm maps F onto K and F ∗ onto K∗;

4. NormF/K(α) = αn if α ∈ K;

5. NormF/K(αq) = NormF/K(α);

6. if K ⊆ F ⊆ E are finite fields then

NormE/K(α) = NormF/K(NormE/F (α)) .

2.1.5 Bases

2.1.89 Remark Every finite field F is a vector space over each of its subfields, and thus has a
vector space basis over each of its subfields. There are several different kinds of bases for
finite fields. Each kind of basis facilitates certain computations. When doing computations in
finite fields, there are some important operations like addition, multiplication, q-th powering
and finding inverses. With some bases computing inverses and q-th powers are easy, while
multiplication could be more involved. With other bases, one can calculate multiplications
quickly at the cost of more complicated inverse computations or exponentiations.

2.1.90 Remark The vector space of all n × r matrices over a field Fq is of dimension nr over Fq.
Taking into account the order of the elements, the total number of distinct bases of Fqn
over Fq is given by

(qn − 1)(qn − q) · · · (qn − qn−1),

which is also equal to the number of elements in the general linear group GLn(Fq), the ring
of nonsingular n× n matrices over Fq.
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2.1.91 Remark Consider Fqn as a vector space over Fq of dimension n. We know there are many
bases for this vector space. Given B = {α1, . . . , αn} ⊆ Fqn , how can we tell if B is a basis
for Fqn over Fq? We begin with a test which determines whether a set of elements of Fqn
is independent over Fq. If this result is applied to a set containing n elements, it can thus
be used to determine whether these elements form a basis of Fqn over Fq. We require the
following notation.

2.1.92 Definition Let K = Fq and F = Fqn . Let {α1, . . . , αn} be a set of n elements of F viewed
as a vector space over the subfield K. We define the discriminant ∆F/K(α1, . . . , αn)
with the following rule:

∆F/K(α1, . . . , αn) =

∣∣∣∣∣∣∣
TrF/K(α1α1) · · · TrF/K(α1αn)

...
. . .

...
TrF/K(αnα1) · · · TrF/K(αnαn)

∣∣∣∣∣∣∣ .

2.1.93 Theorem If α1, . . . , αn ∈ Fqn , then the set {α1, . . . , αn} is a basis for Fqn over Fq if and
only if ∆Fqn/Fq (α1, . . . , αn) is nonzero.

2.1.94 Remark The following result provides an alternative method to determine if a given set of
elements forms a basis. We note that the calculations for this method must be done in the
extension field, not in the base field. Working in the extension field may have a significant
computational cost. For example, if the base field is F2 and the extension field is F21000 then
computations in the base field are much faster than computations in the extension field.

2.1.95 Corollary The set {α1, . . . , αn} is a basis for Fqn over Fq if and only if∣∣∣∣∣∣∣∣∣
α1 · · · αn
αq1 · · · αqn
...

. . .
...

αq
n−1

1 · · · αq
n−1

n

∣∣∣∣∣∣∣∣∣ 6= 0.

2.1.96 Definition Let α be a root of an irreducible polynomial of degree n over Fq. The set
{1, α, α2, . . . , αn−1} is a polynomial basis of the field Fqn over Fq.

2.1.97 Remark When we use a polynomial basis for Fqn we can regard field elements, which in
reality are polynomials in α of degree at most n − 1, as vectors. We can then easily add
vectors in the usual way by adding the corresponding coefficients. Field multiplication is
more complicated since we must gather terms with like powers of the basis elements when
we simplify a product.

2.1.98 Definition If α ∈ Fqn and {α, αq, . . . , αqn−1} is a basis for Fqn over Fq, then the basis is a
normal basis of Fqn over Fq, and α is a normal element.

2.1.99 Remark If β = a0α + a1α
q + · · · + an−1α

qn−1

so that β is represented by the vector
(a0, . . . , an−1), then αq is simply represented by the shifted vector (an−1, a0, . . . , an−2).
Thus if we have a normal basis, it is extremely easy to raise a field element to the power
q. Addition is of course also still easy to compute using a normal basis. We note that
multiplication of field elements is quite complicated using a normal basis. In Section 5.2 we



Introduction to finite fields 23

give important properties of normal bases including their existence for any finite extension
field of Fq.

2.1.100 Definition Two ordered bases of Fqn over Fq {α1, . . . , αn} and {β1, . . . , βn} are comple-
mentary (or dual) if TrFqn/Fq (αiβj) = δij , where δij = 0 if j 6= i and δij = 1 if i = j.
An ordered basis is self-dual if it is dual with itself.

2.1.101 Definition A primitive normal basis for an extension field Fqn over Fq is a basis of the

form {α, αq, αq2

, . . . , αq
n−1}, where α is a primitive element for Fqn over Fq.

2.1.102 Remark Further kinds of bases for finite fields and their properties are discussed in detail
in Chapter 5. For example, we show that each basis of Fqn has a unique dual basis. We give
fundamental properties of normal bases and primitive normal bases in Section 5.2. We give
there, among other results, the fundamental theorem that for any prime power q and any
integer n ≥ 2 there exists a primitive normal basis for Fqn over Fq.

2.1.6 Linearized polynomials

2.1.103 Definition Let L(x) =
∑n−1
i=0 αix

qi , where αi ∈ Fqn . A polynomial of this form is a
linearized polynomial over Fqn (also a q-polynomial because the exponents are all powers
of q).

2.1.104 Remark These polynomials form an important class of polynomials over finite fields because
they are Fq-linear functions from Fqn to Fqn .

2.1.105 Theorem Let L(x) be a linearized polynomial. Then for all α, β ∈ Fqn and all c ∈ Fq, we
have

1. L(α+ β) = L(α) + L(β),

2. L(cα) = cL(α).

2.1.106 Theorem Let L be a nonzero linearized polynomial over Fqn and assume that the roots of L
lie in the field Fqs , an extension field of Fqn . Then each root of L has the same multiplicity,
which is either 1, or a positive power of q.

2.1.107 Remark The Frobenius automorphism x 7→ xq is one such example, and the trace function
Tr(x) =

∑n−1
i=0 x

qi provides another important example of a linearized polynomial over Fq.

2.1.108 Definition Let L be a linearized polynomial over Fqn . A polynomial of the form A(x) =
L(x)− α, for α ∈ Fqn , is an affine polynomial over Fqn .

2.1.109 Theorem Let A be a nonzero affine polynomial over Fqn and assume that the roots of A
lie in the field Fqs , an extension field of Fqn . Then each root of A has the same multiplicity,
which is either 1, or a positive power of q.

2.1.7 Miscellaneous results

2.1.110 Remark We collect here some concepts and results needed in later sections of the handbook.
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2.1.7.1 The finite field polynomial Φ function

2.1.111 Definition For f ∈ Fq[x], Φq(f) denotes the number of polynomials over Fq which are of
smaller degree than the degree of f and which are relatively prime to f . This is also the
number of units in the ring Fq[x]/(f(x)).

2.1.112 Remark Similarly to the corresponding properties for the Euler function from elementary
number theory, we have the following result (see Lemma 3.69 of [1939] and Definition 2.1.43).

2.1.113 Lemma The function Φq has the following properties:

1. Φq(f) = 1 if the degree of f is 0;

2. Φq(fg) = Φq(f)Φq(g) if f and g are relatively prime;

3. if f has degree n ≥ 1 then

Φq(f) = qn(1− q−n1) · · · (1− q−nr ),

where n1, . . . , nr are the degrees of the distinct monic irreducible polynomials
appearing in the unique factorization of f in Fq[x].

2.1.114 Remark One important consequence of Lemma 2.1.113 is that if f is irreducible of degree
n over Fq, then Φq(f

e) = qne − qn(e−1) for any positive integer e.

2.1.7.2 Cyclotomic polynomials

2.1.115 Remark The following is a synopsis of properties of roots of unity and cyclotomic polyno-
mials, which can be found in [1939, Chapters 2 and 3].

2.1.116 Remark Let n be a positive integer. The polynomial xn−1 has many special properties over
any field. For example, xn − 1 is the minimal polynomial of the Frobenius automorphism
which generates the Galois group of Fqn over Fq, which is useful when studying normal bases
over finite fields, see Section 5.2. Many of the basic properties of cyclotomic polynomials
(and their roots) hold over arbitrary fields, however in this section we restrict to the finite
field case.

2.1.117 Definition The roots α1, α2, . . . , αn ∈ Fqn of the polynomial xn − 1 ∈ Fq[x] are the n-th
roots of unity over Fq.

2.1.118 Remark The roots of any degree n polynomial over Fq must be in Fqn . Thus, the n-th roots
of unity of Fq are all contained in Fqn .

2.1.119 Theorem Let n be a positive integer and let Fq be a finite field of characteristic p. If p does
not divide n, the roots of unity form a cyclic group of order n with respect to multiplication
in F∗q . Otherwise, let n = mpe, where e > 0 and gcd(m, p) = 1. Then xn − 1 = (xm − 1)p

e

and the n-th roots of unity are the m-th roots of unity with multiplicity pe.

2.1.120 Definition Let Fq be a finite field of characteristic p which does not divide n. Denote the
cyclic group of n-th roots of unity as Un. Suppose that Un is generated by α ∈ Fqn , that
is Un = 〈α〉. Then α is a primitive n-th root of unity over Fq.
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2.1.121 Definition Let Fq have characteristic p, not dividing n, and let ζ be a primitive n-th root
of unity over Fq. Then the polynomial

Qn(x) =
n∏

s=1 gcd(s,n)=1

(x− ζs)

is the n-th cyclotomic polynomial over Fq.

2.1.122 Remark The n-th cyclotomic polynomial does not depend on the choice of primitive root
of unity chosen, since ζs, gcd(s, n) = 1, runs over all primitive n-th roots of unity.

2.1.123 Theorem Let Fq be a finite field with characteristic p which does not divide n. Then

1. deg(Qn) = φ(n);

2. xn − 1 =
∏
d|nQd(x);

3. the coefficients of Qn(x) lay within Fp.

2.1.124 Proposition Let r be a prime and let k be a positive integer. Then

Qrk(x) = 1 + xr
k−1

+ x2rk−1

+ · · ·+ x(r−1)rk−1

.

2.1.125 Theorem Suppose gcd(n, q) = 1, then Qn factors into φ(n)/d distinct monic irreducible
polynomials in Fq[x] of degree d, where d is the order of q modulo n. Furthermore, Fqd is
the splitting field of any such factor.

2.1.126 Corollary The cyclotomic polynomial Qn is irreducible over Fq if and only if n = 4, rk, 2rk,
k ≥ 0, where r is an odd prime and q is a primitive root modulo n.

2.1.127 Proposition Let p be a prime and let m and k be positive integers. The following properties
of cyclotomic polynomials hold over any field for which they are defined:

1. Qmp(x) = Qm(xp)/Qm(x), if p does not divide m;

2. Qmp(x) = Qm(xp), if p divides m;

3. Qmpk(x) = Qmp(x
pk−1

);

4. Q2n(x) = Qn(−x) if n ≥ 3 and n is odd;

5. Qn(0) = 1 if n ≥ 2;

6. Qn(x−1)xφ(n) = Qn(x) if n ≥ 2;

7.

Qn(1) =


0 if n = 1,

p if n = pe,

1 if n has at least two distinct prime factors;

8.

Qn(−1) =


−2 if n = 1,

0 if n = 2,

p if n = 2pe,

1 otherwise.

2.1.128 Theorem Let n be a positive integer not divisible by the characteristic of Fq. An explicit
factorization of the Qn over Fq is given by

Qn(x) =
∏
d|n

(xd − 1)µ(n/d) =
∏
d|n

(xn/d − 1)µ(d),
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where µ is the Möbius function, see Definition 2.1.22.

2.1.129 Proposition Suppose gcd(n, q) = 1, then Qn is irreducible over Fq if and only if the multi-
plicative order of q modulo n is φ(n).

2.1.130 Theorem The product of all monic irreducible polynomials of degree n over Fq, denoted
I(q, n;x), is given by

I(q, n;x) =
∏
m

Qm(x),

where the product is taken over all positive divisors m of qn − 1 such that n is the multi-
plicative order of q modulo m.

2.1.7.3 Lagrange interpolation

2.1.131 Theorem If f : Fq → Fq, there is a unique polynomial Pf with coefficients in Fq and of
degree at most q − 1 so that Pf represents the function f , that is, Pf (b) = f(b) for all
b ∈ Fq. In particular,

Pf (x) =
∑
a∈Fq

f(a)[1− (x− a)q−1].

2.1.132 Remark The property that every function over a finite commutative ring with identity can
be represented by a polynomial with coefficients in that ring characterizes finite fields. In
particular, if a finite commutative ring R with unity has the property that every function
from the ring to itself can be represented by a polynomial with coefficients in the ring, then
R is a finite field, and conversely.

2.1.133 Remark The Lagrange Interpolation Formula can also be stated in the following form: for
n ≥ 0, let a0, . . . , an be n+ 1 distinct elements of Fq, and let b0, . . . , bn be n+ 1 arbitrary
elements of Fq. Then, there exists exactly one polynomial f ∈ Fq[x] of degree less than or
equal to n such that f(ai) = bi, i = 0, . . . , n. This polynomial is given by

f(x) =

n∑
i=0

bi

n∏
k=0,k 6=i

x− ak
ai − ak

.

2.1.134 Theorem Let f : Fnq → Fq. The polynomial Pf (x1, . . . , xn) represents f , that is,
Pf (b1, . . . , bn) = f(b1, . . . , bn) for all (b1, . . . , bn) ∈ Fnq , where

Pf (x1, . . . , xn) =
∑

(a1,...,an)∈Fnq

f(a1, . . . , an)[1− (x1 − a1)q−1] · · · [1− (xn − an)q−1].

2.1.7.4 Discriminants

2.1.135 Definition Let f be a polynomial of degree n in Fq[x] with leading coefficient a, and with
roots α1, α2, . . . , αn in its splitting field, counted with multiplicity. The discriminant of
f is given by

D(f) = a2n−2
∏

1≤i<j≤n

(αi − αj)2.

2.1.136 Example The discriminant of ax2 + bx+ c = a(x− α1)(x− α2) is

D(ax2 + bx+ c) = a2(α1 − α2)2 = a2
(
(α1 + α2)2 − 4α1α2

)
= a2

(
b2a−2 − 4ca−1

)
= b2 − 4ac.
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The discriminant of ax3 + bx2 + cx+ d is

D(ax3 + bx2 + cx+ d) = b2c2 − 4b3d− 4ac3 − 27a2d2 + 18abcd.

2.1.137 Remark The discriminant of f is a polynomial in the coefficients of f . It is also a symmetric
function in the roots of f and thus lies in Fq. Clearly, f has a multiple root if and only if
D(f) = 0.

2.1.138 Proposition An alternative formula for the discriminant of a polynomial f is

D(f) = (−1)
n(n−1)

2

n∏
i=1

f ′(αi),

where f ′ denotes the derivative of the polynomial f .

2.1.7.5 Jacobi logarithms

2.1.139 Definition If the elements of F∗q are represented as powers of a fixed primitive element
b ∈ Fq, then addition in Fq can be facilitated by using Jacobi logarithms (sometimes
also called Zech logarithms) L(n) defined by the equation 1 + bn = bL(n), where the case
bn = −1 is excluded.

2.1.140 Remark One can show that bm + bn = bm+L(n−m) whenever this is defined. Tables of
Jacobi logarithms for fields of characteristic 2 and order at most 64 can be found on Table
B of [1939]. Jacobi logarithms were first studied by Jacobi [1584].

2.1.7.6 Field-like structures

2.1.141 Remark In this subsection we briefly describe several algebraic systems that have many
but perhaps not all of the properties of a field. We are indebted to John Sheekey (Università
di Padova) for this section.

2.1.142 Definition A left (resp. right) prequasifield is a set Q together with two operations, “+”
and “·” such that:

(1) (Q, +) is an abelian group;

(2) for all a, b, c ∈ Q there exist unique x, y, z ∈ Q such that

a · x = b and y · a = b and a · z = b · z + c;

(3) left (resp. right) distributive laws hold: for all a, b, c ∈ Q

a · (b+ c) = a · b+ a · c (resp.(b+ c) · a = b · a+ c · a).

2.1.143 Definition Let Q be a left prequasifield.

(1) A left prequasifield is a left quasifield if it has a multiplicative identity.

(2) A left prequasifield is a presemifield if it is also a right prequasifield.

(3) A presemifield is a semifield if it has a multiplicative identity.

(4) A semifield is commutative if “·” is commutative.

(5) A left quasifield is a left nearfield if “·” is associative.
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2.1.144 Remark All left prequasifields have prime power order. Left prequasifields coordinatize
translation planes. The smallest left prequasifield which is not a field has order 9. The
smallest semifield which is not a field has order 16. For more on the above structures
see [807] or [1560].

2.1.145 Remark The multiplicative structure of a left prequasifield is a quasigroup. The multi-
plicative structure of a semifield is a loop. The multiplicative structure of a nearfield is a
group.

2.1.146 Definition Let Q be a set together with two operations, “+” and “·”, containing additive
identity 0 and multiplicative identity 1, such that:

(1) (Q/{0}, ·) is a group;

(2) left and right distributive laws hold: for all a, b, c ∈ Q

a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a;

(3) there exists a unique element 0 such that for all a ∈ Q

a+ 0 = 0 + a = a.

(4A) Q is a neofield if in addition to (1), (2) and (3) it satisfies for all a, b ∈ Q there
exist unique x, y ∈ Q such that

a+ x = b and y + a = b.

(4B) Q is a division semiring if in addition to (1), (2) and (3) above it also satisfies
+ is associative and commutative.

2.1.147 Remark The additive structure of a neofield is a loop. The additive structure of a division
semiring is a commutative monoid.

2.1.148 Remark For more properties of semirings see [1291]. Note that a division semiring in which
multiplication is commutative is sometimes also referred to as a semifield, but this definition
does not coincide with the previously defined structures.

2.1.149 Remark For more properties of neofields see [2343].

2.1.7.7 Galois rings

2.1.150 Remark We briefly describe Galois rings. We are indebted to Horacio Tapia-Recillas (Uni-
versidad Autónoma Metropolitana, Unidad Iztapalapa, México) for this subsection.

2.1.151 Remark Galois rings represent a natural (Galois) extension of the (local) modular ring
of integers Z/pmZ where p is a prime and m a positive integer. Krull [1808] recognized
their existence and later, Janusz [1593] and Raghavendran [2436] independently obtained
additional properties of these rings. More details on Galois rings can be found in [283, 1409,
2045, 2921].

2.1.152 Definition Let Z/pmZ be the ring of integers modulo pm, p a prime and m > 1 an integer.
A monic irreducible (primitive) polynomial f ∈ (Z/pmZ)[x] of degree n is a monic basic
irreducible (primitive) if its reduction modulo p is irreducible (primitive) in (Z/pZ)[x].
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2.1.153 Remark Monic basic irreducible (primitive) polynomials in (Z/pmZ)[x] can be determined
by means of Hensel’s Lifting Lemma from monic irreducible (primitive) polynomials in
(Z/pZ)[x].

2.1.154 Definition Let f ∈ (Z/pmZ)[x] be a monic basic irreducible polynomial of degree n. Then
the Galois ring determined by f is

GR(pm, n) = (Z/pmZ)[x]/〈f(x)〉,

where 〈f(x)〉 is the principal ideal of (Z/pmZ)[x] generated by f(x).

2.1.155 Remark With the above notation, an equivalent definition of a Galois ring is the following.

2.1.156 Definition Let Z be the ring of (rational) integers and let f ∈ Z[x] be a monic polynomial
of degree n such that its reduction modulo pZ is irreducible, then

GR(pm, n) = Z[x]/〈pm, f〉.

2.1.157 Remark The Galois ring GR(pm, n) can also be defined by means of the p-adic numbers in
the following way.

2.1.158 Definition Let p be a prime, Qp be the field of p-adic (rational) numbers and Zp be the
ring of p-adic integers (for details see [2588]). Let n be a positive integer and let ω
be a (pn − 1) root of unity. Then Qp(ω) is an unramified Galois extension of degree n
of Qp. Let Zp[ω] be the ring of elements of Qp(ω) integral over Zp. Let pZp[ω] be the
(unique) maximal ideal of Zp[ω] generated by p. Then the quotient Zp[ω]/pZp[ω] is a
field isomorphic to the Galois field Fpn .

2.1.159 Definition With the notation as above let m be a positive integer and let pmZp[ω] be the
principal ideal of Zp[ω] generated by pm. Then the Galois ring GR(pm, n) is defined as:

GR(pm, n) = Zp[ω]/pmZp[ω].

2.1.160 Remark This ring contains as a subring the ring of integers modulo pm, Z/pmZ, and can
be thought of as an extension of Z/pmZ by adjoining a (pn − 1) root of unity ω:

GR(pm, n) = (Z/pmZ) [ω].

2.1.161 Theorem With the notation as above, the basic properties of the Galois ring GR(pm, n)
are the following [283, 1409, 2045, 2921]:

1. GR(pm, n) contains Z/pmZ as a subring, it has characteristic pm and cardinality
pmn. The integer m is the nilpotency index of the Galois ring.

2. The ring GR(pm, n) is local with maximal ideal M = 〈p〉 = pGR(pm, n) gen-
erated by p, and a principal ideal ring where any ideal is of the form 〈pi〉 for
i = 0, 1, 2, . . . ,m. Furthermore, it is a finite chain ring:

GR(pm, n) = 〈p0〉 ⊃ 〈p〉 ⊃ · · · ⊃ 〈pm−1〉 ⊃ 〈pm〉 = {0}.

The ideal 〈pi〉 has cardinality pn(m−i) for i = 0, 1, . . . ,m.
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3. Each non-zero element of the Galois ring GR(pm, n) can be written as upk, where
u is a unit and 0 ≤ k ≤ m− 1. In this representation the integer k is unique and
the unit u is unique modulo the ideal 〈pm−k〉.

4. The canonical homomorphism φ : GR(pm, n) −→ GR(pm, n)/M, between the
Galois ring and its residue field GR(pm, n)/M is such that φ(ξ) = ξ is a root of
φ(f(x)). The residue field is isomorphic to the Galois field GF (pn) = Fpn with
pn elements. Furthermore, GF (pn)∗ = 〈ξ〉.

5. The Galois ring is a (Z/pmZ)-module:

GR(pm, n) = (Z/pmZ)[ξ] = (Z/pmZ) + ξ(Z/pmZ) + · · ·+ ξn−1(Z/pmZ).

6. The group of units U of the Galois ring GR(pm, n) has the following structure:

U = C ×G,

where C is a cyclic group of order pn − 1 generated by ξ and G is an abelian
group of order p(m−1)n. Furthermore,

(a) if p is odd, or if p = 2 and m ≤ 2 then G is a direct product of n cyclic
groups, each of order pm−1;

(b) if p = 2 and m ≥ 3 the group G is the direct product of a cyclic group of
order 2, a cyclic group of order 2m−2 and n− 1 cyclic groups each of order
2m−1.

7. There is a subset T of GR(pm, n), the Teichmüller set of representatives of the
Galois ring, such that any element β ∈ GR(pm, n) has a unique p-adic (multi-
plicative) representation:

β = ρ0(β) + ρ1(β)p+ · · ·+ ρm−1(β)pm−1,

where ρi(β) ∈ T for 0 ≤ i ≤ m − 1. The elements of the maximal ideal of
the Galois ring correspond to ρ0(β) = 0. There is a bijection, induced by the
canonical homomorphism φ, between T and the residue field of the Galois ring
GR(pm, n).

8. The Teichmüller set of representatives of the Galois ring can be taken as

T = {0, 1, ξ, ξ2, . . . , ξq−2} = {0} ∪ C,

where q = pn.

9. Given a prime p and an integer n > 1, for each divisor r of n there is a unique
Galois ring GR(pm, r), and any subring of the Galois ring GR(pm, n) is of this
form.

10. For each positive integer t, there is a natural injective ring homomorphism
GR(pm, n) −→ GR(pm, nt).

11. There is a natural surjective ring homomorphism GR(pm, n) −→ GR(pm−1, n)
with kernel 〈pm−1〉.

12. The group of automorphisms of the Galois ring GR(pm, n) is a cyclic group of
order n.

13. The Galois ring GR(pm, n) is quasi-Frobenius.

2.1.162 Example GR(p, n) = GF (p, n) = Fpn , GR(pm, 1) = (Z/pmZ).

2.1.163 Example [2045] The polynomial f(x) = x3 + x+ 1 ∈ (Z/22Z)[x] is monic basic irreducible
over (Z/22Z). Then GR(22, 3) = (Z/22Z)[x]/〈f(x)〉.
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2.1.164 Example [1409] The polynomial g(x) = x3 + 2x2 + x− 1 ∈ (Z/22Z)[x] is also monic basic
irreducible over (Z/22Z). Then GR(22, 3) = (Z/22Z)[x]/〈g(x)〉.

2.1.165 Example [283] The polynomial g(x) = x3 − 2x2 − x − 1 ∈ (Z/23Z)[x] is monic basic
irreducible over (Z/23Z). Then GR(23, 3) = (Z/23Z)[x]/〈g(x)〉.

2.1.8 Finite field related books

2.1.166 Remark We give a list of finite field related books, divided into categories and listed without
duplication even though a number of these books could be listed in two or more categories.

2.1.8.1 Textbooks

2.1.167 Remark We begin by listing a number of books that could be used as textbooks. Ref-
erence [1939] by Lidl and Niederreiter is, by far, the most comprehensive. Other text-
books include Jungnickel [1631], Lidl and Niederreiter [1938], Masuda and Panario [2017],
McEliece [2049], Menezes et al. [2077], Mullen and Mummert [2179], Small [2681], and
Wan [2921, 2923].

2.1.8.2 Finite field theory

2.1.168 Remark We list a number of books dealing with various theoretical topics related to finite
fields: [240, 398, 557, 850, 961, 1121, 1122, 1333, 1389, 1511, 1631, 1701, 1756, 1773, 1843,
1845, 1922, 1936, 1938, 1939, 2017, 2049, 2054, 2077, 2107, 2548, 2637, 2641, 2667, 2670,
2672, 2681, 2711, 2714, 2793, 2920, 2921, 2923, 2949, 2950].

2.1.8.3 Applications

2.1.169 Remark The use of finite fields in algebraic coding theory has been the focus for numerous
books: [231, 270, 304, 311, 1558, 1943, 1945, 1991, 2252, 2281, 2404, 2405, 2819, 2820, 2849].

2.1.170 Remark Theoretical and applied aspects of cryptography have been treated in: [245, 312,
313, 661, 759, 762, 922, 1105, 1303, 1413, 1521, 1563, 1694, 1774, 2076, 2080, 2644, 2720].

2.1.171 Remark There have been several books on the applications of finite fields in combinatorics,
especially in combinatorial design theory and finite geometries: [131, 141, 211, 260, 261,
262, 453, 484, 706, 785, 807, 819, 1509, 1510, 1515, 1560, 1875, 2445, 2719, 2781, 2851].

2.1.8.4 Algorithms

2.1.172 Remark Several books contain results on algorithmic and computational finite field topics.
These include [761, 1227, 2632].

2.1.8.5 Conference proceedings

2.1.173 Remark The Finite Fields and Applications Conferences (Fq n series) have been held
every two years (except 2005) since 1991. The proceedings from these conferences are: [663,
1636, 1870, 2052, 2181, 2182, 2184, 2185, 2187, 2197]. Other conference proceedings volumes
include: [533, 535, 596, 869, 1057, 1228, 1306, 1316, 1436, 1478, 1480, 1928].

References Cited: [131, 136, 141, 211, 231, 240, 245, 260, 261, 262, 270, 304, 311, 312,
313, 398, 453, 484, 533, 535, 557, 596, 661, 663, 706, 759, 761, 762, 785, 797, 807, 819, 850,
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869, 922, 961, 1057, 1105, 1121, 1122, 1227, 1228, 1291, 1303, 1306, 1316, 1333, 1389, 1413,
1436, 1478, 1480, 1509, 1510, 1511, 1515, 1521, 1558, 1560, 1563, 1570, 1584, 1631, 1636,
1694, 1701, 1756, 1773, 1774, 1843, 1845, 1848, 1875, 1922, 1928, 1936, 1938, 1939, 1943,
1945, 1991, 2017, 2049, 2052, 2054, 2076, 2077, 2080, 2107, 2144, 2179, 2181, 2182, 2184,
2185, 2187, 2197, 2223, 2252, 2280, 2281, 2343, 2404, 2405, 2445, 2548, 2632, 2637, 2641,
2644, 2667, 2670, 2672, 2681, 2711, 2714, 2719, 2720, 2781, 2793, 2819, 2820, 2849, 2851,
2920, 2921, 2923, 2949, 2950]

2.2 Tables

David Thomson, Carleton University

2.2.1 Remark Unless otherwise stated, all of the data given in this section was created by the
author and, when possible, was verified with known results. Basic algorithms (for example,
brute force) were preferred due to their reliability and ease of verification. Unless stated, all
simulations were done in C/C++ using the NTL version 5.5.2 library [2633] for modular
computations. NTL was compiled using the GMP version 4.3.2 library [2797] for multi-
precision arithmetic. Extended and machine-readable versions of the tables found in this
section can be found on the book’s website [2180].

2.2.2 Remark Since most computer algebra packages can readily handle basic finite field compu-
tations, our aim is not to repeat tables whose purpose is to improve hand-calculations. For
reference, we briefly recall the list of tables found in [1939].

Tables A and B are aids to perform fast arithmetic by hand over small finite fields.
Table A is a list of all elements over small finite fields and their discrete logarithms with
respect to a primitive element. Table B provides a list of Jacobi’s logarithms L(·) for F2n ,
2 ≤ n ≤ 6. These logarithms allow the computation of field elements by the relationship
ζα + ζβ = ζα+L(β−α).

Table C provides a list of all monic irreducible polynomials of degree n over small prime
fields. Particularly, these tables cover p = 2 and n ≤ 11, p = 3 and n ≤ 7, p = 5 and n ≤ 5,
p = 7 and n ≤ 4.

Tables D, E, and F deal with primitive polynomials. Table D lists one primitive poly-
nomial over F2 for degrees n ≤ 100. Table E lists all quadratic primitive polynomials for
11 ≤ p ≤ 31 and Table F lists one primitive polynomial of degree n over Fp for all n ≥ 2
with p < 50 and pn < 109.

2.2.1 Low-weight irreducible and primitive polynomials

2.2.3 Remark Low-weight irreducible polynomials are highly desired due to their efficiency in
hardware and software implementations of finite fields. Irreducible polynomials of degree at
least 2 over F2 must have an odd number of terms. The use of irreducible trinomials (having
3 terms) and, in their absence, irreducible pentanomials (having 5 terms) are useful; see, for
example, [1413, Chapter 2]. For cryptographic use, the irreducible trinomial or pentanomial
of lowest lexicographical order (for a fixed n, prefer the trinomial xn+xk+1 over xn+xk1 +1
when k < k1, the analogue for pentanomials is obvious) is often preferred for transparency
reasons. However, the irreducible with the optimal performance for a given implementation
is not necessarily the lowest lex-order, see [2573] and Section 11.1. A list of the lowest-weight
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lowest-lex-order irreducible over F2 is given in [2582] for degree n ≤ 10000. Table 2.2.1 gives
the lowest-weight, lowest-lex-order irreducible polynomial for n ≤ 1025. The output of the
table follows the format n, k (for trinomials xn + xk + 1) or n, k1, k2, k3 (for pentanomials
xn + xk1 + xk2 + xk3 + 1). We have extended these tables to larger n and to larger q for
small values of n. Furthermore, the computer algebra package Magma [712] contains similar
tables, due to Steel (2004-2007), for the following values of q and n:

q n ≤ q n ≤ q n ≤ q n ≤
2 120, 000 3 50, 000 4, 5, 7 2000 9 ≤ q ≤ 127 1000 (or more).

Sections 3.4 and 4.3 give more information on weights of irreducible and primitive polyno-
mials.

2,1 3,1 4,1 5,2 6,1 7,1 8,4,3,1 9,1
10,3 11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1 17,3
18,3 19,5,2,1 20,3 21,2 22,1 23,5 24,4,3,1 25,3

26,4,3,1 27,5,2,1 28,1 29,2 30,1 31,3 32,7,3,2 33,10
34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3 41,3
42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2 49,9

50,4,3,2 51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2 57,4
58,19 59,7,4,2 60,1 61,5,2,1 62,29 63,1 64,4,3,1 65,18
66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1 71,6 72,10,9,3 73,25
74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2 81,4

82,8,3,1 83,7,4,2 84,5 85,8,2,1 86,21 87,13 88,7,6,2 89,38
90,27 91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6 97,6
98,11 99,6,3,1 100,15 101,7,6,1 102,29 103,9 104,4,3,1 105,4
106,15 107,9,7,4 108,17 109,5,4,2 110,33 111,10 112,5,4,3 113,9

114,5,3,2 115,8,7,5 116,4,2,1 117,5,2,1 118,33 119,8 120,4,3,1 121,18
122,6,2,1 123,2 124,19 125,7,6,5 126,21 127,1 128,7,2,1 129,5

130,3 131,8,3,2 132,17 133,9,8,2 134,57 135,11 136,5,3,2 137,21
138,8,7,1 139,8,5,3 140,15 141,10,4,1 142,21 143,5,3,2 144,7,4,2 145,52
146,71 147,14 148,27 149,10,9,7 150,53 151,3 152,6,3,2 153,1
154,15 155,62 156,9 157,6,5,2 158,8,6,5 159,31 160,5,3,2 161,18
162,27 163,7,6,3 164,10,8,7 165,9,8,3 166,37 167,6 168,15,3,2 169,34
170,11 171,6,5,2 172,1 173,8,5,2 174,13 175,6 176,11,3,2 177,8
178,31 179,4,2,1 180,3 181,7,6,1 182,81 183,56 184,9,8,7 185,24
186,11 187,7,6,5 188,6,5,2 189,6,5,2 190,8,7,6 191,9 192,7,2,1 193,15
194,87 195,8,3,2 196,3 197,9,4,2 198,9 199,34 200,5,3,2 201,14
202,55 203,8,7,1 204,27 205,9,5,2 206,10,9,5 207,43 208,9,3,1 209,6
210,7 211,11,10,8 212,105 213,6,5,2 214,73 215,23 216,7,3,1 217,45
218,11 219,8,4,1 220,7 221,8,6,2 222,5,4,2 223,33 224,9,8,3 225,32

226,10,7,3 227,10,9,4 228,113 229,10,4,1 230,8,7,6 231,26 232,9,4,2 233,74
234,31 235,9,6,1 236,5 237,7,4,1 238,73 239,36 240,8,5,3 241,70
242,95 243,8,5,1 244,111 245,6,4,1 246,11,2,1 247,82 248,15,14,10 249,35
250,103 251,7,4,2 252,15 253,46 254,7,2,1 255,52 256,10,5,2 257,12
258,71 259,10,6,2 260,15 261,7,6,4 262,9,8,4 263,93 264,9,6,2 265,42
266,47 267,8,6,3 268,25 269,7,6,1 270,53 271,58 272,9,3,2 273,23
274,67 275,11,10,9 276,63 277,12,6,3 278,5 279,5 280,9,5,2 281,93
282,35 283,12,7,5 284,53 285,10,7,5 286,69 287,71 288,11,10,1 289,21

290,5,3,2 291,12,11,5 292,37 293,11,6,1 294,33 295,48 296,7,3,2 297,5
298,11,8,4 299,11,6,4 300,5 301,9,5,2 302,41 303,1 304,11,2,1 305,102
306,7,3,1 307,8,4,2 308,15 309,10,6,4 310,93 311,7,5,3 312,9,7,4 313,79
314,15 315,10,9,1 316,63 317,7,4,2 318,45 319,36 320,4,3,1 321,31
322,67 323,10,3,1 324,51 325,10,5,2 326,10,3,1 327,34 328,8,3,1 329,50
330,99 331,10,6,2 332,89 333,2 334,5,2,1 335,10,7,2 336,7,4,1 337,55

338,4,3,1 339,16,10,7 340,45 341,10,8,6 342,125 343,75 344,7,2,1 345,22
346,63 347,11,10,3 348,103 349,6,5,2 350,53 351,34 352,13,11,6 353,69
354,99 355,6,5,1 356,10,9,7 357,11,10,2 358,57 359,68 360,5,3,2 361,7,4,1
362,63 363,8,5,3 364,9 365,9,6,5 366,29 367,21 368,7,3,2 369,91
370,139 371,8,3,2 372,111 373,8,7,2 374,8,6,5 375,16 376,8,7,5 377,41
378,43 379,10,8,5 380,47 381,5,2,1 382,81 383,90 384,12,3,2 385,6
386,83 387,8,7,1 388,159 389,10,9,5 390,9 391,28 392,13,10,6 393,7
394,135 395,11,6,5 396,25 397,12,7,6 398,7,6,2 399,26 400,5,3,2 401,152
402,171 403,9,8,5 404,65 405,13,8,2 406,141 407,71 408,5,3,2 409,87

410,10,4,3 411,12,10,3 412,147 413,10,7,6 414,13 415,102 416,9,5,2 417,107
418,199 419,15,5,4 420,7 421,5,4,2 422,149 423,25 424,9,7,2 425,12
426,63 427,11,6,5 428,105 429,10,8,7 430,14,6,1 431,120 432,13,4,3 433,33

434,12,11,5 435,12,9,5 436,165 437,6,2,1 438,65 439,49 440,4,3,1 441,7
442,7,5,2 443,10,6,1 444,81 445,7,6,4 446,105 447,73 448,11,6,4 449,134
450,47 451,16,10,1 452,6,5,4 453,15,6,4 454,8,6,1 455,38 456,18,9,6 457,16
458,203 459,12,5,2 460,19 461,7,6,1 462,73 463,93 464,19,18,13 465,31

466,14,11,6 467,11,6,1 468,27 469,9,5,2 470,9 471,1 472,11,3,2 473,200
474,191 475,9,8,4 476,9 477,16,15,7 478,121 479,104 480,15,9,6 481,138
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482,9,6,5 483,9,6,4 484,105 485,17,16,6 486,81 487,94 488,4,3,1 489,83
490,219 491,11,6,3 492,7 493,10,5,3 494,17 495,76 496,16,5,2 497,78
498,155 499,11,6,5 500,27 501,5,4,2 502,8,5,4 503,3 504,15,14,6 505,156
506,23 507,13,6,3 508,9 509,8,7,3 510,69 511,10 512,8,5,2 513,26
514,67 515,14,7,4 516,21 517,12,10,2 518,33 519,79 520,15,11,2 521,32
522,39 523,13,6,2 524,167 525,6,4,1 526,97 527,47 528,11,6,2 529,42

530,10,7,3 531,10,5,4 532,1 533,4,3,2 534,161 535,8,6,2 536,7,5,3 537,94
538,195 539,10,5,4 540,9 541,13,10,4 542,8,6,1 543,16 544,8,3,1 545,122
546,8,2,1 547,13,7,4 548,10,5,3 549,16,4,3 550,193 551,135 552,19,16,9 553,39
554,10,8,7 555,10,9,4 556,153 557,7,6,5 558,73 559,34 560,11,9,6 561,71
562,11,4,2 563,14,7,3 564,163 565,11,6,1 566,153 567,28 568,15,7,6 569,77

570,67 571,10,5,2 572,12,8,1 573,10,6,4 574,13 575,146 576,13,4,3 577,25
578,23,22,16 579,12,9,7 580,237 581,13,7,6 582,85 583,130 584,14,13,3 585,88

586,7,5,2 587,11,6,1 588,35 589,10,4,3 590,93 591,9,6,4 592,13,6,3 593,86
594,19 595,9,2,1 596,273 597,14,12,9 598,7,6,1 599,30 600,9,5,2 601,201
602,215 603,6,4,3 604,105 605,10,7,5 606,165 607,105 608,19,13,6 609,31
610,127 611,10,4,2 612,81 613,19,10,4 614,45 615,211 616,19,10,3 617,200
618,295 619,9,8,5 620,9 621,12,6,5 622,297 623,68 624,11,6,5 625,133
626,251 627,13,8,4 628,223 629,6,5,2 630,7,4,2 631,307 632,9,2,1 633,101
634,39 635,14,10,4 636,217 637,14,9,1 638,6,5,1 639,16 640,14,3,2 641,11
642,119 643,11,3,2 644,11,6,5 645,11,8,4 646,249 647,5 648,13,3,1 649,37
650,3 651,14 652,93 653,10,8,7 654,33 655,88 656,7,5,4 657,38
658,55 659,15,4,2 660,11 661,12,11,4 662,21 663,107 664,11,9,8 665,33

666,10,7,2 667,18,7,3 668,147 669,5,4,2 670,153 671,15 672,11,6,5 673,28
674,11,7,4 675,6,3,1 676,31 677,8,4,3 678,15,5,3 679,66 680,23,16,9 681,11,9,3
682,171 683,11,6,1 684,209 685,4,3,1 686,197 687,13 688,19,14,6 689,14
690,79 691,13,6,2 692,299 693,15,8,2 694,169 695,177 696,23,10,2 697,267
698,215 699,15,10,1 700,75 701,16,4,2 702,37 703,12,7,1 704,8,3,2 705,17

706,12,11,8 707,15,8,5 708,15 709,4,3,1 710,13,12,4 711,92 712,5,4,3 713,41
714,23 715,7,4,1 716,183 717,16,7,1 718,165 719,150 720,9,6,4 721,9
722,231 723,16,10,4 724,207 725,9,6,5 726,5 727,180 728,4,3,2 729,58
730,147 731,8,6,2 732,343 733,8,7,2 734,11,6,1 735,44 736,13,8,6 737,5
738,347 739,18,16,8 740,135 741,9,8,3 742,85 743,90 744,13,11,1 745,258
746,351 747,10,6,4 748,19 749,7,6,1 750,309 751,18 752,13,10,3 753,158
754,19 755,12,10,1 756,45 757,7,6,1 758,233 759,98 760,11,6,5 761,3
762,83 763,16,14,9 764,6,5,3 765,9,7,4 766,22,19,9 767,168 768,19,17,4 769,120

770,14,5,2 771,17,15,6 772,7 773,10,8,6 774,185 775,93 776,15,14,7 777,29
778,375 779,10,8,3 780,13 781,17,16,2 782,329 783,68 784,13,9,6 785,92

786,12,10,3 787,7,6,3 788,17,10,3 789,5,2,1 790,9,6,1 791,30 792,9,7,3 793,253
794,143 795,7,4,1 796,9,4,1 797,12,10,4 798,53 799,25 800,9,7,1 801,217

802,15,13,9 803,14,9,2 804,75 805,8,7,2 806,21 807,7 808,14,3,2 809,15
810,159 811,12,10,8 812,29 813,10,3,1 814,21 815,333 816,11,8,2 817,52
818,119 819,16,9,7 820,123 821,15,11,2 822,17 823,9 824,11,6,4 825,38
826,255 827,12,10,7 828,189 829,4,3,1 830,17,10,7 831,49 832,13,5,2 833,149
834,15 835,14,7,5 836,10,9,2 837,8,6,5 838,61 839,54 840,11,5,1 841,144
842,47 843,11,10,7 844,105 845,2 846,105 847,136 848,11,4,1 849,253
850,111 851,13,10,5 852,159 853,10,7,1 854,7,5,3 855,29 856,19,10,3 857,119
858,207 859,17,15,4 860,35 861,14 862,349 863,6,3,2 864,21,10,6 865,1
866,75 867,9,5,2 868,145 869,11,7,6 870,301 871,378 872,13,3,1 873,352

874,12,7,4 875,12,8,1 876,149 877,6,5,4 878,12,9,8 879,11 880,15,7,5 881,78
882,99 883,17,16,12 884,173 885,8,7,1 886,13,9,8 887,147 888,19,18,10 889,127
890,183 891,12,4,1 892,31 893,11,8,6 894,173 895,12 896,7,5,3 897,113
898,207 899,18,15,5 900,1 901,13,7,6 902,21 903,35 904,12,7,2 905,117
906,123 907,12,10,2 908,143 909,14,4,1 910,15,9,7 911,204 912,7,5,1 913,91
914,4,2,1 915,8,6,3 916,183 917,12,10,7 918,77 919,36 920,14,9,6 921,221
922,7,6,5 923,16,14,13 924,31 925,16,15,7 926,365 927,403 928,10,3,2 929,11,4,3
930,31 931,10,9,4 932,177 933,16,6,1 934,22,6,5 935,417 936,15,13,12 937,217
938,207 939,7,5,4 940,10,7,1 941,11,6,1 942,45 943,24 944,12,11,9 945,77

946,21,20,13 947,9,6,5 948,189 949,8,3,2 950,13,12,10 951,260 952,16,9,7 953,168
954,131 955,7,6,3 956,305 957,10,9,6 958,13,9,4 959,143 960,12,9,3 961,18

962,15,8,5 963,20,9,6 964,103 965,15,4,2 966,201 967,36 968,9,5,2 969,31
970,11,7,2 971,6,2,1 972,7 973,13,6,4 974,9,8,7 975,19 976,17,10,6 977,15
978,9,3,1 979,178 980,8,7,6 981,12,6,5 982,177 983,230 984,24,9,3 985,222

986,3 987,16,13,12 988,121 989,10,4,2 990,161 991,39 992,17,15,13 993,62
994,223 995,15,12,2 996,65 997,12,6,3 998,101 999,59 1000,5,4,3 1001,17

1002,5,3,2 1003,13,8,3 1004,10,9,7 1005,12,8,2 1006,5,4,3 1007,75 1008,19,17,8 1009,55
1010,99 1011,10,7,4 1012,115 1013,9,8,6 1014,385 1015,186 1016,15,6,3 1017,9,4,1

1018,12,10,5 1019,10,8,1 1020,135 1021,5,2,1 1022,317 1023,7 1024,19,6,1 1025,294

Table 2.2.1 Lowest weight lowest-lexicographical order irreducible polynomial of degree n over F2. Out-

put: n, k (for trinomials xn + xk + 1) or n, k1, k2, k3 (for pentanomials xn + xk1 + xk2 + xk3 + 1).

2.2.4 Remark Constructions of irreducible low-weight polynomials are rare; see Sections 3.4
and 3.5. Instead, conditions for reducibility are often more tractable; see Section 3.3.
Swan [2753] gives conditions for when a trinomial xn + xk + 1 ∈ F2[x] is reducible. In
particular, the trinomial is reducible when 8 divides n. Only partial results for Swan-like
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conditions on pentanomials over F2 exist in the literature; see, for example, [1777] and
Section 3.3.

2.2.5 Conjecture [2582] For every n, there exists either an irreducible trinomial of degree n over
F2 or, in the absence of an irreducible trinomial, there exists an irreducible pentanomial of
degree n over F2.

2.2.6 Remark A polynomial over Fq is primitive if all of its roots are generators of the (cyclic)
multiplicative group F∗q . We give an analogous table to Table 2.2.1 but instead list the
lowest-weight lowest-lexicographical order primitive polynomial of degree n ≤ 577 over F2.
To compute primitivity, we used the Cunningham project to find the factorization of 2n−1;
see Section 2.2.3 for more details.

2,1 3,1 4,1 5,2 6,1 7,1 8,4,3,2 9,4
10,3 11,2 12,6,4,1 13,4,3,1 14,5,3,1 15,1 16,5,3,2 17,3
18,7 19,5,2,1 20,3 21,2 22,1 23,5 24,4,3,1 25,3

26,6,2,1 27,5,2,1 28,3 29,2 30,6,4,1 31,3 32,7,6,2 33,13
34,8,4,3 35,2 36,11 37,6,4,1 38,6,5,1 39,4 40,5,4,3 41,3
42,7,4,3 43,6,4,3 44,6,5,2 45,4,3,1 46,8,7,6 47,5 48,9,7,4 49,9
50,4,3,2 51,6,3,1 52,3 53,6,2,1 54,8,6,3 55,24 56,7,4,2 57,7
58,19 59,7,4,2 60,1 61,5,2,1 62,6,5,3 63,1 64,4,3,1 65,18

66,9,8,6 67,5,2,1 68,9 69,6,5,2 70,5,3,1 71,6 72,10,9,3 73,25
74,7,4,3 75,6,3,1 76,5,4,2 77,6,5,2 78,7,2,1 79,9 80,9,4,2 81,4
82,9,6,4 83,7,4,2 84,13 85,8,2,1 86,6,5,2 87,13 88,11,9,8 89,38
90,5,3,2 91,8,5,1 92,6,5,2 93,2 94,21 95,11 96,10,9,6 97,6
98,11 99,7,5,4 100,37 101,7,6,1 102,6,5,3 103,9 104,11,10,1 105,16
106,15 107,9,7,4 108,31 109,5,4,2 110,6,4,1 111,10 112,11,6,4 113,9

114,11,2,1 115,8,7,5 116,6,5,2 117,5,2,1 118,33 119,8 120,9,6,2 121,18
122,6,2,1 123,2 124,37 125,7,6,5 126,7,4,2 127,1 128,7,2,1 129,5

130,3 131,8,3,2 132,29 133,9,8,2 134,57 135,11 136,8,3,2 137,21
138,8,7,1 139,8,5,3 140,29 141,13,6,1 142,21 143,5,3,2 144,7,4,2 145,52
146,5,3,2 147,11,4,2 148,27 149,10,9,7 150,53 151,3 152,6,3,2 153,1
154,9,5,1 155,7,5,4 156,9,5,3 157,6,5,2 158,8,6,5 159,31 160,5,3,2 161,18
162,8,7,4 163,7,6,3 164,12,6,5 165,9,8,3 166,10,3,2 167,6 168,16,9,6 169,34
170,23 171,6,5,2 172,7 173,8,5,2 174,13 175,6 176,12,11,9 177,8
178,87 179,4,2,1 180,12,10,7 181,7,6,1 182,8,6,1 183,56 184,9,8,7 185,24

186,9,8,6 187,7,6,5 188,6,5,2 189,6,5,2 190,13,6,2 191,9 192,15,11,5 193,15
194,87 195,8,3,2 196,11,9,2 197,9,4,2 198,65 199,34 200,5,3,2 201,14
202,55 203,8,7,1 204,10,4,3 205,9,5,2 206,10,9,5 207,43 208,9,3,1 209,6

210,12,4,3 211,11,10,8 212,105 213,6,5,2 214,5,3,1 215,23 216,7,3,1 217,45
218,11 219,8,4,1 220,12,10,9 221,8,6,2 222,8,5,2 223,33 224,12,7,2 225,32

226,10,7,3 227,10,9,4 228,12,11,2 229,10,4,1 230,8,7,6 231,26 232,11,9,4 233,74
234,31 235,9,6,1 236,5 237,7,4,1 238,5,2,1 239,36 240,8,5,3 241,70

242,11,6,1 243,8,5,1 244,9,4,1 245,6,4,1 246,11,2,1 247,82 248,15,14,10 249,86
250,103 251,7,4,2 252,67 253,7,3,2 254,7,2,1 255,52 256,10,5,2 257,12
258,83 259,10,6,2 260,10,8,7 261,7,6,4 262,9,8,4 263,93 264,10,9,1 265,42
266,47 267,8,6,3 268,25 269,7,6,1 270,53 271,58 272,9,6,2 273,23
274,67 275,11,10,9 276,6,3,1 277,12,6,3 278,5 279,5 280,9,5,2 281,93
282,35 283,12,7,5 284,119 285,10,7,5 286,69 287,71 288,11,10,1 289,21

290,5,3,2 291,12,11,5 292,97 293,11,6,1 294,61 295,48 296,11,9,4 297,5
298,11,8,4 299,11,6,4 300,7 301,9,5,2 302,41 303,13,12,6 304,11,2,1 305,102
306,7,3,1 307,8,4,2 308,15,9,2 309,10,6,4 310,8,5,1 311,7,5,3 312,11,10,5 313,79
314,15 315,10,9,1 316,135 317,7,4,2 318,8,6,5 319,36 320,4,3,1 321,31
322,67 323,10,3,1 324,6,4,3 325,10,5,2 326,10,3,1 327,34 328,9,7,5 329,50

330,8,7,2 331,10,6,2 332,123 333,2 334,7,4,1 335,10,7,2 336,7,4,1 337,55
338,6,3,2 339,16,10,7 340,11,4,3 341,14,11,5 342,125 343,75 344,11,10,6 345,22
346,11,7,2 347,11,10,3 348,8,7,4 349,6,5,2 350,53 351,34 352,13,11,6 353,69
354,14,13,5 355,6,5,1 356,10,9,7 357,11,10,2 358,14,8,7 359,68 360,26,25,1 361,7,4,1

362,63 363,8,5,3 364,67 365,9,6,5 366,29 367,21 368,17,9,7 369,91
370,139 371,8,3,2 372,15,7,3 373,8,7,2 374,8,6,5 375,16 376,8,7,5 377,41
378,43 379,10,8,5 380,47 381,5,2,1 382,81 383,90 384,16,15,6 385,6
386,83 387,9,8,2 388,14,3,1 389,10,9,5 390,89 391,28 392,13,10,6 393,7
394,135 395,11,6,5 396,25 397,12,7,6 398,14,6,5 399,86 400,5,3,2 401,152
402,9,4,3 403,9,8,5 404,189 405,17,8,7 406,157 407,71 408,7,5,1 409,87
410,10,4,3 411,12,10,3 412,147 413,10,7,6 414,16,13,9 415,102 416,9,5,2 417,107
418,15,3,1 419,15,5,4 420,13,10,8 421,5,4,2 422,149 423,25 424,9,7,2 425,12

426,14,12,11 427,11,6,5 428,105 429,10,8,7 430,15,13,11 431,120 432,13,4,3 433,33
434,12,11,5 435,12,9,5 436,165 437,6,2,1 438,65 439,49 440,4,3,1 441,31
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442,7,5,2 443,10,6,1 444,13,12,9 445,7,6,4 446,105 447,73 448,11,6,4 449,134
450,79 451,16,10,1 452,6,5,4 453,15,6,4 454,10,9,5 455,38 456,23,11,2 457,16
458,203 459,12,5,2 460,61 461,7,6,1 462,73 463,93 464,23,9,4 465,59

466,14,11,6 467,11,6,1 468,15,9,4 469,9,5,2 470,149 471,1 472,11,3,2 473,8,6,3
474,191 475,9,8,4 476,15 477,16,15,7 478,121 479,104 480,16,13,7 481,138
482,9,6,5 483,9,6,4 484,105 485,17,16,6 486,14,8,5 487,94 488,4,3,1 489,83
490,219 491,11,6,3 492,8,7,1 493,10,5,3 494,137 495,76 496,16,5,2 497,78

498,11,9,3 499,11,6,5 500,10,6,1 501,5,4,2 502,8,5,4 503,3 504,21,14,2 505,156
506,95 507,13,6,3 508,109 509,8,7,3 510,12,10,9 511,10 512,8,5,2 513,85

514,7,5,3 515,14,7,4 516,7,5,2 517,12,10,2 518,33 519,79 520,17,13,11 521,32
522,15,13,4 523,13,6,2 524,167 525,6,4,1 526,9,5,1 527,47 528,11,6,2 529,42
530,10,7,3 531,12,6,2 532,1 533,4,3,2 534,7,5,1 535,8,6,2 536,7,5,3 537,94
538,5,2,1 539,10,5,4 540,179 541,13,10,4 542,9,3,2 543,16 544,13,9,6 545,122
546,8,2,1 547,13,7,4 548,10,5,3 549,16,4,3 550,193 551,135 552,20,5,2 553,39
554,11,8,3 555,10,9,4 556,153 557,7,6,5 558,14,9,5 559,34 560,11,9,6 561,71
562,11,4,2 563,14,7,3 564,163 565,11,6,1 566,153 567,143 568,17,11,10 569,77

570,67 571,10,5,2 572,12,8,1 573,10,6,4 574,13 575,146 576,13,4,3 577,25

Table 2.2.2 Lowest weight lowest-lexicographical order primitive polynomial of degree n ≤ 577 over F2.

Output: n, k (for trinomials xn+xk + 1) or n, k1, k2, k3 (for pentanomials xn+xk1 +xk2 +xk3 + 1).

2.2.7 Remark Table 2.2.3 is the analogous table to Table 2.2.1, giving the lowest-weight, lowest-
lexicographical order irreducible polynomial of degree n ≤ 516 over F3.

2,(1) 3,1(2),(1) 4,1(1),(2) 5,1(2),(1) 6,1(1),(2)
7,2(1),(2) 8,2(1),(2) 9,4(1),(2) 10,2(2),(1) 11,2(1),(2)
12,2(1),(2) 13,1(2),(1) 14,1(1),(2) 15,2(1),(2) 16,4(1),(2)
17,1(2),(1) 18,7(1),(2) 19,2(1),(2) 20,5(1),(2) 21,5(2),(1)
22,4(2),(1) 23,3(2),(1) 24,4(1),(2) 25,3(2),(1) 26,2(2),(1)
27,7(2),(1) 28,2(1),(2) 29,4(1),(2) 30,1(1),(2) 31,5(2),(1)
32,5(1),(2) 33,5(2),(1) 34,2(2),(1) 35,2(1),(2) 36,14(1),(2)
37,6(1),(2) 38,4(2),(1) 39,7(2),(1) 40,1(1),(2) 41,1(2),(1)
42,7(1),(2) 43,17(2),(1) 44,3(1),(2) 45,17(2),(1) 46,5(1),(2)
47,15(2),(1) 48,8(1),(2) 49,3(2),2(1),(1) 50,6(2),(1) 51,1(2),(1)
52,7(1),(2) 53,13(2),(1) 54,1(1),(2) 55,11(2),(1) 56,3(1),(2)

57,7(1),2(1),(2) 58,8(2),(1) 59,17(2),(1) 60,2(1),(2) 61,7(2),(1)
62,10(2),(1) 63,26(1),(2) 64,3(1),(2) 65,5(1),3(1),(1) 66,10(2),(1)
67,2(1),(2) 68,3(1),2(1),(1) 69,17(2),(1) 70,4(2),(1) 71,20(1),(2)
72,28(1),(2) 73,1(2),(1) 74,12(2),(1) 75,5(2),4(1),(1) 76,9(1),(2)
77,16(1),(2) 78,13(1),(2) 79,26(1),(2) 80,2(1),(2) 81,40(1),(2)
82,2(2),(1) 83,27(2),(1) 84,14(1),(2) 85,16(1),(2) 86,13(1),(2)
87,26(1),(2) 88,6(1),(2) 89,13(2),(1) 90,19(1),(2) 91,17(2),(1)
92,10(1),(2) 93,23(2),(1) 94,30(2),(1) 95,47(2),(1) 96,16(1),(2)
97,12(1),(2) 98,4(1),3(1),(1) 99,19(2),(1) 100,25(1),(2) 101,31(2),(1)
102,2(2),(1) 103,47(2),(1) 104,5(1),(2) 105,6(1),2(1),(1) 106,26(2),(1)
107,3(2),(1) 108,2(1),(2) 109,9(2),(1) 110,22(2),(1) 111,2(1),(2)
112,6(1),(2) 113,19(2),(1) 114,7(1),(2) 115,32(1),(2) 116,15(1),(2)
117,52(1),(2) 118,34(2),(1) 119,2(1),(2) 120,4(1),(2) 121,1(2),(1)
122,14(2),(1) 123,7(1),4(1),(2) 124,25(1),(2) 125,52(1),(2) 126,49(1),(2)
127,8(1),(2) 128,6(1),(2) 129,3(2),2(1),(1) 130,10(1),6(1),(1) 131,27(2),(1)

132,19(1),14(1),(1) 133,15(2),(1) 134,4(2),(1) 135,44(1),(2) 136,57(1),(2)
137,1(2),(1) 138,34(2),(1) 139,59(2),(1) 140,59(1),(2) 141,5(2),(1)
142,40(2),(1) 143,35(2),(1) 144,56(1),(2) 145,24(1),(2) 146,2(2),(1)
147,8(1),(2) 148,3(1),(2) 149,11(2),10(1),(1) 150,73(1),(2) 151,2(1),(2)
152,18(1),(2) 153,59(2),(1) 154,32(2),(1) 155,12(1),(2) 156,26(1),(2)
157,22(1),(2) 158,52(2),(1) 159,32(1),(2) 160,4(1),(2) 161,9(1),5(1),(1)
162,19(1),(2) 163,59(2),(1) 164,15(1),(2) 165,22(1),(2) 166,54(2),(1)
167,71(2),(1) 168,28(1),(2) 169,24(1),(2) 170,32(2),(1) 171,20(1),(2)
172,19(1),(2) 173,7(2),(1) 174,52(2),(1) 175,10(1),8(1),(1) 176,12(1),(2)
177,52(1),(2) 178,11(1),(2) 179,59(2),(1) 180,38(1),(2) 181,37(2),(1)
182,25(1),(2) 183,2(1),(2) 184,20(1),(2) 185,64(1),(2) 186,46(2),(1)
187,8(1),(2) 188,11(1),(2) 189,9(1),7(1),(1) 190,94(2),(1) 191,71(2),(1)
192,32(1),(2) 193,12(1),(2) 194,24(2),(1) 195,26(1),(2) 196,79(1),(2)

197,9(1),7(1),(1) 198,29(1),(2) 199,35(2),(1) 200,3(1),(2) 201,88(1),(2)
202,62(2),(1) 203,3(2),(1) 204,50(1),(2) 205,9(2),(1) 206,61(1),(2)

207,11(2),8(1),(1) 208,10(1),(2) 209,40(1),(2) 210,7(1),(2) 211,89(2),(1)
212,14(1),3(1),(1) 213,17(2),4(1),(1) 214,6(2),(1) 215,36(1),(2) 216,4(1),(2)

217,85(2),(1) 218,18(2),(1) 219,25(2),(1) 220,15(1),(2) 221,12(1),2(1),(1)
222,4(2),(1) 223,8(1),5(2),(1) 224,12(1),(2) 225,16(1),(2) 226,38(2),(1)
227,11(2),(1) 228,14(1),(2) 229,72(1),(2) 230,64(2),(1) 231,8(1),7(1),(2)
232,30(1),(2) 233,6(1),2(1),(1) 234,91(1),(2) 235,26(1),(2) 236,9(1),(2)
237,70(1),(2) 238,4(2),(1) 239,5(2),(1) 240,8(1),(2) 241,88(1),(2)
242,2(2),(1) 243,121(2),(1) 244,31(1),(2) 245,97(2),(1) 246,13(1),(2)

247,122(1),(2) 248,50(1),(2) 249,59(2),(1) 250,104(2),(1) 251,9(2),(1)
252,98(1),(2) 253,7(2),(1) 254,16(2),(1) 255,26(1),(2) 256,12(1),(2)
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257,22(1),(2) 258,7(1),(2) 259,65(2),(1) 260,35(1),(2) 261,119(2),(1)
262,54(2),(1) 263,69(2),(1) 264,23(1),16(1),(1) 265,61(2),(1) 266,30(2),(1)

267,9(1),2(1),(2) 268,15(1),(2) 269,7(2),(1) 270,88(2),(1) 271,50(1),(2)
272,114(1),(2) 273,46(1),(2) 274,2(2),(1) 275,12(1),(2) 276,10(1),2(1),(2)
277,24(1),(2) 278,118(2),(1) 279,7(2),(1) 280,15(1),(2) 281,10(1),7(1),(2)
282,10(2),(1) 283,23(2),(1) 284,5(1),(2) 285,89(2),(1) 286,70(2),(1)
287,101(2),(1) 288,112(1),(2) 289,73(2),(1) 290,43(1),(2) 291,25(2),(1)

292,13(1),12(1),(1) 293,7(2),(1) 294,16(2),(1) 295,83(2),(1) 296,6(1),(2)
297,3(2),2(1),(1) 298,13(1),3(1),(2) 299,51(2),(1) 300,146(1),(2) 301,30(1),(2)

302,4(2),(1) 303,8(1),2(1),(1) 304,36(1),(2) 305,46(1),(2) 306,118(2),(1)
307,17(2),(1) 308,53(1),(2) 309,3(2),2(1),(1) 310,24(2),(1) 311,13(2),12(1),(1)
312,52(1),(2) 313,93(2),(1) 314,44(2),(1) 315,127(2),(1) 316,87(1),(2)
317,7(2),(1) 318,64(2),(1) 319,10(1),9(1),(2) 320,3(1),(2) 321,83(2),(1)
322,71(1),(2) 323,9(2),(1) 324,38(1),(2) 325,157(2),(1) 326,118(2),(1)
327,7(2),(1) 328,3(1),(2) 329,52(1),(2) 330,11(1),(2) 331,2(1),(2)

332,13(1),6(1),(1) 333,94(1),(2) 334,142(2),(1) 335,8(1),(2) 336,56(1),(2)
337,3(2),(1) 338,48(2),(1) 339,49(2),(1) 340,86(1),(2) 341,25(2),(1)
342,40(2),(1) 343,12(1),10(1),(1) 344,38(1),(2) 345,101(2),(1) 346,14(2),(1)
347,18(1),(2) 348,146(1),(2) 349,54(1),(2) 350,157(1),(2) 351,20(1),(2)
352,7(1),(2) 353,142(1),(2) 354,104(2),(1) 355,41(2),(1) 356,15(1),(2)
357,71(2),(1) 358,77(1),(2) 359,15(2),(1) 360,76(1),(2) 361,157(2),(1)
362,74(2),(1) 363,26(1),(2) 364,1(1),(2) 365,88(1),(2) 366,4(2),(1)
367,107(2),(1) 368,27(1),(2) 369,11(2),(1) 370,11(1),(2) 371,27(2),(1)
372,94(1),(2) 373,25(2),(1) 374,16(2),(1) 375,67(2),(1) 376,9(1),(2)
377,160(1),(2) 378,7(1),(2) 379,44(1),(2) 380,9(1),(2) 381,143(2),(1)
382,137(1),(2) 383,80(1),(2) 384,64(1),(2) 385,22(1),(2) 386,24(2),(1)
387,152(1),(2) 388,87(1),(2) 389,76(1),(2) 390,13(1),(2) 391,22(1),21(2),(1)
392,158(1),(2) 393,185(2),(1) 394,14(1),9(1),(1) 395,23(2),(1) 396,58(1),(2)

397,12(1),5(1),(2) 398,70(2),(1) 399,181(2),(1) 400,3(1),(2) 401,11(2),10(1),(1)
402,176(2),(1) 403,161(2),(1) 404,9(1),2(1),(1) 405,25(1),18(1),(2) 406,6(2),(1)
407,48(1),(2) 408,100(1),(2) 409,99(2),(1) 410,18(2),(1) 411,8(1),2(1),(1)
412,79(1),(2) 413,22(1),(2) 414,37(1),(2) 415,13(1),3(1),(1) 416,20(1),(2)
417,40(1),(2) 418,80(2),(1) 419,26(1),(2) 420,14(1),(2) 421,13(2),(1)
422,178(2),(1) 423,68(1),(2) 424,45(1),(2) 425,61(2),(1) 426,9(1),7(1),(2)
427,167(2),(1) 428,71(1),(2) 429,65(2),(1) 430,72(2),(1) 431,66(1),(2)
432,8(1),(2) 433,120(1),(2) 434,67(1),(2) 435,8(1),2(1),(1) 436,13(1),2(1),(1)

437,14(1),3(2),(1) 438,17(1),(2) 439,16(1),3(2),(1) 440,11(1),(2) 441,7(1),6(1),(2)
442,11(1),3(1),(2) 443,188(1),(2) 444,178(1),(2) 445,141(2),(1) 446,1(1),(2)

447,157(2),(1) 448,24(1),(2) 449,52(1),(2) 450,32(2),(1) 451,17(2),(1)
452,17(1),(2) 453,17(2),4(1),(1) 454,22(2),(1) 455,32(1),(2) 456,28(1),(2)
457,67(2),(1) 458,144(2),(1) 459,13(2),6(1),(1) 460,57(1),(2) 461,13(2),(1)
462,73(1),(2) 463,15(1),13(1),(1) 464,60(1),(2) 465,41(2),(1) 466,167(1),(2)
467,48(1),(2) 468,182(1),(2) 469,166(1),(2) 470,52(2),(1) 471,8(1),(2)
472,18(1),(2) 473,73(2),(1) 474,83(1),(2) 475,17(2),(1) 476,10(1),(2)
477,101(2),(1) 478,10(2),(1) 479,221(2),(1) 480,16(1),(2) 481,22(1),(2)
482,127(1),(2) 483,26(1),(2) 484,39(1),(2) 485,1(2),(1) 486,125(1),(2)
487,29(2),(1) 488,62(1),(2) 489,7(1),5(1),(1) 490,194(2),(1) 491,11(2),(1)
492,26(1),(2) 493,4(1),(2) 494,244(2),(1) 495,7(2),(1) 496,85(1),(2)

497,7(2),6(1),(1) 498,118(2),(1) 499,20(1),(2) 500,39(1),(2) 501,88(1),(2)
502,18(2),(1) 503,35(2),(1) 504,196(1),(2) 505,61(2),(1) 506,14(2),(1)
507,80(1),(2) 508,91(1),(2) 509,151(2),(1) 510,52(2),(1) 511,215(2),(1)
512,24(1),(2) 513,14(1),10(1),(1) 514,44(2),(1) 515,8(1),(2) 516,14(1),(2)

Table 2.2.3 Lowest weight lowest lexicographical order irreducible polynomial of degree n over F3.

Output: n, {degrees, (coefficients)}, (constant term).

2.2.8 Remark Necessary and sufficient conditions for the existence of an irreducible binomial
of degree n over finite fields of odd characteristic are given in [1939, Theorem 3.75]. A
constructive derivation of the degrees for which there exists an irreducible binomial over
Fq, q odd, is given in [2356]. The following conjecture summarizes empirical observations of
extending Tables 2.2.1 and 2.2.3 to higher characteristics.

2.2.9 Conjecture Let q > 2. For every n, there is an irreducible polynomial of degree n over Fq
of weight at most 4.

2.2.2 Low-complexity normal bases

2.2.10 Remark Normal bases are often required in hardware implementations of finite fields due
to the efficiency of exponentiation when the finite field is represented using a normal basis.
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The complexity of a normal basis N , CN , is defined in Definition 5.3.1. Normal bases with
low complexity are highly preferred. An optimal normal basis of Fqn over Fq is a normal
basis attaining the minimum complexity CN = 2n − 1. See Sections 5.2 and 5.3 for more
details on normal bases and their complexities.

2.2.2.1 Exhaustive search for low complexity normal bases

2.2.11 Remark Table 2.2.4 is due to an exhaustive search for normal bases of F2n over F2, n ≤ 39,
originally given in [2015]. The table gives the number of normal bases, the smallest and
largest complexities (mCN ,MCN ), the average and variance (AvgCN , V arCN ) of complexities
and the smallest and largest complexities for self-dual normal elements. In Table 2.2.4, we
fix a typo on the minimum complexity of n = 37, originally noted in [130], and make some
minor corrections to the calculations of the averages and variances. In the “Notes” column,
“Optimal” indicates that the basis with minimal complexity is an optimal normal basis
(Theorem 5.3.6), and “sd” indicates that the minimal complexity basis is self-dual.

Self-dual
n # Normal bases mCN MCN AvgCN V arCN mCN MCN Notes
2 1 3 3 3.00 0 3 3 Optimal, sd
3 1 5 5 5.00 0 5 5 Optimal, sd
4 2 7 9 8.00 1.00 - -
5 3 9 15 11.67 6.22 9 9 Optimal, sd
6 4 11 17 15.00 6.00 11 15 Optimal, sd
7 7 19 27 23.00 9.14 21 21 mCN = 3n− 2
8 16 21 35 29.00 11 - - mCN = 3n− 3
9 21 17 45 35.57 41.57 17 29 Optimal, sd

10 48 19 61 44.83 61.31 27 51
11 93 21 71 55.82 57.65 21 57 Optimal, sd
12 128 23 83 64.13 107.23 - -
13 315 45 101 78.38 71.07 45 81 sd
14 448 27 135 91.07 108.42 27 135 Optimal, sd
15 675 45 137 105.89 127.36 45 105 sd
16 2048 85 157 115.82 114.59 - -
17 3825 81 177 136.83 136.67 81 171 sd
18 5376 35 243 153.51 185.12 35 243 Optimal, sd
19 13797 117 229 172.00 171.91 117 201 sd
20 24576 63 257 190.81 205.81 - -
21 27783 95 277 210.97 216.43 105 237
22 95232 63 363 231.93 238.56 63 363 mCN = 3n− 3
23 182183 45 325 254.02 254.60 45 309 Optimal, sd
24 262144 105 375 276.89 281.01 - -
25 629145 93 383 301.01 300.37 93 357 sd
26 1290240 51 555 325.96 328.59 51 555 Optimal, sd
27 1835001 141 443 351.99 351.38 141 413
28 3670016 55 517 378.98 379.12 - - Optimal
29 9256395 57 521 407.00 406.21 57 465 Optimal, sd
30 11059200 59 759 435.95 438.52 59 759 Optimal, sd
31 28629151 237 587 466.00 465.21 237 537 sd
32 67108864 361 621 497.00 496.07 - -
33 97327197 65 693 529.00 528.44 65 693 Optimal, sd
34 250675200 243 819 562.00 561.52 243 819 sd
35 352149515 69 779 596.00 595.08 69 693 Optimal, sd
36 704643060 71 1017 630.99 630.51 - - Optimal
37 1857283155 141 823 667 666.04 141 sd
38 3616800703 207 1131 704.00 703.18 207
39 5282242828 77 933 742.00 741.09 77 Optimal, sd

Table 2.2.4 Statistics for normal bases of F2n over F2 obtained by exhaustive search, n ≤ 39.

2.2.12 Remark Our first conjecture based on Table 2.2.4 appears in [3036] and elsewhere. We also
summarize the conjectures found in [2015].

2.2.13 Conjecture When no optimal normal basis of F2n over F2 exists, the minimum complexity
of a normal basis of F2n over F2 is 3n− 3.
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2.2.14 Remark Normal bases of F2n over F2 achieving a complexity of 3n− 3 are given in Propo-
sition 5.3.46 and this complexity is the minimal found when n = 8 and n = 22.

2.2.15 Conjecture The number of normal bases of F2n over F2 are normally distributed with
respect to their complexities. Furthermore, the average complexity of a normal basis of F2n

over F2 is (n2−n+ 3)/2 and the variance is also n2/2− cn, for a small positive constant c.

2.2.16 Remark We remark that the conspicuous wording in Conjecture 2.2.15, that normal bases
are normally distributed, is mostly coincidental. Indeed, as n grows, the number of normal
bases grow like 2n/ log(n), see Theorem 5.2.13, so the Central Limit Theorem supports
this conjecture. The precise distribution of the complexities is still an open and interesting
problem.

2.2.17 Remark Self-dual normal bases are often preferred in normal basis implementations due to
their highly symmetric properties; see Sections 5.1, 5.2, 5.3, 16.7 as well as [1264, 2925], for
more information on self-dual normal bases and their implementations. Exhaustive searches
of self-dual normal bases of F2n over F2 appear in [130, 1263, 1631, 2015] and [130] gives
an exhastive search of self-dual normal bases of Fqn over Fq for larger q and odd n. Ta-
bles 2.2.5, 2.2.6, and 2.2.7 are directly from [130]; we note that we did not implement their
algorithm. Table 2.2.5 gives the minimum complexity Cn of a self-dual normal basis of F2n

over F2 for odd n ≤ 45, Table 2.2.6 for q a power of 2 and small n, and Table 2.2.7 for Fqn
over Fq for odd q ≤ 19 and small n.

n 3 5 7 9 11 13 15 17 19 21 23
Cn 5 9 21 17 21 45 45 81 117 105 45

n 25 27 29 31 33 35 37 39 41 43 45
Cn 93 141 57 237 65 69 141 77 81 165 153

Table 2.2.5 The lowest complexity for self-dual normal bases of F2n over F2 for odd n, n ≤ 45.

q/n 3 5 7 9 11 13 15 17 19 21 23 25
2 5 9 21 17 21 45 45 81 117 105 45 93
4 5 9 21 17 21 45 45 81 117 105 45 93
8 9 9 21 45 21 45 81 81
16 5 9 21 17 21 45
32 5 19 21 17 21
64 9 9 21 45
128 5 9 37
256 5 9

Table 2.2.6 Lowest complexity for self-dual normal bases of Fqn over Fq where q is a power of 2 for

small odd values of n.

q/n 3 5 7 9 11 13 15 17 19 21 23 25
3 7 13 25 37 55 67 – 91 172 – 127 135
5 6 13 25 46 64 85 – 157 153 150
7 6 16 19 41 61 96 87 –
11 6 13 25 52 31 100 78
13 6 13 25 51 64 37
17 8 13 25 51 64 100 –
19 8 13 31 51 67 –

Table 2.2.7 Lowest complexity for self-dual normal bases of Fqn over Fq for odd primes q ≤ 19 and

small odd values of n.
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2.2.2.2 Minimum type of a Gauss period admitting a normal basis of F2n over F2

2.2.18 Remark We briefly recall the definition of a Gauss period (Definition 5.3.16). Let r = nk+1
be a prime not dividing q and let γ be a primitive r-th root of unity in Fqnk . Furthermore,
let K be the unique subgroup of order k in Z∗r and Ki = {a · qi : a ∈ K} ⊆ Z∗r be cosets of
K, 0 ≤ i ≤ n− 1. The elements

αi =
∑
a∈Ki

γa ∈ Fqn , 0 ≤ i ≤ n− 1,

are Gauss periods of type (n, k) over Fq. Gauss periods over finite fields are highly desirable
as normal bases since, when they exist, they have low complexity; see Theorem 5.3.23.
Normal bases due to Gauss periods of type (n, 1), for all q, and of type (n, 2), for q = 2,
characterize the optimal normal bases (Theorem 5.3.6) and have complexity 2n− 1. Gauss
periods also often have high order, see Remark 5.3.49. For conditions on when Gauss periods
of type (n, k) admit normal bases of Fqn over Fq, see Theorem 5.3.17. In particular, we note
that there is no Gauss period of F2n over F2 which admits a normal basis when 8 divides n.

Table 2.2.8 gives the lowest k for which a Gauss period of type (n, k) admits a normal
basis of F2n pver F2 for n ≤ 577. We give a similar table over F3 in Table 2.2.9. This range
was chosen to cover degrees for common implementations of finite field arithmetic. The
output of the table is in the format “n, k′′ where k is the minimum number admitting a
type (n, k) Gauss period over Fqn , where q = 2, 3.

2,1 3,2 4,1 5,2 6,2 7,4 9,2 10,1 11,2 12,1 13,4 14,2
15,4 17,6 18,1 19,10 20,3 21,10 22,3 23,2 25,4 26,2 27,6 28,1
29,2 30,2 31,10 33,2 34,9 35,2 36,1 37,4 38,6 39,2 41,2 42,5
43,4 44,9 45,4 46,3 47,6 49,4 50,2 51,2 52,1 53,2 54,3 55,12
57,10 58,1 59,12 60,1 61,6 62,6 63,6 65,2 66,1 67,4 68,9 69,2
70,3 71,8 73,4 74,2 75,10 76,3 77,6 78,7 79,4 81,2 82,1 83,2
84,5 85,12 86,2 87,4 89,2 90,2 91,6 92,3 93,4 94,3 95,2 97,4
98,2 99,2 100,1 101,6 102,6 103,6 105,2 106,1 107,6 108,5 109,10 110,6

111,20 113,2 114,5 115,4 116,3 117,8 118,6 119,2 121,6 122,6 123,10 124,3
125,6 126,3 127,4 129,8 130,1 131,2 132,5 133,12 134,2 135,2 137,6 138,1
139,4 140,3 141,8 142,6 143,6 145,10 146,2 147,6 148,1 149,8 150,19 151,6
153,4 154,25 155,2 156,13 157,10 158,2 159,22 161,6 162,1 163,4 164,5 165,4
166,3 167,14 169,4 170,6 171,12 172,1 173,2 174,2 175,4 177,4 178,1 179,2
180,1 181,6 182,3 183,2 185,8 186,2 187,6 188,5 189,2 190,10 191,2 193,4
194,2 195,6 196,1 197,18 198,22 199,4 201,8 202,6 203,12 204,3 205,4 206,3
207,4 209,2 210,1 211,10 212,5 213,4 214,3 215,6 217,6 218,5 219,4 220,3
221,2 222,10 223,12 225,22 226,1 227,24 228,9 229,12 230,2 231,2 233,2 234,5
235,4 236,3 237,10 238,7 239,2 241,6 242,6 243,2 244,3 245,2 246,11 247,6
249,8 250,9 251,2 252,3 253,10 254,2 255,6 257,6 258,5 259,10 260,5 261,2
262,3 263,6 265,4 266,6 267,8 268,1 269,8 270,2 271,6 273,2 274,9 275,14
276,3 277,4 278,2 279,4 281,2 282,6 283,6 284,3 285,10 286,3 287,6 289,12
290,5 291,6 292,1 293,2 294,3 295,16 297,6 298,6 299,2 300,19 301,10 302,3
303,2 305,6 306,2 307,4 308,15 309,2 310,6 311,6 313,6 314,5 315,8 316,1
317,26 318,11 319,4 321,12 322,6 323,2 324,5 325,4 326,2 327,8 329,2 330,2
331,6 332,3 333,24 334,7 335,12 337,10 338,2 339,8 340,3 341,8 342,6 343,4
345,4 346,1 347,6 348,1 349,10 350,2 351,10 353,14 354,2 355,6 356,3 357,10
358,10 359,2 361,30 362,5 363,4 364,3 365,24 366,22 367,6 369,10 370,6 371,2
372,1 373,4 374,3 375,2 377,14 378,1 379,12 380,5 381,8 382,6 383,12 385,6
386,2 387,4 388,1 389,24 390,3 391,6 393,2 394,9 395,6 396,11 397,6 398,2
399,12 401,8 402,5 403,16 404,3 405,4 406,6 407,8 409,4 410,2 411,2 412,3
413,2 414,2 415,28 417,4 418,1 419,2 420,1 421,10 422,11 423,4 425,6 426,2
427,16 428,5 429,2 430,3 431,2 433,4 434,9 435,4 436,13 437,18 438,2 439,10
441,2 442,1 443,2 444,5 445,6 446,6 447,6 449,8 450,13 451,6 452,11 453,2
454,19 455,26 457,30 458,6 459,8 460,1 461,6 462,10 463,12 465,4 466,1 467,6
468,21 469,4 470,2 471,8 473,2 474,5 475,4 476,5 477,46 478,7 479,8 481,6
482,5 483,2 484,3 485,18 486,10 487,4 489,12 490,1 491,2 492,13 493,4 494,3
495,2 497,20 498,9 499,4 500,11 501,10 502,10 503,6 505,10 506,5 507,4 508,1
509,2 510,3 511,6 513,4 514,33 515,2 516,3 517,4 518,14 519,2 521,32 522,1
523,10 524,5 525,8 526,3 527,6 529,24 530,2 531,2 532,3 533,12 534,7 535,4
537,8 538,6 539,12 540,1 541,18 542,3 543,2 545,2 546,1 547,10 548,5 549,14
550,7 551,6 553,4 554,2 555,4 556,1 557,6 558,2 559,4 561,2 562,1 563,14
564,3 565,10 566,3 567,4 569,12 570,5 571,10 572,5 573,4 574,3 575,2 577,4

Table 2.2.8 Lowest type of a Gauss period forming a normal basis for q = 2 and n ≤ 577.
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2,2 3,2 4,1 5,2 6,1 7,4 8,2 9,2 10,3 11,2 13,4 14,2
15,2 16,1 17,6 18,1 19,10 20,5 21,2 22,3 23,2 25,4 26,2 27,4
28,1 29,2 30,1 31,10 32,8 33,6 34,3 35,2 37,4 38,15 39,2 40,7
41,2 42,1 43,4 44,2 45,4 46,3 47,6 49,4 50,2 51,8 52,1 53,2
54,3 55,6 56,2 57,4 58,4 59,12 61,6 62,21 63,2 64,4 65,2 66,3
67,4 68,2 69,2 70,3 71,8 73,4 74,2 75,8 76,10 77,6 78,1 79,4
80,5 81,2 82,9 83,2 85,16 86,2 87,4 88,1 89,2 90,7 91,10 92,5
93,4 94,3 95,2 97,4 98,2 99,2 100,1 101,6 102,11 103,6 104,5 105,2

106,10 107,6 109,10 110,3 111,2 112,1 113,2 114,5 115,4 116,2 117,8 118,9
119,2 121,6 122,3 123,6 124,13 125,2 126,1 127,4 128,2 129,8 130,4 131,2
133,16 134,2 135,4 136,1 137,6 138,1 139,4 140,2 141,2 142,4 143,6 145,10
146,2 147,10 148,1 149,8 150,5 151,6 152,5 153,14 154,3 155,2 157,10 158,2
159,34 160,4 161,6 162,1 163,4 164,5 165,2 166,3 167,14 169,4 170,8 171,12
172,1 173,2 174,9 175,4 176,2 177,4 178,15 179,2 181,6 182,14 183,4 184,7
185,8 186,15 187,6 188,5 189,2 190,3 191,2 193,4 194,2 195,10 196,1 197,18
198,1 199,4 200,2 201,10 202,3 203,12 205,4 206,3 207,4 208,10 209,2 210,1
211,10 212,5 213,6 214,3 215,6 217,6 218,15 219,4 220,4 221,2 222,1 223,12
224,2 225,8 226,15 227,24 229,12 230,2 231,2 232,1 233,2 234,5 235,4 236,8
237,6 238,4 239,2 241,6 242,3 243,2 244,4 245,24 246,3 247,6 248,11 249,8
250,3 251,2 253,4 254,2 255,12 256,1 257,6 258,5 259,10 260,2 261,6 262,3
263,6 265,4 266,8 267,4 268,1 269,8 270,3 271,6 272,5 273,10 274,3 275,12
277,4 278,2 279,10 280,1 281,2 282,1 283,6 284,2 285,2 286,3 287,6 289,12
290,20 291,6 292,1 293,2 294,5 295,12 296,2 297,8 298,4 299,2 301,10 302,3
303,2 304,4 305,6 306,7 307,4 308,2 309,4 310,15 311,6 313,6 314,14 315,2
316,1 317,26 318,17 319,4 320,2 321,18 322,3 323,2 325,4 326,2 327,10 328,7
329,2 330,1 331,6 332,8 333,6 334,15 335,6 337,10 338,2 339,10 340,4 341,8
342,13 343,4 344,5 345,2 346,3 347,6 349,10 350,2 351,22 352,1 353,14 354,3
355,12 356,11 357,4 358,4 359,2 361,30 362,3 363,4 364,7 365,18 366,5 367,6
368,11 369,2 370,4 371,2 373,4 374,3 375,2 376,7 377,14 378,1 379,12 380,5
381,20 382,10 383,12 385,6 386,2 387,14 388,1 389,24 390,5 391,6 392,8 393,10
394,9 395,6 397,6 398,2 399,12 400,1 401,8 402,5 403,4 404,2 405,2 406,21
407,8 409,4 410,2 411,2 412,19 413,2 414,9 415,30 416,5 417,6 418,15 419,2
421,10 422,21 423,4 424,4 425,12 426,3 427,4 428,2 429,2 430,3 431,2 433,4
434,3 435,4 436,13 437,18 438,9 439,10 440,2 441,6 442,3 443,2 445,6 446,15
447,4 448,1 449,8 450,33 451,6 452,8 453,2 454,28 455,2 457,30 458,15 459,8
460,1 461,6 462,1 463,12 464,2 465,10 466,3 467,6 469,10 470,2 471,8 472,4
473,2 474,3 475,4 476,2 477,14 478,4 479,8 481,28 482,3 483,10 484,7 485,2
486,1 487,4 488,2 489,12 490,15 491,2 493,4 494,3 495,30 496,13 497,14 498,11
499,4 500,8 501,16 502,9 503,6 505,10 506,2 507,18 508,1 509,2 510,7 511,6
512,23 513,4 514,3 515,2 517,4 518,9 519,2 520,1 521,32 522,3 523,10 524,2
525,20 526,3 527,6 529,24 530,2 531,2 532,4 533,12 534,27 535,4 536,8 537,8
538,4 539,12 541,18 542,3 543,2 544,10 545,6 546,5 547,10 548,2 549,18 550,21
551,2 553,4 554,2 555,6 556,1 557,6 558,5 559,4 560,5 561,2 562,9 563,14
565,6 566,3 567,28 568,1 569,12 570,1 571,10 572,5 573,4 574,3 575,2 577,4

Table 2.2.9 Lowest type of a Gauss period forming a normal basis for q = 3 and n ≤ 577.

2.2.2.3 Minimum-known complexity of a normal basis of F2n over F2, n ≥ 40

2.2.19 Remark Table 2.2.10 gives the minimum complexity of a normal basis of F2n over F2 for
40 ≤ n ≤ 721 by using a combination of the exhaustive search data of Table 2.2.4 and theo-
rems from Section 5.3. In each row, we give the degree n, the minimum complexity Cn of a
normal basis of F2n over F2, the method by which the normal basis was obtained and what
property or parameters were used. In the “Method” column, “Optimal” indicates existence
of an optimal normal basis, “GNB” indicates the basis arises as a Gauss period and their
type is given in the “Property” column. Proposition 5.3.38 constructs normal bases of Fqn
using normal bases of subfields of coprime degree. When this method wins, the values of
these coprime factors are indicated in the “Property” column. Corollary 5.3.15 requires an
optimal normal basis of F2kn and the type of the optimal normal basis and the value of k
are indicated in the “Property” column. Finally, “sd” indicates that the basis is self-dual.

When n is a power of 2, the best result, when available, is by random search since known
methods do not apply. Gauss periods cannot form normal bases when 8 divides n, see Propo-
sition 5.3.20, and n contains no coprime factors with which to apply Proposition 5.3.38. By
Conjecture 2.2.15, the complexity of these bases is likely to approach n2/2.

2.2.20 Problem Find constructions of low complexity normal bases of F2n over F2 when n is a
prime power, specifically a power of 2.
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n Cn Method Property
40 189 Prop. 5.3.38 5, 8
41 81 Optimal Type 2, sd
42 135 Prop. 5.3.38 3, 14
43 165 GNB k = 4, sd
44 147 Prop. 5.3.38 4, 11
45 153 Search [130], sd
46 135 Prop. 5.3.38 2, 23
47 261 GNB k = 6, sd
48 425 Prop. 5.3.38 3, 16
49 189 GNB k = 4, sd
50 99 Optimal Type 2, sd
51 101 Optimal Type 2, sd
52 103 Optimal Type 1
53 105 Optimal Type 2, sd
54 209 GNB k = 3
55 189 Prop. 5.3.38 5, 11
56 399 Prop. 5.3.38 7, 8
57 497 Search [1263], sd
58 115 Optimal Type 1
59 597 Search [1263], sd
60 119 Optimal Type 1
61 345 GNB k = 6, sd
62 351 GNB k = 6, sd
63 323 Prop. 5.3.38 7, 9
64 1829 Random
65 129 Optimal Type 2, sd
66 131 Optimal Type 1
67 261 GNB k = 4, sd
68 567 Prop. 5.3.38 4, 17
69 137 Optimal Type 2, sd
70 207 Prop. 5.3.38 2, 35
71 567 GNB k = 8, sd
72 357 Prop. 5.3.38 8, 9
73 285 GNB k = 4, sd
74 147 Optimal Type 2, sd
75 465 Prop. 5.3.38 3, 25
76 297 GNB k = 3
77 399 Prop. 5.3.38 7, 11
78 231 Prop. 5.3.38 2, 39
79 309 GNB k = 4, sd
80 765 Prop. 5.3.38 5, 16
81 161 Optimal Type 2, sd
82 163 Optimal Type 1
83 165 Optimal Type 2, sd
84 275 Prop. 5.3.38 3, 28
85 729 Prop. 5.3.38 5, 17
86 171 Optimal Type 2, sd
87 285 Prop. 5.3.38 3, 29
88 441 Prop. 5.3.38 8, 11
89 177 Optimal Type 2, sd
90 179 Optimal Type 2, sd
91 525 GNB k = 6, sd
92 315 Prop. 5.3.38 4, 23
93 365 GNB k = 4, sd
94 369 GNB k = 3
95 189 Optimal Type 2, sd
96 1805 Prop. 5.3.38 3, 32
97 381 GNB k = 4, sd
98 195 Optimal Type 2, sd
99 197 Optimal Type 2, sd
100 199 Optimal Type 1
101 585 GNB k = 6, sd
102 303 Prop. 5.3.38 2, 51
103 597 GNB k = 6, sd
104 945 Prop. 5.3.38 8, 13
105 209 Optimal Type 2, sd
106 211 Optimal Type 1
107 621 GNB k = 6, sd
108 627 GNB k = 5
109 1081 Cor. 5.3.15 Type 2, k = 5, sd
110 399 Prop. 5.3.38 10, 11
111 705 Prop. 5.3.38 3, 37
112 1615 Prop. 5.3.38 7, 16
113 225 Optimal Type 2, sd
114 663 GNB k = 5
115 405 Prop. 5.3.38 5, 23
116 399 Prop. 5.3.38 4, 29
117 765 Prop. 5.3.38 9, 13
118 687 GNB k = 6, sd
119 237 Optimal Type 2, sd
120 945 Prop. 5.3.38 3, 40
121 705 GNB k = 6, sd
122 711 GNB k = 6, sd
123 405 Prop. 5.3.38 3, 41
124 489 GNB k = 3
125 729 GNB k = 6, sd
126 459 Prop. 5.3.38 9, 14
127 501 GNB k = 4, sd

n Cn Method Property
128 7821 Random
129 825 Prop. 5.3.38 3, 43
130 259 Optimal Type 1
131 261 Optimal Type 2, sd
132 455 Prop. 5.3.38 4, 33
133 1595 GNB k = 12, sd
134 267 Optimal Type 2, sd
135 269 Optimal Type 2, sd
136 1701 Prop. 5.3.38 8, 17
137 801 GNB k = 6, sd
138 275 Optimal Type 1
139 549 GNB k = 4, sd
140 483 Prop. 5.3.38 4, 35
141 1127 GNB k = 8, sd
142 831 GNB k = 6, sd
143 837 GNB k = 6, sd
144 1445 Prop. 5.3.38 9, 16
145 513 Prop. 5.3.38 5, 29
146 291 Optimal Type 2, sd
147 861 GNB k = 6, sd
148 295 Optimal Type 1
149 1191 GNB k = 8, sd
150 495 Prop. 5.3.38 3, 50
151 885 GNB k = 6, sd
152 2457 Prop. 5.3.38 8, 19
153 605 GNB k = 4, sd
154 567 Prop. 5.3.38 11, 14
155 309 Optimal Type 2, sd
156 515 Prop. 5.3.38 3, 52
157 1561 Cor. 5.3.15 Type 2, k = 5, sd
158 315 Optimal Type 2, sd
159 525 Prop. 5.3.38 3, 53
160 3249 Prop. 5.3.38 5, 32
161 855 Prop. 5.3.38 7, 23
162 323 Optimal Type 1
163 645 GNB k = 4, sd
164 567 Prop. 5.3.38 4, 41
165 585 Prop. 5.3.38 5, 33
166 495 Prop. 5.3.38 2, 83
167 2325 Cor. 5.3.15 Type 2, k = 7, sd
168 1995 Prop. 5.3.38 3, 56
169 669 GNB k = 4, sd
170 999 GNB k = 6, sd
171 1989 Prop. 5.3.38 9, 19
172 343 Optimal Type 1
173 345 Optimal Type 2, sd
174 347 Optimal Type 2, sd
175 693 GNB k = 4, sd
176 1785 Prop. 5.3.38 11, 16
177 701 GNB k = 4, sd
178 355 Optimal Type 1
179 357 Optimal Type 2, sd
180 359 Optimal Type 1
181 1065 GNB k = 6, sd
182 721 GNB k = 3
183 365 Optimal Type 2, sd
184 945 Prop. 5.3.38 8, 23
185 1269 Prop. 5.3.38 5, 37
186 371 Optimal Type 2, sd
187 1101 GNB k = 6, sd
188 1107 GNB k = 5
189 377 Optimal Type 2, sd
190 567 Prop. 5.3.38 2, 95
191 381 Optimal Type 2, sd
192 9145 Prop. 5.3.38 3, 64
193 765 GNB k = 4, sd
194 387 Optimal Type 2, sd
195 645 Prop. 5.3.38 3, 65
196 391 Optimal Type 1
197 3529 Cor. 5.3.15 Type 2, k = 9, sd
198 591 Prop. 5.3.38 2, 99
199 789 GNB k = 4, sd
200 1953 Prop. 5.3.38 8, 25
201 1305 Prop. 5.3.38 3, 67
202 1191 GNB k = 6, sd
203 1083 Prop. 5.3.38 7, 29
204 707 Prop. 5.3.38 4, 51
205 729 Prop. 5.3.38 5, 41
206 817 GNB k = 3
207 765 Prop. 5.3.38 9, 23
208 3825 Prop. 5.3.38 13, 16
209 417 Optimal Type 2, sd
210 419 Optimal Type 1
211 2101 Cor. 5.3.15 Type 2, k = 5, sd
212 735 Prop. 5.3.38 4, 53
213 845 GNB k = 4, sd
214 849 GNB k = 3
215 1269 GNB k = 6, sd
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n Cn Method Property
216 2961 Prop. 5.3.38 8, 27
217 1281 GNB k = 6, sd
218 1287 GNB k = 5
219 869 GNB k = 4, sd
220 873 GNB k = 3
221 441 Optimal Type 2, sd
222 735 Prop. 5.3.38 3, 74
223 2665 Cor. 5.3.15 Type 2, k = 6, sd
224 6859 Prop. 5.3.38 7, 32
225 1581 Prop. 5.3.38 9, 25
226 451 Optimal Type 1
227 5447 GNB k = 24, sd
228 1485 Prop. 5.3.38 3, 76
229 2747 GNB k = 12, sd
230 459 Optimal Type 2, sd
231 461 Optimal Type 2, sd
232 1197 Prop. 5.3.38 8, 29
233 465 Optimal Type 2, sd
234 867 Prop. 5.3.38 9, 26
235 933 GNB k = 4, sd
236 937 GNB k = 3
237 1545 Prop. 5.3.38 3, 79
238 711 Prop. 5.3.38 2, 119
239 477 Optimal Type 2, sd
240 3825 Prop. 5.3.38 3, 80
241 1425 GNB k = 6, sd
242 1431 GNB k = 6, sd
243 485 Optimal Type 2, sd
244 969 GNB k = 3
245 489 Optimal Type 2, sd
246 815 Prop. 5.3.38 3, 82
247 1461 GNB k = 6, sd
248 4977 Prop. 5.3.38 8, 31
249 825 Prop. 5.3.38 3, 83
250 2187 Prop. 5.3.38 2, 125
251 501 Optimal Type 2, sd
252 935 Prop. 5.3.38 9, 28
253 945 Prop. 5.3.38 11, 23
254 507 Optimal Type 2, sd
255 909 Prop. 5.3.38 5, 51
256 No data Prime power
257 1521 GNB k = 6, sd
258 855 Prop. 5.3.38 3, 86
259 2581 Cor. 5.3.15 Type 2, k = 5, sd
260 903 Prop. 5.3.38 4, 65
261 521 Optimal Type 2, sd
262 783 Prop. 5.3.38 2, 131
263 1557 GNB k = 6, sd
264 1365 Prop. 5.3.38 8, 33
265 945 Prop. 5.3.38 5, 53
266 1575 GNB k = 6, sd
267 885 Prop. 5.3.38 3, 89
268 535 Optimal Type 1
269 2151 GNB k = 8, sd
270 539 Optimal Type 2, sd
271 1605 GNB k = 6, sd
272 6885 Prop. 5.3.38 16, 17
273 545 Optimal Type 2, sd
274 2403 Prop. 5.3.38 2, 137
275 1953 Prop. 5.3.38 11, 25
276 959 Prop. 5.3.38 4, 69
277 1101 GNB k = 4, sd
278 555 Optimal Type 2, sd
279 1109 GNB k = 4, sd
280 1449 Prop. 5.3.38 8, 35
281 561 Optimal Type 2, sd
282 1671 GNB k = 6, sd
283 1677 GNB k = 6, sd
284 1129 GNB k = 3
285 945 Prop. 5.3.38 3, 95
286 1071 Prop. 5.3.38 11, 26
287 1539 Prop. 5.3.38 7, 41
288 6137 Prop. 5.3.38 9, 32
289 3457 Cor. 5.3.15 Type 2, k = 6, sd
290 1035 Prop. 5.3.38 5, 58
291 1725 GNB k = 6, sd
292 583 Optimal Type 1
293 585 Optimal Type 2, sd
294 975 Prop. 5.3.38 3, 98
295 4719 GNB k = 16, sd
296 2961 Prop. 5.3.38 8, 37
297 1761 GNB k = 6, sd
298 1767 GNB k = 6, sd
299 597 Optimal Type 2, sd
300 995 Prop. 5.3.38 3, 100
301 3001 Cor. 5.3.15 Type 2, k = 5, sd
302 1201 GNB k = 3
303 605 Optimal Type 2, sd

n Cn Method Property
304 9945 Prop. 5.3.38 16, 19
305 1809 GNB k = 6, sd
306 611 Optimal Type 2, sd
307 1221 GNB k = 4, sd
308 1155 Prop. 5.3.38 11, 28
309 617 Optimal Type 2, sd
310 927 Prop. 5.3.38 2, 155
311 1845 GNB k = 6, sd
312 1617 Prop. 5.3.38 8, 39
313 1857 GNB k = 6, sd
314 1863 GNB k = 5
315 1173 Prop. 5.3.38 9, 35
316 631 Optimal Type 1
317 8217 Cor. 5.3.15 Type 2, k = 13, sd
318 1055 Prop. 5.3.38 3, 106
319 1197 Prop. 5.3.38 11, 29
320 16461 Prop. 5.3.38 5, 64
321 3105 Prop. 5.3.38 3, 107
322 1215 Prop. 5.3.38 14, 23
323 645 Optimal Type 2, sd
324 1127 Prop. 5.3.38 4, 81
325 1293 GNB k = 4, sd
326 651 Optimal Type 2, sd
327 2615 GNB k = 8, sd
328 1701 Prop. 5.3.38 8, 41
329 657 Optimal Type 2, sd
330 659 Optimal Type 2, sd
331 1965 GNB k = 6, sd
332 1155 Prop. 5.3.38 4, 83
333 2397 Prop. 5.3.38 9, 37
334 2629 GNB k = 7
335 2349 Prop. 5.3.38 5, 67
336 8075 Prop. 5.3.38 3, 112
337 3361 Cor. 5.3.15 Type 2, k = 5, sd
338 675 Optimal Type 2, sd
339 1125 Prop. 5.3.38 3, 113
340 1353 GNB k = 3
341 2727 GNB k = 8, sd
342 2031 GNB k = 6, sd
343 1365 GNB k = 4, sd
344 3465 Prop. 5.3.38 8, 43
345 1233 Prop. 5.3.38 5, 69
346 691 Optimal Type 1
347 2061 GNB k = 6, sd
348 695 Optimal Type 1
349 3481 Cor. 5.3.15 Type 2, k = 5, sd
350 699 Optimal Type 2, sd
351 3501 Cor. 5.3.15 Type 2, k = 5, sd
352 7581 Prop. 5.3.38 11, 32
353 4929 Cor. 5.3.15 Type 2, k = 7, sd
354 707 Optimal Type 2, sd
355 2109 GNB k = 6, sd
356 1239 Prop. 5.3.38 4, 89
357 1185 Prop. 5.3.38 3, 119
358 1071 Prop. 5.3.38 2, 179
359 717 Optimal Type 2, sd
360 3213 Prop. 5.3.38 5, 72
361 10801 Cor. 5.3.15 Type 2, k = 15, sd
362 2151 GNB k = 5
363 1445 GNB k = 4, sd
364 1449 GNB k = 3
365 2565 Prop. 5.3.38 5, 73
366 1095 Prop. 5.3.38 2, 183
367 2181 GNB k = 6, sd
368 3825 Prop. 5.3.38 16, 23
369 1377 Prop. 5.3.38 9, 41
370 1323 Prop. 5.3.38 5, 74
371 741 Optimal Type 2, sd
372 743 Optimal Type 1
373 1485 GNB k = 4, sd
374 1489 GNB k = 3
375 749 Optimal Type 2, sd
376 5481 Prop. 5.3.38 8, 47
377 2565 Prop. 5.3.38 13, 29
378 755 Optimal Type 1
379 4547 GNB k = 12, sd
380 1323 Prop. 5.3.38 4, 95
381 2505 Prop. 5.3.38 3, 127
382 1143 Prop. 5.3.38 2, 191
383 4595 GNB k = 12, sd
384 39105 Prop. 5.3.38 3, 128
385 1449 Prop. 5.3.38 11, 35
386 771 Optimal Type 2, sd
387 1541 GNB k = 4, sd
388 775 Optimal Type 1
389 9335 GNB k = 24, sd
390 1295 Prop. 5.3.38 3, 130
391 2325 GNB k = 6, sd
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n Cn Method Property
392 3969 Prop. 5.3.38 8, 49
393 785 Optimal Type 2, sd
394 3915 Cor. 5.3.15 Type 1, k = 9
395 2349 GNB k = 6, sd
396 1379 Prop. 5.3.38 4, 99
397 2361 GNB k = 6, sd
398 795 Optimal Type 2, sd
399 4777 Cor. 5.3.15 Type 2, k = 6, sd
400 7905 Prop. 5.3.38 16, 25
401 3207 GNB k = 8, sd
402 1335 Prop. 5.3.38 3, 134
403 6447 GNB k = 16, sd
404 1609 GNB k = 3
405 1449 Prop. 5.3.38 5, 81
406 1539 Prop. 5.3.38 14, 29
407 2961 Prop. 5.3.38 11, 37
408 2121 Prop. 5.3.38 8, 51
409 1629 GNB k = 4, sd
410 819 Optimal Type 2, sd
411 821 Optimal Type 2, sd
412 1641 GNB k = 3
413 825 Optimal Type 2, sd
414 827 Optimal Type 2, sd
415 1485 Prop. 5.3.38 5, 83
416 16245 Prop. 5.3.38 13, 32
417 1661 GNB k = 4, sd
418 835 Optimal Type 1
419 837 Optimal Type 2, sd
420 839 Optimal Type 1
421 4209 GNB k = 10, sd
422 5053 GNB k = 11
423 1685 GNB k = 4, sd
424 2205 Prop. 5.3.38 8, 53
425 2529 GNB k = 6, sd
426 851 Optimal Type 2, sd
427 6555 Prop. 5.3.38 7, 61
428 2547 GNB k = 5
429 857 Optimal Type 2, sd
430 1539 Prop. 5.3.38 5, 86
431 861 Optimal Type 2, sd
432 11985 Prop. 5.3.38 16, 27
433 1725 GNB k = 4, sd
434 3843 Prop. 5.3.38 2, 217
435 1733 GNB k = 4, sd
436 6091 GNB k = 13
437 5265 Prop. 5.3.38 19, 23
438 875 Optimal Type 2, sd
439 4381 Cor. 5.3.15 Type 2, k = 5, sd
440 3969 Prop. 5.3.38 5, 88
441 881 Optimal Type 2, sd
442 883 Optimal Type 1
443 885 Optimal Type 2, sd
444 1475 Prop. 5.3.38 3, 148
445 1593 Prop. 5.3.38 5, 89
446 2655 GNB k = 6, sd
447 2661 GNB k = 6, sd
448 34751 Prop. 5.3.38 7, 64
449 3591 GNB k = 8, sd
450 1683 Prop. 5.3.38 9, 50
451 1701 Prop. 5.3.38 11, 41
452 1575 Prop. 5.3.38 4, 113
453 905 Optimal Type 2, sd
454 9025 Cor. 5.3.15 Type 1, k = 19
455 2451 Prop. 5.3.38 7, 65
456 10437 Prop. 5.3.38 8, 57
457 13681 Cor. 5.3.15 Type 2, k = 15, sd
458 2727 GNB k = 6, sd
459 3671 GNB k = 8, sd
460 919 Optimal Type 1
461 2745 GNB k = 6, sd
462 1383 Prop. 5.3.38 2, 231
463 5545 Cor. 5.3.15 Type 2, k = 6, sd
464 4845 Prop. 5.3.38 16, 29
465 1545 Prop. 5.3.38 3, 155
466 931 Optimal Type 1
467 2781 GNB k = 6, sd
468 1751 Prop. 5.3.38 9, 52
469 1869 GNB k = 4, sd
470 939 Optimal Type 2, sd
471 3767 GNB k = 8, sd
472 12537 Prop. 5.3.38 8, 59
473 945 Optimal Type 2, sd
474 1575 Prop. 5.3.38 3, 158
475 1893 GNB k = 4, sd
476 1659 Prop. 5.3.38 4, 119
477 1785 Prop. 5.3.38 9, 53
478 1431 Prop. 5.3.38 2, 239
479 3831 GNB k = 8, sd

n Cn Method Property
480 16245 Prop. 5.3.38 3, 160
481 2865 GNB k = 6, sd
482 2871 GNB k = 5
483 965 Optimal Type 2, sd
484 1929 GNB k = 3
485 3429 Prop. 5.3.38 5, 97
486 1455 Prop. 5.3.38 2, 243
487 1941 GNB k = 4, sd
488 7245 Prop. 5.3.38 8, 61
489 3225 Prop. 5.3.38 3, 163
490 979 Optimal Type 1
491 981 Optimal Type 2, sd
492 1863 Prop. 5.3.38 12, 41
493 1965 GNB k = 4, sd
494 1969 GNB k = 3
495 989 Optimal Type 2, sd
496 20145 Prop. 5.3.38 16, 31
497 9921 Cor. 5.3.15 Type 2, k = 10, sd
498 1815 Prop. 5.3.38 6, 83
499 1989 GNB k = 4, sd
500 5103 Prop. 5.3.38 4, 125
501 5001 Cor. 5.3.15 Type 2, k = 5, sd
502 1503 Prop. 5.3.38 2, 251
503 2997 GNB k = 6, sd
504 6783 Prop. 5.3.38 7, 72
505 5041 Cor. 5.3.15 Type 2, k = 5, sd
506 2835 Prop. 5.3.38 2, 253
507 2021 GNB k = 4, sd
508 1015 Optimal Type 1
509 1017 Optimal Type 2, sd
510 1919 Prop. 5.3.38 10, 51
511 3045 GNB k = 6, sd
512 No data Prime power
513 2045 GNB k = 4, sd
514 4563 Prop. 5.3.38 2, 257
515 1029 Optimal Type 2, sd
516 1715 Prop. 5.3.38 3, 172
517 2061 GNB k = 4, sd
518 2793 Prop. 5.3.38 7, 74
519 1037 Optimal Type 2, sd
520 2709 Prop. 5.3.38 8, 65
521 16671 GNB k = 32, sd
522 1043 Optimal Type 1
523 5221 Cor. 5.3.15 Type 2, k = 5, sd
524 1827 Prop. 5.3.38 4, 131
525 3465 Prop. 5.3.38 3, 175
526 2097 GNB k = 3
527 3141 GNB k = 6, sd
528 5525 Prop. 5.3.38 16, 33
529 12695 GNB k = 24, sd
530 1059 Optimal Type 2, sd
531 1061 Optimal Type 2, sd
532 2121 GNB k = 3
533 3645 Prop. 5.3.38 13, 41
534 1775 Prop. 5.3.38 3, 178
535 2133 GNB k = 4, sd
536 5481 Prop. 5.3.38 8, 67
537 1785 Prop. 5.3.38 3, 179
538 3207 GNB k = 6, sd
539 3969 Prop. 5.3.38 11, 49
540 1079 Optimal Type 1
541 9737 GNB k = 18, sd
542 2161 GNB k = 3
543 1085 Optimal Type 2, sd
544 29241 Prop. 5.3.38 17, 32
545 1089 Optimal Type 2, sd
546 1091 Optimal Type 1
547 5469 GNB k = 10, sd
548 3267 GNB k = 5
549 5865 Prop. 5.3.38 9, 61
550 2079 Prop. 5.3.38 11, 50
551 3285 GNB k = 6, sd
552 2877 Prop. 5.3.38 8, 69
553 2205 GNB k = 4, sd
554 1107 Optimal Type 2, sd
555 2213 GNB k = 4, sd
556 1111 Optimal Type 1
557 3321 GNB k = 6, sd
558 1115 Optimal Type 2, sd
559 2229 GNB k = 4, sd
560 5865 Prop. 5.3.38 16, 35
561 1121 Optimal Type 2, sd
562 1123 Optimal Type 1
563 7869 Cor. 5.3.15 Type 2, k = 7, sd
564 2249 GNB k = 3
565 2025 Prop. 5.3.38 5, 113
566 2257 GNB k = 3
567 2261 GNB k = 4, sd
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n Cn Method Property
568 11907 Prop. 5.3.38 8, 71
569 6817 Cor. 5.3.15 Type 2, k = 6, sd
570 2079 Prop. 5.3.38 6, 95
571 5709 GNB k = 10, sd
572 2163 Prop. 5.3.38 11, 52
573 1905 Prop. 5.3.38 3, 191
574 2187 Prop. 5.3.38 14, 41
575 1149 Optimal Type 2, sd
576 31093 Prop. 5.3.38 9, 64
577 2301 GNB k = 4, sd
578 3447 GNB k = 6, sd
579 3825 Prop. 5.3.38 3, 193
580 2313 GNB k = 3
581 3135 Prop. 5.3.38 7, 83
582 1935 Prop. 5.3.38 3, 194
583 2205 Prop. 5.3.38 11, 53
584 5985 Prop. 5.3.38 8, 73
585 1169 Optimal Type 2, sd
586 1171 Optimal Type 1
587 8205 Cor. 5.3.15 Type 2, k = 7, sd
588 1955 Prop. 5.3.38 3, 196
589 2349 GNB k = 4, sd
590 6183 Prop. 5.3.38 5, 118
591 3525 GNB k = 6, sd
592 11985 Prop. 5.3.38 16, 37
593 1185 Optimal Type 2, sd
594 4389 Prop. 5.3.38 11, 54
595 2133 Prop. 5.3.38 5, 119
596 2377 GNB k = 3
597 2381 GNB k = 4, sd
598 1791 Prop. 5.3.38 2, 299
599 4791 GNB k = 8, sd
600 9765 Prop. 5.3.38 3, 200
601 3585 GNB k = 6, sd
602 3249 Prop. 5.3.38 7, 86
603 4437 Prop. 5.3.38 9, 67
604 4789 GNB k = 7
605 3609 GNB k = 6, sd
606 1211 Optimal Type 2, sd
607 3621 GNB k = 6, sd
608 42237 Prop. 5.3.38 19, 32
609 2429 GNB k = 4, sd
610 5427 Prop. 5.3.38 2, 305
611 1221 Optimal Type 2, sd
612 1223 Optimal Type 1
613 6121 Cor. 5.3.15 Type 2, k = 5, sd
614 1227 Optimal Type 2, sd
615 1229 Optimal Type 2, sd
616 8379 Prop. 5.3.38 7, 88
617 4935 GNB k = 8, sd
618 1235 Optimal Type 1
619 2469 GNB k = 4, sd
620 2163 Prop. 5.3.38 4, 155
621 3705 GNB k = 6, sd
622 2481 GNB k = 3
623 3363 Prop. 5.3.38 7, 89
624 6545 Prop. 5.3.38 16, 39
625 22465 Cor. 5.3.15 Type 2, k = 18, sd
626 5571 Prop. 5.3.38 2, 313
627 2085 Prop. 5.3.38 3, 209
628 4981 GNB k = 7
629 1257 Optimal Type 2, sd
630 2415 Prop. 5.3.38 18, 35
631 6301 Cor. 5.3.15 Type 2, k = 5, sd
632 6489 Prop. 5.3.38 8, 79
633 10505 Prop. 5.3.38 3, 211
634 8839 Cor. 5.3.15 Type 1, k = 13
635 4509 Prop. 5.3.38 5, 127
636 2415 Prop. 5.3.38 12, 53
637 2541 GNB k = 4, sd
638 1275 Optimal Type 2, sd
639 1277 Optimal Type 2, sd
640 70389 Prop. 5.3.38 5, 128
641 1281 Optimal Type 2, sd
642 3831 GNB k = 6, sd
643 7705 Cor. 5.3.15 Type 2, k = 6, sd
644 2475 Prop. 5.3.38 23, 28

n Cn Method Property
645 1289 Optimal Type 2, sd
646 1935 Prop. 5.3.38 2, 323
647 9045 Cor. 5.3.15 Type 2, k = 7, sd
648 3381 Prop. 5.3.38 8, 81
649 6481 Cor. 5.3.15 Type 2, k = 5, sd
650 1299 Optimal Type 2, sd
651 1301 Optimal Type 2, sd
652 1303 Optimal Type 1
653 1305 Optimal Type 2, sd
654 6435 Prop. 5.3.38 3, 218
655 2349 Prop. 5.3.38 5, 131
656 6885 Prop. 5.3.38 16, 41
657 4845 Prop. 5.3.38 9, 73
658 1315 Optimal Type 1
659 1317 Optimal Type 2, sd
660 1319 Optimal Type 1
661 3945 GNB k = 6, sd
662 2641 GNB k = 3
663 2205 Prop. 5.3.38 3, 221
664 3465 Prop. 5.3.38 8, 83
665 3591 Prop. 5.3.38 7, 95
666 2499 Prop. 5.3.38 9, 74
667 2565 Prop. 5.3.38 23, 29
668 7985 Cor. 5.3.15 Type 1, k = 11
669 2669 GNB k = 4, sd
670 2403 Prop. 5.3.38 5, 134
671 4005 GNB k = 6, sd
672 34295 Prop. 5.3.38 3, 224
673 2685 GNB k = 4, sd
674 4023 GNB k = 5
675 13113 Prop. 5.3.38 25, 27
676 1351 Optimal Type 1
677 5415 GNB k = 8, sd
678 2255 Prop. 5.3.38 3, 226
679 6789 GNB k = 10, sd
680 15309 Prop. 5.3.38 5, 136
681 14961 Cor. 5.3.15 Type 2, k = 11, sd
682 4071 GNB k = 6, sd
683 1365 Optimal Type 2, sd
684 2729 GNB k = 3
685 2733 GNB k = 4, sd
686 1371 Optimal Type 2, sd
687 6869 GNB k = 10, sd
688 14025 Prop. 5.3.38 16, 43
689 4725 Prop. 5.3.38 13, 53
690 1379 Optimal Type 2, sd
691 6901 Cor. 5.3.15 Type 2, k = 5, sd
692 2415 Prop. 5.3.38 4, 173
693 3743 Prop. 5.3.38 7, 99
694 2769 GNB k = 3
695 4941 Prop. 5.3.38 5, 139
696 5985 Prop. 5.3.38 3, 232
697 2781 GNB k = 4, sd
698 4167 GNB k = 5
699 2325 Prop. 5.3.38 3, 233
700 1399 Optimal Type 1
701 12601 Cor. 5.3.15 Type 2, k = 9, sd
702 7191 Prop. 5.3.38 26, 27
703 4197 GNB k = 6, sd
704 38409 Prop. 5.3.38 11, 64
705 4209 GNB k = 6, sd
706 14787 Prop. 5.3.38 2, 353
707 4221 GNB k = 6, sd
708 1415 Optimal Type 1
709 2829 GNB k = 4, sd
710 2833 GNB k = 3
711 5253 Prop. 5.3.38 9, 79
712 3717 Prop. 5.3.38 8, 89
713 1425 Optimal Type 2, sd
714 2607 Prop. 5.3.38 6, 119
715 2709 Prop. 5.3.38 11, 65
716 2499 Prop. 5.3.38 4, 179
717 2385 Prop. 5.3.38 3, 239
718 2151 Prop. 5.3.38 2, 359
719 1437 Optimal Type 2, sd
720 13005 Prop. 5.3.38 5, 144
721 4305 GNB k = 6, sd

Table 2.2.10 Minimum found complexity of a normal basis of F2n over F2, 40 ≤ n ≤ 721.



46 Handbook of Finite Fields

2.2.3 Resources and standards

2.2.21 Remark The Combinatorial Object Server (COS) [2507] allows the user to specify a type
of combinatorial object with specific parameter values and COS will return a list of the
objects having the desired parameters. In many cases, the format of the output can be
chosen to be more machine-readable or human-readable. COS does not rely on a list, rather
it generates the objects requested on-the-fly; for this reason, the output is restricted to 200
objects. Examples of the objects generated are permutations, subsets and combinations,
set and integer partitions, irreducible and primitive polynomials over small finite fields and
spanning trees of a graph.

2.2.22 Remark The Cunningham project produces a set of tables to factor the numbers bn ± 1
for b = 2, 3, 5, 6, 7, 10, 11, 12 for n as large as possible. The current factorization methods
employed are the elliptic curve method, the multiple polynomial quadratic sieve and the
number field sieve. For more information on factorization methods, see [2080, Chapter 3].
The Cunningham tables appear in published form [415] and as an electronic resource [2890].

2.2.23 Remark The Great Internet Mersenne Prime Search (GIMPS) [2084] is a distributed com-
puting effort dedicated to finding and verifying Mersenne primes (that is, primes of the form
2p−1, where p is also a prime). GIMPS uses a combination of trial factoring using the Sieve
of Eratosthenes, followed by the Pollard P − 1 method and ending with the Lucas-Lehmer
primality test. For more information on primality testing, see [724, Chapter 31], for exam-
ple. GIMPS provides the Prime95 software, which automates all factoring and distributed
computing processes. The (currently) largest known Mersenne prime is 243112609 − 1 con-
taining 12978189 decimal digits [2084].

The search for Mersenne primes is of particular interest in searching for primitive tri-
nomials of large degrees. Primitive polynomials of low-weight are useful in cryptographic
applications and pseudo-random number generation; see Sections 14.9 and 16.2. If p is a
Mersenne prime, then any irreducible polynomial of degree p over F2 is primitive. Since bi-
nomials of degree at least 2 cannot be irreducible over F2, we consider trinomials xp+xr+1,
for some 0 ≤ r ≤ p − 1. Sieving trinomials for reducibles is possible by Swan’s Theorem;
see Section 3.3. For more details on the algorithms and methods used in the search for
primitive trinomials, see [408]. An implementation of polynomial arithmetic over F2 which
was motivated by the GIMPS project, entitled gf2x, is necessarily highly optimized and is
preferred in some finite field software implementations; see Table 2.2.11 for more details.

2.2.24 Remark The On-Line Encyclopedia of Integer SequencesTM (OEISTM) [2800] is a
constantly-updated, searchable database of integer sequences. Examples of famous sequences
in the OEISTM are the Catalan numbers (A000108), prime numbers (A000040), and the
Fibonnacci numbers (A000045). Users can search by sequence, “word” (for example, “num-
ber of irreducible polynomials” yields sequence A001037) or sequence number. Sequences
are sorted lexicographically, so the sequence references may have changed since the date of
publication.

2.2.25 Remark In Table 2.2.11, we present a number of software packages which are useful for
finite field implementations. We distinguish between packages which are open-source and
commercial. We refer the reader to the citation, which provides a current (as of the date of
publication) Web URL to the most recent build of the software. We note that this is not
an exhaustive list of software packages, simply a useful list of packages used or researched
by the author.
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Open-source software packages for computations in discrete mathematics
Name Ver. Description
Fast Library for
Number Theory
(FLINT)

2.3 A C library for performing computations in number
theory. Routines include fast algorithms, on par with
the other most efficient packages listed, for arbitrary
precision integers, rational numbers, modular arith-
metic, and p-adic numbers. Most libraries also con-
tain vector, polynomial and matrix methods. Multi-
core support to come in future versions.

[1426]

Groups, Algo-
rithms, Pro-
gramming
(GAP)

4.4.x A system for computational discrete algebra em-
phasizing computational group theory. Can do ba-
sic computations with arbitrary integers, rationals,
finite fields, p-adic numbers, polynomials, rational
functions, and more. Contains a coding theory pack-
age, combinatorial functions and prime factorization
routines. Provides its own programming language, li-
braries of algebraic algorithms written in the GAP
language as well as data libraries of algebraic objects,
particularly various types of groups.

[2796]

gf2x 1.0 Library for efficient arithmetic of single-variable
polynomials over F2. Primarily introduces fast-
fourier transform (FFT) for large-degree polynomial
multiplication.

[399]

The GNU Mul-
tiple Precision
Arithmetic
Library (GMP)

5.0.x C/C++ library providing fast arbitrary precision
arithmetic on integers, rational numbers, and float-
ing point numbers.

[2797]

Macaulay2 1.4 Software system focusing on algebraic geometry and
commutative algebra. Contains core algorithms com-
bined with a high-level interpreted language and de-
bugger to support package creation. Uses elements of
PARI, NTL, and others in its routines.

[1355]

Number Theory
Library (NTL)

5.5.x C++ library providing data structures and routines
for arbitrary length integer arithmetic, arbitrary pre-
cision floating-point arithmetic, and finite field arith-
metic. Also contains lattice basis reduction algo-
rithms and basic linear algebra packages. Interfaces
with gf2x and GMP libraries for additional speed-
ups.

[2633]

PARI/GP 2.5.x C library designed for fast computations in num-
ber theory including integer factorization and elliptic
curve compututations. Also contains useful function
for use with matrices, polynomials, power series, and
others. GP is a scripting language used by the gp
interactive shell, which accesses the PARI functions.
A subset of the GP language can be compiled as C
code, resulting in a substantial speed-up.

[2801]
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Open-source software packages for computations in discrete mathematics
Name Ver. Description
Singular 3.1.x A computer algebra system focusing on polynomial

computations. Specializes on commutative and non-
commutative algebra, algebraic geometry, and sin-
gularity theory. Provides a C-like programming lan-
guage, extendable using libraries. Its core algorithms
handle Gröbner bases, polynomial factorization, re-
sultants, and root finding. Advanced libraries and
third-party software provide further functionality.

[792]

SAGE 5.0 Comprehensive Python-based open-source computer
algebra package. Natively contains a finite field im-
plementation as well as wrappers for other useful
packages including Flint, GAP, NTL, PARI, and Sin-
gular. Interpreted but contains the ability to compile,
using Cython, as C code for a drastic improvement
in speed.

[2709]

Commercial stand-alone packages containing finite field implementations
Name Ver. Description
Magma 2.18-x Computational algebra system focusing on alge-

bra, algebraic combinatorics, algebraic geometry and
number theory. Language built to closely approxi-
mate the user’s mode of thought and usual notation.
Major algorithms are designed to give comparable
performance to specialized programs. Also contains
a number of large databases of elliptic curves, lin-
ear codes, irreducible polynomials over finite fields,
graphs, Cunningham factorizations, and others.

[712]

Maple 16 Comprehensive computer algebra suite, contains a
full featured programming language to create scripts
or full applications. A “smart” document environ-
ment allows embedding equations, visualizations, or
components in the document. Can take advantage of
parallelism, multi-threading and multi-process pro-
graming. Finite field arithmetic natively given by the
“GF” package.

[2002]

Mathematica 8 Development platform concetrating on integrating
computation into workflows. Finite field computa-
tions are performed using the “FiniteFields” package
and “GF” class.

[3004]

Matlab R2012a Programming environment for algorithm develop-
ment and data analysis. Contains arithmetic over fi-
nite fields F2n over F2 for n ≤ 16 within the “Com-
munications System Toolbox.”

[2799]

Table 2.2.11 Software packages useful for finite field implementations.
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See Also

§3.2, §3.3, §3.4 For reducibility and irreducibility of low-weight polynomials.
§5.2, §5.3 For normal bases and their complexities.
§11.1 For computational techniques over finite fields.

[1413], [2080] For patents and standards of elliptic curve cryptography, most of
which contain guidelines for finite field implementations.
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3.1 Counting irreducible polynomials

Joseph L.Yucas, Southern Illinois University

3.1.1 Remark In this section we∗ are concerned with exact formulae for the number of (univariate)
irreducible polynomials over finite fields possessing various properties. There is some overlap
with Section 3.5 where specifically polynomials with prescribed coefficients are discussed.
Formulae and asymptotic expressions for mutivariate polynomials are given in Section 3.6.

3.1.2 Theorem (Theorem 2.1.24). Denote the number of monic irreducible polynomials of degree
n over Fq by Iq(n). Then

Iq(n) =
1

n

∑
d|n

µ(d)qn/d.

∗The author wishes to thank Stephen Cohen for a number of helpful improvements in this section.
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3.1.3 Definition For a positive integer n set

Dn = {r : r|qn − 1 but r does not divide qm − 1 for m < n}.

3.1.4 Theorem [3048] We have

Iq(n) =
1

n

∑
r∈Dn

φ(r),

where φ denotes Euler’s function.

3.1.1 Prescribed trace or norm

3.1.5 Definition The trace of a monic polynomial f of degree n over Fq is −a1, where a1 is the
first coefficient of f , i.e., the coefficient of xn−1 in f . The norm of a monic polynomial
f of degree n over Fq is (−1)nan, where an is the last coefficient of f , i.e., the constant
term in f . The trace and norm of a monic irreducible polynomial are, respectively, the
trace and norm of any of its roots in Fqn over Fq.

3.1.6 Remark In [2508, 3048] (cited below) and sometimes in the literature, the trace of a poly-
nomial f is taken to be the first coefficient a1 itself.

3.1.7 Theorem [541, 2508] For a non-zero a ∈ Fq the number Iq(n, a) of monic irreducible poly-
nomials of degree n over Fq with trace a is

Iq(n, a) =
1

qn

∑
d|n

(d,q)=1

µ(d)qn/d.

3.1.8 Theorem [3048] Let q be a power of the prime p. Write n = pkm with m being p-free (i.e., p
does not divide m). The number Iq(n, 0) of monic irreducible polynomials of degree n over
Fq with trace 0 is

Iq(n, 0) =
1

qn

∑
d|m

µ(d)qn/d − ε

n

∑
d|m

µ(d)qn/dp,

where ε = 1 if k > 0 and ε = 0 if k = 0.

3.1.9 Definition For r ∈ Dn, write r = drmr where dr =
(
r, q

n−1
q−1

)
.

3.1.10 Theorem [3048]

1. Let r ∈ Dn and suppose a ∈ Fq has order mr. Further, let Iq(n, r, a) denote
the number of monic irreducible polynomials over Fq of degree n, order r and
(non-zero) norm a. Then

Iq(n, r, a) =
φ(r)

nφ(mr)
.

2. Suppose a ∈ F∗q has order m and let Iq(n, a) denote the number of monic irre-
ducible polynomials over Fq of degree n with (non-zero) norm a. Then

Iq(n, a) =
1

nφ(m)

∑
r∈Dn
mr=m

φ(r).
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3.1.11 Remark In [541], Carlitz obtained formulae for the number of monic irreducible polynomials
over Fq, q odd, with prescribed trace and whose norm is a (non-zero) square or a non-square,
respectively. These involve the quadratic character λ on Fq; thus for 0 6= b ∈ Fq, λ(b) = 1
or −1 according as b is a square or non-square in Fq, respectively. (See also Remark 3.5.49.)

3.1.12 Theorem [541, 1783] Let q = pm be an odd prime power. For a ∈ Fq denote by
Iq(n, a, h), h = 1,−1, respectively, the number of monic irreducible polynomials of degree
n over Fq with trace a whose norm is a (non-zero) square or a non-square. Then,

1. if a = 0

Iq(n, 0, h) =

{ 1
2p (qp−1 − q) for n = p,
1

2n (qn−1 − 1) for n 6= p;

2. if a 6= 0

Iq(n, a, h) =

{ 1
2p (qp−1 + S) for n = p,
1

2n (qn−1 + S − (−1)hλ(na)− 1) for n 6= p,

where S = (−1)hq
n−1

2 λ((−1)
n−1

2 a), and λ is the quadratic character in Fq.

3.1.2 Prescribed coefficients over the binary field

3.1.13 Remark Subsection 3.5.4 contains various formulae for the numbers of irreducible polyno-
mials with some prescribed coefficients in a general finite field Fq. We list here a specialized
result over the binary field F2 not included there.

3.1.14 Definition For β ∈ F2n let

Tj(β) =
∑

0≤i1<i2<···<ij≤n−1

β2i1β2i2 . . . β2ij ;

Tj maps F2n to F2 and T1 is the usual trace function. For n = 2 and j = 3, we define
T3(β) = 0 for all β ∈ F4. For an integer r with 1 ≤ r ≤ n, define F (n, t1, t2, . . . , tr)
to be the number of elements β ∈ F2n with Tj(β) = tj for j = 1, . . . , r and let
(I2(n, t1, t2, . . . , tr) =) I(n, t1, t2, . . . , tr) be the number of monic irreducible polyno-
mials f(x) over F2 of degree n with coefficient of xn−j = tj for j = 1, . . . , r.

3.1.15 Theorem [3049] We have

nI(n, 0, 0, 0) =
∑

d|n,d odd

µ(d)F (n/d, 0, 0, 0)−
∑

d|n,d odd,n/d even

µ(d)2
n
2d−1;

nI(n, 0, 0, 1) =
∑

d|n,d odd

µ(d)F (n/d, 0, 0, 1);

nI(n, 0, 1, 0) =
∑

d|n,d odd

µ(d)F (n/d, 0, 1, 0)−
∑

d|n,d odd,n/d even

µ(d)2
n
2d−1;

nI(n, 0, 1, 1) =
∑

d|n,d odd

µ(d)F (n/d, 0, 1, 1);

nI(n, 1, 0, 0) =
∑

d|n,d≡1

µ(d)F (n/d, 1, 0, 0) +
∑

d|n,d≡3

µ(d)F (n/d, 1, 1, 1);

nI(n, 1, 0, 1) =
∑

d|n,d≡1

µ(d)F (n/d, 1, 0, 1) +
∑

d|n,d≡3

µ(d)F (n/d, 1, 1, 0);
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nI(n, 1, 1, 0) =
∑

d|n,d≡1

µ(d)F (n/d, 1, 1, 0) +
∑

d|n,d≡3

µ(d)F (n/d, 1, 0, 1);

nI(n, 1, 1, 1) =
∑

d|n,d≡1

µ(d)F (n/d, 1, 1, 1) +
∑

d|n,d≡3

µ(d)F (n/d, 1, 0, 0).

3.1.16 Remark Explicit formulae for I(n, t1, t2, t3) (the number of irreducible polynomials over F2

whose first three coefficients are prescribed) can be recovered from Theorem 3.1.15 via the
next theorem.

3.1.17 Theorem [1076, 3049] For n ≥ 3, F (n, t1, t2, t3) = 2n−3 +G(n, t1, t2, t3), where the values
of G(n, t1, t2, t3) are displayed in the following tables.
1. Case n = 2m+ 1 (in the first column m is calculated modulo 12):

m 000 001 010 011 100 101 110 111

0 −3 · 2m−2 3 · 2m−2 2m−2 2m−2 0 0 0 0
1 or 5 2m−2 −2m−2 2m−2 −2m−2 −2m−2 −2m−2 3 · 2m−2 −2m−2

2 or 10 0 2m−1 0 −2m−1 2m−1 −2m−1 −2m−1 2m−1

3 2m−2 −2m−2 2m−2 −2m−2 2m−1 0 2m−1 −2m

4 or 8 −2m−1 0 −2m−1 2m 0 0 0 0
6 3 · 2m−2 −2m−2 −3 · 2m−2 2m−2 2m−1 −2m−1 −2m−1 2m−1

7 or 11 2m−2 −2m−2 2m−2 −2m−2 −2m−2 3 · 2m−2 −2m−2 −2m−2

9 2m−2 −2m−2 2m−2 −2m−2 −2m 2m−1 0 2m−1

2. Case n = 2m with 3 not dividing n (in the first column m is calculated modulo 4):

m 000 001 010 011 100 101 110 111

0 3 · 2m−2 −2m−2 −2m−2 −2m−2 3 · 2m−2 −2m−2 −2m−2 −2m−2

1 −3 · 2m−2 2m−2 2m−2 2m−2 2m−2 2m−2 2m−2 −3 · 2m−2

2 −3 · 2m−2 2m−2 2m−2 2m−2 −3 · 2m−2 2m−2 2m−2 2m−2

3 3 · 2m−2 −2m−2 −2m−2 −2m−2 −2m−2 −2m−2 −2m−2 3 · 2m−2

3. Case n = 2m with 3 dividing n (in the first column m is calculated modulo 4):

m 000 001 010 011 100 101 110 111

0 0 2m−1 2m−1 −2m 0 2m−1 −2m 2m−1

1 0 −2m−1 −2m−1 2m −2m−1 2m −2m−1 0
2 0 −2m−1 −2m−1 2m 0 −2m−1 2m −2m−1

3 0 2m−1 2m−1 −2m 2m−1 −2m −2m−1 0

3.1.18 Remark Formulae for I(n, t1, t2) and F (n, t1, t2) can be obtained by adding appropriate
terms from above [565]. For the binary field these will agree with the earlier general expres-
sions of Kuz’min (Theorems 3.5.43 and 3.5.45) from [1815].

3.1.3 Self-reciprocal polynomials

3.1.19 Remark Self-reciprocal polynomials were defined in Remark 2.1.48. For results on these
polynomials see [3050]. Any monic self-reciprocal polynomial R of (even) degree 2n has the

form xnf

(
x2 + 1

x

)
, where f is a monic polynomial of degree n in Fq[x]. (We observe that,
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if R is irreducible, then necessarily f is irreducible.) Let SRMIq(2n) denote number of
monic irreducible self-reciprocal polynomials of degree 2n over Fq.

3.1.20 Theorem [547, 666, 2091, 2200] If q is odd, then

SRMIq(2n) =
1

2n

∑
d|n
d odd

µ(d)(qn/d − 1),

and, if q is even, then

SRMIq(2n) =
1

2n

∑
d|n
d odd

µ(d)qn/d.

3.1.21 Remark The notion of self-reciprocal polynomial has recently been generalized and Theorem
3.1.20 extended correspondingly [48].

3.1.22 Definition Let g(x) = a1x
2 + b1x + c1 and h(x) = a2x

2 + b2x + c2 be relatively prime
polynomials over Fq with max(deg f, deg g) = 2 (so that a1 and a2 are not both zero).
Let Iq(2n, g, h) denote the number of irreducible polynomials (not necessarily monic)

of degree 2n that can be expressed in the form h(x)nf

(
g(x)

h(x)

)
, where f is a monic

polynomial (necessarily irreducible) of degree n.

3.1.23 Theorem [48] Suppose n > 1 and g, h are polynomials over Fq as in Definition 3.1.22. Then

Iq(2n, g, h) =



0 if q is even and b1 = b2 = 0,
1

2n
(qn − 1) if q is odd and n = 2m,

1

2n

∑
d|n
d odd

µ(d)qn/d otherwise.

3.1.24 Remark Theorem 3.1.20 is recovered from Theorem 3.1.23 on setting g(x) = x2 +1, h(x) =

x (using
∑
d|n

µ(d) = 0 whenever n > 1).

3.1.4 Compositions of powers

3.1.25 Definition The radical of an integer m (> 1) (denoted here by m∗) is the product of the
distinct primes dividing m.

3.1.26 Definition For t > 1, a t-polynomial T over Fq of degree tn is one that has the form
T (x) = f(xt) for some monic polynomial f of degree n.

3.1.27 Remark If T is irreducible, then f is also irreducible. Further (see Theorem 3.2.5), (i)
t∗|(qn − 1), and (ii) if 4|t, then 4|(qn − 1). In fact, if (i) holds then n can be expressed as
n = klm, where k is the order of q (mod t∗), l∗|t, and m and t are relatively prime [666].
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3.1.28 Theorem [666] Suppose t > 1 and that (i) and (ii) of Remark 3.1.27 hold with n = klm.
Let TMIq(tn) be the number of monic irreducible t-polynomials of degree tn. Then

TMIq(tn) =


φ(t)

tn
(qn − 1) for m = 1,

mφ(t)

tn
Iqn/m(m) for m > 1.

3.1.29 Remark For t > 1, a t-reciprocal polynomial T over Fq of degree 2tn is one that is both a

t-polynomial and a self-reciprocal polynomial. Thus it has the form T (x) = xtnf
(
x2t+1
xt

)
,

where f is a monic polynomial of degree n. If T is irreducible then f is irreducible. Moreover,
from [666] we have (i) t is odd and (ii) t∗|(qn + 1). Also 2n = klm, where l∗|2t and m and
2t are relatively prime (so that m|n).

3.1.30 Theorem [666, 2200] Suppose t > 1 and that (i) and (ii) of Remark 3.1.29 hold with
2n = klm. Let TSRMIq(2tn) be the number of monic irreducible t-reciprocal polynomials
of degree 2tn. Then

TSRMIq(2tn) =


φ(t)

2tn
(qn + 1) for m = 1,

mφ(t)

2tn
Iqn/m(m) for m > 1.

3.1.5 Translation invariant polynomials

3.1.31 Definition A polynomial f over Fq is translation invariant if f(x+a) = f(x) for all a ∈ Fq.

3.1.32 Theorem [2200] Let TIMIq(qn) denote the number of translation invariant monic irre-
ducible polynomials of degree qn over Fq. Then

TIMIq(qn) =
q − 1

qn

∑
d|n

(q,d)=1

µ(d)qn/d.

3.1.6 Normal replicators

3.1.33 Remark Many of the above formulae and other similar ones can be obtained using the
general counting technique [2200] which follows.

3.1.34 Definition A rational function r = f/g ∈ Fq(x) is a replicator over Fq if for every n ≥ 1,
xq

n−1 − 1 divides f(x)q
n − f(x)g(x)q

n−1. In this case, we write

f(x)q
n − f(x)g(x)q

n−1 = (xq
n−1 − 1)r̂(n, x)

for some polynomial r̂(n, x) ∈ Fq[x]. The polynomial r̂(n, x) is the n-th order transform
of r.

3.1.35 Definition Let k be a positive integer. A rational function r = f/g ∈ Fq(x) is k-normal
if for every n ≥ 1 and for each λ ∈ Fqn , the degrees of the factors of the associated
polynomial f − λg divide k, and for some λ, at least one factor has degree equal to k.
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3.1.36 Remark For a polynomial f(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0 over Fqn we define the

following sequence of polynomials:

f (j)(x) = xm + aq
j

m−1x
m−1 + · · ·+ aq

j

1 x+ aq
j

0 .

We observe that f (s) = f where s is the least common multiple of the degrees of the minimal
polynomials of the coefficients of f .

3.1.37 Definition Define the spin Sf (x) of the polynomial f(x) by

Sf (x) =
s−1∏
j=0

f (j)(x).

3.1.38 Definition Let r = f/g be a k-normal replicator over Fq and suppose h is an irreducible
factor of f − λg for λ ∈ Fqn of degree d. Then, Sh is hard for r if the degree of Sh does
not divide n.

3.1.39 Remark Write
fq

n

(x)− f(x)gq
n−1(x) = (xq

n−1 − 1)G(n, x)r̄(n, x),

where r̄(n, x) is the factor of fq
n−fgqn−1 of largest degree which is square-free and satisfies

(G(n, x), r̄(n, x)) = 1. Further let g(n) = deg(G(n, x)). Let HMIq(n, r(x)) denote the
number of monic irreducible polynomials of degree n which are hard for r.

3.1.40 Theorem [2200] We have

HMIq(kn, r(x)) =
1

kn

∑
d|n

d - (n/k)

µ(n/d)[(m− 1)qn − g(d) + 1]

=
1

kn

∑
d|n
k - d

µ(d)[(m− 1)qn/d − g(n/d) + 1].

See Also

§3.5 For further formulae and estimates for irreducible polynomials with prescribed
coefficients.

§3.6 For formulae and asymptotic expressions for irreducible multivariate polynomials.

References Cited: [48, 541, 547, 565, 666, 1076, 2091, 2200, 2508, 3048, 3049, 3050]
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3.2 Construction of irreducibles

Melsik Kyuregyan, Armenian National Academy of Sciences

3.2.1 Construction by composition

3.2.1 Remark Known constructions of irreducible polynomials depend on the composition of
an initial irreducible polynomial with a further polynomial or rational function. Often this
process can be iterated or continued recursively to produce an infinite sequence of irreducible
polynomials of increasing degrees.

3.2.2 Theorem [505, 666] Let f , g ∈ Fq[x] be relatively prime polynomials and let P ∈ Fq[x] be
an irreducible polynomial of degree n. Then the composition

F (x) = (g(x))
n
P (f(x)/g(x))

is irreducible over Fq if and only if f −αg is irreducible over Fqn for any zero α ∈ Fqn of P .

3.2.3 Remark Theorem 3.2.2 was employed by several authors [589, 678, 685, 1172, 1820, 1819,
1821, 1822, 1823, 1824, 1939, 2091] to give iterative constructions of irreducible polynomials
over finite fields. A further extension of the theorem is produced in [1825], which is also
instrumental in the construction of irreducible polynomials of relatively higher degree from
given ones.

3.2.4 Theorem [2077] Let P ∈ Fq[x] be irreducible of degree n. Then for any a, b, c, d ∈ Fq such
that ad− bc 6= 0,

F (x) = (cx+ d)
n
P

(
ax+ b

cx+ d

)
is also irreducible over Fq.

3.2.5 Theorem [2077] Let t be a positive integer and P ∈ Fq[x] be irreducible of degree n and
exponent e (equal to the order of any root of P ). Then P (xt) is irreducible over Fq if and
only if

1. (t, (qn − 1)/e) = 1,

2. each prime factor of t divides e, and

3. if 4|t then 4|(qn − 1).

3.2.6 Theorem [1939] Let f1, f2, . . . , fN be all the distinct monic irreducible polynomials in
Fq[x] of degree m and order e, and let t ≥ 2 be an integer whose prime factors di-
vide e but not (qm − 1) /e. Assume also that qm ≡ 1(mod 4) if t ≡ 0(mod 4). Then
f1(xt), f2(xt), . . . , fN (xt) are all the distinct monic irreducible polynomials in Fq[x] of degree
mt and order et.

3.2.7 Remark Agou [36] has established a criterion for f(g(x)) to be irreducible over Fq,
where f, g ∈ Fq[x] are monic and f is irreducible over Fq. This criterion was used in
Agou [36, 38, 39, 40] to characterize irreducible polynomials of special types such as
f
(
xp

r − ax
)
, f(xp − x− b), and others. Such irreducible compositions of polynomials are

also studied in Cohen [666, 671], Long [1954, 1955], and Ore [2324].
Irreducibility criteria for compositions of polynomials of the form f(xt) have been estab-

lished by Agou [34, 35, 36], Butler [469], Cohen [671], Pellet [2376], Petterson [2392], and
Serret [2597, 2600]. Berlekamp [231, Chapter 6] and Varshamov and Ananiashvilii [2860]
discussed the relationship between the orders of f(xt) and that of f(x).
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3.2.8 Theorem [2077] Let q = 2m and let P (x) =
∑n
i=0 cix

i ∈ Fq[x] be irreducible over Fq of
degree n and P ∗(x) = xnP

(
1
x

)
. Denote F2m = F and F2 = K. Then

1. xnP
(
x+ x−1

)
is irreducible over F if and only if TrF/K (c1/c0) = 1;

2. xnP ∗
(
x+ x−1

)
is irreducible over F if and only if TrF/K (cn−1/cn) = 1.

3.2.9 Remark Part 1 of Theorem 3.2.8 was obtained by Meyn [2091] and by Kyuregyan [1820]
in the present general form; for the case q = 2 it was earlier obtained by Varshamov and
Garakov [2861].

3.2.10 Theorem [2091] Let q be an odd prime power. If P is an irreducible polynomial of degree
n over Fq, then xnP

(
x+ x−1

)
is irreducible over Fq if and only if the element P (2)P (−2)

is a non-square in Fq.

3.2.11 Theorem [1822] Let q be odd, P (x) 6= x be an irreducible polynomial of degree n ≥ 1 over
Fq, and ax2 + bx+ c and dx2 + rx+ h be relatively prime polynomials in Fq[x] with a or d
being non-zero and r2 6= 4dh. Suppose

(ah)2 + (cd)2 + acr2 + b2dh− bcdr − abhr − 2acdh = δ2

for some δ 6= 0 from Fq. Then the polynomial

F (x) =
(
dx2 + rx+ h

)n
P

(
ax2 + bx+ c

dx2 + rx+ h

)
is irreducible over Fq if and only if the element

(
r2 − 4dh

)n
P

(
br − 2 (cd+ ah− δ)

r2 − 4hd

)
P

(
br − 2 (cd+ ah+ δ)

r2 − 4hd

)
is a non-square in Fq.

3.2.12 Remark The case a = c = r = 1 and b = d = h = 0 of Theorem 3.2.11 reduces to
Theorem 3.2.10.

3.2.13 Remark We briefly describe some constructive aspects of irreducibility of certain types of
polynomials, particularly binomials and trinomials.

3.2.14 Definition A binomial is a polynomial with two nonzero terms, one of them being the
constant term.

3.2.15 Remark Irreducible binomials can be characterized explicitly. For this purpose it suffices
to consider nonlinear, monic binomials.

3.2.16 Theorem [1939] Let t ≥ 2 be an integer and a ∈ F∗q . Then the binomial xt−a is irreducible
in Fq[x] if and only if the following two conditions are satisfied:

1. each prime factor of t divides the order e of a in F∗q , but not (q − 1)/e;

2. q ≡ 1(mod 4) if t ≡ 0(mod 4).

3.2.17 Remark Theorem 3.2.16 was essentially shown by Serret [2600] for finite prime fields. Fur-
ther characterizations of irreducible binomials can be found in Albert [70, Chapter 5], Cap-
peli [505, 506, 507], Dickson [850, Part I, Chapter 3]. Lowe and Zelinsky [1962], Rédei [2443,
Chapter 11], and Schwarz [2568].

3.2.18 Theorem Let a be a nonzero element in an extension field of Fq, q = 2Au− 1, with A ≥ 2
and u odd. Suppose e is the order of the subgroup of F∗q generated by a and the condition
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of Part 1 in Theorem 3.2.16 is satisfied for some natural number t divisible by 2A = 2B.
Then the binomial xt − a factors as a product of B monic irreducible polynomials in Fq[x]
of degrees υ = t/B, that is in Fq[x] we have the canonical factorization

xt − a =
B∏
j=1

(
xυ − bcjxυ/2 − b2

)
,

where b = ar, 2Br = e/2 + 1(mod (q− 1)), and the elements c1, . . . , cB are the roots of the
polynomial

F (x) =

B/2∑
i=0

(B − i− 1)!B

i!(B − 2i)!
xB−2i ∈ Fq[x],

and all cj , 1 ≤ j ≤ B are in Fq.

3.2.19 Remark The factorization in Theorem 3.2.18 is due to Serret [2600], see also Albert [70,
Chapter 5] and Dickson [850, Part I, Chapter 3]. Shiva and Allard [2616] discuss a method

for factoring x2k−1 + 1 over F2. The factorization of xq−1 − a over Fq is considered in
Dickson [849], see also Agou [37]. Schwarz [2569] has a formula for the number of monic
irreducible factors of fixed degree for a given binomial and Rédei [2442] gives a short proof
of it; see also Agou [34], Butler [469], and Schwarz [2568]. Gay and Vélez [1261] prove a
formula for the degree of the splitting field of an irreducible binomial over an arbitrary field
that was shown by Darbi [769] for fields of characteristic 0. Agou [33] studied the factor-
ization of an irreducible binomial over Fq in an extension field of Fq. Beard and West [213]
and McEliece [2046] tabulate factorizations of the binomials xn − 1. The factorization of
more general polynomials g(x)t − a over finite prime fields is considered in Ore [2323] and
Petterson [2392]. Applications of factorizations of binomials are contained in Agou [34],
Berlekamp [229], and Vaughan [2863].

3.2.20 Definition A trinomial is a polynomial with three nonzero terms, one of them being the
constant term.

3.2.21 Remark The trinomials that we consider are also affine polynomials.

3.2.22 Theorem [1939] Let a ∈ Fq and let p be the characteristic of Fq. Then the trinomial xp−x−a
is irreducible in Fq[x] if and only if it has no root in Fq.

3.2.23 Corollary [1939] With the notation of Theorem 3.2.22 the trinomial xp−x−a is irreducible
in Fq[x] if and only if the absolute trace TrF/K(a) 6= 0, where F = Fq and K = Fp.

3.2.24 Remark Theorem 3.2.22 and Corollary 3.2.23 were first shown by Pellet [2378]. The fact
that xp−x−a is irreducible over Fp if a ∈ F∗p was already established by Serret [2597, 2600].
See also Dickson [841], [850, Part I, Chapter 3] and Albert [70, Chapter 5] for these results.

3.2.25 Remark Since for b ∈ F∗p the polynomial f(x) is irreducible over Fq if and only if f(bx) is
irreducible over Fq, the criteria above hold also for trinomials of the form bpxp − bx− a.

3.2.26 Remark If we consider more general trinomials of the above type for which the degree is a
higher power of the characteristic, then these criteria need not be valid any longer. In fact,
the following decomposition formula can be established.

3.2.27 Theorem [1939] For xq − x− a with a being an element of the subfield K = Fr of F = Fq
we have the decomposition

xq − x− a =

q/r∏
j=1

(xr − x− βj)
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in Fq[x], where the βj are the distinct elements of Fq with TrF/K(βj) = a.

3.2.28 Remark Theorem 3.2.27 is due to Dickson [841], [850, Part I, Chapter 3], but in the special
case a = 0 it was already noted by Mathieu [2022].

3.2.29 Theorem [2857, 2858] Let P (x) = xn+an−1x
n−1+· · ·+a1x+a0 be an irreducible polynomial

over the finite field Fq of characteristic p and let b ∈ Fq. Then the polynomial P (xp−x− b)
is irreducible over Fq if and only if the absolute trace TrF/K(nb− an−1) 6= 0, where F = Fq
and K = Fp.

3.2.30 Remark Theorem 3.2.29 was shown in this general form by Varshamov [2857, 2858]; see also
Agou [36]. The case b = 0 received considerable attention much earlier. The corresponding
result for b = 0 and finite prime fields was stated by Pellet [2378] and proved in Pellet [2377].
Polynomials f(xp−x) over Fp with deg(f) a power of p were treated by Serret [2598, 2599].
The case b = 0 for arbitrary finite fields was considered in Dickson [850, Part I, Chapter
3] and Albert [70, Chapter 5]. More general types of polynomials such as f(xp

r − ax),

f(xp
2r − axpr − bx) and others have also been studied, see Agou [36, 37, 38, 39, 40, 41, 42],

Cohen [671], Long [1953, 1954, 1955, 1956], Long and Vaughan [1957, 1958], and Ore [2324].

3.2.31 Theorem Let f(x) = xr − ax − b ∈ Fq[x], where r > 2 is a power of the characteristic of
Fq, and suppose that the binomial xr−1−a is irreducible over Fq. Then f(x) is the product
of a linear polynomial an an irreducible polynomial over Fq of degree r − 1.

3.2.32 Remark Theorem 3.2.31 generalizes results of Dickson [849] and Albert [70, Chapter 5].
See Schwarz [2571] for further results in this direction.

3.2.2 Recursive constructions

3.2.33 Theorem [1823] Let q = ps be a prime power and let f(x) =
∑n
u=0 cux

u be a monic
irreducible polynomial over Fq. Denote Fq = F and Fp = K. Suppose that there exists an
element δ0 ∈ Fq such that f (δ0) = a with a ∈ F∗p, and

TrF/K (nδ0 + cn−1) · TrF/K (f ′(δ0)) 6= 0,

where f ′ is the formal derivative of f . Let g0(x) = xp−x+δ0 and gk(x) = xp−x+δk, where
δk ∈ F∗p, k ≥ 1. Define f0(x) = f (g0(x)), and fk(x) = f∗k−1 (gk(x)) for k ≥ 1, where f∗k−1(x)

is the monic reciprocal polynomial of fk−1(x), i.e., f∗k−1(x) = 1
fk−1(0)x

nk−1fk−1

(
1
x

)
. Then

for each k ≥ 0 the polynomial fk(x) is irreducible over Fq of degree nk = n · pk+1.

3.2.34 Remark The case s = 1 and the sequence (δk)k≥0 is constant, i.e., δk = δ ∈ F∗p of Theo-
rem 3.2.33, has been studied by Varshamov in [2859], where no proof is given. For a proof
see [1172, 2077].

3.2.35 Theorem [1820, 1821, 1823] Let δ ∈ F∗2s and f1(x) =
∑n
u=0 cux

u be a monic irreducible
polynomial over F2s whose coefficients satisfy the conditions

TrF/K

(
c1δ

c0

)
= 1 and TrF/K

(cn−1

δ

)
= 1,

where F2s = F and F2 = K. Then all the terms in the sequence (fk(x))k≥1 defined as

fk+1(x) = x2k−1nfk
(
x+ δ2x−1

)
, k ≥ 1,

are irreducible polynomials over F2s .
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3.2.36 Theorem [1820, 1821, 2077] Let f(x) =
∑n
i=0 cix

i be irreducible over F2m of degree n.
Denote F2m = F and F2 = K. Suppose that TrF/K (c1/c0) 6= 0 and TrF/K (cn−1/cn) 6= 0.
Define the polynomials ak(x) and bk(x) recursively by a0(x) = x, b0(x) = 1 and for k ≥ 1

ak+1(x) = ak(x)bk(x),

bk+1(x) = a2
k(x) + b2k(x).

Then

fk(x) = (bk(x))
n
f (ak(x)/bk(x))

is irreducible over F2m of degree n2k for all k ≥ 0.

3.2.37 Remark [2077]

1. For the case q = 2 in Theorem 3.2.36 the trace function is the identity map on
Fq.

2. Let f(x) =
∑n
i=0 cix

i be a monic irreducible polynomial over F2 of degree n with
c1cn−1 6= 0. Then fk(x) =

∑n
i=0 cia

i
k(x)bn−ik (x) is irreducible over F2 of degree

n2k for all k ≥ 0.

3. The irreducibility of fk over F2 has been studied by several authors, includ-
ing Varshamov [2859], Wiedemann [2977], Meyn [2091], Gao [1172], Menezes et
al. [2077].

4. The irreducibility of fk over F2s has been studied by Kyuregyan [1820, 1819, 1821]
and Menezes et al. [1172, 2077].

3.2.38 Theorem [678, 2077] Let f be a monic irreducible polynomial of degree n ≥ 1 over Fq, q
odd, where n is even if q ≡ 3(mod 4). Suppose that f(1)f(−1) is a non-square in Fq. Define

f0(x) = f(x),

fk(x) = (2x)tk−1fk−1

((
x+ x−1

)
/2
)
, k ≥ 1,

where tk = n2k denotes the degree of fk(x). Then fk(x) is an irreducible polynomial over
Fq of degree n2k for every k ≥ 1.

3.2.39 Remark Further constructions similar to the one from Theorem 3.2.38 can be found in [1822,
1824].

3.2.40 Theorem [1822] Let P (x) 6= x be an irreducible polynomial of degree n ≥ 1 over Fq,
where n is even if q ≡ 3(mod 4), with r, h, δ ∈ Fq and r 6= 0, δ 6= 0. Suppose that
P
(

2δ−rh
r2

)
P
(
− 2δ+rh

r2

)
is a non-square in Fq. Define

F0(x) = P (x),

Fk(x) =

(
2x+

2h

r

)tk−1

Fk−1

((
x2 +

4δ2 − (hr)2

r4

)/(
2x+

2h

r

))
, k ≥ 1,

where tk = n2k denotes the degree of Fk(x). Then Fk(x) is an irreducible polynomial over
Fq of degree n2k for every k ≥ 1.

3.2.41 Remark For r = δ = 2 and h = 0 Theorem 3.2.40 coincides with Theorem 3.2.38 due to
Cohen [678, 685]; see also [2077, Theorem 3.24].

3.2.42 Theorem [1822] Let P (x) 6= x be an irreducible polynomial of degree n ≥ 1 over Fq.
Suppose that the elements P (0), hn and (2r)n are squares in Fq and the element P

(
2h
r

)
is
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a non-square in Fq. Define

F0(x) = P (x),

Fk(x) = (Fk−1(0))
−1

(
(rx+ 2h)

2

4h

)tk−1

Fk

(
(4h)

2
x

(rx+ 2h)
2

)
, k ≥ 1,

where tk = n2k denotes the degree of Fk(x). Then Fk(x) is an irreducible polynomial over
Fq of degree n2k for every k ≥ 1.

3.2.43 Theorem [1822] Let P be an irreducible polynomial of degree n ≥ 1 over Fq, where n is
even if q ≡ 3(mod 4) and b ∈ Fq. Suppose that the element P

(
− b

2

)
is a non-square in Fq.

Define

F0(x) = P (x),

Fk(x) = Fk−1

(
x2 + bx+

b2

4
− b

2

)
, k ≥ 1.

Then for every k ≥ 1, Fk(x) is an irreducible polynomial over Fq of degree n2k.

3.2.44 Definition For a given polynomial P (x) =
∑n
u=0 aux

u ∈ Fq[x] define the polynomial gP
as

gP (x) = (−1)n
n∑
j=0

2j∑
u=0

(−1)uaua2j−ux
j .

3.2.45 Theorem [1824] Let q be an odd prime power and P (x) =
∑n
u=0 aux

u be an irreducible
polynomial of degree n > 1 over Fq with at least one coefficient a2i+1 6= 0

(
0 ≤ i ≤ bn2 c

)
.

Let ax2 + 2hx + ahd−1 and dx2 + 2ax + h be relatively prime, where a, d, h,∈ F∗q and

a2 6= hd. Suppose that the element
(
hd−1

)n
is a non-zero square in Fq and the element(

hd− a2
)n
gF0

(
h
d

)
is non-square in Fq (see Definition 3.2.44 for gP ). Define

F0(x) = P (x),

Fk(x) = Hk−1(a, d)−1
(
dx2 + 2ax+ h

)tk−1 Fk−1

(
ax2+2hx+ahd−1

dx2+2ax+h

)
, for k ≥ 1,

where Hk−1(a, d) = dtk−1Fk−1

(
a
d

)
, and tk is the degree of Fk(x). Then Fk(x) is an irre-

ducible polynomial over Fq of degree tk = n2k for every k ≥ 1.

3.2.46 Theorem [1824] Let q and P satisfy the hypothesis of Theorem 3.2.45. Suppose a, c ∈ F∗q ,
(ac)n is a square in Fq and the element (−1)

n
gF0

(
c
a

)
is a non square in Fq (see Defini-

tion 3.2.44 for gP ). Define

F0(x) = P (x),

Fk(x) = (2x)tk−1Fk−1

(
ax2 + c

2ax

)
, k ≥ 1,

where tk is the degree of Fk(x). Then Fk(x) is an irreducible polynomial over Fq of degree
tk = n2k for every k ≥ 1.

3.2.47 Remark In particular, the case q ≡ 3(mod 4)) and F0(x) = x2 + 2x + c with a = 1 of
Theorem 3.2.46 was considered by McNay [589]. The case a = c = 1 was derived by Cohen;
see [678, 685, 2077].
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See Also

§3.3 For composite polynomials.
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§3.5 For irreducible polynomials with prescribed coefficients.
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3.3 Conditions for reducible polynomials

Daniel Panario, Carleton University

We present qualitative results on the reducibility of univariate polynomials over finite
fields. First we provide some classical work; see the comments at the end of Chapters 3 and 4
of Lidl and Niederreiter [1939] for other results published before 1983. Then we cover several
reducibility results that follow from a theorem of Pellet and Stickelberger [2379, 2716].

3.3.1 Composite polynomials

3.3.1 Remark There has been substantial work showing that some classes of polynomials are
irreducible using several types of composition of polynomials. Here we are interested in “if
and only if” irreducibility statements that as a consequence provide reducibility results.

3.3.2 Remark Let f be a polynomial of degree m over Fq, q = pk, and let L be the linearized

polynomial L(x) =
∑n
i=0 aix

pi . Ore [2324] considers the irreducibility of f(L). Agou in
several articles [37, 39, 41] considers special types of linearized polynomials including xp

r−ax
and xp

2r − axpr − bx.

3.3.3 Theorem [37] Let f(x) = xm + bm−1x
m−1 + · · ·+ b0 be an irreducible polynomial over Fq,

q = pk, with root β. Then, for any nonzero a in Fq, f(xp − ax) is irreducible over Fq if and
only if a(q−1) gcd(m,p−1)/(p−1) = 1 and Trkm(β/Ap) 6= 0, where A ∈ Fqm satisfies Ap−1 = a

and Trkm(x) = x + xp + · · · + xp
km−1

. In particular, if A is in Fq, then f(xp − Ap−1x) is
irreducible over Fq if and only if Trk(bm−1/A

p) 6= 0.

3.3.4 Remark Similar results can be found in the papers by Agou cited above.

3.3.5 Remark We are also interested in results that guarantee classes of polynomials that are
reducible. The concluding reducibility result for compositions of the type f(L), where f
and L are as above, is given next.

3.3.6 Theorem [41] Let f be an irreducible polynomial of degree m over Fq, q = pk, and let L be

the linearized polynomial L(x) =
∑n
i=0 aix

pi . If n ≥ 3, f(L) is reducible.

3.3.7 Remark The cases when n ≤ 2 in the previous theorem were studied by Agou [39, 40].

3.3.8 Remark Cohen [671, 672] gives alternative proofs for Agou’s results.
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3.3.9 Remark Moreno [2145] considers the irreducibility of a related composition of functions.

3.3.10 Theorem [2145] Let f and g be polynomials over Fq, q = pk, and let f be irreducible of
degree m. The polynomial f(g(x)) is irreducible over Fq if and only if g(x)+β is irreducible
over Fqm for any root β of f .

3.3.11 Remark Brawley and Carlitz [394] define root-based polynomial compositions called com-
posed products.

3.3.12 Definition Let f and g be monic polynomials in F∗q with factorizations in the algebraic
closure of Fq, given by

f(x) =
∏
α

(x− α) and g(x) =
∏
β

(x− β).

The composed products f ◦ g and f ? g are defined, respectively, by

(f ◦ g)(x) =
∏
α

∏
β

(x− αβ), and (f ? g)(x) =
∏
α

∏
β

(x− (α+ β)).

3.3.13 Theorem [394] The composed products of f and g, f ◦ g and f ? g, are irreducible if and
only if f and g are irreducible with coprime degrees.

3.3.14 Remark Related results to composed products can be found in [394, 395, 2103].

3.3.2 Swan-type theorems

3.3.15 Remark Pellet [2379] and Stickelberger [2716] relate the parity of the number of irreducible
factors of a squarefree polynomial with its discriminant. When the parity of the number of
irreducible factors of a polynomial is even, the polynomial is reducible.

3.3.16 Remark We recall, from Section 2.1, the definition of discriminant (Definition 2.1.135).

3.3.17 Definition Let f be a polynomial of degree n in Fq[x] with leading coefficient a, and with
roots α1, α2, . . . , αn in its splitting field, counted with multiplicity. The discriminant of
f is given by

D(f) = a2n−2
∏

1≤i<j≤n

(αi − αj)2.

3.3.18 Remark The discriminant of f is zero if and only if f has multiple roots.

3.3.19 Remark Next is a result given by Stickelberger [2716] although the theorem was originally
shown by Pellet [2379]; see also [846].

3.3.20 Theorem [2379, 2716] Let p be an odd prime and suppose that f is a monic polynomial
of degree n with integral coefficients in a p-adic field F. Let f̄ be the result of reducing
the coefficients of f modulo p. Assume further that f̄ has no repeated roots. If f̄ has r
irreducible factors over the residue class field, then r ≡ n (mod 2) if and only if D(f) is a
square in F.

3.3.21 Proposition [2753] Let q be a power of an odd prime p and let Fq be the finite field with q
elements. Let g be a polynomial over Fq of degree n with no repeated roots. Furthermore,
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let r be the number of irreducible factors of g over Fq. Then r ≡ n (mod 2) if and only if
D(f) is a square in Fq.

3.3.22 Remark Swan extends the previous result to the case p = 2 by noting that a p-adic integer
a coprime to p, is a p-adic square if and only if a is a square modulo 4p.

3.3.23 Corollary [2753] Let g be a polynomial of degree n over F2 with D(g) 6= 0 and let f be
a monic polynomial over the 2-adic integers such that g is the reduction of f modulo 2.
Furthermore, let r be the number of irreducible factors of g over F2. Then r ≡ n (mod 2)
if and only if D(f) ≡ 1 (mod 8).

3.3.24 Remark Swan also characterizes the parity of the number of irreducible factors of a trino-
mial over F2. These polynomials are of practical importance when implementing finite field
extensions; for example, see [1567] and Section 3.4.

3.3.25 Theorem [2753] Let n > k > 0. Assume precisely one of n, k is odd. If r is the number
of irreducible factors of f(x) = xn + xk + 1 ∈ F2[x], then r is even (and hence f is not
irreducible) in the following cases:

1. n even, k odd, n 6= 2k and nk/2 ≡ 0, 1 (mod 4);

2. n odd, k even, k - 2n and n ≡ 3, 5 (mod 8);

3. n odd, k even, k | 2n and n ≡ 1, 7 (mod 8).

In other cases f has an odd number of factors.

3.3.26 Remark The case when n and k are both odd can be covered by making use of the fact
that the reciprocal polynomial of f has the same number of irreducible factors as f ; for
reciprocal polynomials see Definition 2.1.48. If both n and k are even the trinomial is a
square and has an even number of irreducible factors.

3.3.27 Corollary [2753] Let n be a positive integer divisible by 8. Then every trinomial over F2 of
degree n has an even number of irreducible factors in F2[x], and hence it is not irreducible.

3.3.28 Remark Many results have been given following Swan’s technique for other types of poly-
nomials and finite field extensions and characteristics. We state several of them starting
from characteristic two results and then focusing on odd characteristic.

3.3.29 Remark Vishne [2878] considers trinomials in finite extensions of F2; see also Theorems
6.69 and 6.695 in [231]. Evaluating the discriminant of a trinomial (modulo 8R, where R is
the valuation ring of the corresponding extension of 2-adic numbers), Vishne’s studies are
a direct analogue of Swan’s proof over F2.

3.3.30 Corollary [2878] Let F2s be an even degree extension of F2 and n an even number.
Then, g(x) = xn + axk + b ∈ F2s [x] has an odd number of irreducible factors only when
g(x) = x2d + axd + b and t2 + at+ b has no root in F2s .

3.3.31 Remark Similar results to the one in Corollary 3.3.30 are given in [2878]. Special cases of
trinomials of low degrees over extensions of F2 are given in [570].

3.3.32 Remark Hales and Newhart give a Swan-like result for binary tetranomials; see Theorem
2 in [1399].

3.3.33 Remark It is convenient to use irreducible trinomials over F2 when constructing extension
fields. The usage of pentanomials (polynomials with 5 nonzero coefficients) when trinomials
do not exist is in the IEEE standard specifications for public-key cryptography [1567].
However, Scott [2573] shows that some of the recommended irreducible polynomials are not
optimal.
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3.3.34 Remark Next we show some partial results attempting to characterize the reducibility of
binary pentanomials.

3.3.35 Remark Koepf and Kim [1777] give a Swan-like result for a class of binary pentanomials
of the form xm + xn+1 + xn + x+ 1, where m is even and 1 ≤ n ≤ bm/2c − 1. Ahmadi [45]
shows that there are no self-reciprocal irreducible pentanomials of degree n over F2 if n is
a multiple of 12.

3.3.36 Problem Characterize completely the reducible pentanomials over F2.

3.3.37 Remark The reducibility of some classes of binary polynomials with more than five nonzero
coefficients has also been studied. In all cases, the polynomials have a special form.

3.3.38 Remark Fredricksen, Hales, and Sweet [1096] give a Swan-like result for polynomials of the
form xnf(x) + g(x) where f, g ∈ F2[x].

3.3.39 Remark Let n and v ≥ 2 be coprime positive integers, let r be the least positive residue of
n modulo v, and set d = (n− r)/v. A polynomial of the form xrg(xv) +h(xv) with g monic
of degree d and h of degree ≤ d is an (n, v)-windmill polynomial. These polynomials are
related to a method to generate pseudorandom bit sequences by combining linear feedback
shift registers in a “windmill” configuration [2686].

3.3.40 Theorem [673] Suppose that n and v are as above and f is a squarefree (n, v)-windmill
polynomial over F2m . Let nm(f) denote the number of irreducible factors of f over F2m .

1. If n ≡ ±1 (mod 8) or m is even, then nm(f) is odd.

2. If n ≡ ±3 (mod 8) and m is odd, then nm(f) is even.

3.3.41 Theorem [333] Let f(x) = xn +
∑
iS x

i + 1 ∈ F2[x], where

S ⊂ {i : i odd, 0 < i < n/3} ∪ {i : i ≡ n (mod 4), 0 < i < n}.

Then f has no repeated roots. If n ≡ ±1 (mod 8), then f has an odd number of irreducible
factors. If n ≡ ±3 (mod 8), then f has an even number of irreducible factors.

3.3.42 Remark A short proof of Theorem 3.3.41 is given in [52].

3.3.43 Remark Swan-type results for composite, linearized, and affine polynomials over F2 are
given in [1735, 3063]

3.3.44 Problem The complete characterization of reducible polynomials over F2 is a hard open
problem. Provide new reducibility characterizations for classes of polynomials over F2.

3.3.45 Remark There have also been reducibility results over finite fields of odd characteristic.
Binomials over finite fields of odd characteristic can be treated easily with a Swan-type
approach [1417].

3.3.46 Remark For trinomials over finite fields of odd characteristic only partial results are
known [46, 1223, 1417].

3.3.47 Remark Over F3, Loidreau [1952] gives the parity for the number of irreducible factors for
any trinomial over F3 by examining the discriminant using all possible congruences of n
and k modulo 12; see also [1223]. This type of analysis holds for higher characteristic, but
the number of cases grows quickly with the characteristic, making a complete analysis for
large q hard to achieve.

3.3.48 Problem Completely characterize the reducibility of trinomials over finite fields of charac-
teristic different from 2 and 3.
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See Also

§3.2 For results on composition of polynomials.
§3.4 For results on low weight irreducible polynomials.
§4.3 For results on low weight primitive polynomials.
§11.2 For counting polynomials with given factorization patterns.
§11.3 For irreducibility tests.

[231] Chapter 6, for extensions of Swan’s theorem.
[236] For results on quadratic and cubic polynomials in extension fields of

characteristic two.
[1300] Chapter 5, for factorizations of binary trinomials.
[3054] For a family of reducible polynomials related to word-oriented feedback

shift registers; see [827, 828, 2818].

References Cited: [37, 39, 40, 41, 45, 46, 52, 231, 236, 333, 394, 395, 570, 671, 672, 673,
827, 828, 846, 1096, 1223, 1300, 1399, 1417, 1567, 1735, 1777, 1939, 1952, 2103, 2145, 2324,
2379, 2573, 2686, 2716, 2753, 2818, 2878, 3054, 3063]

3.4 Weights of irreducible polynomials

Omran Ahmadi, Institute for Research in Fundamental Sciences (IPM)

3.4.1 Basic definitions

3.4.1 Definition The weight of a polynomial f(x) =
∑n
i=0 aix

i in Fq[x] is the number of its
nonzero coefficients.

3.4.2 Definition A polynomial in Fq[x] is a binomial , trinomial , tetranomial , or a pentanomial
if it has two, three, four, or five nonzero coefficients, respectively.

3.4.3 Definition A polynomial in Fq[x] is a fewnomial or a sparse polynomial if it has a small
number of nonzero coefficients.

3.4.2 Existence results

3.4.4 Theorem [850] Let the order of a ∈ F∗q be e. Then the binomial xn − a ∈ Fq[x], n ≥ 2, is
irreducible over Fq if and only if the following conditions are satisfied:

1. if r is a prime number and r|n, then r | e and r - (q − 1)/e;

2. q ≡ 1 (mod 4) if n ≡ 0 (mod 4).

3.4.5 Remark The study of irreducible binomials over finite fields can be traced back to the works
of researchers who were trying to generalize Fermat’s little theorem – see for example the
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expositions of Poinsot [2407] and Serret [2600]. Theorem 3.4.4 in the format given above
appears in [850, 1938, 1939, 2077].

3.4.6 Corollary Let n be an odd number, and let a ∈ Fq. Then xn − a is irreducible over Fq if
and only if for every prime divisor r of n, a is not an r-th power of an element of Fq.

3.4.7 Corollary [1938, 1939, 2077] Let the order of a ∈ F∗q be e, and let r be a prime factor of
q− 1 which does not divide (q− 1)/e. Assume that q ≡ 1 (mod 4) if r = 2 and k ≥ 2. Then

for any non-negative integer k, xr
k − a is irreducible over Fq.

3.4.8 Corollary [2356] Let Fq be a finite field of odd characteristic p, p ≥ 5. There exists an
irreducible binomial over Fq of degree m, m 6≡ 0 (mod 4), if and only if every prime factor
of m is also a prime factor of q − 1. For m ≡ 0 (mod 4) then there exists an irreducible
binomial over Fq of degree m if and only if q ≡ 1 (mod 4) and every prime factor of m is
also a prime factor of q − 1.

3.4.9 Example

1. x6 − a is irreducible over Fq if and only if a is neither a quadratic nor a cubic
residue in Fq.

2. x2k ± 2 are irreducible over F5 [2077].

3. x3k ± 2 and x3k ± 3 are irreducible over F7 [2077].

4. x3k + ω is irreducible over F4 where F4 = F2(ω) [2077].

3.4.10 Remark It is clear that there is no irreducible binomial of degree > 1 over F2. From results
above, it follows that x2 +1 is the only irreducible binomial of degree > 1 over F3 and there
are infinitely many irreducible binomials over Fq for q ≥ 4. Also, it is clear that for every
q there are infinitely many positive integers m, for example p the characteristic of Fq, such
that there is no irreducible binomial of degree m over Fq. This fact motivates the following
results.

3.4.11 Theorem [2378] Let Fq be of characteristic p. Then the trinomial f(x) = xp − x − b is
irreducible over Fq if and only if one of the following equivalent conditions are satisfied

1. f has no root in Fq;
2. TrFq (b) 6= 0;

3. p does not divide [Fq : Fp].

3.4.12 Corollary [2077] Let Fq be of characteristic p. For a, b ∈ F∗q , the trinomial xp − ax − b is
irreducible over Fq if and only if a = cp−1for some c ∈ Fq and TrFq (a/c

p) 6= 0.

3.4.13 Corollary [2324] Let xp−x−a ∈ Fq[x] be an irreducible trinomial over Fq of characteristic
p, and let α be a root of this polynomial in an extension field of Fqp . Then xp − x− aαp−1

is irreducible over Fq(α).

3.4.14 Theorem [2077] Let p ≡ 3 (mod 4) be a prime and let p + 1 = 2rs with s odd. Then, for

any integer k ≥ 1, x2k − 2ax2k−1 − 1 is irreducible over Fp, and hence irreducible over any
odd degree extension Fq, where a = ar is obtained recursively as follows:

1. a1 = 0;

2. for j from 2 to r − 1, set aj =
(
aj−1+1

2

)(p+1)/4

;

3. ar =
(
ar−1−1

2

)(p+1)/4

.

3.4.15 Remark The following constitutes a partial result towards proving Conjecture 3.4.31.
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3.4.16 Theorem [667, 2446] Let Fq be a finite field of characteristic p, and let n ≥ 2 be such that
p does not divide 2n(n− 1). Let Tn(q) denote the number of a ∈ Fq for which the trinomial
xn + x+ a is irreducible over Fq. Then

Tn(q) =
q

n
+O(q1/2), (3.4.1)

where the implied constant depends only on n.

3.4.17 Remark There is not any substantial result proving the existence of irreducible fewnomials
of weight at least four over finite fields.

3.4.18 Remark There are many conjectures concerning the existence of irreducible fewnomials
over finite fields (see the next section) whose resolution currently seems to be out of reach.
The following is a partial result towards proving the existence of irreducible fewnomials over
binary fields.

3.4.19 Theorem [2634] There exists a primitive polynomial of degree n over F2 whose weight is
n/4 + o(n).

3.4.20 Remark The weight of a monic polynomial of degree n over a finite field is between 1
and n + 1 inclusive. On one end of the weight spectrum we have the monomial x and
binomials, whose irreducibility is well understood. We have some partial results concerning
the irreducibility of polynomials corresponding to the other end of the weight spectrum.

3.4.21 Theorem [850] The all one polynomial xn + xn−1 + · · · + x2 + x + 1 ∈ Fq[x], which is of
weight n+1, is irreducible over Fq if and only if n+1 is a prime number and q is a primitive
root modulo n+ 1.

3.4.22 Example

1. If n = 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, then xn + xn−1 + · · · + x2 + x + 1 is
irreducible over F2.

2. Let m > 1 be an integer. If m is even with m ≡ 0 or 6 (mod 8), then the number
of irreducible factors of f(x) = xm + xm−1 + · · · + x3 + x2 + x + 1 is an even
number and hence f is reducible over F2 [55].

3.4.23 Conjecture [1847] (Artin) Let a be a non-square integer different from 1 and −1. Then
there are infinitely many primes p so that a is a primitive element in Fp.

3.4.24 Remark Using Theorem 3.4.21 and Conjecture 3.4.23, naturally we have the following
conjecture.

3.4.25 Conjecture There are infinitely many n for which xn+xn−1 + · · ·+x2 +x+1 is irreducible
over Fq.

3.4.26 Theorem [1531] Artin’s conjecture holds provided that the generalized Riemann hypothesis
is true.

3.4.27 Remark The following is an immediate corollary of Theorem 3.4.21 and Theorem 3.4.26.

3.4.28 Theorem There are infinitely many n for which xn + xn−1 + · · ·+ x2 + x+ 1 is irreducible
over Fq provided that the generalized Riemann hypothesis is true.

3.4.3 Conjectures

3.4.29 Remark The following conjectures are supported by extensive computations, but it seems
that resolving them will be very hard. The first three conjectures have become part of
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folklore and it is very difficult to trace back their origin. Here we provide a reference for
the interested readers who wish to have more information about these conjectures. Note
that the following is by no means an exhaustive list of conjectures related to the weight
distribution of irreducible polynomials over finite fields.

3.4.30 Conjecture [1233] For every n, there exists a polynomial of degree n and of weight at most
five which is irreducible over F2.

3.4.31 Conjecture [1233] Let q ≥ 3 be a prime power. For every n, there exists a polynomial of
degree n and of weight at most four which is irreducible over Fq.

3.4.32 Conjecture [2186] The set of positive integers n for which there exists an irreducible trino-
mial of degree n over F2 has a positive density in the set of positive integers.

3.4.33 Conjecture [307] The number of irreducible trinomials over F2 of degree at most n is
3n+ o(n).

3.4.34 Conjecture [52] Let i, j be two positive integers such that j < i, and let

Fi,j(x) =
xi+1 + 1

x+ 1
+ xj .

Then the number of irreducible polynomials Fi,j of degree at most n over F2 is 2n+ o(n).

3.4.35 Conjecture [1233] For every positive integer n, there exists a polynomial g of degree at
most logq n+ 3 such that f(x) = xn + g(x), called a sedimentary polynomial , is irreducible
over Fq.

See Also

§3.3 For results on reducibility of low weight polynomials.
§3.5 For results on polynomials with prescribed coefficients.
§4.2 For results on primitive polynomials with prescribed coefficients.
§4.3 For results on low weight primitive polynomials.

References Cited: [52, 55, 307, 667, 850, 1233, 1531, 1938, 1939, 2077, 2186, 2324, 2356,
2378, 2407, 2446, 2600, 2634]

3.5 Prescribed coefficients

Stephen D. Cohen, University of Glasgow

3.5.1 Definition Given a monic polynomial f(x) = xn +
∑n
i=1 aix

n−i of degree n in Fq[x] then
ai is the i-th coefficient. For 0 ≤ k,m ≤ n, {a1, . . . , ak} are the first k coefficients and
{an−m+1, . . . , an} are the last m coefficients. In particular −a1 is the trace of f and
(−1)nan is the norm of f .
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3.5.2 Remark Results on the distribution of irreducible polynomials of degree n with certain
coefficients prescribed generally fall into the categories (i) existence, (ii) asymptotic esti-
mates, (iii) explicit estimates, (iv) exact formulae or expressions. For those (few) in category
(iv) further classification under (i)–(iii) may be desirable. Historically, the distribution of
irreducible polynomials with prescribed first and/or last coefficients is approachable by
number-theoretic methods [134, 541, 1447, 2834] yielding asymptotic behaviour. Recently,
more specialized finite field techniques have refined these into explicit estimates, whilst re-
taining asymptotic features. As for existence, in some cases there are theorems which yield
the existence of polynomials of degree n with the stronger property of being primitive for
all but a few pairs (q, n); see Section 4.2.

3.5.3 Remark To keep notation simple, the number of irreducible polynomials of any particular
type will be denoted at that specific juncture by I (or, for example, I(a, b)). All polynomials
will be monic polynomials in Fq[x] (with q a power of the characteristic p) of degree n unless
mentioned otherwise.

3.5.4 Remark See Section 3.1 for further formulae for irreducible polynomials.

3.5.1 One prescribed coefficient

3.5.5 Remark For convenience, the results of Theorems 3.1.7, 3.1.8, and 3.1.10 are summarized
again here.

3.5.6 Theorem Write n = pjn0, where j ≥ 0 and p - n0. Then the number of irreducible polyno-
mials with trace a ∈ Fq is

I =
1

nq

∑
d|n0

µ(d)qn/d − ε

n

∑
d|n0

qn/dp,

where ε = 1 if a = 0 and j > 0; otherwise ε = 0.

3.5.7 Theorem As in Definition 3.1.3 set Dn = {r : r|qn − 1; r - qi − 1, i < n}. For r ∈ Dn, write

mr = r/ gcd(r, q
n−1
q−1 ). Then an irreducible polynomial with norm a ∈ F∗q is such that a has

order mr for some r ∈ Dn and the number of irreducible polynomials of order r and norm
a is

I =
φ(r)

nφ(mr)
.

Thus, the total number of irreducible polynomials of norm a, having order m, is

I =
1

nφ(m)

∑
r∈Dn
mr=m

φ(r).

3.5.8 Remark An asymptotic description of the number in Theorem 3.5.7 occurs in Theorem
III.5 of [512].

3.5.9 Theorem [512] The number I of irreducible polynomials with prescribed non-zero constant
term satisfies

1

n

(
qn − 1

q − 1
− 2qn/2

)
≤ I ≤ qn − 1

n(q − 1)
.

3.5.10 Remark The next theorem, like Theorem 3.5.9, effectively concerns polynomials with one
fixed coefficient, although it involves three coefficients a1, an−1 and an.
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3.5.11 Theorem [310] Let q be a power of p, where p = 2 or 3 and n = pjn0, p - n0. Then
the number I(b) of irreducible polynomials, with a1 + an−1/an having prescribed value b,
satisfies ∣∣∣∣I(b)− qn−1

n

∣∣∣∣ ≤ 3q
n
2

n
.

More generally, this estimate holds for I(0) for any prime power q whenever p - n.

3.5.12 Remark The general existence theorem for irreducible polynomials with a prescribed coeffi-
cient which follows had been conjectured by Hansen and Mullen [1416]. The key theoretical
work (a dual approach effective for small values of m, n−m, respectively) on weighted (as
opposed to exact) numbers of irreducibles is in [2893].

3.5.13 Theorem [1405, 2893] Given integers m,n with 0 ≤ m < n and a ∈ Fq (non-zero if m = 0)
there exists an irreducible polynomial with the coefficient of xm equal to a, except when
n = 2,m = 1 and a = 0.

3.5.2 Prescribed trace and norm

3.5.14 Remark By considering each monic reciprocal polynomial f∗(x) = a−1
n xnf(1/x) (see Def-

inition 2.1.48), provided an 6= 0, one sees that the number of irreducible polynomials with
prescribed first coefficient a1 and last coefficient an is the same as that with last two coeffi-
cients a1/an and 1/an, respectively. Hence it suffices to consider the first of these situations.
Equivalently, examine the set of irreducible polynomials with prescribed trace and norm.

3.5.15 Theorem [512, 2893] The number of irreducible polynomials I(a, b) with prescribed trace
a and prescribed non-zero norm b satisfies∣∣∣∣I(a, b)− qn−1

n(q − 1)

∣∣∣∣ ≤ 3

n
qn/2.

3.5.16 Theorem [2121] The number I(a, b) of irreducible polynomials of degree n with trace a and
non-zero norm b satisfies∣∣∣∣I(0, b)− qn−1 − 1

n(q − 1)

∣∣∣∣ ≤ s− 1

n
q
n−2

2 +
q
n
2 − 1

q − 1
<

2

q − 1
q
n
2 ,

where s = gcd(n, q − 1), and, when a 6= 0,∣∣∣∣I(a, b)− qn − 1

nq(q − 1)

∣∣∣∣ ≤ q n−2
2 +

q
n
2−1

q(q − 1)
+
n

2
q
n−4

4 <
2

q − 1
q
n
2 .

3.5.17 Remark Theorem 3.5.16 is an improvement on Theorem 3.5.15 whenever n ≤ 3
2q
n/2.

3.5.18 Definition Given a pair (q, n) let P be the largest prime factor of qn − 1. Then (q, n) is
an lps (largest prime survives) pair if P ∈ Dn as in Theorem 3.5.7.

3.5.19 Remark According to [2318], empirical evidence indicates that many pairs (q, n) are lps
pairs although there are some “sporadic” pairs that are not.

3.5.20 Theorem [2318] Suppose n ≥ 3 and (q, n) is an lps pair. Then the number I(a, b) of
irreducible polynomials with non-zero trace a and non-zero norm b satisfies

I(a, b) ≥ (1− 1
P )(qn − 1)− qn−1 − 2nq

n
2 + 1

n(q − 1)2
.
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3.5.21 Example Take (q, n) = (9, 7). Since 97 − 1 = 23 × 547× 1093, then (9, 7) is an lps pair —
though (3, 14) which also relates to the factorization of 97 − 1 is not an lps pair! Theorem
3.5.15 yields a lower bound for I(a, b) of 8552.73; Theorem 3.5.16 yields lower bounds of
9216.75 and 9198.47 when a is zero and non-zero, respectively, and, when a 6= 0, Theorem
3.5.20 yields an improved lower bound of 9411.91.

3.5.22 Remark Even when (q, n) is not an lps pair a classical theorem of Zsigmondy (see e.g.,
[2467] or Wikipedia) implies there is always a prime l ∈ Dn except when q is a Mersenne
prime and n = 2 and when (q, n) = (2, 6). Given (q, n) with these exceptions, such a prime
is a Zsigmondy prime and the largest Zsigmondy prime is the largest of such primes. The
authors of Theorem 3.5.20 were unaware of Zsigmondy’s theorem and it is evident that the
same argument yields the following modification which is generally applicable. It appears
here for the first time.

3.5.23 Theorem Suppose n ≥ 3 and (q, n) 6= (2, 6). Let PZ be the corresponding largest Zsigmondy
prime. Then the number I(a, b) in Theorem 3.5.20 satisfies

I(a, b) ≥
(1− 1

PZ
)(qn − 1)− qn−1 − 2nq

n
2 + 1

n(q − 1)2
.

3.5.24 Example Take (q, n) = (47, 4), not an lps pair since q2 − 1 = 25 × 3 × 23 and q2 + 1 =
2 × 5 × 13 × 17. Here 5, 13, and 17 are Zsigmondy primes with PZ = 17. Then Theorem
3.5.15 provides no information, whereas Theorem 3.5.16 yields lower bounds for I(a, b) of
504.4 and 515.23, respectively, when a is zero and non-zero. Now, when a 6= 0, Theorem
3.5.23 delivers an improved lower bound for I(a, b) of 528.25.

3.5.25 Remark [2318] also provides an expression for upper bounds for I(a, b). These are always
better than those of Theorem 3.5.16 when n is a multiple of q − 1.

3.5.26 Remark Existence results for (merely) irreducible polynomials with prescribed trace and
norm follow from those on the existence of primitive polynomials (Section 4.2).

3.5.3 More prescribed coefficients

3.5.27 Remark The question of estimating the number of irreducible polynomials f with the first
k coefficients a1, . . . , ak and the last m coefficients an−m+1, . . . , an of f prescribed (where
2 ≤ k +m < n) can be generalized as follows and tackled by number-theoretical methods.
Given a monic polynomial M ∈ Fq[x] of degree m, where 1 ≤ m < n, let R ∈ Fq[x] be
a (not necessarily monic) polynomial prime to M . Then consider polynomials f of degree
n with the first k coefficients prescribed and such that f ≡ R (mod M). The original
question of choosing k first and m last coefficients is recovered by selecting M(x) = xm and
R(x) = an−m+1x

m−1 + · · ·+ an, an 6= 0. In this connection, note from Lemma 2.1.113 that
Φq(x

m) = qm−1(q − 1).

3.5.28 Theorem [512, 1551, 2454] Let 2 ≤ k + m < n. Suppose a1, . . . , ak ∈ Fq, M is a monic
polynomial in Fq[x] of degree m, and R ∈ Fq[x] is a fixed (not necessarily monic) polynomial
of degree < m prime to M . Then the number I of irreducible polynomials f of degree n
with prescribed first k coefficients and such that f ≡ R (mod M) satisfies

1

n

{
qn−k

Φq(M)
− (k +m+ 1)q

n
2

}
≤ I ≤ 1

n

{
qn−k

Φq(M)
+ (1− δ)(k +m− 1)q

n
2

}
,

where 0 < δ = 1− 1

qkΦq(M)
< 1.
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3.5.29 Remark Theorem 3.5.28 leads to explicit existence results such as those which follow.

3.5.30 Corollary [685] Under the conditions of Theorem 3.5.28, suppose that k + m < n/2 and
that

q >
n

2
(n even); q >

(
n+ 1

2

)2

(n odd).

Then there exists an irreducible polynomial f ≡ R (mod M) of degree n with its first k
coefficients prescribed. In particular, there exists an irreducible polynomial with its first k
coefficients and its last m coefficients prescribed (and non-zero constant term).

3.5.31 Corollary [685] There exists an irreducible polynomial of degree n with its first k and last
m coefficients prescribed whenever 2 ≤ k +m ≤ n/3.

3.5.32 Remark In contrast to Corollaries 3.5.30 and 3.5.31 giving existence conditions for ir-
reducible polynomials with prescribed first and last coefficients, [1209] investigates those
whose middle coefficients are fixed providing these are all zero.

3.5.33 Theorem [1209] Suppose 1 < k ≤ m < n and q2k−m−2 ≥ q(n− k + 1)4. Then there exists
an irreducible polynomial of degree n with ak = · · · = am = 0.

3.5.34 Corollary [1209] For any c with 0 < c < 1 and any positive integer n such that
(1− 3c)n ≥ 2 + 8 logq n, there exists an irreducible polynomial of degree n over Fq with
any bcnc consecutive coefficients (other than the first or last) equal to 0.

3.5.35 Example [1209] With c = 1/4 in Corollary 3.5.34, there exists an irreducible polynomial of
degree n with bn/4c consecutive coefficients equal to 0 whenever q ≥ 61 and n ≥ 37 and for
smaller prime powers for n ≥ nq where nq ≤ n2 = 266.

3.5.36 Remark When the prescribed coefficients do not comprise first and last, or middle coeffi-
cients, the only general estimates are asymptotic. In the following two theorems n−m ≤ n−2
coefficients aj of f are prescribed and given their assigned values. The remaining m coeffi-
cients A = {aj1 , . . . , ajm}, say, are allowed to take any values in Fq.

3.5.37 Theorem [2710] Let the n−m coefficients of f not in A (as in Remark 3.5.36) be prescribed
and given their assigned values in Fq. Regard the members of A as algebraically independent
indeterminates (or transcendentals). Suppose that f is absolutely irreducible in Fq[x,A].
Then, for sufficiently large q, the number I of irreducible polynomials f ∈ Fq[x] of degree
n with the coefficients not in A as prescribed satisfies

I = cqm +O(qm/2),

where c satisfies 1/n ≤ c < 1.

3.5.38 Theorem [669] Suppose m ≤ n− 2 and the n−m coefficients of f not in A are prescribed
and given their assigned values (with an 6= 0, if prescribed). Suppose that there is not a
d > 1 such that f ∈ Fq(A)[xd]. Assume also that p > n. Then, for sufficiently large q, the
number I as in Theorem 3.5.37 satisfies

I =
1

n
qm +O

(
qm−

1
2

)
,

where the implied constant depends only on n.

3.5.39 Remark From [669], alternative versions of Theorem 3.5.38 apply even if p ≤ n. Indeed, f
need not be monic, in the sense that the coefficient of xn may be prescribed in F∗q or allowed
to vary in Fq so long as the total number of prescribed coefficients does not exceed n− 1.
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3.5.40 Remark The final theorem in this section relates to irreducible polynomials of even degree
of a specific type, namely self-reciprocal polynomials of degree 2n (see Definition 2.1.48).
Note that, if F is a self-reciprocal polynomial of degree 2n, then its last coefficient a2n = 1
and its first n coefficients are the same as its last n non-constant coefficients in the sense
that ai = a2n−i, i = 1, . . . , n.

3.5.41 Theorem [1210] The number I of irreducible self-reciprocal polynomial of degree 2n with
the first m (< n/2) coefficients prescribed satisfies∣∣∣∣I − qn−m

2n

∣∣∣∣ ≤ m+ 5

n
q
n
2 +1.

See also [1211].

3.5.4 Further exact expressions

3.5.42 Remark Expressions for the number of irreducible polynomials with the first two coefficients
prescribed are given in [1815]. These are described in terms of the function H(a, n), a ∈ Fq.
Here, if p - n, then

H(a, n) =

{
qn−2 − λ((−1)l−1la)ql−1 for n = 2l,
qn−2 + δ(a)λ((−1)ln)ql−1 for n = 2l + 1,

where λ denotes the quadratic character on Fq, δ(a) = −1 (a 6= 0) and δ(0) = q − 1. If p|n,
then

H(a, n) =

{
qn−2 − δ(a)λ((−1)l)ql−1 for n = 2l,
qn−2 + λ((−1)l2a)ql for n = 2l + 1.

Given a1, a2 ∈ Fq, in Theorems 3.5.43 and 3.5.45 (which relate, respectively, to odd and
even q), I(a1, a2) denotes the number of irreducible polynomials of degree n over Fq with
the indicated first two coefficients.

3.5.43 Theorem [1815] Suppose q is odd. Then, if p - n and a ∈ Fq,

I(0,−a) =
1

n

∑
d|n

µ(d)H(a/d, n/d).

Further, if p|n with n = pjn0 (j ≥ 1, p - n0), then

I(0,−a) =
1

n

∑
d|n0

µ(d)H(a/d, n/d), a 6= 0,

I(0, 0) =
1

n

∑
d|n0

µ(d)[H(0, n/d)− qn/pd],

I(1, 0) =
1

nq2

∑
d|n0

µ(d)qn/d.

3.5.44 Remark The general value of I(a1, a2) can be recovered from Theorem 3.5.43 using, if p - n,

I(a1, a2) = I(0, a2 − (n−1)
2n a2

1). If p|n and a1 6= 0, then I(a1, a2) = I(1, 0).

3.5.45 Theorem [1815] Suppose q is even. Then for a ∈ Fq,

I(0, a) =


1

n

∑
d|n

µ(d)H(a, n/d) for n odd,

1

n

∑
d|n, d odd

µ(d)[H(a, n/d)− q n2d−1] for n even;
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I(1, a) =
1

n

∑
d|n, d odd

µ(d)H∗
(
a+

d− 1

2
,
n

d

)
,

where, with q = 2r and χ the canonical additive character on Fq,

H∗(a, n) =


qn−2 for n = 4l,

qn−2 + (−1)lrδ(a)q
n−3

2 for n = 4l + 1,

qn−2 + (−1)lrδ(1 + a)q
n−3

2 for n = 4l − 1,

qn−2 − (−1)lrχ(a)q
n−2

2 for n = 4l + 2.

3.5.46 Remark The general value of I(a1, a2) can be recovered from Theorem 3.5.45 since, for
a1 6= 0, I(a1, a2) = I(1, a2/a

2
1) and I(0, a) = I(0, 1), a 6= 0.

3.5.47 Remark For the binary field F2, [565] contains alternative expressions for the number
I(a1, a2) in Theorem 3.5.45. For expressions for the number of irreducible polynomials over
F2 with the first three coefficients prescribed, see [1076, 3049]. The flavor of these results is
caught by the following conjecture which holds for k ≤ 3.

3.5.48 Conjecture [3049] Let n = 2l be even and I(a1, . . . , as) denote the number of irreducible
polynomials of degree n (over F2) whose first s coefficients are as shown. Then

I(a1, . . . , as) =
∑

2|n, d odd

µ(d)J(n/d, a1, . . . , as),

where
J(n, a1, . . . , as) = 2n−s + cl−r+12l−r+1 + · · ·+ cl2

l,

for some r with 1 ≤ r ≤ l and ci ∈ {−1, 0, 1}.
3.5.49 Remark Let γ be a primitive element of Fq and s|q − 1. A coset C of the subgroup of F∗q

generated by γs takes the form {γis+h : 0 ≤ i < (q − 1)/s}, for some h with 0 ≤ h < s.
In [1783] general expressions are obtained for the number of irreducible polynomials of
degree n with prescribed trace and norm in a specified coset C. These involve quantities
like Gauss and Jacobi sums. Such expressions are made explicit (i.e., the trigonometric sums
are precisely determined) in the following cases:

1. s = 2 (compare with [541]), s = 3 and s = 4;

2. q = p2er and s (> 1) a factor of pe + 1.

3.5.50 Remark For q powers of 2 or 3, [2123] contains completely explicit expressions for the
number of irreducible polynomials of degrees n in the indicated ranges for polynomials with
two prescribed coefficients as follows:

1. a1 any prescribed value, an−1 = 0, for n ≤ 10;

2. a1 = 0, a3 any prescribed value, for n ≤ 30.

See Also

§4.2 For discussion of primitive polynomials with prescribed coefficients.
§6.1 For evaluation of Gauss and Jacobi sums appearing in estimates.
§13.1 For arithmetical comparisons of irreducibles with primes.

References Cited: [134, 310, 512, 541, 565, 669, 685, 1076, 1209, 1210, 1211, 1405, 1416,
1447, 1551, 1783, 1815, 2121, 2123, 2318, 2454, 2467, 2710, 2834, 2893, 3049]
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3.6 Multivariate polynomials

Xiang-dong Hou, University of South Florida

3.6.1 Theorem [1561] The polynomial ring Fq[x1, . . . , xk] is a unique factorization domain. Let
f(x1, . . . , xk) = a0 + a1xk + · · ·+ anx

n
k ∈ Fq[x1, . . . , xk], where n > 0, ai ∈ Fq[x1, . . . , xk−1],

0 ≤ i ≤ n, an 6= 0. Then f is irreducible in Fq[x1, . . . , xk] if and only if it is irreducible
in (Fq(x1 . . . , xk−1))[xk] and gcdFq [x1,...,xk−1](a0, . . . , an) = 1, where Fq(x1 . . . , xk−1) is the
field of rational functions in x1, . . . , xk−1 over Fq and gcdFq [x1,...,xk−1](a0, . . . , an) denotes
the gcd of a0, . . . , an in Fq[x1, . . . , xk−1].

3.6.2 Definition For a k-tuple of indeterminates z = (z1, . . . , zk) and for n = (n1, . . . , nk) ∈ Nk,
where N = {0, 1, 2, · · · }, define zn = zn1

1 · · · znkk . Let [zn]P (z) denote the coefficient of
zn in a formal power series P (z).

3.6.1 Counting formulas

3.6.3 Definition Let Nk = Fq[x1, . . . , xk]/∼, where for f, g ∈ Fq[x1, . . . , xk], f ∼ g means that
f = cg for some c ∈ F∗q . Elements of Nk are normalized polynomials in Fq[x1, . . . , xk].
Let Nk(m) = {f ∈ Nk : deg f = m}, where deg f denotes the total degree of f . Let

Nk(m) = |Nk(m)| = 1
q−1

[
q(
m+k
k ) − q(m+k−1

k )
]
, Ik(m) = |{f ∈ Nk(m) : f is irreducible}|,

Pk(m;n) = |{(f, g) ∈ Nk(m)×Nk(n) : gcd(f, g) = 1}|.

3.6.4 Remark We have that Nk(m) is the number of normalized polynomials of (total) degree m
in Fq[x1, . . . , xk], Ik(m) is the number of normalized irreducible polynomials of degree m,
and Pk(m;n) is the number of relatively prime pairs of normalized polynomials of degrees
m and n, respectively.

3.6.5 Theorem [336] We have Ik(0) = 0, and for m > 0, Ik(m) is given by the recursive formula

Ik(m) = Nk(m)−
∑

1a1+2a2+···+(m−1)am−1=m

(
Ik(1) + a1−1

a1

)
· · ·
(
Ik(m−1)+am−1−1

am−1

)
.

3.6.6 Theorem [337] Let k ≥ 1 be a fixed integer. Define N(z) =
∑
n≥0Nk(n)zn and I(z) =∑

n≥1 Ik(n)zn. Then

1. I(z) =
∑
m≥1

µ(m)
m logN(zm).

2. Ik(n) =
∑
m|n

µ(m)
m [zn/m] logN(z).

3.6.7 Theorem [1546] We have

Pk(m;n) =
∑

0≤d≤min{m,n}

Nk(m− d)Nk(n− d)Ak(d),

where

Ak(d) =
∑

1a1+2a2+···+dad=d

(−1)a1+···+ad
(
Ik(1)

a1

)
· · ·
(
Ik(d)

ad

)
.

3.6.8 Remark In Theorem 3.6.7, when k ≥ 2, no closed formula for Ak(d) is known. When k = 1,
it is known that A1(0) = 1, A1(1) = −q, and A1(d) = 0 for d ≥ 2 [537, 668].
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3.6.2 Asymptotic formulas

3.6.9 Theorem [1546] Let k ≥ 2 and t ≥ 0 be integers. Then as m→∞,

Ik(m) =
t∑
i=0

αiNk(m− i) +O
(
q(
m−t−1+k

k )
)
,

where α0 = 1, and for i > 0

αi =
∑

1a1+···+iai=i

(a1 + · · ·+ ai)!

a1! · · · ai!
(−1)a1+···+aiNk(1)a1 · · ·Nk(i)ai ,

where the constant in the O-term depends only on q, k, t.

3.6.10 Remark There is a fundamental difference between the distribution of irreducible polyno-
mials over Fq in the univariate case and in the multivariate case. For the univariate case,

limm→∞
I1(m)
N1(m) = 0. For k ≥ 2, limm→∞

Ik(m)
Nk(m) = 1.

3.6.11 Theorem [1546] Let k ≥ 2. Then limm+n→∞
Pk(m;n)

Nk(m)Nk(n) = 1.

3.6.12 Remark [226] We have for the univariate case P1(m;n)
N1(m)N1(n) = 1− 1

q ; see Section 11.2 for more

results on counting univariate polynomials.

3.6.13 Theorem [1546] Let k ≥ 2 and t ≥ 0 be fixed integers. Then

Pk(m;n) =

t∑
d=0

Nk(m− d)Nk(n− d)Ak(d) +O
(
Nk(m− t− 1)Nk(n− t− 1)

)
,

where Ak(d) is defined in Theorem 3.6.7. The constant in the O-term depends only on q, k, t.

3.6.3 Results for the vector degree

3.6.14 Definition Let f ∈ Fq[x1, . . . , xk]. The vector degree of f , denoted by Def f , is the k-tuple
(degx1

f, . . . ,degxk f).

3.6.15 Definition For m = (m1, . . . ,mk) and n = (n1, . . . , nk) ∈ Nk, let Nk(m) = {f ∈ Nk :
Deg f = m}, Nk(m) = |Nk(m)|, Ik(m) = |{f ∈ Nk(m) : f is irreducible}| and Pk(m; n) =
|{(f, g) ∈ Nk(m)×Nk(n) : gcd(f, g) = 1}|.

3.6.16 Remark We have that Nk(m) is the number of normalized polynomials of vector degree
m in Fq[x1, . . . , xk], Ik(m) is the number of normalized irreducible polynomials of vector
degree m, and Pk(m; n) is the number of relative prime pairs of normalized polynomials of
vector degrees m and n, respectively.

3.6.17 Remark [664, 1546] For m = (m1, . . . ,mk) ∈ Nk,

Nk(m) =
1

q − 1

∑
(δ1,...,δk)∈{0,1}k

(−1)k+δ1+···+δkq(m1+δ1)···(mk+δk).
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3.6.18 Definition Let o = (0, . . . , 0) ∈ Nk. For i = (i1, . . . , ik), m = (m1, . . . ,mk) ∈ Nk, define
i ≤ m if ij ≤ mj for all 1 ≤ j ≤ k.

3.6.19 Theorem [1546] We have Ik(o) = 0, and for m > o, Ik(m) is given by the recursive formula

Ik(m) = Nk(m)−
∑

(ai)o<i<m∑
i aii=m

∏
i

(
Ik(i) + ai − 1

ai

)
.

3.6.20 Theorem [337] Let k ≥ 1 be a fixed integer and let z = (z1, . . . , zk) be a k-tuple of
indeterminates. Define N(z) =

∑
n∈Nk Nk(n)zn, I(z) =

∑
o6=n∈Nk Ik(n)zn. Then

1. I(z) =
∑
m≥1

µ(m)
m logN(zk).

2. Ik(z) =
∑
m|gcd(n)

µ(m)
m [z

1
mn] logN(z).

3.6.21 Theorem [1546] Let k ≥ 2 and (m1, . . . ,mk) ∈ (Z+)k with m1 = max1≤i≤k−1mi. Further
assume that m1 ≥ 3 if k = 2 and m1 ≥ 2 if k = 3. Then

Ik(m1, . . . ,mk) = Nk(m1, . . . ,mk)− qNk(m1, . . . ,mk−1,mk − 1) +O
(
qm1(m2+1)···(mk+1)

)
.

3.6.22 Remark The asymptotic formula in Theorem 3.6.21 is interesting only when mk > m1 since
otherwise the O-term is bigger than or comparable to the term qNk(m1, . . . ,mk−1,mk − 1).
When mk > m1, Theorem 3.6.21 indicates that most of the reducible polynomials in
Nk(m1, . . . ,mk) are of the form (xk +α)f for some α ∈ Fq, f ∈ Nk(m1, . . . ,mk−1,mk− 1).

3.6.23 Corollary Under the assumptions of Theorem 3.6.21, we have

Ik(m1, . . . ,mk) = (1− q−Mk)N(m1, . . . ,mk) +O
(
qm1(m2+1)···(mk+1)

)
,

where Mk = (m1 + 1) · · · (mk−1 + 1) − 1. The main term here was given by Cohen [664,
Theorem 1]. For fixed m1, . . . ,mk−1, it is not the case that almost all polynomials in

Nk(m1, . . . ,mk) are irreducible: we have Ik(m1,...,mk)
Nk(m1,...,nk) → 1− q−Mk as mk →∞.

3.6.24 Remark [1546] For k ≥ 2, Ik(m1,...,mk)
Nk(m1,...,mk) → 1 as both m1,mk →∞.

3.6.25 Theorem [1546] For m = (m1, . . . ,mk), n = (n1, . . . , nk) ∈ Nk, define min{m, n} =
(min{m1, n1}, . . . ,min{mk, nk}) ∈ Nk. We have

Pk(m; n) =
∑

0≤d≤min{m,n}

Nk(m− d)Nk(n− d)Ak(d),

where

Ak(d) =
∑

(ai)0<i≤d∑
0<i≤d aii=d

(−1)
∑

0<i≤d ai
∏

0<i≤d

(
Ik(i)

ai

)
.

3.6.26 Theorem [1546] Let k ≥ 2 and m = (m1, . . . ,mk), n = (n1, . . . , nk) ∈ Nk. Then

limmk−1,mk→∞
Pk(m;n)

Nk(m)Nk(n) = 1.

3.6.27 Theorem [1546] Let k ≥ 2, m = (m1, . . . ,mk), n = (n1, . . . , nk), t = (t1, . . . , tk) ∈ Nk such
that t ≤ min{m, n} and max{mi, ni} > 2ti + 1 for all 1 ≤ i ≤ k. Then

Pk(m; n) =
∑

0≤d≤t

Nk(m− d)Nk(n− d)Ak(d)

+O

(
q

max1≤j≤k

(
mj−tj
mj+1

∏k
i=1(mi+1)+

nj−tj
nj+1

∏k
i=1(ni+1)

))
.
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3.6.28 Theorem [1546] Let k ≥ 2, m = (m1, . . . ,mk), n = (n1, . . . , nk) ∈ Nk such that mk > 0,
nk > 0 and max{mi, ni} > 1 for all 1 ≤ i ≤ k − 1. Then

Pk(m; n) =Nk(m)Nk(n)− qNk(m1, . . . ,mk−1,mk − 1)Nk(n1, . . . , nk−1, nk − 1)

+O

(
q

max1≤j≤k−1

(
mj
mj+1

∏k
i=1(mi+1)+

nj
nj+1

∏k
i=1(ni+1)

))
.

3.6.29 Theorem [668] Let k ≥ 2 and m = (m1, . . . ,mk) ∈ Nk with max1≤i≤k−1mi ≥ 1. Then as

mk →∞ (with m1, . . . ,mk−1 fixed), Pk(m;m)
Nk(m)2 → 1− q1−2(m1+1)···(mk−1+1).

3.6.4 Indecomposable polynomials and irreducible polynomials

3.6.30 Definition Let F be a field and k ≥ 2. A nonconstant polynomial f ∈ F[x1, . . . , xk] is
indecomposable over F if there do not exist h ∈ F[x1, . . . , xk] and u ∈ F[t] with deg u ≥ 2
such that f = u(h(x1, . . . , xk)).

3.6.31 Theorem [2214] Let k ≥ 2. Assume that f ∈ Fq[x1, . . . , xk] is indecomposable over Fq, the
algebraic closure of Fq. For each λ ∈ Fq, let Iλ denote the set of all distinct irreducible
factors of f − λ over Fq. Then∑

λ∈Fq

(|Iλ| − 1) ≤ min
λ∈Fq

∑
g∈Iλ

deg g − 1.

In particular, f − λ is reducible over Fq for at most deg f − 1 values of λ.

3.6.32 Remark [338, Theorem 4.2] f ∈ Fq[x1, . . . , xk] is indecomposable over Fq if and only if it
is indecomposable over Fq.

3.6.33 Definition [1224] Let F be a field and fix a term order in F[x1, . . . , xk] that respects
the total degree. A monic polynomial f ∈ F[x1, . . . , xk] with f(0, . . . , 0) = 0 is monic
original.

3.6.34 Remark [338, 1224] Let F be a field and let k ≥ 2. Every monic original polynomial
f ∈ F[x1, . . . , xk] has a unique decomposition f = u ◦ h, where u ∈ F[t], h ∈ F[x1, . . . , xk]
are both monic original and h is indecomposable.

3.6.35 Theorem [1224] Let F be an algebraically closed field and let k ≥ 2 and n ≥ 2 be integers.
Denote by l the smallest prime divisor of n. Then the set of all decomposable monic original
polynomials in F[x1, . . . , xk] of degree n is an affine algebraic set of dimension

(k+ n
m
k

)
+m−3,

where

m =

{
n if k = 2, nl is a prime and n

l ≤ 2l − 5,

l otherwise.

3.6.36 Definition Let k ≥ 2 and n ≥ 1. Denote the number of monic original (respectively
indecomposable monic original, decomposable monic original) polynomials of (total)
degree n in Fq[x1, . . . , xk] by Pk,n (respectively Ik,n, Dk,n).

3.6.37 Theorem [338] We have Ik,1 = qk−1, and for n > 1, Ik,n is given by the recursive formula

Ik,n = Pk,n −
∑

m|n,m<n

q
n
m−1 Ik,m.
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3.6.38 Remark [338] Let k ≥ 2. We have
Ik,n
Pk,n
→ 1 when n→∞ with q fixed or when q →∞ with

n fixed.

3.6.39 Theorem [1224] Assume k ≥ 2 and n ≥ 2. Let l be the smallest prime divisor of n and let
m defined in Theorem 3.6.35. Then the following hold.

1. |Dk,n − αk,n| ≤ αk,nβ∗k,n where

αk,n = q(
k+ n

m
k )+m−3 · 1− q−(k−1+ n

m
k−1 )

1− q−1
,

β∗k,n =
2

1− q−1
q
− 1

2 (k−1+n
l

k−1 )+1
.

2. Ik,n ≥ Pk,n − 2αk,n.

3.6.40 Remark For a refinement of the bound in Theorem 3.6.39, see [1224, Theorem 4.1], where
β∗k,n is replaced by an expression βk,n which is of smaller magnitude but more complicated;
also see [1244] for related results.

3.6.5 Algorithms for the gcd of multivariate polynomials

3.6.41 Remark Computation of the gcd of multivariate polynomials over finite fields is more
difficult than that of univariate polynomials; the Extended Euclidean Algorithm alone is
not sufficient to produce the gcd due to the fact that Fq[x1, . . . , xk] with k > 1 is no longer
a Euclidean domain. In this subsection we gather several algorithms for computing the
multivariate gcd based on different approaches.

3.6.42 Definition Let R be a unique factorization domain. For f ∈ R[x], lc(f) denotes the leading
coefficient of f ; pp(f) denotes the primitive part of f , i.e., f divided by the gcd of its
coefficients. The resultant of f, g ∈ R[x] is denoted by res(f, g).

3.6.43 Algorithm [1227]
Input: Primitive f, g ∈ (Fq[y])[x], where y = (y1, . . . , yk).
Output: gcdFq [x,y](f, g).

1. Use the Extended Euclidean Algorithm to compute the monic v= gcd(Fq(y))[x](f, g).

2. Compute b = gcdFq [y](lc(f), lc(g)).

3. gcdFq [x,y](f, g) = pp(bv).

3.6.44 Algorithm [1227] (Modular bivariate gcd, small primes version)
Input: Primitive f, g ∈ (Fq[y])[x], degx f = n ≥ degx g ≥ 1, degy f,degy g ≤ d and

q ≥ (4n+ 2)d+ 2.
Output: gcdFq [x,y](f, g).

1. Compute b = gcdFq [y](lcx(f), lcx(g)). Let l = d+ 1 + degy b.

2. Repeat steps 3 – 7 until the conditions in step 7 are satisfied.

3. Choose S ⊂ Fq with |S| = 2l.

4. Delete the roots of b from S. For each u ∈ S, use the Extended Euclidean Algo-
rithm to compute the monic vu = gcdFq [x](f(x, u), g(x, u)).

5. Determine e = min{degx vu : u ∈ S}. Delete {u ∈ S : degx vu > e} from S. If
|S| ≥ l, delete |S| − l elements from S; otherwise, go to step 3.
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6. Compute by interpolation the coefficients in Fq[y] of w, f∗, g∗ ∈ (Fq[y])[x] of
degrees in y less than l such that

w(x, u) = b(u)vu, f∗(x, u)w(x, u) = b(u)f(x, u), g∗(x, u)w(x, u) = b(u)g(x, u)

for all u ∈ S.

7. Check if degy(f∗w) = degy(bf) and degy(g∗w) = degy(bg).

8. gcdFq [x,y](f, g) = ppx(w).

3.6.45 Remark Let h = gcdFq [x,y](f, g). The conditions in Step 7 of Algorithm 3.6.44 are satisfied
if and only if S does not contain any root of resx(f/h, g/h).

3.6.46 Algorithm [13] (Gröbner basis)
Input: f, g ∈ Fq[x1, . . . , xk], f, g 6= 0.
Output: gcd(f, g).

1. Compute the reduced Gröbner basis G for the ideal 〈wf, (1 − w)f〉 of
Fq[x1, . . . , xk, w] with respect to an elimination order with x1, . . . , xk smaller
than w.

2. lcm(f, g) is the polynomial in G which does not involve w.

3. gcd(f, g) = fg
lcm(f,g) .

3.6.47 Remark For the correctness of Algorithm 3.6.43, see [1227, Theorem 6.12]. The cost of the
Extended Euclidean Algorithm is given in [1227, Theorem 3.11]. For the correctness and
the cost of Algorithm 3.6.44, see [1227, Theorem 6.37]. The correctness of Algorithm 3.6.46
is given in [13, p.72]. For the complexity of computing reduced Gröbner bases, see [1227,
Section 21.7].

See Also

§3.1 For counting univariate irreducible polynomials.
§11.4 For factorization algorithms of univariate polynomials.
§11.5 For factorization algorithms of multivariate polynomials.

References Cited: [13, 226, 336, 337, 338, 537, 664, 668, 1224, 1227, 1244, 1546, 1561, 2214]
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Primitive polynomials
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Approaches to results on prescribed coefficients •
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Existence theorems for primitive normal polynomials

4.3 Weights of primitive polynomials . . . . . . . . . . . . . . . . . 95
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Elements of high order from elements of small orders
• Gao’s construction and a generalization • Iterative
constructions

4.1 Introduction to primitive polynomials

Gary L. Mullen, The Pennsylvania State University

Daniel Panario, Carleton University

4.1.1 Definition An element α ∈ Fq is a primitive element if α generates the multiplicative
group F∗q of nonzero elements in Fq.

4.1.2 Definition A polynomial f ∈ Fq[x] of degree n ≥ 1 is a primitive polynomial if it is the
minimal polynomial of a primitive element of Fqn .

4.1.3 Theorem The number of primitive polynomials of degree n over Fq is φ(qn − 1)/n, where
φ denotes Euler’s function.

4.1.4 Remark [1939, Section 3.1] The reciprocal polynomial f∗ (with leading coefficient different
from 0) of a primitive polynomial f of degree n is defined by f∗(x) = xnf(1/x); see Defini-
tion 2.1.48. The monic reciprocal polynomial of a primitive polynomial is again primitive.
In general, for any polynomial f , the order of f∗ is the same as the order of f . For the
definition of order of a polynomial see Definition 2.1.51.

4.1.5 Theorem [1939, Theorem 3.16] A polynomial f ∈ Fq[x] of degree n is primitive if and only
if f is monic, f(0) 6= 0, and the order of f is qn − 1.

4.1.6 Theorem [1939, Theorem 3.18] A monic polynomial f ∈ Fq[x] of degree n ≥ 1 is a primitive
polynomial if and only if the smallest positive integer r for which xr is congruent modulo
f to some element of Fq is r = (qn− 1)/(q− 1) and (−1)nf(0) is a primitive element in Fq.
In case f is primitive over Fq, xr ≡ (−1)nf(0) (mod f(x)).

87
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4.1.7 Theorem [1071] Let f be an irreducible polynomial of degree k over Fq. Set m = qk − 1
and define g(x) = (xm − 1)/((x− 1)f(x)). Then f is primitive if and only if g has exactly
(q − 1)qk−1 − 1 nonzero terms.

4.1.8 Theorem [1857] Let f(x) = fk + fk−1x+ · · ·+ f0x
k be irreducible over Fq of degree k ≥ 2.

Set m = qk − 1, t = m/(q − 1), y = xq−1 and

g(y) =
yt − 1

(y − 1)f(y)
= h(y) +

r0 + r1y + · · ·+ rk−1y
k−1

f(y)
,

where h(y) = εt−k+εt−k−1y+· · ·+ε1yt−k−1. Then f is primitive if and only if the number of
nonzero terms in h(y), considered as a polynomial in y over Fq, is equal to qk−1(q−1)−1−N ,
where N is the number of nonzero terms in the finite sequence εt−k+1, εt−k+2, . . . , εm defined

by εt−n = rn −
∑k−n−1
i=1 fiεt−n−i, n = 0, 1, . . . , k− 1 where the empty sum is interpreted as

0, and εt+n = 1−∑k
i=1 fiεt+n−i, n = 1, 2 . . . ,m− t.

4.1.9 Corollary [1857] An irreducible polynomial is primitive if and only if the finite sequence
ε1, . . . , εm defined in Theorem 4.1.8 contains no two identical periodic subsequences.

4.1.10 Definition [2186] Define wn(q) and Wn(q) as the minimal weight (the number of nonzero
coefficients) among all monic irreducible and primitive, respectively, polynomials of de-
gree n over Fq.

4.1.11 Remark It is stated in [2186] that wn(p) ≤ Wn(p) ≤ (n + 1)/2 for any sufficiently large
prime p. For p = 2, wn(2) ≤Wn(2) ≤ n/4 + o(n).

4.1.12 Problem Extend these results to Fq when q is a power of a prime.

4.1.13 Conjecture [2186] Wn(2) = 3 infinitely often.

4.1.14 Problem [2186] Find examples of fields Fqn with Wn(q) = o(n) or at least with wn(q) = o(n)
for infinitely many n.

4.1.15 Remark The following conjectures require the notions of primitive normal polynomials and
completely normal primitive polynomials; see Sections 5.2 and 5.4.

4.1.16 Conjecture [1416, 2156]

1. For each prime p and n ≥ 2, wn(p) ≤ 5 and if p 6= 2, 3, then wn(p) ≤ 4.

2. For each prime p and n ≥ 2 there is a primitive normal polynomial of degree n
over Fp with weight at most 5.

3. If p ≥ 11 weight 5 can be replaced by weight 4.

4.1.17 Definition For a prime p ≥ 3, assume that the field Fp consists of the elements
0,±1, . . . ,±(p− 1)/2. The height of a polynomial is the maximum absolute value of its
coefficients. We define hn(p) and Hn(p) as the minimal height of all monic irreducible
and primitive, respectively, polynomials of degree n over Fp.

4.1.18 Remark It is stated in [2186] that hn(p) = O(p2/3) and Hn(p) = O(pn/(n+1)+ε). The bound
hn(p) = O(p2/3) has been improved to hn(p) ≤ p1/2+o(1) in [2654].

4.1.19 Problem Improve the above bounds for hn(p) and Hn(p).

4.1.20 Problem Extend the bounds for Fq when q is a power of a prime.
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4.1.21 Theorem [690] For n ≥ 2 and a ∈ F∗q , there is a primitive normal polynomial of degree n
over Fq with trace a.

4.1.22 Theorem There is a primitive normal polynomial of degree n ≥ 3 with given norm and
nonzero trace; see [682] for n ≥ 5, [692] for n = 4, and [1557] for n = 3.

4.1.23 Conjecture [2157] For each n ≥ 2 there is a completely normal primitive polynomial of
degree n over Fq. (This is true if n is a prime, or n = 4, or if qn ≤ 231 with q ≤ 97.)

4.1.24 Remark [2186] For q ≥ n log n there is a completely normal primitive polynomial of Fqn
over Fq.

4.1.25 Conjecture [2816] For any k there is a trinomial f so that
(
f(x), x2k−1 + 1

)
is a primitive

polynomial of degree k over F2. (This conjecture has been proved for k ≤ 500 [307].)

4.1.26 Definition Let f(x) = xn +
∑t
k=0 akx

nk , ak 6= 0, and 0 = n0 < n1 < · · · < nt < n. We
define the excess of f by

E(f) =
∑

t≥j≥(t+1)/2

nj −
∑

t/2≥j≥1

nj .

4.1.27 Remark The excess of a polynomial is related to self-dual, weakly self-dual and almost
weakly self-dual bases; see Section 5.1.

4.1.28 Remark In [2186] it is proved that there are binary primitive polynomials of degree n with
E(f) ≤ 3

32n
2 + o(n).

4.1.29 Problem [2158] Let E(f) denote the excess of the polynomial f . Prove or disprove that for
p a prime, there is a primitive polynomial f for each degree n ≥ 2 with excess E(f) at most
as follows:

1. E(f) ≤ 1, if p > 5;

2. E(f) ≤ 2, if p = 5;

3. E(f) ≤ 3, if p = 3;

4. E(f) ≤ 6, if p = 2.

4.1.30 Remark See [2158] for more results related to the excess of a polynomial.

4.1.31 Remark Several classes of irreducible and primitive polynomials seem to have asymptotic
density δirr (as q →∞) and δprim given by

δirr =
1

n
and δprim =

φ(qn − 1)

nqn
.

4.1.32 Problem [2158] Find natural examples of families of polynomials over Fq having densities of
irreducible and/or primitive polynomials different from δirr and δprim. Some such examples

are given in Table 7 of [1181] and in [673] in connection to windmill polynomials.
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See Also

§2.2 For tables of primitives of various kinds and weights.
§4.2 For discussion of primitive polynomials with prescribed coefficients.
§4.3 For discussion of primitive polynomials with prescribed weights.
§5.2 For information on primitive normal polynomials.
§5.4 For discussion of completely normal primitive polynomials.
§10.2 For connections to linear feedback shift registers.
§11.3 For algorithms related to primitive polynomials.
§14.9 For combinatorial applications of primitive polynomials; see also [2204].

[588] Considers formulas for primitive polynomials of special forms.
[2807] Develops the notion of “typical primitive polynomials” over Zn.

References Cited: [307, 588, 673, 682, 690, 692, 1071, 1181, 1416, 1557, 1857, 1939, 2156,
2157, 2158, 2186, 2204, 2654, 2807, 2816]

4.2 Prescribed coefficients

Stephen D. Cohen, University of Glasgow

4.2.1 Definition Given a positive integer r define τ(r) = φ(r)/r, where φ is Euler’s function.

4.2.2 Remark For a pair (q, n) with q (as always) a prime power, τ(qn − 1) is the proportion
of non-zero elements of Fqn that are primitive (see Theorem 4.1.3). It also signifies the
proportion of powers of irreducible polynomials of degree n that are primitive.

4.2.3 Remark For a primitive polynomial f ∈ Fq and non-zero a ∈ Fq the polynomial F (x + a)
need not be primitive. The arithmetical structure of the set of primitive polynomials is less
marked than that of the set of irreducible polynomials.

4.2.4 Remark The monic reciprocal f∗(x) = a−1
n xnf(1/x) (see Remark 3.5.14) of a primitive

polynomial is also primitive (Remark 4.1.4).

4.2.5 Remark Except as mentioned, all polynomials (in particular in statements of theorems,
etc) will be assumed to be monic polynomials of degree n over Fq taken to have the form
f(x) = xn +

∑n
i=1 aix

n−i. Here ai is the i-th coefficient. The meaning of the terms first (or
last) m coefficients will be as described in Definition 3.5.1. In particular −a1 is the trace of
f and (−1)nan is the norm of f .

4.2.6 Remark The norm of a primitive polynomial has to be a primitive element of Fq (Theorem
4.1.6).

4.2.7 Remark Asymptotic estimates (for large n) of the number of primitive polynomials of degree
n with prescribed coefficients (e.g., with prescribed first or last coefficients) in themselves
do not lead to strong existence results. All the theorems in this section (except Theorem
4.2.14) are existence results that are unaccompanied by useful lower bounds on the number
of primitive polynomials over a range of pairs (q, n).
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4.2.8 Problem Supply non-trivial bounds for the number of primitive polynomials with prescribed
coefficients in the problems in the following subsections.

4.2.9 Definition A normal polynomial of degree n over Fq is an irreducible polynomial whose
roots comprise a normal basis of Fqn over Fq (Definition 2.1.98, Section 5.2).

4.2.10 Remark This section will also feature results on the distribution of polynomials with pre-
scribed coefficients that are simultaneously primitive and normal.

4.2.1 Approaches to results on prescribed coefficients

4.2.11 Remark Character sum techniques and estimates constitute the principal underlying mech-
anism. Specifically, one can characterize both primitivity and the prescribed coefficient re-
quirement in terms of such sums. The primitivity condition is in terms of multiplicative
character sums over Fqn , whereas the coefficient conditions involve lifted (multiplicative
and additive) characters over Fq.

4.2.12 Remark Theorem 4.2.14 is an illustration of a typical asymptotic type of lower bound
estimate that can be attained. All existence results described derive from such estimates
(perhaps “weighted”). Further examples are not given here because the best estimates for
absolute existence purposes are not optimal asymptotically (see Remark 4.2.17).

4.2.13 Definition A square-free divisor of a positive integer r is any factor of the radical of r, i.e.,
the product of the distinct primes dividing r. Thus the number of square-free divisors
or r (denoted by W (r)) is given by W (r) = 2ω(r), where ω(r) is the number of distinct
primes dividing r (with ω(1) = 0).

4.2.14 Theorem [1031] The number N of primitive polynomials whose first m coefficients are
arbitrarily prescribed satisfies

|N − τ(qn − 1)(qn − 1)| ≤ mτ(qn − 1)W (qn − 1)(qm − 1)qn/2, (4.2.1)

where τ is given in Definition 4.2.1.

4.2.15 Remark Necessarily, Theorem 4.2.14 can give a positive result on the existence of a primitive
polynomial with prescribed first m coefficients only if m < n/2, and indeed for m close to
n/2 only asymptotically as n → ∞. An improved asymptotic result on the existence of
primitive normal polynomials with prescribed first m coefficients occurs in [1034].

4.2.16 Remark If the last m coefficients of a primitive polynomial are prescribed, one can obtain
estimates by considering instead the number of monic primitive reciprocal polynomials
f∗(x) = a−1

n xnf(1/x) whose first m− 1 coefficients and trace are prescribed.

4.2.17 Remark The effect of the factor W (qn− 1) in estimates such as (4.2.1) can be significantly
reduced through a sieving technique described in many of the papers cited below. In this
way W (qn−1) is reduced to W (k) where k is an essential “core,” a factor of qn−1, and the
sieving process generally proceeds over the remaining primes in qn− 1 not in the core. This
produces sharper existence results (while simultaneously blunting asymptotic quality).

4.2.18 Remark When the characteristic p of Fq is less than m, an equivalent process to prescribing
directly the first m coefficients is to consider (irreducible) polynomials f with the first m
values σj prescribed, where σj is the trace over Fq of γj for a root γ of f . By these means
it suffices to prescribe m alternative parameters (or conditions).
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4.2.19 Remark One can focus on polynomials with a specific coefficient prescribed (the m-th, say),
[686]. For m ≤ n/2 this can be achieved with around m/2 constraints (rather than the m
conditions needed to fix the first m coefficients, noted in Remark 4.2.18). For m exceeding
n/2 the reciprocal polynomial can be considered but then an extra condition (relating to
fixing the norm as a selected primitive element of Fq) is needed.

4.2.20 Remark Dealing with the situation when one (or more) of the first m coefficients are
prescribed via an alternative set of prescribed values as in Remark 4.2.18 breaks down if
p ≥ m. To overcome this, a p-adic method, devised initially by Fan and Han, for example
in [1030, 1031, 1032], and improved by Cohen, for example in [686], is used in many
of the papers cited below. This eliminates from the situation difficulties caused by the
characteristic.

4.2.21 Remark To establish a specific existence result, it is shown that it is valid for pairs (q, n)
satisfying an arithmetical condition that holds for almost all pairs (q, n). Computation is
required; firstly numerical checks to show that some of the finite number of remaining pairs
satisfy the condition and then, for pairs which fail, direct working in the field to exhibit a
polynomial with the required property.

4.2.2 Existence theorems for primitive polynomials

4.2.22 Remark A conjecture of Hansen and Mullen, [1416], has been the driver for the key theorem
on the existence of a primitive polynomial with an arbitrary prescribed coefficient. Prior
to its formulation the only known result was the following existence theorem for primitive
polynomials with arbitrary trace [675, 700, 1637]. Paper [700] establishes a self-contained
proof of the full theorem.

4.2.23 Theorem [686, 701, 702] Given m with 1 ≤ m < n and a ∈ Fq, there exists a primitive
polynomial with m-th coefficient a, with (genuine) exceptions only when

(q, n,m, a) = (q, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (2, 4, 2, 1).

4.2.24 Remark An existence result on primitive polynomials with prescribed norm and trace
can be derived by combining a theorem on primitive normal polynomials with prescribed
norm and trace (Theorem 4.2.46) with one on the last two coefficients prescribed (Theorem
4.2.50), since these two coefficient prescriptions are equivalent for primitive polynomials,
as for irreducible polynomials (Remark 3.5.14). (Note, however, that the monic reciprocal
of a normal polynomial need not be normal and therefore the equivalence breaks down for
primitive normal polynomials.) For the question of prescribing the norm and trace it is
sensible to assume n ≥ 3 and that the prescribed norm is a primitive element of Fq.

4.2.25 Theorem [682, 691, 692, 1037, 1557] Let a, b ∈ Fq with b a primitive element of Fq. Suppose
n ≥ 3 if a 6= 0 and n ≥ 5 if a = 0. Then there exists a primitive polynomial with trace a
and norm b.

4.2.26 Remark Theorem 4.2.25 is complete except for the cases in which a = 0 and n = 3, 4; these
remaining cases have recently been resolved in [687]: the only exceptions occur when n = 3,
a = 0, and q = 4 or 7.

4.2.27 Problem Similarly, other existence results on primitive polynomials may be derived as a
consequence from those on primitive normal polynomials (Section 4.2.3). Enunciate these
and fill gaps that arise because the trace of a normal polynomial must be non-zero.

4.2.28 Theorem [627] Suppose n ≥ 5. Then there exists a primitive polynomial with a1 = an−1 =
0, except when (q, n) = (4, 5), (2, 6), (3, 6).
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4.2.29 Remark As an existence result, Theorem 4.2.28 is complete: the question must have a
negative answer when n ≤ 4. It can be rephrased as asserting that the existence of a
primitive f for which both f and its monic reciprocal (Remark 3.5.14) have trace 0.

4.2.30 Theorem [683] Suppose n ≥ 5 and a, b ∈ Fq. Then there exists a primitive polynomial f
such that f has trace a and its monic reciprocal has trace b.

4.2.31 Problem Extend Theorem 4.2.30 to cover degrees n = 3, 4, perhaps with some listed ex-
ceptions.

4.2.32 Theorem [198, 695, 698, 1411, 1412, 2658] Suppose n ≥ 5 if q is odd, and n ≥ 7 if q is even.
Then there exists a primitive polynomial with its first two coefficients arbitrarily prescribed.
If n = 4 and q is odd, then the same conclusion holds for sufficiently large q.

4.2.33 Remark In [1411] it is claimed that when q is even, then the conclusion of Theorem 4.2.32
holds (with some exceptions) when n ≥ 4, although some of the given detail assumes n ≥ 7.

4.2.34 Theorem [695, 1030, 1033, 2104] Suppose n ≥ 7. Then there exists a primitive polynomial
with its first three coefficients arbitrarily prescribed.

4.2.35 Remark An asymptotic result Theorem 4.2.52 on the existence on a primitive normal
polynomial with its first bn−1

2 c coefficients prescribed yields a corresponding one for a
primitive polynomial [695, 1032] (see Problem 4.2.27). What follows now is an unconditional
result on the existence of a primitive polynomial with up to one-third of its first coefficients
prescribed.

4.2.36 Theorem [684] Suppose m ≤ n
3 (except that m ≤ n

4 when q = 2). Then there exists a
primitive polynomial with its first m coefficients arbitrarily prescribed, with the exception
that there is no primitive cubic over F4 with zero first coefficient.

4.2.3 Existence theorems for primitive normal polynomials

4.2.37 Remark Underlying these results is the fundamental existence theorem of Lenstra and
Schoof [1899] (see also [693]).

4.2.38 Theorem [693, 1899] For every pair (q, n) there exists a primitive normal polynomial of
degree n over Fq.

4.2.39 Remark The original proof of Theorem 4.2.38 in [1899] requires significant numerical com-
putation to verify plus direct examination of a few fields. For the modified approach of [693]
a computer is not required.

4.2.40 Remark If n ≤ 2, then a primitive polynomial is automatically normal (theorem statements
may or may not include these values).

4.2.41 Remark For normal polynomials the character sums referred to in Remark 4.2.11 involve
additive characters over Fqn . The resulting estimates (corresponding to Theorem 4.2.14, for
example) now feature such quantities as W (xn − 1), defined as the number of square-free
polynomial divisors of the polynomial xn− 1 ∈ Fq[x]. Furthermore, the sieve (referred to in
Remark 4.2.17) now can additionally relate to the factorization of the polynomial xn − 1,
wherein the sieving process proceeds over the irreducible factors in xn−1 not in the “core.”
Indeed, because the factorization of xn − 1 can be examined more systematically than the
corresponding numerical factorization of qn−1, theoretical existence can be treated initially
more effectively by means of an additive rather than a multiplicative sieve. Naturally, the
resulting arithmetic conditions are more demanding than in the case of (merely) primitive
polynomials and the consequent computations more substantial.
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4.2.42 Remark In the study of polynomials which are both primitive and normal, prescribed
first or last coefficients cannot be so easily interchanged via use of reciprocal polynomials
since the monic reciprocal of a normal polynomial is not necessarily normal. Similarly, the
requirements for specifying one coefficient (see Remark 4.2.19) are more difficult. There are,
however, few new difficulties associated with the characteristic (see Remark 4.2.20).

4.2.43 Theorem [1036] Suppose n ≥ 15 and 1 ≤ m < n and that a ∈ Fq (with a 6= 0 if m = 1).
Then there exists a primitive normal polynomial with m-th coefficient am = a.

4.2.44 Remark Paper [1036] relies on some substantial computations which are only briefly sum-
marized. Its authors note that the theory extends unchanged to polynomials of smaller
degree and indeed there is a manuscript that claims an extension of Theorem 4.2.43 to
degrees n ≥ 9, though there are some problems with the details. The problem is sensible
for n ≥ 3 but the present method cannot currently be applied effectively to small degrees.

4.2.45 Conjecture [1036] Suppose n ≥ 2 and 1 ≤ m < n and that a ∈ Fq (with a 6= 0 if m = 1).
Then there exists a primitive normal polynomial with am = a, except when (q, n,m, a)
takes any of the values

(2, 3, 2, 1), (2, 4, 2, 1), (2, 4, 3, 1), (2, 6, 3, 1), (3, 4, 2, 2), (5, 3, 4, 3), (4, 3, 2, 1 + γ),

where F4 = F2(γ) with γ2 + γ + 1 = 0.

4.2.46 Theorem [682, 691, 692, 1557] (Compare with Theorem 4.1.22) Assume n ≥ 3. Suppose
a 6= 0 ∈ Fq and b is a primitive element in Fq. Then there exists a primitive normal
polynomial with trace a and norm b.

4.2.47 Remark Theorem 4.2.46 is a striking complete existence result. Thus, in the case of cubics,
there is a primitive polynomial x3 + ax2 + cx + b with a, b fixed appropriately and only c
allowed to vary. Further results listed below are incomplete.

4.2.48 Problem The existence of primitive polynomials of the lowest degrees remains to be estab-
lished.

4.2.49 Theorem [1035] Let a 6= 0, b ∈ Fq. Suppose n ≥ 7. Then there exists a primitive normal
polynomial with first coefficient a1 = a and second coefficient a2 = b.

4.2.50 Theorem [1037] Let a ∈ Fq and b be a primitive element in Fq. Suppose n ≥ 5. Then
there exists a primitive normal polynomial with penultimate coefficient an−1 = a and last
coefficient an = (−1)nb.

4.2.51 Remark The next results (on prescribed first and last coefficients) are asymptotic, i.e.,
apply for sufficiently large values of q.

4.2.52 Theorem [1034] Suppose n ≥ 2. Then there exists a constant C(n) such that, for q >
C(n), there exists a primitive normal polynomial with its first bn2 c coefficients arbitrarily
prescribed, subject to the constraint that the first coefficient is non-zero.

4.2.53 Theorem [1029] Suppose n ≥ 2. Then there exists a constant C(n) such that, for q > C(n),
there exists a primitive normal polynomial with its last bn2 c coefficients arbitrarily prescribed
subject to the constraint that the last coefficient is (−1)nb, where b is a given primitive
element of Fq. Moreover, if the prescribed coefficients (other than the last) are all zero, the
total number of prescribed coefficients may be taken to be bn+1

2 c.
4.2.54 Remark Further constraints on primitive normal polynomials with prescribed coefficients

could lead to new areas of research as in the illustrations which follow.
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4.2.55 Definition An element α of Fqn is completely normal if it generates over any intermediate
field Fqd (where d|n) a normal basis of Fqn over Fqd . The minimal polynomial of α over
Fq is a completely normal polynomial.

4.2.56 Conjecture [2157] For every n there exists a primitive completely normal polynomial.

4.2.57 Remark Major contributions towards establishing this conjecture have been made by
Hachenberger [1391, 1394] (see Section 5.4). Part of the construction involves trace-
compatible sequences. Also the methods employed emphasize algebraic structure rather
than character sums and lead to useful lower bounds on the number of constructed polyno-
mials.

4.2.58 Problem For which pairs (q, n) does there exist a primitive completely normal polynomial
with prescribed (non-zero) trace and/or (primitive) norm?

4.2.59 Remark Although the (monic) reciprocal of a primitive polynomial is primitive, the recip-
rocal of a normal polynomial need not be normal.

4.2.60 Definition A strong primitive normal polynomial f is such that both f and its monic
reciprocal are primitive normal polynomials.

4.2.61 Theorem [694] For every pair (q, n) there exists a strong primitive normal polynomial,
except when

(q, n) = (2, 3), (2, 4), (3, 4), (4, 3), (5, 4).

4.2.62 Problem For which pairs (q, n) does there exist a strong primitive normal polynomial with
prescribed (non-zero) trace and/or (primitive) norm?

See Also

§3.5 For discussion of irreducible polynomials with prescribed coefficients.
§5.2 For information on primitive normal polynomials.
§5.4 For discussion of completely normal primitive polynomials.

References Cited: [198, 627, 675, 682, 683, 684, 686, 691, 692, 693, 694, 695, 698, 700, 701,
702, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1391, 1394, 1411, 1412, 1416,
1557, 1637, 1899, 2104, 2157, 2658]

4.3 Weights of primitive polynomials

Stephen D. Cohen, University of Glasgow

4.3.1 Definition As in Definition 4.1.10, denote by Wn(q) the minimal weight (or number of
nonzero coefficients) of a primitive polynomial of degree n over Fq.

4.3.2 Remark Hansen and Mullen [1416] list for each prime p < 100 and each degree n, with
pn < 1050, a primitive polynomial over Fp of weight Wn(p). Earlier, Stahnke [2699] had
listed a primitive polynomial over F2 for each degree n ≤ 168 of weight Wn(2). In every
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case Wn(p) = 3 or 5. Though Definition 4.3.1 makes sense for any prime power q, most
relevant literature relates to the binary field F2. Because of numerous applications there
is particular interest in primitive polynomials of low or minimal weight. When n ≥ 2,
Wn(2) ≥ 3: thus primitive trinomials (failing which pentanomials) are especially sought.
In this research area there are few “theorems,” most work being empirical, heuristic or
conjectural. References are scattered in journals in diverse fields. The citations given here
are selective and incomplete.

4.3.3 Theorem [2634] (See Remark 4.1.11) For any sufficiently large prime p,

Wn(p) ≤ n+ 1

2
.

4.3.4 Theorem [2634] (See Remark 4.1.11) Wn(2) ≤ n

4
+ o(1).

4.3.5 Conjecture [1302, 2186] For all n, Wn(2) ≤ 5.

4.3.6 Conjecture [1302, 2186] For infinitely many values of n, Wn(2) ≤ 3.

4.3.7 Remark Progress on Conjectures 4.3.5 and 4.3.6 may be difficult. The next conjecture has
a less ambitious goal.

4.3.8 Conjecture [1302] There is a positive integer m such that for infinitely many values of n,
Wn(2) ≤ m.

4.3.9 Remark When 2n−1 is a (Mersenne) prime any irreducible polynomial of degree n over F2

is primitive. This means that polynomials of these degrees and small weight are valuable,
because primitivity can be tested (or at least ruled out) with the aid of theorems such as
Swan’s theorem for trinomials from [2753]. See also Theorem 3.3.25.

4.3.10 Theorem [408, 2753] Let n > s > 0 and assume n+s is odd. Then the trinomial xn+xs+1 ∈
F2[x] has an even number of irreducible factors if and only if one of the following holds:

1. n even, n 6= 2s, ns/2 ≡ 0 or 1 (mod 4);

2. n odd, s - 2n, n ≡ ±3 (mod 8);

3. n odd s|2n, n ≡ 1 (mod 8).

4.3.11 Remark A trinomial of degree n over F2 where 2n−1 is a prime is a Mersenne trinomial (of
degree n). To date 47 Mersenne primes are known (numbered in increasing order) as M1 = 2,
. . . , M47 = 43112609. A total of 30 of these yield primitive trinomials. Zierler [3071] lists
Mersenne trinomials of degrees up to 11213 (corresponding to M23) and additional primitive
trinomials have been listed in [406, 1489, 1811]. The “Great Trinomial Hunt,” driven by
Brent and Zimmermann [408], parallels GIMPS, the “Great Internet Prime Search” (see
www.mersenne.org). Note that M47 is the largest known prime (as of November 2011),
having 12978189 digits. Table 4.3 gives a list of all known Mersenne trinomials xn + xs + 1
with Mr = 2n − 1 and s < n/2. Their reciprocals (wherein s > n/2) are also primitive.

4.3.12 Remark Lists of primitive Mersenne pentanomials have also been produced, see for exam-
ple [1811, 3011]. Those in [3011] have the form xn + xn−1 + xm + xm−1 + 1. In particular,
it has been suggested [3011] that, for random number generation, the use of pentanomials
might be preferable to trinomials. Lists of primitive polynomials over F2 of weights 5, 7, and
9 and all degrees between 9 and 660 occur in [2437]. These possess the quality that the dif-
ference between each pair of consecutive indices is almost the same. This property promotes
the implementation of the generation of linear recurring sequences based on highly mod-
ular devices (ring generators) leading to enhanced performance. On the other hand, there
are cryptographic reasons why primitive polynomials of high weight might be important
especially if all multiples of moderate degree also have high weight [1994].
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r n s

1 2 1
2 3 1
3 5 2
4 7 1, 3
6 17 3, 5, 6
8 31 3, 6, 7, 13

10 89 38
12 127 1, 7, 15, 30, 63
13 521 32, 48, 158, 168
14 607 105, 147, 273
15 1 279 216, 418
17 2 281 715, 915, 1029
18 3 217 67, 576
20 4 423 271, 369, 370, 649, 1393, 1419, 2098
21 9 689 84, 471, 1836, 2444, 4187
24 19 937 881, 7083, 9842
26 23 209 1530, 6619, 9739
27 44 497 8575, 21034
29 110 503 25230, 53719
30 132 049 7000, 33912, 41469, 52549, 54454
32 756 839 215747, 267428, 279695
33 859 433 170340, 288477
37 3 021 377 361604, 1010202
38 6 972 593 3037958
41 24 036 583 8412642, 8785528
42 25 964 951 880890, 4627670, 4830131, 6383880
43 30 402 457 2162059
44 32 582 657 5110722, 5552421, 7545455
46 42 643 801 55981, 3706066, 3896488, 12899278, 20150445
47 43 112 609 3569337, 4463337, 17212521, 21078848

Table 4.3.1 Mersenne trinomials.

4.3.13 Example [3011] There is no Mersenne trinomial of degree 61 (M9) but x61+x60+x46+x45+1
is a primitive pentanomial.

See Also

§3.3 For Swan’s theorem type results.
§3.4 For discussion of the weights of irreducible polynomials.
§14.9 For applications of primitive polynomials.

References Cited: [406, 408, 1302, 1416, 1489, 1811, 1994, 2186, 2437, 2634, 2699, 2753,
3011, 3071]
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4.4 Elements of high order

José Felipe Voloch, University of Texas at Austin

4.4.1 Remark There is no known explicit construction of primitive elements (Definition 2.1.38).
For some applications, it suffices to construct elements of sufficiently large order. The current
state of the art on explicit constructions of elements of large order usually proves lower
bounds for their orders which are much smaller than the expected actual order.

4.4.2 Definition The (absolute) degree of an element α of a finite field of characteristic p is
degα = [Fp(α) : Fp]. The order of α 6= 0 is defined in Definition 2.1.40 and is denoted
by ordα.

4.4.3 Remark If α 6= 0, 1 is an element of a finite field of characteristic p, then degα < ordα ≤
pdegα − 1.

4.4.1 Elements of high order from elements of small orders

4.4.4 Theorem There exists an absolute constant c > 0 and, for every ε > 0, there exists a
δ > 0, such that whenever α 6= 0, 1 is an element of a finite field of characteristic p with
degα = n.

1. [1241, 1243] If ordα = n+ 1 then ord(1− α) ≥ exp(c
√
n).

2. [2884] If ordα < n2−ε then ord(1− α) ≥ exp(cnδ).

4.4.5 Remark If α is as in Theorem 4.4.4 Part 1, then n + 1 is prime and p is a primitive root
modulo n+ 1. Likewise, the possible values of n in Theorem 4.4.4 Part 2 are restricted.

4.4.6 Remark Similar, but weaker, results can be proved about the order of R(α), R ∈ Fp(x) or
even β, F (α, β) = 0, F (x, y) ∈ Fp[x, y], with α as in the previous theorem [2884].

4.4.7 Remark Poonen conjectured (as part of a more general conjecture, see [2884]) that, with
notation as in the previous theorem, max{ordα, ord(1− α)} ≥ exp(cn). A special case was
also conjectured by Cheng [611].

4.4.8 Theorem [611] Let α satisfy αm = g where m|(q − 1) and let g be a primitive element in
Fq. Then, degα = mdeg g and ord(1− α) ≥ exp(cm).

4.4.2 Gao’s construction and a generalization

4.4.9 Theorem [1173] Given an integer n and a prime p, let m = dlogp ne. If g ∈ Fp[x],deg(g) ≤
2m is such that xp

m − g(x) has an irreducible factor of degree n then any root of this factor
in Fpn has order at least exp((log n)2/ log logn).

4.4.10 Remark A search for the polynomial g satisfying the hypotheses in the above theorem can
be done in time polynomial in n log p. It is conjectured that such a polynomial exists for all
p, n.

4.4.11 Remark An improvement on the bounds of [1173] was given in [713].
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4.4.3 Iterative constructions

4.4.12 Theorem [2886] Let α0 = 1 ∈ F2, αk a root of x2 + αk−1x + 1, k > 0. Then F22k =
F2(αk), n = degαk = 2k and ordαk ≥ exp(nδ), for some absolute δ > 0.

4.4.13 Theorem [465] Define f(x, y) := y2 + (6 − 8x2)y + (9 − 8x2). If q = pm is an odd prime
power such that q ≡ 1 (mod 4), α0 ∈ Fq is such that α2

0 − 1 is not a square in Fq, define
αk by f(αk−1, αk) = 0, k > 0. Let δk = α2

k − 1. Then n = deg δk = m2k and ord(δk) ≥
exp(c(log n)2) for some constant c > 0.

See Also

[54] For multiplicative orders of Gauss periods.
[612] For high order elements using subspace polynomials.
[1242] For high order elements using Gauss periods.

References Cited: [54, 465, 611, 612, 713, 1173, 1241, 1242, 1243, 2884, 2886]
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5.1 Duality theory of bases

Dieter Jungnickel, University of Augsburg

As noted in Section 2.1, Fqm may be viewed as a vector space of dimension m over
Fq, and therefore has a basis (in fact, many bases) over Fq. Some fundamental definitions
and results on bases were already given there. In particular, Theorem 2.1.93 and Corollary
2.1.95 provide criteria when a set {α1, . . . , αm} of elements in Fqm forms a basis over Fq.

The present section provides a more detailed treatment of the general theory of bases,
the unifying theme being the notion of duality introduced in Definition 2.1.100. Proofs for
most of the results in this section can be found in [1631]; however, a somewhat different
notation is used there.

5.1.1 Dual bases

We restate and expand the basic Definition 2.1.100 as follows.

5.1.1 Definition Two ordered bases {α1, . . . , αm} and {β1, . . . , βm} of F = Fqm over K = Fq are
dual (or complementary) if TrF/K(αiβj) = δij , where δij = 0 if i 6= j and δij = 1 if i = j.
An ordered basis is trace-orthogonal if it satisfies TrF/K(αiαj) = 0 whenever j 6= i; and

101
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it is self-dual if it is dual with itself, that is, if it additionally satisfies TrF/K(α2
i ) = 1

for all i.

5.1.2 Remark The following simple but fundamental result guarantees the existence of dual bases.
Remark 5.1.4 provides a proof by giving an explicit construction using the well-known
concept of dual bases in linear algebra.

5.1.3 Theorem For every ordered basis B = {α1, . . . , αm} of F = Fqm over K = Fq, there is a
uniquely determined dual ordered basis B∗ = {β1, . . . , βm}.

5.1.4 Remark As F is a finite-dimensional vector space over K, it is isomorphic to the dual vector
space F ∗ consisting of all linear transformations from F to K. In Theorem 2.1.84, these
transformations were given in terms of the trace function TrF/K in the form Lβ with β ∈ F .
Then the map L : F → F ∗ with β 7→ Lβ is an isomorphism. This allows one to obtain the
following explicit description of the dual basis B∗:

βj = L−1(α∗j ), (5.1.1)

where α∗j is the linear transformation defined by the requirement

α∗j (αi) = δij for i = 1, . . . ,m. (5.1.2)

5.1.5 Remark One reason for the importance of dual bases is the fact that they provide an easy
way for determining the coordinate representation of arbitrary elements of F , using the
concept of primal and dual coordinates.

5.1.6 Definition Given a dual pair of ordered bases B,B∗ as above, we use the following notation.
Let

ξ = x1α1 + · · ·+ xmαm = (x)1β1 + · · ·+ (x)mβm.

Then
rB(ξ) = (x1, . . . , xm) and rB∗(ξ) = ((x)1, . . . , (x)m)

are, respectively, the primal coordinates and the dual coordinates of ξ (with respect to
B).

5.1.7 Lemma Let B = {α1, . . . , αm} and B∗ = {β1, . . . , βm} be a dual pair of ordered bases of
F = Fqm over K = Fq, let ξ ∈ F , and let rB(ξ) and rB∗(ξ) be as in Definition 5.1.6. Then

xi = TrF/K(ξβi) and (xi) = TrF/K(ξαi). (5.1.3)

5.1.8 Remark The following two results deal with the dual basis of a basis B in the important
special cases where B is either a polynomial basis or a normal basis; see Definitions 2.1.96
and 2.1.98.

5.1.9 Theorem Let θ ∈ F = Fqm , and assume that B = {α1 = θ, α2 = θq, . . . , αm = θq
m−1} is a

normal basis for F over K = Fq. Then the dual basis B∗ = {β1, . . . , βm} is likewise normal:

B∗ = {ζ, ζq, . . . , ζqm−1}, where ζ = β1.

5.1.10 Remark [1172] The dual normal basis B∗ can be described explicitly as follows. For i =

0, . . . ,m− 1, put ti := TrF/K(θθq
i

). Let t be the polynomial

t(x) = tm−1x
m−1 + · · ·+ t1x+ t0 ∈ K[x],
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and let d(x) = dm−1x
m−1 + · · ·+ d1x+ d0 be the unique monic polynomial of degree < m

in K[x] satisfying
d(x)t(x) ≡ 1 (mod xm − 1).

Then B∗ is the normal basis generated by the element

ζ = d0θ + d1θ
q + · · ·+ dm−1θ

qm−1

.

Normal bases will be studied in detail in Section 5.2.

5.1.11 Remark In contrast to the case of normal bases considered in Theorem 5.1.9, the dual basis
of a polynomial basis is usually not a polynomial basis. Nevertheless, an explicit description
is possible.

5.1.12 Theorem [1573] Let θ be a root of a monic irreducible polynomial f of degree m over
K = Fq, and let B = {1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of F = Fqm
over K. Assume that f splits over F as

f(x) = (x− θ)
(
γm−1x

m−1 + · · ·+ γ1x+ γ0

)
.

Then the dual basis B∗ = {β1, . . . , βm} can be computed as follows:

βi = γi−1/f
′(θ) for i = 1, . . . ,m,

where f ′ denotes the formal derivative of f .

5.1.13 Theorem [1265, 1298] Let θ be a root of a monic irreducible polynomial f of degree m over
K = Fq, and let B = {1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of F = Fqm
over K. Then the dual basis B∗ of B is likewise a polynomial basis if and only if f is a
binomial and m ≡ 1 (mod p), where q is a power of the prime p.

5.1.14 Corollary There exists a dual pair of polynomial bases of Fqm over Fq if and only if the
following three conditions are satisfied:

1. m ≡ 1 (mod p);

2. every prime r dividing m also divides q − 1;

3. m ≡ 0 (mod 4) implies q ≡ 1 (mod 4).

5.1.15 Corollary Let B = {1, θ, θ2, . . . , θm−1} be a polynomial basis of of F2m over F2, where
m ≥ 2. Then the dual basis of B cannot be a polynomial basis.

5.1.16 Example There is no dual pair of polynomial bases of F3m over F3. There exists a dual pair
of polynomial bases of F4m over F4 if and only if m is a power of 3. There exists a dual pair
of polynomial bases of F5m over F5 if and only if m is a power of 16.

5.1.2 Self-dual bases

5.1.17 Remark Lemma 5.1.7 shows that the computation of coordinates is particularly simple when
the basis used is self-dual. This also has important applications in the design of hardware
implementations for the multiplication in finite (extension) fields; see, for instance, Sections
4.1, 4.4, and 5.5 of [1631]. Unfortunately, a self-dual basis does not always exist, which
motivates considering a slightly weaker notion.

5.1.18 Theorem [2583] There exists a self-dual basis of Fqm over Fq if and only if either q is even
or both q and n are odd.



104 Handbook of Finite Fields

5.1.19 Definition A basis {α1, . . . , αm} of F = Fqm over K = Fq is almost self-dual if it is
trace-orthogonal and if it additionally satisfies TrF/K(α2

i ) = 1 for i = 1, . . . ,m−1, with
possibly one exception.

5.1.20 Theorem [1635] There always exists an almost self-dual basis of Fqm over Fq.

5.1.21 Remark If there exists a self-dual basis for F over K, there are many such bases. All these
bases are related by suitable transformations, namely via orthogonal matrices; see Definition
13.2.35. The number of such matrices is given in Theorem 13.2.37, which implies an explicit
formula for the number of self-dual bases.

5.1.22 Lemma [1635] Let B = {α1, . . . , αm} be a self-dual ordered basis of F = Fqm over K = Fq,
and let A = (aij) be an invertible m × m matrix over K. Then the ordered basis B′ =
{β1, . . . , βm} with

βi =
m∑
i=1

aijαj for i = 1, . . . ,m

is likewise self-dual if and only if A is an orthogonal matrix. In particular, the number of
ordered self-dual bases of F over K equals the number of orthogonal m×m matrices over
K, provided that one such basis exists.

5.1.23 Theorem [1635] The number of (unordered) self-dual bases of Fqm over Fq is equal to

sd(m, q) =
γ

m!

m−1∏
i=1

(qi − εi), (5.1.4)

where

εi =

{
1 if i is even,

0 if i is odd,
and γ =


2 if q is even,

1 if q and m are odd,

0 otherwise.

5.1.3 Weakly self-dual bases

5.1.24 Theorem [1573] For m ≥ 2, there does not exist a self-dual polynomial basis of Fqm over Fq.

5.1.25 Remark In contrast to Theorem 5.1.24, self-dual normal bases often exist; see Section 5.2.

5.1.26 Remark For computational purposes, it would be helpful to have a self-dual polynomial
basis. However, Theorem 5.1.24 excludes this possibility. Fortunately, there are weaker no-
tions which are still useful for hardware implementations; one such notion is discussed in
the present subsection.

5.1.27 Definition A basis {α1, . . . , αm} of F = Fqm over K = Fq with associated dual basis
B∗ = {β1, . . . , βm} is weakly self-dual if there exist an element δ ∈ F ∗ and a permutation
σ of {1, . . . ,m} such that the following condition holds:

βi = δασ(i) for i = 1, . . . ,m. (5.1.5)

5.1.28 Remark For computational purposes, weakly self-dual polynomial bases are quite attractive,
as they lead to rather simple transformations between dual and primal coordinates. Consider
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some element ξ ∈ F , with primal and dual coordinates as in Definition 5.1.6. Using Equation
(5.1.5), one obtains

ξδ =
m∑
j=1

xσ(j)βj . (5.1.6)

Thus the dual coordinates of the product ξδ arise by simply permuting the primal coordi-
nates of ξ according to σ.

5.1.29 Remark The observation in Remark 5.1.28 is of particular interest for hardware implemen-
tations of the multiplication in F if a polynomial basis B is used. Consider a further element
η ∈ F , given in primal coordinates (y1, . . . , ym), and write π = ξη. Then one may design a
simple hardware device – called a dual basis multiplier with respect to B – which computes
the product πδ = (ξη)δ = (ξδ)η in dual coordinates from ξδ in dual coordinates (which, ac-
cording to Equation (5.1.6), are obtained from the primal coordinates of ξ by just applying
the permutation σ) and η in primal coordinates. Using Equation (5.1.6) for π instead of ξ,
the primal coordinates of the product π can then be obtained by simply permuting the dual
coordinates of πδ according to σ−1, so that all required coordinate transformations reduce
to permutations. Moreover, the permutations arising are very simple ones; see Theorem
5.1.30 below. In the particularly important binary case, this allows the hardware design of
efficient dual basis multipliers in many instances of practical interest; see [1631] for more
details and for examples of dual basis multipliers.

5.1.30 Theorem [1298, 2936] A polynomial basis B = {1, θ, θ2, . . . , θm−1} of Fqm over Fq is weakly
self-dual if and only if the minimal polynomial f of θ is either a trinomial with constant
term −1 or a binomial. Moreover, for i = 1, . . . ,m,

δ = βk =
1

θkf ′(θ)
and σ(i) := k − i+ 1 (mod m) if f(x) = xm + axk − 1,

and

δ =
1

f ′(θ)
=

1

mθm−1
and σ(i) := 1− i (mod m) if f(x) = xm − a.

5.1.31 Corollary Let B = {1, θ, θ2, . . . , θm−1} be a polynomial basis of F = Fqm over Fq. Then
the transformation from the primal coordinates of an arbitrary element ξ ∈ F to the dual
coordinates of the element ξδ (for a suitable constant element δ of F ) is just a permutation
if and only if the minimal polynomial of θ is either a trinomial with constant term −1 or a
binomial.

5.1.32 Remark As the binary case is of particular practical importance, we state some results for
this special case explicitly.

5.1.33 Theorem Let f(x) = xm + xk + 1 be an irreducible trinomial over F2, let θ be a root of
f , and B∗ = {β1, . . . , βm} the dual basis of the polynomial basis B = {1, θ, θ2, . . . , θm−1}
generated by θ. Then B is weakly self-dual, and Equation (5.1.5) is satisfied with

δ = βk =
1

θkf ′(θ)
and σ(i) := k − i+ 1 (mod m) for i = 1, . . . ,m.

5.1.34 Example For m = 6, we may use a root θ of the cyclotomic polynomial Φ9(x) = x6 +x3 +1
over F2 to generate F = F26 . Then the polynomial basis B = {1, θ, θ2, θ3, θ4, θ5} is weakly
self-dual with δ = 1

θ3θ2 = θ4 and

σ =

(
1 2 3 4 5 6
3 2 1 6 5 4

)
.
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Explicitly, the dual basis of B is given by

B∗ = {θ6 = θ3 + 1, θ5, θ4, θ9 = 1, θ8 = θ5 + θ2, θ7 = θ4 + θ}.

It is easily checked that B and B∗ indeed form a pair of dual bases.

5.1.35 Corollary Let θ be a root of a monic irreducible polynomial f of degree m over K = F2,
and let B = {1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of F2m over K.
Then the dual basis B∗ of B is given by a permutation of B if and only if m is odd and
f(x) = xm + x+ 1.

5.1.36 Remark As noted before, the weakly self-dual polynomial bases are those polynomial bases
for which the transformation between primal and dual coordinates can be realized with a
minimum of complexity. In view of Theorem 5.1.33, the irreducible polynomials one should
use for designing dual basis multipliers are therefore the irreducible trinomials. Fortunately,
these exist in many – though by no means all – cases; see Sections 2.2 and 3.4. For n ≤
10, 000, this holds in about half of the cases.

5.1.4 Binary bases with small excess

5.1.37 Remark In cases where no weakly self-dual polynomial basis can exist, further general-
izations of the notion of weak self-duality are useful. We begin with some results for the
binary case; proofs for these results can be found in [1631]. Consider a polynomial basis
B = {1, θ, θ2, . . . , θm−1} of F2m over F2 and a scalar multiple C = B∗/δ of its dual basis
B∗. According to Definition 5.1.27, B is a weakly self-dual basis (with respect to the given
value of δ) if and only if the coordinate transformation from C to B is just a permutation;
equivalently, the matrix S associated with this change of basis has to be a permutation
matrix. If no weakly self-dual basis exists, one wants to find a polynomial basis B and a
suitable element δ for which the associated transformation matrix S is as simple as possible,
meaning that S should have the smallest possible number of non-zero entries. This leads to
the following definition.

5.1.38 Definition The weight w(S) of an invertible m ×m matrix S is the number of non-zero
entries of S. As the minimum weight is always at least m, one defines the excess of S
as e(S) = w(S)−m.

5.1.39 Remark In the hardware design of dual basis multipliers over F2, one wants to use an
irreducible polynomial for which the matrix S associated with this change of basis has the
smallest possible excess, as this turns out to be the number of XOR-gates required for
computing the primal coordinates from the generalized dual coordinates, that is, from the
coordinates with respect to C = B∗/δ; see, for instance, [1631, Section 4.5]. Weakly self-dual
bases correspond to the smallest possible case, namely e(S) = 0.

5.1.40 Example Consider the irreducible polynomial f(x) = x8 + x4 + x3 + x2 + 1 over F2, and
let θ be a root of f . Then f = (x− θ)g, where

g(x) = θ−1 + θ−2x+ (1 + θ + θ5)x2 + (1 + θ4)x3 + θ3x4 + θ2x5 + θx6 + x7.

By Theorem 5.1.12, the dual basis B∗ = {β1, . . . , βm} of the polynomial basis B defined by θ
is obtained by dividing the coefficients of g by f ′(θ) = θ2. Choosing δ = (θ3f ′(θ))−1 = 1/θ5

gives B∗/δ = {γ1, . . . , γm}, where

γ1 = θ2, γ2 = θ, γ3 = 1 + θ2, γ4 = θ3 + θ7, γ5 = θ6, γ6 = θ5, γ7 = θ4, γ8 = θ3.
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Thus the transformation matrix S from generalized dual to primal coordinates has excess 2
in this case, giving indeed a quite simple coordinate transformation. This heavily depends on
the choice of δ; for instance, the choice δ = f ′(θ)−1 = 1/θ2 would lead to a transformation
matrix with excess 16.

5.1.41 Theorem [2718] Let θ be a root of an irreducible polynomial f of degree m over K = F2,
and let B = {1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of F2m over K, and
B∗ the dual basis of B. Write

f(x) = xm + xmt + · · ·+ xm1 + xm0 , where 0 = m0 < m1 < · · · < mt < m,

and put

δ =
1

f ′(θ)θms
, where s = dt/2e.

Then the transformation matrix S from C = B∗/δ to B has excess

e(S) =
t∑

j=s+1

mj −
s−1∑
j=1

mj .

5.1.42 Corollary Let θ be a root of an irreducible pentanomial f of degree m over F2, say

f(x) = xm + xm3 + xm2 + xm1 + 1,

and let B be a corresponding polynomial basis of F2m over F2, and B∗ the dual basis of B.
Put δ = (f ′(θ)θm2)

−1
. Then the transformation matrix S from C = B∗/δ to B has excess

e(S) = m3 −m1.

5.1.43 Corollary The binary irreducible polynomials leading to a transformation matrix of excess
2 are precisely the irreducible pentanomials of the special form xm + xk+1 + xk + xk−1 + 1.

5.1.44 Theorem A binary irreducible polynomial leads to a transformation matrix of excess 1 if
and only if it has the form xm + x+ 1, where m is even.

5.1.45 Remark It is also of interest to investigate the possible spectra of the number of elements
of trace 1 in a polynomial basis for F2m over F2. This problem was first considered in [51]
where it was noted that using a polynomial basis with a small number of elements of trace
1 is desirable, since it allows a particularly efficient implementation of the trace function.
For example, this is important for halving a point on an elliptic curve over F2m , and for
generating pseudo random sequences using elliptic curves. In particular, it is of interest to
find trinomials and pentanomials associated with bases with a small number of elements of
trace 1. We mention one striking result in this direction; more results on the trace spectra
of polynomial bases can be found in [47, 51, 2646].

5.1.46 Theorem Suppose that there exists an irreducible trinomial of degree m over F2. Then
there also exists an irreducible trinomial such that the corresponding polynomial basis for
F2m over F2 contains exactly one element with trace 1.

5.1.5 Almost weakly self-dual bases

5.1.47 Remark In this subsection, we present some results on polynomial bases corresponding
to matrices with small excess over a general field Fq. These results are taken from [2158].
For q 6= 2, a matrix of excess 0 is not necessarily a permutation matrix. This leads to the
following generalization of weakly self-dual bases.
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5.1.48 Definition A basis {α1, . . . , αm} of F = Fqm over K = Fq with associated dual basis
B∗ = {β1, . . . , βm} is almost weakly self-dual if there exist an element δ ∈ F ∗, elements
c1, . . . , cn ∈ K∗, and a permutation σ of {1, . . . ,m} such that the following condition
holds:

βi = ciδασ(i) for i = 1, . . . ,m. (5.1.7)

5.1.49 Remark The almost weakly self-dual bases are precisely those bases corresponding to a
transformation matrix S with e(S) = 0. An almost weakly self-dual basis is actually weakly
self-dual if and only if c1 = · · · = cn.

5.1.50 Theorem A polynomial basis B = {1, θ, θ2, . . . , θm−1} of Fqm over Fq is almost weakly
self-dual if and only if the minimal polynomial f of θ is either a trinomial or a binomial.

5.1.51 Remark There are no proper almost weakly self-dual bases which belong to irreducible
binomials: in this case, the basis is actually weakly self-dual by Theorem 5.1.30. Hence it
suffices to consider the case of irreducible trinomials in Theorem 5.1.52; in the special case
where d = 1, one recovers Theorem 5.1.30.

5.1.52 Theorem Let f(x) = xm − axk − d be an irreducible trinomial over F2, let θ be a root of
f , and B∗ = {β1, . . . , βm} the dual basis of the polynomial basis B = {1, θ, θ2, . . . , θm−1}
generated by θ. Then B is almost weakly self-dual, and Equation (5.1.7) is satisfied with

δ = βk =
d

θkf ′(θ)
, ci =

{
1 if i ≤ k,

d−1 if i > k

and
σ(i) := k − i+ 1 (mod m) for i = 1, . . . ,m.

5.1.53 Theorem Let θ be a root of a monic irreducible polynomial f of degree m over K = Fq,
and let B = {1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of Fqm over K, and
B∗ the dual basis of B. Write

f(x) = xm + fmtx
mt + · · ·+ fm1

xm1 + fm0
xm0 , where 0 = m0 < m1 < · · · < mt < m,

and put

δ =
1

f ′(θ)θms
, where s = dt/2e.

Then the transformation matrix S from C = B∗/δ to B has excess

e(S) =


∑t
j=s+1mj −

∑s−1
j=1 mj if t is odd,∑t

j=s+1mj −
∑s
j=1mj if t is even.

5.1.54 Corollary Let θ be a root of an irreducible polynomial f of degree m over Fq, let B =
{1, θ, θ2, . . . , θm−1} be the corresponding polynomial basis of Fqm over K, and B∗ the dual
basis of B. Then the transformation matrix S from C = B∗/δ to B has excess

e(S) =


0 if f is either a trinomial or a binomial,

1 if f is of the form f(x) = xm + fkx
k + fk−1x

k1 + f0,

2 if f is of the form f(x) = xm + fk+1x
k+1 + fkx

k + fk−1x
k−1 + f0

or f(x) = xm + fk+1x
k+1 + fk−1x

k−1 + f0.
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5.1.6 Connections to hardware design

5.1.55 Remark Many aspects of the study of various types of bases for Fqm over Fq are to a large
extent motivated by the hardware design of efficient multipliers for Fqm . The seminal paper
in this area is due to Berlekamp [234]. Another seminal idea – which motivated the study
of optimal and low complexity normal bases, see Section 5.3 – was contained in a 1981
US patent application by Massey and Omura; see “Computational Method and Apparatus
for Finite Field Arithmetic,” US Patent No. 4,587,627, 1986. As already mentioned, intro-
ductory examples and some references can be found in Sections 4.1, 4.4, and 5.5 of [1631].
There is an abundance of papers in this area, largely due to its importance for hardware
architectures for public key cryptography; the interested reader should consult the relevant
sections of the extensive survey [208]. A more recent survey concerning the special topic of
polynomial basis multipliers in the binary case is given in [982].

See Also

§3.4, §3.5 For irreducible trinomials.
§5.2 For normal bases.
§5.3 For complexities of normal bases.
§13.2 For matrices over finite fields.
§16.7 For hardware implementations.

References Cited: [47, 51, 208, 234, 982, 1172, 1265, 1298, 1573, 1631, 1635, 2158, 2583,
2646, 2718, 2936]

5.2 Normal bases

Shuhong Gao, Clemson University

Qunying Liao, Sichuan Normal University

We present basic results on normal and self-dual normal elements, and we give a unified
approach following the PhD thesis [1172]. Let p be a prime and let q be a power of p. Denote
by σ the Frobenius map of Fqn :

σ(α) = αq, for α ∈ Fqn .

Then

σi(α) = αq
i

, for all i ≥ 0,

and σn = 1 as a map on Fqn (since σn(α) = αq
n

= α for all α ∈ Fqn). The Galois group
of Fqn over Fq consists of the n maps σi, 0 ≤ i ≤ n− 1. Recall from Definition 2.1.98 that
an element α ∈ Fqn is a normal element over Fq if the conjugates σi(α), 0 ≤ i ≤ n − 1,
are linearly independent over Fq. Hence a normal basis for Fqn over Fq is of the form
{α, σ(α), . . . , σn−1(α)}, where α ∈ Fqn is normal over Fq. Also, an irreducible polynomial
f ∈ Fq[x] of degree n is an N-polynomial (or normal polynomial) if its roots are linearly
independent over Fq, that is, its roots form a normal basis of Fqn over Fq.
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5.2.1 Basics on normal bases

5.2.1 Theorem (Normal basis theorem) For every prime power q and every integer n ≥ 1, Fqn
has a normal basis over Fq.

5.2.2 Remark The normal basis theorem was proved first by Hensel [1486]. A more general
normal basis theorem for any finite Galois extension of an arbitrary field was proved by
Noether [2297] and Deuring [824].

5.2.3 Proposition

1. For any two integers m,n ≥ 1 and for any normal element α ∈ Fqmn over Fq, the
element

β = TrFqmn/Fqn (α),

the trace of α from Fqmn to Fqn , is a normal element of Fqn over Fq.
2. If gcd(m,n) = 1, then any normal element α ∈ Fqn over Fq is still normal in

Fqmn over Fqm .

3. If gcd(m,n) = 1, then for any normal elements α ∈ Fqn and β ∈ Fqm over Fq,
the product αβ is a normal element of Fqmn over Fq.

5.2.4 Definition Let Fq[σ] denote the set of all polynomials in σ with coefficients in Fq. The ring
Fq[σ] acts on Fqn in a natural way: for any f(σ) =

∑m
i=0 ciσ

i ∈ Fq[σ] and α ∈ Fqn ,

f ◦ α =

m∑
i=0

ciσ
i(α) ∈ Fqn .

5.2.5 Remark

1. An element α ∈ Fqn is normal over Fq if and only if every β ∈ Fqn is equal to
f(σ) ◦ α for some f ∈ Fq[x].

2. For any f, g ∈ Fq[σ], we have

(fg) ◦ α = f ◦ (g ◦ α).

3. For any nonzero polynomial f(σ) =
∑m
i=0 ciσ

i ∈ Fq[σ] with m < n, f is not equal
to the zero map on Fqn . In fact, if f ◦α = 0 for all α ∈ Fqn , then the polynomial∑m
i=0 aix

qi has qn zeros in Fqn , which is more than the degree qm. Hence xn − 1
is the minimal polynomial of σ and

Fq[σ] ∼= Fq[x]/(xn − 1)

as rings over Fq. This implies that

Fq[σ] =

{
n−1∑
i=0

ciσ
i : ci ∈ Fq, 0 ≤ i ≤ n− 1

}
.

There is an obvious correspondence between polynomials of degree at most n−1
in Fq[x] and elements in Fq[σ], so we use the two notations interchangeably.

4. An element f(σ) ∈ Fq[σ] is invertible if there is g(σ) ∈ Fq[σ] so that f(σ)g(σ) = 1.
By the ring isomorphism above, f(σ) is invertible in Fq[σ] if and only if
gcd(f(x), xn − 1) = 1 in Fq[x].
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5. Each element f(σ) = a0 + a1σ+ · · ·+ an−1σ
n−1 ∈ Fq[σ] corresponds to an n× n

circulant matrix (see Definition 13.2.29)

C(f) = (aj−i)

whose rows are indexed by i and columns by j, where 0 ≤ i, j ≤ n− 1, with j− i
computed modulo n. For any f, g ∈ Fq[σ], we have

C(fg) = C(f)C(g),

hence f is invertible in Fq[σ] if and only if the matrix C(f) is nonsingular.

5.2.6 Remark An Fq-linear subspace V of Fqn is σ-invariant (or σ-stable) if σ(α) ∈ V for every
α ∈ V . We can characterize normal elements in Fqn by invariant subspaces. Let

n = em, e = pv,

where p is the characteristic of Fq and gcd(p,m) = 1. Suppose xn − 1 factors in Fq[x] as

xn − 1 = (g1(x)g2(x) · · · gr(x))
e
, (5.2.1)

where the gi(x)’s are distinct monic irreducible factors of xm−1 in Fq[x]. Let Ei(x) ∈ Fq[x]
for 1 ≤ i ≤ r so that, with 1 ≤ j ≤ r,

Ei(x) ≡
{

1 (mod gej (x)) if j = i,
0 (mod gej (x)) if j 6= i.

This means that, for 1 ≤ i, j ≤ r,

Ei(σ)Ej(σ) =

{
Ei(σ) if j = i,
0 if j 6= i.

Let Ri = Ei(σ)Fq[σ] for 1 ≤ i ≤ r. Then

Ri ∼= Fq[x]/(gi(x)e), 1 ≤ i ≤ r,

and
Fq[σ] = R1 +R2 + · · ·+Rr, (5.2.2)

is a direct sum of subrings. For 1 ≤ i ≤ r, let

Vi = Ri ◦ Fqn = {f ◦ α : f ∈ Ri and α ∈ Fqn} ⊆ Fqn .

Then Vi is a σ-invariant subspace of Fqn annihilated by gi(x)e, that is

gi(σ)e ◦ α = 0, for all α ∈ Vi.

Also, Vi has dimension e · deg(gi(x)) over Fq. Let Wi be the subspace of Vi annihilated by
gi(x)e−1, 1 ≤ i ≤ r, that is

Wi = {α ∈ Vi : gi(σ)e−1 ◦ α = 0}.

Then Wi is a σ-invariant subspace of Vi with dimension (e− 1) deg(gi(x)) over Fq.

5.2.7 Theorem [2395, 2580] With the notation as in the above remark, we have that

Fqn = V1 + V2 + · · ·+ Vr
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is a direct sum of Fq-vector spaces. Furthermore, an arbitrary element α ∈ Fqn , written as

α = α1 + α2 + · · ·+ αr,

where αi ∈ Vi, is normal over Fq if and only if

αi 6∈Wi, 1 ≤ i ≤ r.
5.2.8 Corollary [1486, 2324] Let di = deg(gi(x)) for 1 ≤ i ≤ r. Then the number of normal

elements in Fqn over Fq is

r∏
i=1

(
qedi − q(e−1)di

)
= Φq(x

n − 1),

where, Φq is the Euler Phi function for polynomials, see Definition 2.1.111.

5.2.9 Corollary Let n be a power of p, the characteristic of Fq. Then

1. an element α ∈ Fqn is normal over Fq if and only if TrFqn/Fq (α) 6= 0;

2. an irreducible polynomial f(x) ∈ Fq[x] of degree n is an N-polynomial if and only
if the coefficient of xn−1 in f(x) is nonzero.

5.2.10 Corollary Let n be a prime such that q is primitive modulo n. Then

1. an element α ∈ Fqn is normal over Fq if and only if α 6∈ Fq and TrFqn/Fq (α) 6= 0;

2. an irreducible polynomial f(x) ∈ Fq[x] of degree n is an N-polynomial if and only
if the coefficient of xn−1 in f(x) is nonzero.

5.2.11 Theorem For any α ∈ Fqn , define

Tα(x) =
n−1∑
i=0

σi(α)xi ∈ Fqn [x], tα(x) =
n−1∑
i=0

tix
i ∈ Fq[x],

where ti = TrFqn/Fq (ασ
i(α)) ∈ Fq, 0 ≤ i ≤ n − 1. We have the following characterizations

of normal elements.

1. [1486] α ∈ Fqn is normal over Fq if and only if gcd(Tα(x), xn − 1) = 1 in Fqn [x].

2. [1172] α ∈ Fqn is normal over Fq if and only if gcd(tα(x), xn − 1) = 1 in Fq[x],
that is, if tα(σ) is invertible in Fq[σ].

3. [2385] Suppose that α ∈ Fqn is normal over Fq. Then, for any g(σ) ∈ Fq[σ], the
element β = g(σ) ◦ α is normal over Fq if and only if g(σ) is invertible in Fq[σ],
that is, gcd(g(x), xn − 1) = 1 in Fq[x].

5.2.12 Remark Part 3 above shows again that Φq(x
n−1) is equal to the number of normal elements

in Fqn over Fq. There is a nice formula for Φq(x
n − 1) due to Ore [2324]. Suppose n = pvm

where m is not divisible by p. For a positive integer d, let τm(d) denote the multiplicative
order of d modulo m, and φ(d) be the Euler φ-function (equal to the number of integers
between 1 and d that are relatively prime to d). Then

Φq(x
n − 1) = qn

∏
d|m

(
1− 1

qτm(d)

)φ(d)/τm(d)

.

Also, for a general polynomial f ∈ Fq[x] with r distinct irreducible factors in Fq[x] with
degrees d1, d2, . . . , dr (the degrees need not be distinct), we have

Φq(f(x)) = qn
r∏
i=1

(
1− 1

qdi

)
.
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5.2.13 Theorem [1186] For any f(x) ∈ Fq[x] of degree n ≥ 1 with f(0) 6= 0, we have

Φq(f) ≥


qn

e if n < q,
qn

e
γ+ 1

2(1+logq n) (1+logq n)

> qn

e0.83(1+logq n) if n ≥ q,

where γ ≈ 0.577216 is Euler’s constant and e ≈ 2.71828 is Euler’s number.

5.2.14 Remark In [1186], it is also proved that, for f(x) = xn−1, the lower bound above is almost
tight for an infinite sequence of values of n.

5.2.15 Proposition [1631] Let α be a normal basis generator for Fqn over Fq and let C = (cij) be
an invertible matrix over Fq. Then the basis {β0, β1, . . . , βn−1} defined by

βi =
n−1∑
j=0

cijα
qi , i = 0, 1, . . . , n− 1,

is a normal basis for Fqn over Fq if and only if C is circulant.

5.2.16 Corollary The number of normal basis generators of Fqn over Fq is the order of the group
C(n, q) of invertible circulant n× n matrices over Fq.

5.2.17 Proposition [2077, 2859] Define two sequences of polynomials ak(x), bk(x) ∈ F2[x] as fol-
lows:

a0(x) = x, b0(x) = 1
ak+1(x) = ak(x)bk(x), bk+1(x) = a2

k(x) + b2k(x), k ≥ 0.

Then, for every k ≥ 1, the polynomial ak(x) + bk(x) is an N-polynomial over F2 of degree
2k.

5.2.18 Remark The above sequences of polynomials are used by Gao and Mateer [1185] to perform
fast additive Fourier transforms over fields of characteristic two.

5.2.19 Proposition [2859] Let p be any prime. Define a sequence of polynomials fk(x) ∈ Fp[x] as
follows:

f1(x) = xp + xp−1 + · · ·+ x− 1,

f2(x) = f1(xp − x− 1),

fk+1(x) = f∗k (xp − x− 1), k ≥ 2,

where f∗(x) denotes the reciprocal polynomial of f(x), that is, f∗(x) = xdf(1/x) where d
is the degree of f(x); see Definition 2.1.48. Then, for every k ≥ 1, f∗k (x) is an N-polynomial
over Fp of degree pk.

5.2.20 Proposition [309]

1. Suppose q ≡ 1 (mod 4) and let a ∈ Fq be a non-square. Then the polynomial

x2k − a(x− 1)2k

is an N-polynomial over Fq for all k ≥ 1.

2. Suppose q ≡ 3 (mod 4) and x2 − bx− c2 ∈ Fq[x] is irreducible with b 6= 2. Then
the polynomial

(x− 1)2k+1 − b(x2 − x)2k − cx2k

is an N-polynomial over Fq for all k ≥ 0.
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3. Let q be any prime power, r1, . . . , rt be the distinct prime factors of q − 1 and

n = ri11 · · · ritt , i1, . . . , it ≥ 0.

Assume that q ≡ 1 (mod 4) if some ri is equal to 2. Let a ∈ Fq be any element
of order q − 1. Then the polynomial xn − a(x− 1)n is an N-polynomial.

5.2.2 Self-dual normal bases

5.2.21 Definition For any α, β ∈ Fqn , define the trace polynomial of α and β over Fq to be

tα,β(σ) =
n−1∑
i=0

Tr(ασi(β))σi ∈ Fq[σ].

When α = β, tα,α(σ) is denoted by tα(σ), which agrees with the definition of tα in
Theorem 5.2.11, and is the trace polynomial of α over Fq. An element α is dual to β in
Fqn over Fq if tα,β(σ) = 1, and α is self-dual if it is dual to itself.

5.2.22 Remark Note that α ∈ Fqn is normal over Fq if and only if tα(σ) is invertible, while α ∈ Fqn
is self-dual over Fq if and only if tα(σ) = 1. Hence an element α ∈ Fqn is self-dual over Fq
if and only if it generates a self-dual normal basis for Fqn over Fq.

5.2.23 Theorem There is a self-dual normal basis for Fqn over Fq if and only if q and n are odd,
or q is even and n is not divisible by 4.

5.2.24 Remark Imamura and Morii [1574] proved the “only if” part of the theorem, and Lempel
and Weinberger [1890] proved the “if” part. For self-dual normal bases in Galois extensions
of arbitrary fields, see Bayer-Fluckier and Lenstra [212].

5.2.25 Proposition Suppose gcd(m,n) = 1. Then

1. for any self-dual element α ∈ Fqn over Fq, α remains self-dual in Fqmn over Fqm ;

2. for any self-dual elements α ∈ Fqn over Fq and β ∈ Fqm over Fq, the product αβ
is a self-dual element of Fqmn over Fq.

5.2.26 Lemma Let α ∈ Fqn be any normal element over Fq. For any β = f(σ) ◦α and γ = g(σ) ◦α
where f(σ), g(σ) ∈ Fq[σ], we have the following equation in Fq[σ]:

tβ,γ(σ) = f(σ)g(σ−1)tα(σ).

5.2.27 Proposition Let α ∈ Fqn be any normal element over Fq, and let hα(σ) be the inverse of
tα(σ), that is, hα(x)tα(x) ≡ 1 (mod xn − 1).

1. The element β = hα(σ)◦α is dual to α; hence, the dual basis of the normal basis
generated by α is a normal basis and is generated by β.

2. An element β = f(σ) ◦ α in Fqn has a dual if and only if f(σ) is invertible, and
its dual is equal to γ = g(σ) ◦ α where g(σ) = (f(σ−1)tα(σ−1))−1.

3. An element β = f(σ) ◦ α is self-dual if and only if

f(σ)f(σ−1) = hα(σ).

4. Suppose Fqn has a self-dual element α over Fq (so tα(σ) = 1). Then β = f(σ) ◦α
is self-dual if and only if

f(σ)f(σ−1) = 1. (5.2.3)
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5.2.28 Remark In terms of circulant matrices, Equation (5.2.3) is equivalent to

C(f)C(f)t = I,

that is, C(f) is orthogonal. Let oc(n, q) denote the number of orthogonal n × n circulant
matrices over Fq. When Fqn has a self-dual normal basis for Fq, oc(n, q) is the number of
self-dual elements in Fqn over Fq, and oc(n, q)/n is the number of self-dual normal bases in
Fqn over Fq. Suppose xn − 1 factors as in Equation (5.2.1) where e = pv. We classify the
irreducible factors gi(x) into three types:

1. x− 1 and possibly x+ 1 (if n is even and q is odd);

2. self-reciprocal factors gi(x) with roots consisting of pairs {ξ, ξ−1} with ξ 6= ξ−1,
hence gi(x) = xdgi(1/x)/gi(0) where d is the degree of gi(x). Suppose there are
s such irreducible factors in Equation (5.2.1) and their degrees are 2d1, . . . , 2ds;

3. the remaining irreducible factors, which come in pairs gi(x) and g̃i(x) of the
same degree so that, for each root ξ of gi(x), ξ−1 is a root of g̃i(x), hence
g̃i(x) = xdgi(1/x)/gi(0). Suppose there are t such pairs of irreducible factors
in Equation (5.2.1) and their degrees are e1, . . . , et.

We order the components of R in Equation (5.2.2) accordingly:

R = R0 +R1 + · · ·Rs + (Rs+1 + R̃s+1) + · · ·+ (Rs+t + R̃s+t),

where R0 represents the component for x− 1 plus that for x+ 1 if it is a factor. Then the
space of solutions for Equation (5.2.3) is the direct sum of solutions from each component.
This leads to the following theorem.

5.2.29 Theorem [1990] Let n = pvm, di’s and ej ’s be as defined in the above remark. Then

oc(n, q) =

{
ε1
∏s
i=1(qdi + 1)

∏t
i=1(qei − 1) if v = 0,

ε2 q
(pv−1)m/2 · oc(m, q) if v ≥ 1,

where

ε1 =

 1 if q is even,
2 if q and m are odd,
4 if q is odd and m is even,

ε2 =


1 if p 6= 2,
q1/2 if p = 2 and v = 1,
2q1/2 if p = 2 and v ≥ 2.

5.2.30 Corollary [130, 258, 1635] If the condition in Theorem 5.2.23 is satisfied, then there are
oc(n, q) self-dual normal elements in Fqn over Fq.

5.2.3 Primitive normal bases

5.2.31 Definition An element α ∈ Fqn is primitive normal over Fq if it is normal over Fq and has
multiplicative order qn − 1. A normal basis generated by a primitive normal element is
a primitive normal basis. A polynomial of degree n in Fq[x] is primitive normal if its
roots are primitive normal in Fqn over Fq.

5.2.32 Theorem (Primitive normal basis theorem) For any prime power q and any integer n ≥ 1,
Fqn has a primitive normal element over Fq.

5.2.33 Remark The primitive normal basis theorem was proved by Carlitz [540] for qn sufficiently
large, by Davenport [775] when q is a prime and by Lenstra and Schoof [1899] in the general



116 Handbook of Finite Fields

case. For a theoretical proof which does not require any machine calculation, see Cohen and
Huczynska [692]. The next few theorems are further strengthenings of the primitive normal
basis theorem.

5.2.34 Theorem [690] For any prime power q, any integer n ≥ 2 and any nonzero a ∈ Fq, there
is a primitive normal polynomial f(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn−1x+ cn ∈ Fq[x]

with c1 = a.

5.2.35 Theorem [1036] For any prime power q, any integer n ≥ 15, any integer m with 1 ≤
m < n, and any a ∈ Fq (with a 6= 0 if m = 1), there is a primitive normal polynomial
f(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn−1x+ cn ∈ Fq[x] with cm = a.

5.2.36 Theorem [694, 2806] For any prime power q and any integer n ≥ 2, there is an element
α ∈ Fqn such that both α and α−1 are primitive normal over Fq except when (q, n) is one
of the pairs (2, 3), (2, 4), (3, 4), (4, 3) and (5, 4).

5.2.37 Theorem [1035] For any prime power q, any integer n ≥ 7 and any a, b ∈ Fq with a 6= 0,
there is a primitive normal polynomial f(x) = xn+c1x

n−1+c2x
n−2+· · ·+cn−1x+cn ∈ Fq[x]

with c1 = a and c2 = b.

5.2.38 Theorem [1034] For any integer n ≥ 2 and sufficiently large prime power q, there is a
primitive normal polynomial f(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn−1x+ cn ∈ Fq[x] with

its first bn/2c coefficients arbitrarily prescribed except that c1 6= 0.

5.2.39 Theorem [1029] For any integer n ≥ 2 and sufficiently large prime power q, there is a
primitive normal polynomial f(x) = xn + c1x

n−1 + c2x
n−2 + · · ·+ cn−1x+ cn ∈ Fq[x] with

its last bn/2c coefficients arbitrarily prescribed except that (−1)ncn must be a primitive
element of Fq.

See Also

§2.2 For tables of primitive polynomials of various kinds and standards requiring
normal basis arithmetic.

§5.3 For normal bases of low complexity.
§5.4 For completely normal bases.
§16.7 For hardware implementations of finite field arithmetic.

References Cited: [130, 212, 258, 309, 540, 690, 692, 694, 775, 824, 1029, 1034, 1035, 1036,
1172, 1185, 1186, 1486, 1574, 1631, 1635, 1890, 1899, 1990, 2077, 2297, 2324, 2385, 2395,
2580, 2806, 2859].
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5.3 Complexity of normal bases

Shuhong Gao, Clemson University

David Thomson, Carleton University

5.3.1 Optimal and low complexity normal bases

5.3.1 Definition Let α ∈ Fqn be normal over Fq and let N = (α0, α1, . . . , αn−1) be the normal
basis of Fqn over Fq generated by α, where

αi = αq
i

, 0 ≤ i ≤ n− 1.

Denote by T = (tij) the n× n matrix given by

ααi =

n−1∑
j=0

tijαj , 0 ≤ i ≤ n− 1,

where tij ∈ Fq. The matrix T is the multiplication table of the basis N . Furthermore,
the number of non-zero entries of T , denoted by CN , is the complexity (also called the
density) of the basis N .

5.3.2 Remark An exhaustive search for normal bases of F2n over F2 for n < 40 is given in [2015],
extending previous tables such as those found in [1631]. Using data from the search, the
authors in [2015] indicate that normal bases of F2n over F2 follow a normal distribution
(with respect to their complexities) which is tightly compacted about a mean of roughly
n2/2. We define low complexity normal bases loosely to mean normal bases known to have
sub-quadratic bounds, with respect to n, on their complexity.

5.3.3 Remark In addition, [2015] gives the minimum-known complexity of a normal basis of F2n

over F2 for many values of n using a variety of constructions that appear in this section.
Further tables on normal bases are provided in Section 2.2.

5.3.4 Proposition [2199] The complexity CN of a normal basis N of Fqn over Fq is bounded by

2n− 1 ≤ CN ≤ n2 − n+ 1.

5.3.5 Definition A normal basis is optimal normal if it achieves the lower bound in Proposi-
tion 5.3.4.

5.3.6 Theorem [139, 2199]

1. (Type I optimal normal basis) Suppose n + 1 is a prime and q is a primitive
element in Zn+1. Let α be a primitive (n+ 1)-st root of unity. Then α generates
an optimal normal basis of Fqn over Fq.

2. (Type II optimal normal basis) Suppose 2n+1 is a prime and let γ be a primitive
(2n+ 1)-st root of unity. Assume that the multiplicative group of Z2n+1 is gener-
ated by 2 and −1 (that is, either 2 is a primitive element in Z2n+1, or 2n+ 1 ≡ 3
(mod 4) and 2 generates the quadratic residues in Z2n+1). Then α = γ + γ−1

generates an optimal normal basis of F2n over F2.
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5.3.7 Theorem (Optimal normal basis theorem) [1184] Every optimal normal basis is equivalent
to either a Type I or a Type II optimal normal basis. More precisely, suppose Fqn has an
optimal normal basis over Fq generated by α and let b = Tr(α) ∈ Fq. Then one of the
following must hold:

1. n+ 1 is a prime, q is primitive modulo n+ 1 and −α/b is a primitive (n+ 1)-st
root of unity;

2. q = 2v with gcd(v, n) = 1, 2n + 1 is a prime such that 2 and −1 generate the
multiplicative group of Z2n+1, and α/b = γ + γ−1 for some primitive (2n+ 1)-st
root of unity γ.

5.3.8 Remark Gao and Lenstra [1184] prove a more general version of the optimal normal basis
theorem. They show that if a finite Galois extension L/K, where K is an arbitrary field,
has an optimal normal basis, say generated by α, then there is a prime number r, an r-th
root of unity γ in some algebraic extension of L and a nonzero constant c ∈ K so that one
of the following holds:

1. α = cγ and L has degree r− 1 over K (so the polynomial xr−1 + xr−2 + x+ 1 is
irreducible over K);

2. α = c(γ + γ−1) and L has degree (r − 1)/2 over K (so the minimal polynomial
of γ + γ−1 over K has degree (r − 1)/2).

5.3.9 Theorem [308] Let F (x) = xq+1 + dxq − (ax+ b) with a, b, d ∈ Fq and b 6= ad. Let f be an
irreducible factor of F of degree n > 1 and let α be a root of f . Then all the roots of f are

αi = αq
i

= ϕi(α), i = 0, 1, . . . , n− 1,

where ϕ(x) = (ax+ b)/(x+ d). If τ = TrFqn/Fq (α) 6= 0, then (α0, α1, . . . , αn−1) is a normal
basis of Fqn over Fq such that

α


α0

α1

α2

...
αn−1

 =


τ∗ −en−1 −en−2 · · · −e1

e1 en−1

e2 en−2

...
. . .

en−1 e1




α0

α1

α2

...
αn−1

+


b∗

b
b
b
b

 , (5.3.1)

where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), b∗ = −b(n− 1) and τ∗ = τ − ε with

ε =

n−1∑
i=0

ei =


(n− 1)(a− d)/2 if p 6= 2,

a = d if p = n = 2,

a− d if p = 2 and n ≡ 3 (mod 4),

0 if p = 2 and n ≡ 1 (mod 4).

5.3.10 Corollary [308] The following are two special cases of the above theorem.

1. For every a, β ∈ F∗q with TrFq/Fp(β) = 1,

xp − 1

β
axp−1 − 1

β
ap

is irreducible over Fq and its roots form a normal basis of Fqp over Fq of complexity
at most 3p−2. This corresponds to the case of Theorem 5.3.9 with n = p, e1 = a,
ϕ(x) = ax/(x+ a), b = b∗ = 0, and τ∗ = a/β if p 6= 2 and τ∗ = a/β − a if p = 2.
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2. Let n be any factor of q − 1. Let β ∈ Fq have multiplicative order t such that
gcd(n, (q − 1)/t) = 1 and let a = β(q−1)/n. Then

xn − β(x− a+ 1)n

is irreducible over Fq and its roots form a normal basis of Fqn over Fq with
complexity at most 3n − 2. This corresponds to the case of Theorem 5.3.9 with
e1 = a, ϕ(x) = ax/(x+ 1), b = b∗ = 0, and τ∗ = −n(a− 1)β/(1− β)− ε, with ε
given as in Theorem 5.3.9 with d = 1.

5.3.11 Conjecture [3036] If there does not exist an optimal normal basis of Fqn over Fq, then the
complexity of a normal basis of Fqn over Fq is at least 3n− 3.

5.3.12 Remark Explicit constructions of low complexity normal bases beyond the optimal normal
bases and the constructions given in Theorem 5.3.10 are rare. In Section 5.3.2 we give a
generalization of optimal normal bases arising from Gauss periods. Below, we illustrate how
to construct new normal bases of low complexity arising from previously known normal
bases.

5.3.13 Proposition [1172, 2578, 2580] Suppose gcd(m,n) = 1 and α and β generate normal bases
A and B for Fqm and Fqn over Fq, respectively. By Proposition 5.2.3, αβ generates a normal
basis N for Fqmn over Fq. Furthermore, we have CN = CACB and if α and β both generate
optimal normal bases, then CN = 4mn− 2m− 2n+ 1.

5.3.14 Proposition [634] Let n = mk and suppose α ∈ Fqn generates a normal basis
(α0, α1, . . . , αn−1) over Fq with multiplication table T = (tij) for 0 ≤ i, j ≤ n− 1. Then

β = TrFqn/Fqm (α) = α0 + αm + α2m + · · ·+ α(k−1)m

generates a normal basis (β0, β1, . . . , βm−1) for Fqm over Fq with

ββi =
m−1∑
j=0

sijβj , 0 ≤ i ≤ m− 1,

where

sij =
∑

0≤u,v≤k−1

tum+i,vm+j , 0 ≤ i, j ≤ m− 1.

5.3.15 Corollary [633, 634, 1931] Let n = mk. Upper-bounds on the complexity obtained from
traces of optimal normal bases of Fqn over Fq are given in Table 5.3.1.

Type I (q odd): Type I (q = 2): Type II (q = 2):
m even, k odd, p | k km− (k + 1)/2 – –
m even, k odd, k ≡ 1 (mod p) (k + 1)m− (3k + 1)/2 (k + 1)m− 3k + 2∗ 2km− 2k + 1
m even, k odd, all other k (k + 1)m− (3k + 1)/2 – –

k even, p | k km− k/2† km− k + 1 2km− 2k + 1
k even, k ≡ 2 (mod p) (k + 1)m− 3k/2 + 1† km− k + 1 2km− 2k + 1
k even, all other k (k + 1)m− k – –

Table 5.3.1 Upper-bounds on the complexity obtained from of traces of optimal normal bases of Fqn
over Fq , where n = mk. ∗Tight when k = 3; †tight when k = 2, 3.
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5.3.2 Gauss periods

5.3.16 Definition [139] Let r = nk + 1 be a prime not dividing q and let γ be a primitive r-th
root of unity in Fqnk . Furthermore, let K be the unique subgroup of order k in Z∗r and
Ki = {a · qi : a ∈ K} ⊆ Z∗r be cosets of K, 0 ≤ i ≤ n− 1. The elements

αi =
∑
a∈Ki

γa ∈ Fqn , 0 ≤ i ≤ n− 1,

are Gauss periods of type (n, k) over Fq.

5.3.17 Theorem [1180, 2951] Let αi ∈ Fqn be Gauss periods of type (n, k) as defined in Defini-
tion 5.3.16. The following are equivalent:

1. N = (α0, α1, . . . , αn−1) is a normal basis of Fqn over Fq;
2. gcd(nk/e, n) = 1, where e is the order of q modulo r;

3. the union of K0,K1, . . . ,Kn−1 is Z∗r ; equivalently, Z∗r = 〈q,K〉.
5.3.18 Remark Gauss periods of type (n, 1) define Type I optimal normal bases and Gauss periods

of type (n, 2) define Type II optimal normal bases when q = 2.

5.3.19 Remark For the remainder of this section, we are concerned with Gauss periods which are
admissible as normal bases, that is, where the properties in Theorem 5.3.17 hold. When
the characteristic p does not divide n, the existence of admissible Gauss periods of type
(n, k) is shown assuming the ERH in [14, 159] for any n with k ≤ (cn)3(log(np))2. For
any k and prime power q, assuming the GRH, there are infinitely many n such that there
is an admissible Gauss period of Fqn over Fq [1236]. In contrast, when p divides n, [2952]
contains necessary and sufficient conditions for admissible Gauss periods, thus showing the
non-existence of admissible Gauss periods in certain cases.

5.3.20 Proposition [1180] There is no admissible Gauss period of type (n, k) over F2 if 8 divides
nk.

5.3.21 Definition Let Ki be defined as in Definition 5.3.16 for i = 0, 1, . . . , n− 1. The cyclotomic
numbers are given by cij = |(1 +Ki) ∩Kj |.

5.3.22 Proposition [259, 1180] Let N = (α0, α1, . . . , αn−1) be the normal basis arising from Gauss
periods of type (n, k) for Fqn over Fq. Let j0 < n be the unique index such that −1 ∈ κj0 ,
and let δj = 1 if j = j0 and 0 if j 6= j0. Then

ααi = δik +
n−1∑
j=0

cijαj , 0 ≤ i ≤ n− 1,

hence CN ≤ (n− 1)k + n.

5.3.23 Proposition [139, 259] Let p be the characteristic of Fq and let N = (α0, α1, . . . , αn−1) be
the normal basis of Fqn over Fq arising from Gauss periods of type (n, k).

1. If p divides k, then CN ≤ nk − 1.

2. If p = 2, then{
kn− (k2 − 3k + 3) ≤ CN ≤ (n− 1)k + 1 if k even,

(k + 1)n− (k2 − k + 1) ≤ CN ≤ (n− 2)k + n+ 1 if k odd.
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3. If q = 2 and k = 2vr, where either r = 1 or both r is an odd prime and v ≤ 2,
then the lower bounds above are tight for sufficiently large n.

5.3.24 Problem Find the complexity of Gauss periods of type (n, k) over F2 for all n when k is
not a prime, twice an odd prime, or four times an odd prime.

5.3.25 Remark [139, 634] The complexities of normal bases arising from Gauss periods of type
(n, k), 2 ≤ k ≤ 6, are given in Table 5.3.2 for all characteristics p when n > p.

Type (n, 1) Type (n, 2) Type (n, 3) Type (n, 4)
all p p = 2 p > 2 p = 2 p = 3 p > 3 p = 2 p = 3 p > 3

2n− 1 2n− 1 3n− 2 4n− 7 3n− 2 4n− 4 4n− 7 5n− 7 5n− 6

Type (n, 5) Type (n, 6)
p = 2 p = 3 p = 5 p > 5 p = 2 p = 3 p = 5 p > 5

6n− 21 6n− 11 5n− 7 6n− 11 6n− 21 6n− 11 7n− 15 7n− 14

Table 5.3.2 Complexities of normal bases from Gauss periods of Type (n, k), 2 ≤ k ≤ 6, n > p.

5.3.26 Remark Let q = 2. Proposition 5.3.13 can be used to create normal bases of large extension
degree by combining normal bases of subfields with coprime degree. By Proposition 5.3.20
Gauss periods of type (n, k) do not exist when 8 divides nk. Hence, Proposition 5.3.13
cannot be used to construct low complexity normal bases when the degree is a prime power.
Thus, when n is a prime power (specifically a power of two), there are no constructions of
low-complexity normal bases arising from the above propositions.

5.3.27 Problem Find explicit constructions of low-complexity normal bases of F2n over F2 when
n is a power of two.

5.3.28 Remark Normal bases of low complexity are useful in fast encoding and decoding of network
codes, see [2665] for more details.

5.3.3 Normal bases from elliptic periods

5.3.29 Remark Proposition 5.2.20, Theorem 5.3.9, and its corollaries show how the multiplicative
group of Fq or Fq2 can be used to construct irreducible polynomials and normal bases for
those degrees n whose prime factors divide q − 1 or q + 1. Also, Gauss periods use the
multiplicative group of Fqr−1 for some prime r. Couveignes and Lercier [746] show how
these methods can be generalized by using elliptic curve groups. The normal bases from
their construction may not have low complexity, but these bases still allow a fast algorithm
for multiplication. We outline their construction below; for more details on how to perform
fast multiplication using elliptic periods, we refer the reader to [746]. For properties of
elliptic curves, see Section 12.2.

5.3.30 Remark Let E be an elliptic curve over Fq defined by a Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where ai ∈ Fq. The points of E over every extension of Fq form an additive group with the
point O at infinity as the identity. The order of the group E(Fq) is q+1− t for some integer
t with |t| ≤ 2

√
q. Let n > 1 be an integer such that E(Fq) has a cyclic subgroup F of order

n. The quotient E′ = E/F is also an elliptic curve over Fq and there is an isogeny

φ : E → E′,
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that has F as its kernel, and φ is defined by rational functions in Fq[X,Y ]. For any point
P ∈ E, let x(P ) denote the x-coordinate of P and similarly denote y(P ), thus

P = (x(P ), y(P )).

Vélu [2865] gives a formula for E′ and φ. In fact, for P ∈ E,

φ(P ) =

x(P ) +
∑

T∈F\{O}

(x(P + T )− x(T )) , y(P ) +
∑

T∈F\{O}

(y(P + T )− y(T ))

 .

5.3.31 Remark We describe here an explicit formula due to Kohel [1779] for E′ and φ when E is
of the form

E : Y 2 = X3 + aX + b.

We denote by D the kernel polynomial given by

D(X) =
∏

Q∈F\{O}

(X − x(Q))

= Xn − c1Xn−1 + c2X
n−2 − c3Xn−3 + · · ·+ (−1)ncn ∈ Fq[X].

Then, for P = (x, y) ∈ E,

φ(P ) =

(
N(x)

D(x)
, y ·

(
N(x)

D(x)

)′)
,

where N(x) is determined by the equation:

N(x)

D(x)
= nx− c1 − (3x2 + a)

D′(x)

D(x)
− 2(x3 + ax+ b)

(
D′(x)

D(x)

)′
.

Furthermore, E′ is defined by

Y 2 = X3 + (a− 5v)X + (b− 7w),

where

v = a(n− 1) + 3(c21 − 2c2), w = 3ac1 + 2b(n− 1) + 5(c31 − 3c1c2 + 3c3).

5.3.32 Definition Let T ∈ E(Fq) be a point of order n and φ be the corresponding isogeny with
its kernel generated by T . For any point P ∈ E(Fqn) with φ(P ) ∈ E′(Fq), let θ(P, T )
denote the slope of the line passing through the two points T and P + T , that is

θ(P, T ) =
y(P + T )− y(T )

x(P + T )− x(T )
∈ Fqn .

The element θ(P, T ) is an elliptic period over Fq.

5.3.33 Theorem [746] Let T ∈ E(Fq) be a point of order n ≥ 3 and φ be the corresponding isogeny
with its kernel generated by T . Suppose there is a point P ∈ E(Fqn) so that nP 6= O in E
and φ(P ) ∈ E′(Fq). Then either

1. the elliptic period θ(P, T ) is a normal element of Fqn over Fq if the trace of θ(P, T )
from Fqn to Fq is nonzero, or
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2. the element 1 + θ(P, T ) is a normal element of Fqn over Fq if the trace of θ(P, T )
is zero.

5.3.34 Example [746] Consider the following curve over F7

E : y2 + xy − 2y = x3 + 3x2 + 3x+ 2.

The point T = (3, 1) ∈ E(F7) has order n = 5, so the subgroup F = 〈T 〉 has order 5. By
Vélu’s formula, the equation for E′ = E/F is

E′ : y2 + xy − 2y = x3 + 3x2 − 3x− 1,

and the corresponding isogeny is

φ(x, y) =

(
x5 + 2x2 − 2x− 1

x4 + 3x2 − 3
,(

x6 − 3x4 + 3x3 − x2 + 3x− 3
)
y + 3x5 + x4 + x3 + 3x2 − 3x+ 1

x6 + x4 − 2x2 − 1

)
.

Take A = (4, 2) ∈ E′(F7). We note that the polynomial

f(X) = (X5 + 2X2 − 2X − 1) + 3(X4 + 3X2 − 3) = X5 + 3X4 − 3X2 − 2X − 3

is irreducible over F7. Hence F75 = F7[α], where α is a root of f . Compute β so that
φ(α, β) = (4, 2). We find that

β = α4756 = −α3 − α2 + 3α+ 2,

and P = (α, β) ∈ E(F75). We check that 5P 6= O in E and we note that

P + T = (−3α4 + 3α2 + 2α− 1,−α4 + α3 + α2 + 1).

Hence

θ(P, T ) =
Y (P + T )− Y (T )

X(P + T )−X(T )
= −α4 + α3 + 3α2 − 3α− 3

is a normal element in F75 over F7.

5.3.4 Complexities of dual and self-dual normal bases

5.3.35 Remark For the definition of dual and self-dual bases, see Definition 2.1.100. Self-dual nor-
mal bases have been well studied due to their efficiency in implementation, see Section 16.7.
A complete treatment of dual bases over finite fields can be found in [1631, Chapter 4], see
also Sections 5.1 and 5.2.

5.3.36 Remark It is computationally easier to restrict an exhaustive search to self-dual normal
bases. Geiselmann in [1263, 1631] computes the minimum complexity for a self-dual normal
basis of F2n over F2 for all n ≤ 47. These computations are repeated for odd degrees n ≤ 45
in [130] and the authors also give tables of minimum complexity self-dual normal bases over
finite fields of odd characteristic and for extensions of F2` , ` > 1. Some additional searches
for self-dual normal bases can be found in [2015].

5.3.37 Proposition [1632] Let N be a normal basis with multiplication table T . Then N is self-dual
if and only if T is symmetric.
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5.3.38 Proposition [1632] Let gcd(m,n) = 1. Suppose α and β generate normal bases A and B
for Fqm and Fqn over Fq, respectively. Then γ = αβ generates a self-dual normal basis N
for Fqmn over Fq if and only if both A and B are self-dual, as in Proposition 5.2.3. The
complexity of the basis N is CN = CACB , as in Proposition 5.3.13.

5.3.39 Proposition [1632, 2422] Let n be even, α ∈ F2n and γ = 1 + α. Then,

1. the element α generates a self-dual normal basis for F2n over F2 if and only if γ
does;

2. if α and γ = 1 +α generate self-dual normal bases B and B̄, respectively, for F2n

over F2, then the complexities of B and B̄ are related by

CB̄ = n2 − 3n+ 8− CB .

5.3.40 Corollary Suppose n ≡ 2 (mod 4), then the following hold

1. the average complexity of a self-dual normal basis of F2n over F2 is 1
2 (n2−3n+8);

2. if B is a self-dual normal basis for F2n over F2 , we have

2n− 1 ≤ CB ≤ n2 − 5n+ 9,

and one of the equalities holds if and only if either B or its complement B̄ is
optimal.

5.3.41 Proposition [308] Let q be a power of a prime p. For any β ∈ F∗q with TrFq/Fp(β) = 1,

xp − xp−1 − βp−1

is irreducible over Fq and its roots form a self-dual normal basis of Fqp over Fq with com-
plexity at most 3p − 2. The multiplication table is as in Theorem 5.3.10 with e1 = β,
ei+1 = ϕ(ei) for i ≥ 1, ϕ(x) = βx/(x+ β), τ∗ = 1 if p 6= 2 and τ∗ = 1− β if p = 2.

5.3.42 Proposition [308] Let n be an odd factor of q − 1 and let ξ ∈ Fq have multiplicative
order n. Then there exists u ∈ Fq such that (u2)(q−1)/n = ξ. Let x0 = (1 + u)/n and
x1 = (1 + u)/(nu). Then the monic polynomial

1

1 + u2

(
(x− x0)n − u2(x− x1)n

)
is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The
multiplication table is as in Theorem 5.3.9 with a = (x0 − ξx1)/(1 − ξ), b = −x0x1,
d = a− (x0 − x1) and τ = 1.

5.3.43 Proposition [308] Let n be an odd factor of q + 1 and let ξ ∈ Fq2 be a root of xq+1 − 1
with multiplicative order n. Then there is a root u of xq+1−1 such that (u2)q+1/n = ξ. Let
x0 = (1 + u)/n and x1 = (1 + u)/(nu). Then

1

1− u2

(
(x− x0)n − u2(x− x1)n

)
is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The
multiplication table is as in Theorem 5.3.9 with a = (x1 − ξx0)/(1 − ξ), b = −x0x1,
d = a− (x0 + x1) and τ = 1.
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5.3.4.1 Duals of Gauss periods

5.3.44 Proposition [1180, 1930] Let α be a type (n, k) Gauss period generating a normal basis N
and let j0 = 0 if k is even and j0 = n/2 if k is odd. Then the element

γ =
αq

j0 − k
nk + 1

is dual to α, and hence γ generates the dual basis Ñ of N . Furthermore, the complexity of
the dual basis Ñ is

CÑ ≤
{

(k + 1)n− k if p - k,
kn− 1 if p | k.

5.3.45 Corollary [1180] For n > 2, a normal basis of Fqn over Fq arising from Gauss periods of
type (n, k) is self-dual if and only if k is even and divisible by the characteristic of Fq. In
particular, Type II optimal normal bases are self-dual.

5.3.46 Proposition [2924] The complexity of the dual of a Type I optimal normal basis is 3n− 2
if q is odd and 3n− 3 if q is even.

5.3.47 Remark [633] Upper bounds on the complexities of the dual basis of the Fqm -trace of
optimal normal bases of Fqn over Fq, where n = mk, are given in Table 5.3.3.

Type I (q odd) Type I (q even) Type II (q even)
m odd (k + 2)m− 2 (k + 2)(m− 1) + 1 2k(m− 1) + 1
m even (k + 3)m− k − 4 (k + 3)m− 2k − 3 2k(m− 1) + 1

Table 5.3.3 Upper bounds on complexities of the dual bases of the trace of optimal normal bases.

5.3.5 Fast arithmetic using normal bases

5.3.48 Remark In practical applications it is important to know how to do fast arithmetic in finite
fields, for example addition, multiplication, and division; and for cryptographic applications
it is also desirable to have elements of high orders and a fast algorithm for exponentiation.
Details for the basic operations discussed in this section can be found in Section 11.1, see
also [1227]. In hardware implementations, normal bases are often preferred, see Section 16.7
for details on hardware implementations. This subsection presents some theoretical results
related to fast multiplication and exponentiation under normal bases generated by Gauss
periods.

5.3.49 Remark Gao and Vanstone [1188] first observed that a Type II optimal normal basis gen-
erator has high order, which was proved later by von zur Gathen and Shparlinski [1240];
for more details see Section 4.4. Computer experiments by Gao, von zur Gathen, and Pa-
nario [1179] indicate that Gauss periods of type (n, k) with k > 2 also have high orders;
however, it is still open whether one can prove a subexponential lower bound on their orders.

5.3.50 Problem Give tight bounds on the orders of Gauss periods of type (n, k), k > 2.

5.3.51 Proposition [1179, 1188] Suppose α ∈ Fqn is a Gauss period of type (n, k) over Fq. Then
for any integer 1 ≤ t < qn − 1, αt can be computed using at most n2k operations in Fq.

5.3.52 Theorem [1180] Suppose γ is an element of order r (not necessarily a prime) and

α =
∑
i∈K

γi
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generates a normal basis N for Fqn over Fq, where K is a subgroup of Z×r . With Fqn
represented under the normal basis N , we have

1. addition and subtraction can be computed in O(n) operations in Fq;
2. multiplication can be computed in O(r log r log log r) operations in Fq;
3. division can be computed in O(r log2 r log log r) operations in Fq;
4. exponentiation of an arbitrary element in Fqn can be computed in
O(nr log r log log r) operations in Fq.

5.3.53 Remark Theorem 1.5 in [1174] tells us when and how to find such a subgroup K in the
above theorem. The element α can be a Gauss period or a generalized Gauss period, see
Example 5.3.54 for more information. We outline the algorithm from [1180] for fast mul-
tiplication and division. The basic idea is to convert the normal basis representation to a
polynomial basis in the ring R = Fq[x]/(xr − 1), do fast multiplication of polynomials in
the ring, then convert the result back to the normal basis. More precisely, let γ and α be as
in Theorem 5.3.52. The condition of the theorem implies that that K, qK, . . . , qn−1K are
disjoint subsets of Zr and qnK = K. For 0 ≤ j ≤ n− 1, let Kj = qjK ⊆ Zr, and

αj =
∑
i∈Kj

βi.

Then (α0, α1, . . . , αn−1) is the normal basis generated by α, with the following property:

α0 + α1 + · · ·+ αn−1 = −1.

For each element A = a0α0 + a1α1 + · · ·+ an−1αn−1 ∈ Fqn , where ai ∈ Fq, we associate a
polynomial

A(x) =

r−1∑
i=0

uix
i,

where ui = aj if i ∈ Kj for some j, and ui = 0 if i is not in any Kj . This can be viewed as
a map from Fqn to R = Fq[x]/(xr − 1). The map is in fact a ring homomorphism.

Suppose we have two arbitrary elements A,B ∈ Fqn . To compute AB, we first write
them as polynomials A(x), B(x) ∈ Fq[x] of degree at most r − 1 as above. Then we use a
fast algorithm to compute the product polynomial C1(x) = A(x)B(x) of degree at most
2r − 2. This step needs O(r log r log log r) operations in Fq, see [1227]. Next, we reduce C1

modulo xr − 1 (just reduce the exponents of x modulo r) to get a polynomial

C2(x) = c0 + c1x+ · · ·+ cr−1x
r−1.

The coefficients satisfy the property that ci = cj whenever i, j ∈ K` for some 0 ≤ ` ≤ n−1.

Since
∑n−1
j=0 αj = −1, we conclude that

AB = d0α0 + d1α1 + · · ·+ dn−1αn−1, where di = cj − c0 for any j ∈ Ki.

To compute A−1 (assuming A 6= 0), we apply a fast gcd algorithm to the two polynomials
A(x) and xr − 1 to get a polynomial U(x) of degree at most r − 1 so that A(x)U(x) ≡ 1
(mod xr − 1). The element in Fqn corresponding to the polynomial U(x) is the desired
inverse of A. The fast gcd step needs O(r log2 r log log r) operations in Fq, see [1227].

5.3.54 Example (Generalized Gauss Periods [1047, 1174]) For any normal basis from Gauss periods
of type (n, k), we can apply Theorem 5.3.52 to perform fast arithmetic in Fqn . To obtain
an admissible Gauss period of type (n, k), r = nk + 1 must be a prime. Here we give an
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example of generalized Gauss periods where r is not prime. Suppose we want to perform fast
arithmetic in F2954 . Let n = 954 and note that the smallest k so that there is an admissible
Gauss period of type (n, k) over F2 is k = 49. The corresponding r = nk + 1 = 46747 is a
little big in this case. We observe that 954 = 106 · 9 and that there is an admissible Gauss
period α1 of type (106, 1) over F2, and an admissible Gauss period α2 of type (9, 2). Then
α = α1α2 is a normal element of F2n over F2. We construct this α as follows. Let

r = (106 · 1 + 1)(9 · 2 + 1) = 2033, K = {1, 322}.

Then K is a subgroup of Z×r satisfying the condition in Theorem 5.3.52. Let γ be any
primitive r-th root of unity in an extension field of F2. Then

α = γ + γ322

is a generalized Gauss period that is normal for Fqn over Fq. Now we can apply Theorem
5.3.52 to perform fast arithmetic in Fqn with a much smaller r. In [1174], it is shown how
to find generalized Gauss periods with minimum r and the related subgroups K; see [1174,
Tables 2-4] for many more examples for which generalized Gauss periods are better than
Gauss periods.

5.3.55 Example (Fast arithmetic under type II optimal normal bases) For type II optimal normal
bases over F2, we describe below a slightly faster algorithm from [248, 1238]. Suppose 2n+1
is a prime and the multiplicative group of Z2n+1 is generated by −1 and 2. Let γ ∈ F22n be
an element of order 2n+ 1. For any i ≥ 0, define

γi = γi + γ−i.

Then N = (γ1, γ2, . . . , γn) is a permutation of the normal basis for F2n over F2 generated
by

α = γ1 = γ + γ−1.

We note that γ0 = 2 and
γ1 + γ2 + · · ·+ γn = 1.

To do fast multiplication and division in F2n , we first perform a basis transition from N to
the polynomial basis P = (α, α2, . . . , αn), then perform a fast multiplication of polynomials
and finally transform the result back to the basis N . To do the basis transitions, we need
the following properties:

γi+j = γiγj + γj−i, for all i, j.

To see how to go from the basis N to the basis P , suppose we have an expression

A = a1γ1 + a2γ2 + · · ·+ a`γ`,

where ai ∈ F2 and ` ≥ 1 is arbitrary. We want to express A as a combination of α, α2, . . . , α`

over F2. Let m be a power of 2 so that `/2 ≤ m < `. Then

γm = αm.

We observe that

a1γ1 + a2γ2 + · · ·+ a`γ`

= a1γ1 + · · ·+ amγm + am+1(γmγ1 + γm−1) + · · ·+ a`(γmγ`−m + γm−(`−m)),

= (a1γ1 + · · ·+ amγm + am+1γm−1 + · · ·+ a`γm−(`−m))

+αm (am+1γ1 + am+2γ2 + · · ·+ a`γ`−m) .
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We note that the first part is of the form U = u1γ1 + · · · + umγm, where ui ∈ F2, which
can be computed using m bit operations. Let V = am+1γ1 + am+2γ2 + · · ·+ a`γ`−m, where
`−m ≤ m. Apply the method recursively to convert U and V into the power basis, say

U = b1α+ · · ·+ bmα
m, V = bm+1α+ · · ·+ b`α

`−m,

where bi ∈ F2. Then

A = U + αmV = b1α+ · · ·+ bmα
m + bm+1α

m+1 + · · ·+ b`α
`.

This gives an algorithm for going from N to P using at most 1
2n log2(n) operations in F2,

where log2(n) is the logarithm of n in base 2. By reversing the above procedure, we get an
algorithm for going from P to N using at most 1

2n log2(n) operations in F2.
This shows that multiplication in F2n under N can be computed by (a) two transforma-

tions from N to P , (b) one multiplication of polynomials of degree at most n in F2[x], and
(c) one transformation from (α, α2, . . . , α2n) to (γ1, γ2, . . . , γ2n) which is easily converted to
N , as γn+1+i = γn−i. The number of bit operations used is the cost for one multiplication of
polynomials of degree at most n, plus 2n log2 n bit operations for the basis transformations.
Finally, for division in F2n , we need to precompute the minimal polynomial of α and apply
a fast gcd algorithm for polynomials of degree at most n in F2[x].

See Also

§2.2 For standards requiring normal basis arithmetic.
§5.2 For general results on normal bases.
§11.1 For basic operations over finite fields.
§16.7 For hardware implementarions of finite fields arithmetic.

[1179,
1188, 1240]

For orders and cryptographic applications of Gauss Periods.

References cited: [14, 130, 139, 159, 248, 259, 308, 633, 634, 746, 1047, 1172, 1174, 1179,
1180, 1184, 1188, 1227, 1236, 1238, 1240, 1263, 1631, 1632, 1779, 1930, 1931, 2015, 2199,
2422, 2578, 2580, 2665, 2865, 2924, 2951, 2952, 3036].

5.4 Completely normal bases

Dirk Hachenberger, University of Augsburg

We present some theoretical results concerning algebraic extensions of finite fields. The
starting point is the Complete Normal Basis Theorem, which is a strengthening of the
classical Normal Basis Theorem. The search for completely normal elements leads to an
interesting structure theory for finite fields comprising a generalization of the class of finite
Galois field extensions to the class of cyclotomic modules.

5.4.1 The complete normal basis theorem

5.4.1 Remark Let Fq denote an algebraic closure of the finite field Fq. The Frobenius automor-
phism of Fq/Fq (throughout denoted by σ) is the field automorphism mapping each θ ∈ Fq
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to its q-th power θq. For every integer m ≥ 1 there is a unique subfield Em of Fq such that
Fq ⊆ Em and |Em| = qm. As usual we write Fqm for Em. Given integers d,m ≥ 1, one has
Fqd ⊆ Fqm if and only if d|m. Moreover, if d is a divisor of m, then Fqm/Fqd is a Galois ex-
tension of degree m

d ; its Galois group is cyclic and generated by σd (when restricted to Fqm).

The (Fqm ,Fqd)-trace of w ∈ Fqm is
∑m/d−1
i=0 wq

di

, while
∏m/d−1
i=0 wq

di

is the (Fqm ,Fqd)-norm
of w.

5.4.2 Remark Recall from Definition 2.1.98 that θ ∈ Fqm is a normal element of Fqm over Fq
provided its conjugates θ, θq, . . . , θq

m−1

under the Galois group of Fqm/Fq form an Fq-basis
of Fqm .

5.4.3 Definition An element θ ∈ Fqm is a completely normal element over Fq, provided θ
(simultaneously) is a normal element of Fqm over Fqd for every intermediate field Fqd of
Fqm over Fq, i.e., for every divisor d ≥ 1 of m. A monic irreducible polynomial g ∈ Fq[x]
of degree m is completely normal over Fq if one (and hence all) of its roots is a completely
normal element of Fqm/Fq.

5.4.4 Example (Based on [1387, 1388]) Let q = 7 and m = 3c, where c ≥ 1, and let η ∈ F7 be
a primitive 3c+1-th root of unity. Then F73c is obtained by adjoining η to F7. For every
i = 1, . . . , c, let τ(i) := 3b(i−1)/2c. Then

θ := 1 +

c∑
i=1

2·τ(i)∑
j=1,

gcd(3,j)=1

ηj·3
c−i

is a completely normal element of F73c over F7.

5.4.5 Theorem (Complete Normal Basis Theorem) [317] Given any finite field Fq and any integer
m ≥ 1 there exists a completely normal element of Fqm over Fq.

5.4.6 Remark The Complete Normal Basis Theorem was first proved by Blessenohl and Johnsen
[317] in 1986. A simplification of the proof is given in [1386]. The analogous result for (finite
dimensional) Galois extensions over infinite fields was already settled by Faith [1023] in
1957. For an outline of the general proof, see [1389, Chapter I]. Often, an element that is
completely normal is also called completely free (or vollständig frei or vollständig regulär)
[315, 317, 1386, 1387, 1388, 1389, 2090].

5.4.7 Remark Let m =
∏k
i=1 r

νi
i be the prime power decomposition of m. For every i = 1, . . . , k

assume that θi is completely normal in F
qr
νi
i

over Fq. Then θ :=
∏k
i=1 θi is completely

normal in Fqm/Fq. This is an application of Hilfssatz 4.4 of [317] (see also the Reduction
Theorem in Section 4 of [1389]); it reduces the existence problem for completely normal
elements to extensions of prime power degree.

5.4.8 Remark Concerning the existence of completely normal elements for prime power extensions
Fqrn /Fq for some prime r, the cases where r = p (the characteristic of Fq) and r 6= p have to
be dealt with separately. The case of equal characteristic is covered by Subsection 5.4.2 on
completely basic extensions. The case r 6= p is much harder to establish; it is covered by the
structure theory on completely normal elements to be outlined in Subsections 5.4.3-5.4.6.
For explicit constructions (in the spirit of Example 5.4.4) of completely normal elements in
Fqrn over Fq with r 6= p, see [1387, 1388].
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5.4.9 Definition Let M be a nonempty set of positive integers such that m ∈ M and d|m
imply d ∈M , and k, n ∈M imply lcm(k, n) ∈M (where lcm denotes the least common
multiple). Then M is a Steinitz number.

5.4.10 Remark The intermediate fields of Fq/Fq are in one-to-one correspondence with the Steinitz
numbers (see Brawley and Schnibben [398]). The field corresponding to the Steinitz number
M is the union FqM :=

⋃
m∈M Fqm . This algebraic extension of Fq is infinite if and only if

M is infinite. Any finite Steinitz number is of the form {d : d ∈ Z, d ≥ 1, d|m} for some
positive integer m; the corresponding field is Fqm .

5.4.11 Definition Let M be a Steinitz number. Then a sequence (wm)m∈M of elements of Fq is
trace-compatible, if for all d,m ∈M with d|m the (Fqm ,Fqd)-trace of wm is equal to wd.
Similarly, the sequence is norm-compatible, if the (Fqm ,Fqd)-norm of wm is equal to wd
for every d,m ∈M such that d|m.

5.4.12 Remark For an infinite Steinitz number M a trace-compatible sequence (wm)m∈M such
that every wm is a normal element of Fqm/Fq can be interpreted as an (infinite) normal ba-
sis for FqM over Fq. The existence of sequences of that kind in infinite Galois extensions over
an arbitrary field is proved by Lenstra [1896]. Representations of finite fields within com-
puter algebra systems which rely on subfield embeddings and trace-compatible sequences
of normal elements are studied by Scheerhorn [2537, 2538]. For finite fields, [2537] provides
an elementary proof of the existence of normal trace-compatible sequences for the entire
algebraic closure Fq/Fq (i.e., for the Steinitz number N).

5.4.13 Theorem [1389, Section 26] Consider the Steinitz number N and let Fq be any finite field.
Then there exists a trace-compatible sequence (wm)m∈N in Fq such that, for every m, the
element wm is completely normal in Fqm over Fq.

5.4.2 The class of completely basic extensions

5.4.14 Definition A Galois field extension Fqm/Fq is completely basic, if every normal element
of Fqm/Fq is completely normal in Fqm/Fq.

5.4.15 Remark The notion of a completely basic extension in the context of a general finite di-
mensional Galois extension goes back to Faith [1023]. Blessenohl and Johnsen [318] have
characterized the completely basic extensions among the abelian extensions. Previously,
Blessenohl [315] considered cyclic extensions of prime power degree. Meyer [2090] has ex-
tended [318] to a certain class of not necessarily abelian Galois extensions. For finite fields
an elementary proof of Theorem 5.4.18 below is given in Section 15 of [1389].

5.4.16 Definition For relatively prime integers q, ` ≥ 1, the order of q modulo ` is the least
integer n ≥ 1 such that qn ≡ 1 (mod `); it is denoted by ord`(q).

5.4.17 Definition When considering a finite field with characteristic p, for an integer t ≥ 1 the
p-free-part t′ of t is the largest divisor of t which is relatively prime to p.

5.4.18 Theorem [1389, Section 15] The following are equivalent:

1. Fqm is completely basic over Fq.
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2. For every prime divisor r of m, every normal element of Fqm/Fq is normal in
Fqm/Fqr .

3. For every prime divisor r of m, the number ord(m/r)′(q) is not divisible by r.

5.4.19 Example Let Fq be any finite field. Then Fqm is completely basic over Fq in all the following
cases:

1. m = r or m = r2, where r is a prime;

2. m divides q − 1;

3. m = pb, where p is the characteristic of Fq and b ≥ 0 is any integer.

5.4.20 Remark Actually, in the latter case of Example 5.4.19, θ is a normal element for Fqpb /Fq if

and only if the (Fqpb ,Fq)-trace of θ is non-zero (see [1389, Section 5]). For this class of field

extensions, Blake, Gao, and Mullin [309] provide an iterative construction of completely
normal elements.

5.4.3 Cyclotomic modules and complete generators

5.4.21 Remark In the present subsection the class of finite extensions of a finite field is generalized
to the class of cyclotomic modules; thereby, completely normal elements are generalized to
complete generators of cyclotomic modules. This generalization is necessary in order to
understand how completely normal elements are additively composed. The main references
are [1389, 1390].

5.4.22 Remark Consider again an algebraic closure Fq of Fq. For every integer d ≥ 1 the additive
group of Fq is equipped with a module structure over the algebra Fqd [x] of polynomials in
the variable x. The corresponding scalar multiplication (of field elements by polynomials) is
carried out by first evaluating a polynomial f ∈ Fqd [x] at σd (the Frobenius automorphism

over Fqd) and afterwards by applying the Fqd -endomorphism f(σd) to an element ω ∈ Fq,
resulting in f(σd)(ω). In this context, Fq is an Fqd [x]-module (with respect to σd). For

θ ∈ Fq and an integer d ≥ 1 let

Fqd [x]θ := {h(σd)(θ) : h ∈ Fqd [x]}
denote the Fqd [x]-submodule generated by θ.

5.4.23 Definition For θ ∈ Fq and an integer d ≥ 1, the qd-order of θ is the monic polynomial
g ∈ Fqd [x] of least degree such that g(σd)(θ) = 0. The qd-order of θ is denoted by
Ordqd(θ).

5.4.24 Theorem [1389, Section 8] Let d ≥ 1 be an integer.

1. The finite Fqd [x]-submodules of Fq correspond bijectively to the monic polynomi-
als of Fqd [x] that are not divisible by x: If f ∈ Fqd [x] is monic and f(0) 6= 0, the
corresponding Fqd [x]-submodule is the kernel of the Fqd -linear mapping f(σd).

2. Every finite Fqd [x]-submodule of Fq is cyclic. If U is the finite Fqd [x]-submodule

of Fq corresponding to the monic polynomial f ∈ Fqd [x] (not divisible by x),
then ω ∈ U if and only if Ordqd(ω) divides f , and Fqd [x]ω = U if and only if
Ordqd(ω) = f .

5.4.25 Remark For integers m, d ≥ 1 with d|m, the field Fqm is the Fqd [x]-submodule of Fq
corresponding to the polynomial xm/d−1 ∈ Fqd [x]. The generators of Fqm as Fqd [x]-module
are precisely the normal elements of Fqm over Fqd .
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5.4.26 Definition For an integer k ≥ 1 which is relatively prime to the characteristic p of
the underlying field Fq, let Φk(x) ∈ Fq[x] denote the k-th cyclotomic polynomial (see
Definition 2.1.121). Given a further integer t ≥ 1, the generalized cyclotomic polynomial
corresponding to the pair (k, t) is the polynomial Φk(xt) ∈ Fq[x].

5.4.27 Definition For an integer m ≥ 1, its square-free part ν(m) is the product of the distinct
prime divisors of m. We let ν(1) := 1.

5.4.28 Proposition [1389, Section 18] Consider Fq[x] and let (k, t) be as in Definition 5.4.26. Write
t = pbt′, where p is the characteristic of Fq and t′ the p-free part of t. Then

1. Φk(xt) = Φk(xt
′
)p
b

.

2. If d is a common divisor of k and t, then Φk(xt) = Φkd(x
t/d). In particular,

Φk(xt) = Φν(k)(x
kt/ν(k)).

3. If k and t are relatively prime, then Φk(xt) =
∏
e|t′ Φke(x)p

b

. The latter is the

canonical decomposition of Φk(xt) over Fq.

5.4.29 Remark Observe that different pairs (k, t) and (`, s) may lead to the same generalized
cyclotomic polynomial. However, Φk(xt) = Φ`(x

s) if and only if ν(k) = ν(`) and kt
ν(k) = `s

ν(`) .

5.4.30 Definition Consider an algebraic closure Fq of Fq. Given a pair (k, t) as in Definition
5.4.26, the cyclotomic module corresponding to (k, t) is the kernel of Φk(σt), where σ is
the Frobenius automorphism of Fq/Fq. Throughout, this Fq[x]-submodule is denoted
by Ck,t, hence

Ck,t = {θ ∈ Fq : Φk(σt)(θ) = 0}.
The module character of Ck,t is the number kt

ν(k) .

5.4.31 Remark In the setting of Definition 5.4.30, one has λω ∈ Ck,t for all ω ∈ Ck,t if and only
if λ ∈ Fqn where n = kt

ν(k) [1389, Section 18]. Therefore, Ck,t carries the structure of an

Fqd [x]-module if and only if d is a divisor of kt
ν(k) . This motivates the notion of the module

character in Definition 5.4.30.

5.4.32 Definition Let Ck,t be a cyclotomic module over Fq. An element θ is a complete generator
for Ck,t over Fq, provided θ (simultaneously) generates Ck,t as an Fqd [x]-module for

every divisor d of its module character kt
ν(k) .

5.4.33 Theorem (Complete Cyclotomic Generator Theorem; [1389, Section 18]) Given any finite
field Fq and any cyclotomic module Ck,t over Fq, there exists a complete generator for Ck,t
over Fq.

5.4.34 Remark Theorem 5.4.33 generalizes the Complete Normal Basis Theorem 5.4.5 from the
class of finite field extensions of Fq to the class of cyclotomic modules over Fq: If (k, t) =
(1,m), then the cyclotomic module Ck,t is equal to the extension field Fqm ; over Fq, the
module character of Fqm is equal to m and the complete generators of Fqm/Fq are exactly
the completely normal elements of Fqm over Fq. The following theorem generalizes Remark
5.4.7.

5.4.35 Theorem (Cyclotomic Reduction Theorem; [1389, Section 25] and [1390, Section 3]) Con-
sider two cyclotomic modules Ck,s and C`,t over Fq. Assume that ks and `t are relatively
prime. Then, for θ ∈ Ck,s and ω ∈ C`,t the following two assertions are equivalent:
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1. θ and ω are complete generators for Ck,s and C`,t over Fq, respectively.

2. θ · ω is a complete generator for the cyclotomic module Ck`,st over Fq.

5.4.4 A decomposition theory for complete generators

5.4.36 Definition Consider a generalized cyclotomic polynomial Φk(xt) ∈ Fq[x]. A set ∆ ⊆ Fq[x]
of generalized cyclotomic polynomials is a cyclotomic decomposition of Φk(xt), if the
members of ∆ are pairwise relatively prime and

Φk(xt) =
∏

Ψ(x)∈∆

Ψ(x).

In that case, i(∆) denotes a corresponding set of pairs (`, s) with Φ`(x
s) ∈ ∆.

5.4.37 Proposition [1389, Section 19] Let ∆ be a cyclotomic decomposition of Φk(xt) ∈ Fq[x].
Then

1. Ck,t =
⊕

(`,s)∈i(∆) C`,s is a decomposition into a direct sum of cyclotomic mod-
ules.

2. For θ ∈ Ck,t let θ =
∑

(`,s)∈i(∆) θ`,s be the corresponding decomposition into its

∆-components. If θ is a complete generator of Ck,t over Fq, then (necessarily) for
every (`, s) ∈ i(∆) the component θ`,s is a complete generator of C`,s over Fq.

5.4.38 Definition Let ∆ be a cyclotomic decomposition of Φk(xt) considered over Fq. Then ∆
is an agreeable decomposition, provided the following holds: if for every (`, s) ∈ i(∆),
one chooses any element θ`,s that is a complete generator of C`,s over Fq, then the sum
θ =

∑
(`,s)∈i(∆) θ`,s is a complete generator of Ck,t over Fq.

5.4.39 Theorem (Complete Decomposition Theorem; [1389, Section 19] and [1390, Section 5])
Consider a generalized cyclotomic polynomial Φk(xt) over the finite field Fq with charac-
teristic p. Let r be a prime divisor of t. Assume that r 6= p and that r does not divide k.
Then

∆r := {Φk(xt/r),Φkr(x
t/r)}

is a cyclotomic decomposition of Φk(xt). Moreover, the following two statements are equiv-
alent:

1. ∆r is an agreeable decomposition over Fq.
2. ordν(kt′)(q) is not divisible by ra, where a ≥ 1 is maximal such that ra divides t

(recall that t′ is the p-free part of t and ν(kt′) is the square-free part of kt′).

5.4.40 Remark Consider Φk(xt) and ∆r as in Theorem 5.4.39. Then the module character of each
cyclotomic module corresponding to a member of ∆r is equal to kt

rν(k) and therefore a proper

divisor of the module character kt
ν(k) of Ck,t over Fq.

5.4.41 Example [1389, Section 19] Consider an extension Fqm/Fq, where m > 1 is not a power
of the characteristic p. Let r|m be the largest prime divisor of m that is different from p.
Then {xm/r−1,Φr(x

m/r)} is an agreeable decomposition of xm−1 over Fq. If in particular

m = rn, this decomposition is equal to {xrn−1 − 1,Φrn(x)}. The Complete Decomposition

Theorem 5.4.39 may then be applied to xr
n−1 − 1 if n ≥ 2, and an induction argument
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shows that the canonical decomposition {x− 1, Φr(x), Φr2(x), . . . , Φrn(x)} is an agreeable
decomposition of xr

n − 1 over Fq.

5.4.42 Remark In Section 6 of [1390] a Uniqueness Theorem is proved: Starting from a generalized
cyclotomic polynomial Φk(xt) over Fq, one obtains a unique (finest) agreeable decomposi-
tion of Φk(xt) by a recursive application of the Complete Decomposition Theorem 5.4.39
independent of the order the various primes r are chosen.

5.4.43 Example [1389, Section 19] The set {x − 1,Φ2(x),Φ4(x),Φ3(x4),Φ9(x4),Φ7(x36)} is an
agreeable decomposition of x252 − 1 over Fq, where q is any prime power relatively prime
to 252. When specializing q to be equal to 5, the Complete Decomposition Theorem may
be applied several further times to reach the following agreeable decomposition of x252 − 1
over F5: {x − 1, Φ2(x), Φ4(x), Φ3(x2), Φ12(x), Φ9(x2), Φ36(x), Φ7(x6), Φ28(x3), Φ63(x2),
Φ252(x)}.

5.4.5 The class of regular extensions

5.4.44 Remark Consider a cyclotomic module Ck,t over Fq, where k and t are relatively prime. Let
t = pbt′, where p is the characteristic of Fq and t′ is the p-free part of t. The canonical de-

composition {Φke(x)p
b

: e|t′} is (by definition) the finest possible cyclotomic decomposition
of Φk(xt). By Theorem 19.10 of [1389], the canonical decomposition is agreeable provided
that t′ and ordν(kt′)(q) are relatively prime. (Recall that ν(kt′) is the square-free part of
kt′.)

5.4.45 Theorem [1389, Section 19] Let Fq be a finite field and p its characteristic. Write m = m′pb

(with m′ being the p-free part of m). Then the canonical decomposition {Φd(x)p
b

: d|m′}
of xm − 1 is agreeable over Fq if and only if m′ and ordν(m′)(q) are relatively prime.

5.4.46 Definition Consider a cyclotomic module Ck,t over Fq, with k and t being relatively
prime. Then Ck,t is regular over Fq, provided that ordν(kt′)(q) and kt are relatively
prime (t′ is the p-free part of t and ν(kt′) is the square-free part of kt′). In particular,
in the case where (k, t) = (1,m), the extension Fqm is regular over Fq, provided that m
and ordν(m′)(q) are relatively prime.

5.4.47 Example These examples (taken from [1391, Section 1]), indicate that the class of regular
extensions is quite large. Given any finite field Fq, we have that Fqm is regular over Fq in
all the following cases:

1. m is a power of a prime r;

2. ν(m) divides ν(q − 1);

3. m is a power of a Carmichael number (a Carmichael number is an odd composite
integer n ≥ 1 such that r − 1 divides n − 1 for every prime divisor r of n;
by Alford, Granville, and Pomerance [75] there are infinitely many Carmichael
numbers, examples being 561, 1105, 1729, and 2465);

4. m has all its prime divisors from {7, 11, 13, 17, 19, 31, 41, 47, 49, 61, 73, 97, 101,
107, 109, 139, 151, 163, 167, 173, 179, 181, 193}, without any restriction on their
multiplicity.

5.4.48 Remark Any completely basic extension (Definition 5.4.14) is regular. In order to compare
the completely basic extensions with the regular ones, consider a finite set π of prime num-
bers, and let ν be the product of all r ∈ π. Let further N(π) := {m ∈ Z : m ≥ 1, ν(m)|ν}.
If Fqν is completely basic over Fq, then Fqm is regular over Fq for every m ∈ N(π). In
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contrast, the subset of those m ∈ N(π) for which Fqm is completely basic over Fq is only
finite (see [1391, Proposition 3.3]).

5.4.6 Complete generators for regular cyclotomic modules

5.4.49 Remark When considering the complete generation of a regular cyclotomic module Ck,t
over Fq, due to Remark 5.4.44, one can independently work on the components (which are
also regular) arising from the canonical decomposition of Φk(xt). It is therefore sufficient
to consider the subclass of (regular) cyclotomic modules of the form Cn,pb (corresponding

to the generalized cyclotomic polynomial Φn(x)p
b

), where p is the characteristic of Fq and
n is relatively prime to q.

5.4.50 Definition Let p be the characteristic of Fq and n be relatively prime to q. Assume that
Cn,pb is a regular cyclotomic module over Fq. Write n = 2c · n with n odd. Then Cn,pb
is exceptional over Fq, provided the following conditions are satisfied: q ≡ 3 (mod 4)
and c ≥ 3 and the order of q modulo 2c is equal to 2. In all other cases, Cn,pb is
non-exceptional over Fq.

5.4.51 Remark For an integer n ≥ 1 let π(n) denote the set of prime divisors of n. If n and q are
relatively prime, the order of q modulo n is of the form

ordn(q) = ordν(n)(q) ·
∏

r∈π(n)

rα(r),

where α(r) ≥ 0 for all r ∈ π(n). Assume next that Cn,pb is a regular cyclotomic module
over Fq, hence ordν(n)(q) is relatively prime to npb. Let further

τ = τ(q, n) :=
∏

r∈π(n)

rbα(r)/2c.

5.4.52 Theorem [1389, Section 20] Let p be the characteristic of Fq and n be relatively prime to q.
Assume that Cn,pb is a regular cyclotomic module over Fq. Let τ = τ(q, n) be as in Remark
5.4.51. Then τ divides n

ν(n) in general, and 2τ divides n
ν(n) if Cn,pb is exceptional. Moreover

the following hold:

1. If Cn,pb is non-exceptional, then θ is a complete generator of Cn,pb over Fq if and

only if Ordqτ (θ) = Φn/τ (x)p
b

.

2. If Cn,pb is exceptional, then θ is a complete generator of Cn,pb over Fq if and only

if Ordqτ (θ) = Φn/τ (x)p
b

and Ordq2τ (θ) = Φn/(2τ)(x)p
b

.

5.4.53 Theorem [1389, Section 21] Let p be the characteristic of Fq and n be relatively prime
to q. Assume that Cn,pb is a regular cyclotomic module over Fq. Let τ = τ(q, n) be as in
Remark 5.4.51 and let ϕ denote Euler’s function (see Definition 2.1.43). Then the number
of complete generators of Cn,pb over Fq is equal to

1.
(
qordn(q)/τ − 1

)τϕ(n)/ordn(q) · q(pb−1)ϕ(n), if Cn,pb is non-exceptional;

2.
(
q2ordn(q)/τ − 4qordn(q)/τ + 3

)τϕ(n)/(2ordn(q)) · q(pb−1)·ϕ(n), if Cn,pb is exceptional.

5.4.54 Theorem [1389, Section 21] Let Ck,t be a regular cyclotomic module over Fq and write
t = pbt′, where p is the characteristic of Fq and t′ is the p-free part of t. Then the number
of complete generators of Ck,t over Fq is at least

(q − 1)ϕ(k)t′ · qϕ(k)t′(pb−1),
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where ϕ denotes Euler’s function. Moreover, equality holds if and only if kt′ divides q − 1,
in which case θ is a complete generator of Ck,t if and only if the q-order of θ is Φk(xt).

5.4.55 Conjecture If Fqm/Fq is a regular extension, then the number of completely normal elements

of Fqm/Fq is at least (q − 1)m
′ · qm′(pb−1) by Theorem 5.4.54 (where m = pbm′ with m′

being the p-free part of m and p the characteristic of Fq); moreover, equality holds if and
only if m′ divides q− 1, in which case Fqm is completely basic over Fq. We conjecture that,
for any extension Fqm/Fq, the number of completely normal elements of Fqm/Fq is at least

(q − 1)m
′ · qm′(pb−1).

5.4.56 Remark The aim of Theorem 5.4.57 below and its subsequent remarks is a construction
(in the spirit of Example 5.4.4) of complete generators for regular cyclotomic modules over
Fq that are of the form Cn,1. It is based on Theorem 5.4.52. A suitable application of the
Complete Decomposition Theorem 5.4.39 in combination with the Cyclotomic Reduction
Theorem 5.4.35 gives rise to a complete generator for a general cyclotomic module, in
particular a completely normal element for an arbitrary extension Fqm over Fq. Thereby,
Remark 5.4.20 on extensions of the form Fqpb may be used to cover the cases Ck,t and Fqm ,
where the characteristic p of Fq divides t and m, respectively. Throughout, gcd denotes the
greatest common divisor.

5.4.57 Theorem [1389, Chapter VI] Consider a finite field Fq and an integer n ≥ 1 with gcd(n, q) =
1. Let s := ordν(n)(q). Assume that Cn,1 is a regular cyclotomic module over Fq (hence n and
s are relatively prime). If n is odd, or if q ≡ 1 (mod 4), or if n ≡ 2 (mod 4) and q ≡ 3 (mod 4),
let (Q,N) := (qs, n). If Cn,1 is exceptional over Fq, let (Q,N) := (q2s, n2 ). Write Q−1 = ρ·ρ,
where ν(ρ) = ν(N) and gcd(N, ρ) = 1 (hence ρ is the largest divisor of Q−1 composed from
prime divisors of N), and let a := gcd(ρ,N) and I := {i ∈ Z : 1 ≤ i ≤ a, gcd(i, a) = 1}.
On I there is defined an equivalence relation by i ∼ j if and only if i ≡ q`j (mod a) for
some ` ∈ Z. Let R be a set of representatives of ∼ on I. Finally, let y ∈ Fq be a primitive
(Nρ)-th root of unity, and

w :=
∑
i∈R

yi and u :=
∑
i∈R

(yi + yiq).

With Tr denoting the (Fqns ,Fqn)-trace mapping, the following hold:

1. Ordq(Tr(w)) = Φn(x) in the first case, that is, n odd, or q ≡ 1 (mod 4), or
n ≡ 2 (mod 4) and q ≡ 3 (mod 4).

2. Ordq(Tr(u)) = Φn(x) and Ordq2(Tr(u)) = Φn
2

(x) in the second case, that is,
where Cn,1 is exceptional over Fq.

5.4.58 Remark The case where 4|n and q ≡ 3 (mod 4) and Cn,1 is regular but non-exceptional over
Fq is missed in the formulation of Theorem 5.4.57. It can be covered, however, by applying
Theorem 5.4.57 to the pair (q2, n2 ) in order to determine an element having q2-order Φn/2(x).
Any such element has q-order Φn(x) (Section 24 of [1389]).

5.4.59 Remark When searching for a complete generator of the regular cyclotomic module Cn,1
over Fq, where gcd(n, q) = 1, define the parameter τ = τ(q, n) as in Theorem 5.4.52.
Then (q, n) is exceptional if and only if (qτ , nτ ) is exceptional. Consider Cn,1 = {θ ∈ Fq :
Φn(σ)(θ) = 0} as the cyclotomic module Cn

τ ,1
over Fqτ . Apply the construction of Theorem

5.4.57 (and Remark 5.4.58) to the pair (qτ , nτ ) instead of (q, n). Then the resulting elements
constitute complete generators of Cn,1 over Fq by Theorem 5.4.52.
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5.4.7 Towards a primitive complete normal basis theorem

5.4.60 Remark Completing previous work of Carlitz [539] in 1952 and Davenport [775] in 1968,
Lenstra and Schoof [1899] proved the Primitive Normal Basis Theorem (Theorem 5.2.32)
in 1987. It states that for any finite field Fq and any integer m ≥ 1 there exists a primitive
element of Fqm that is normal over Fq. Recall that a primitive element of Fqm is a generator
of the (cyclic) multiplicative group of Fqm ; see Theorem 2.1.37 and Definition 2.1.38. In this
subsection we consider the existence of primitive elements that are completely normal.

5.4.61 Remark By means of a computer search, Morgan and Mullen [2157] calculated for every
pair (p,m), with p ≤ 97 a prime and with pm < 1050, a monic irreducible polynomial of
degree m over Fp whose roots are primitive and completely normal elements for Fpm over Fp.
It is conjectured in [2157] that for every extension Fqm/Fq there exists a primitive element
of Fqm that is completely normal over Fq.

5.4.62 Theorem [1391] Let q be a prime power and assume that Fqm is a regular extension over
Fq (see Definition 5.4.46). Assume further that q − 1 is divisible by 4 if q is odd and m is
even. Then there exists a primitive element of Fqm that is completely normal over Fq.

5.4.63 Remark Blessenohl [316] settles the existence of primitive completely normal elements for
extensions Fqm/Fq, where m = 2` is a divisor of q2 − 1 and ` ≥ 3 and q ≡ 3 (mod 4).
In [1394], the case where q ≡ 3 (mod 4) and where m is a sufficiently large power of 2 is
handled, giving rise to the first bound in Theorem 5.4.64 below. In a not yet published work
by the author [1395], the existence of primitive completely normal elements is proved for all
regular extensions, i.e., the assertion of Theorem 5.4.62 also holds without the additional
assumption that q − 1 is divisible by 4 if q is odd and m is even.

5.4.64 Theorem [1394] Let Fq be a finite field with characteristic p. For an integer m ≥ 1 let
PCN(q,m) denote the number of primitive elements of Fqm that are completely normal
over Fq. Then (with ϕ denoting Euler’s function):

1. PCN(q, 2`) ≥ 4(q − 1)2`−2

, if q ≡ 3 (mod 4) and ` ≥ e + 3 (where e is maximal
such that 2e|q2 − 1), or if q ≡ 1 (mod 4) and ` ≥ 5.

2. PCN(q, r`) ≥ r2(q − 1)r
`−2

, if r 6= p is an odd prime and ` ≥ 2.

3. PCN(q, r`) ≥ r(q − 1)r
`−1 · ϕ(qr

`−1 − 1), if r ≥ 7 and r 6= p is a prime and ` ≥ 2.

4. PCN(q, p`) ≥ pqp`−1−1(q − 1), if ` ≥ 2.

5. PCN(q, p`) ≥ pqp`−1−1(q − 1) · ϕ(qp
`−1 − 1), if p ≥ 7 and ` ≥ 2.

5.4.65 Definition Consider a finite field Fq and let M be a Steinitz number. Assume that
(wm)m∈M is a sequence in FqM that is both, norm-compatible and trace-compatible
over Fq (see Definition 5.4.11). Then (wm)m∈M is a complete universal generator of
FqM over Fq if, for every m ∈ M , wm is a primitive element of Fqm that is completely
normal over Fq.

5.4.66 Theorem [1392] Let q > 1 be any prime power and r ≥ 7 be any prime. Furthermore, let
M := {rn : n ∈ N}. Then there exists a complete universal generator for FqM over Fq.

5.4.67 Remark The conclusion of Theorem 5.4.66 could also be proved for r = 5 when Fq has
characteristic 5, or when q mod 25 is not equal to 1, 7, 18 or 24, or when q is sufficiently
large [1392, 1393]. For the cases r = 2 and r = 3 similar results are available only when the
assumption that M is a Steinitz number is weakened, e.g., M has to consist of powers of 9
or powers of 8, respectively.
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See Also

§5.1, §5.2 For self-dual, weakly self-dual, and primitive normal bases.
§5.3 For information on low-complexity normal bases.

[309], [589], For explicit constructions of completely normal polynomials.
[2539], [2540]
[1389] Section 27 discusses aspects of completely normal polynomials and

iterative constructions.
[2539], [2540] For connections to Dickson polynomials; see also Section 9.6.
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6.1 Gauss, Jacobi, and Kloosterman sums

Ronald J. Evans, University of California at San Diego

In this section, we focus mainly on Gauss, Jacobi, and Kloosterman sums over finite
fields, with brief mention of Eisenstein and Jacobsthal sums. Throughout, Fq is a finite field
of characteristic p with q = pr elements. (In Subsection 6.1.3, the exponent r will be taken
to be the order of p (mod k) for a fixed integer k.) We refer to [240] for proofs of many of
the results in this section. In some cases, the proofs need modification because of differing
definitions of the trivial character χ0: in Definition 6.1.1 below, χ0(0) = 0, while in [240],
χ0(0) = 1.

6.1.1 Properties of Gauss and Jacobi sums of general order

6.1.1 Definition A multiplicative character χ on F∗q is a map from the cyclic group F∗q into the
group of complex roots of unity such that χ(αβ) = χ(α)χ(β) for all α, β ∈ F∗q . We
extend χ to a function on Fq by setting χ(0) = 0. The trivial character χ0 satisfies
χ0(α) = 1 for every α ∈ F∗q . The order of χ is the smallest positive integer n for which
χn = χ0. The unique character ρ of order 2 is the quadratic character .

139
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6.1.2 Definition Write ζp = e2πi/p. For a character χ of order k on Fq and for β ∈ Fq, the Gauss
sum G(β, χ) of order k over Fq is defined by

G(β, χ) =
∑
α∈Fq

χ(α)ζTr(αβ)
p ,

where Tr(α) denotes the trace of α from Fq to the prime field Fp. When β = 1, we
abbreviate G(χ) = G(β, χ).

6.1.3 Remark The next theorem shows that G(β, χ) can be evaluated in terms of G(χ).

6.1.4 Theorem [240, p. 9]. For a character χ on Fq and β ∈ Fq,

G(β, χ) =

{
q − 1 if β = 0, χ = χ0,

χ(β)G(χ) otherwise.

In particular,
G(χ) = χ(−1)G(χ).

6.1.5 Remark For proofs of the following two theorems, see [240, p. 10].

6.1.6 Theorem For a character χ on Fq,

|G(χ)| = √q if χ 6= χ0, and G(χ) = −1 if χ = χ0.

6.1.7 Theorem For a character χ on Fq and β ∈ Fq,

G(β, χp) = G(βp, χ).

6.1.8 Remark We next present two theorems on uniform distribution of Gauss sums. The first,
due to Katz and Zheng [1713], was subsequently extended by Shparlinski [2652]. For the
second and some generalizations thereof, see Iwaniec and Kowalski [1581, Theorem 21.6],
Katz [1701, Chapter 9], and Fu and Liu [1139].

6.1.9 Theorem Consider the collection of (q − 1)(q − 2) normalized Gauss sums

G(β, χ)/
√
q, β ∈ F∗q , χ 6= χ0.

As q tends to infinity, this collection is asymptotically equidistributed on the complex unit
circle.

6.1.10 Theorem Consider the collection of q − 2 normalized Gauss sums

G(χ)/
√
q, χ 6= χ0.

As q tends to infinity, this collection is asymptotically equidistributed on the complex unit
circle.

6.1.11 Definition Let β ∈ F∗q and suppose that q = kf + 1 for some positive integer k. The
(reduced) f -nomial Gaussian periods g(β, k) of order k are defined by

g(β, k) =
∑
α∈Fq

ζTr(βαk)
p .
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When β = 1, we abbreviate g(k) = g(β, k). For example, if q = p, then

g(k) =

p∑
m=1

ζm
k

p .

The periods g(β, k) are also known as Gauss sums.

6.1.12 Remark Gauss sums and periods have been used for counting solutions to diagonal equa-
tions over Fq [240, Chapters 10, 12] and for counting points on more general varieties
[1343, 1344, 2167]. Thaine [2791] has given an application to class groups of cyclotomic
fields. For some applications to coding theory, see [1078, 2225].

6.1.13 Theorem [240, p. 11]. Let β ∈ F∗q . If χ is a character on Fq of order k, then

g(β, k) =

k−1∑
j=1

G(β, χj).

In particular, |g(β, k)| ≤ (k − 1)
√
q.

6.1.14 Remark The inequality above has been strengthened in several different ways, depending
on the relationship between p and k; see Heath-Brown and Konyagin [1454]. For further
estimates for Gauss sums, see [374, 1790, 2645].

6.1.15 Definition Let q = pr = kf + 1 and let γ be a generator of the cyclic group F∗q . The
polynomial

Rk(x) =

k−1∏
s=0

(x− g(γs, k)),

whose zeros are (reduced) f -nomial Gaussian periods, is the (reduced) period polynomial
of degree k.

6.1.16 Example R2(x) = x2 − q(−1)f , by Theorem 6.1.86.

6.1.17 Remark The period polynomial Rk(x) defined above has integral coefficients and is inde-
pendent of the choice of generator γ. It is irreducible over Q when r = 1, but not necessarily
irreducible when r > 1 [240, p. 426]. See [1538] for examples of factorizations of Rk(x), par-
ticularly in the case k = 5. Determinations of period polynomials over Fp have applications
to residuacity criteria mod p; see for example [999].

6.1.18 Definition For any positive integer n, write ζn = e2πi/n.

6.1.19 Remark The following theorem is a restatement of Theorem 6.1.13.

6.1.20 Theorem (Finite Fourier expansion of Gaussian periods.) Let γ be a generator of the group
F∗q and let χ be a character of order k on Fq such that χ(γ) = ζk. Then for each period
g(γs, k), we have the Fourier expansion

g(γs, k) =

k−1∑
v=1

G(χv)ζ−svk .
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6.1.21 Definition For a character χ on Fq, define the Eisenstein sum E(χ) by

E(χ) =
∑
α∈Fq

Tr(α)=1

χ(α).

6.1.22 Remark Eisenstein sums can be applied to obtain congruences for binomial coefficients
[240, Section 12.9] and to evaluate Brewer sums [240, Chapter 13]. They are also useful for
evaluating Gauss sums g(k), via the following theorem.

6.1.23 Theorem [240, p. 421] Let χ be a character of order k on Fq, and let χ∗ denote the restriction
of χ to the prime field Fp, so that χ∗ is a character on Fp of order

k∗ =
k

gcd(k, (q − 1)/(p− 1))
.

Then

g(k) =
k−1∑
j=1
k∗- j

G(χ∗j)E(χj)− p
k−1∑
j=1
k∗| j

E(χj).

6.1.24 Theorem [240, p. 391]. Let χ be a nontrivial character on Fq, and let χ∗ denote the restric-
tion of χ to Fp. Then the Eisenstein sum E(χ) can be expressed in terms of the Gauss sum
G(χ) over Fq and the Gauss sum G(χ∗) over Fp as follows:

E(χ) =

{
G(χ)/G(χ∗) if χ∗ is nontrivial,

−G(χ)/p if χ∗ is trivial.

As a consequence,

|E(χ)| =
{
p(r−1)/2 if χ∗ is nontrivial,

p(r−2)/2 if χ∗ is trivial.

6.1.25 Definition Let χ, ψ be multiplicative characters on Fq. The Jacobi sum J(χ, ψ) over Fq
is defined by

J(χ, ψ) =
∑
α∈Fq

χ(α)ψ(1− α).

We say that the Jacobi sum has order k if k is the least common multiple of the orders
of its arguments.

6.1.26 Remark Clearly J(χ, ψ) = J(ψ, χ) ∈ Q(ζq−1). The next four theorems follow easily from
the results in [240, Section 2.1].

6.1.27 Theorem (Trivial Jacobi sums.) For characters χ, ψ on Fq,

J(χ, ψ) =


q − 2 if ψ, χ are both trivial,

−1 if exactly one of ψ, χ is trivial,

−χ(−1) if χψ is trivial with χ nontrivial.

6.1.28 Theorem If χ and ψ are characters on Fq with χψ nontrivial, then

J(χ, ψ) = G(χ)G(ψ)/G(χψ).
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Thus if χ, ψ, and χψ are all nontrivial, then

|J(χ, ψ)| = √q.
6.1.29 Theorem If χ and ψ are characters on Fq with χ nontrivial, then

J(χ, ψ) = ψ(−1)G(ψ)G(χψ)/G(χ).

6.1.30 Theorem If χ is a character on Fq of order k > 1, then

G(χ)k = qχ(−1)
k−2∏
j=1

J(χ, χj).

Thus if f denotes the order of p (mod k), then G(χ)k lies in a subfield of Q(ζk) of index f .

6.1.31 Remark Louboutin [1960] used Theorem 6.1.30 for power residue characters attached to the
simplest real cyclic cubic, quartic, quintic, and sextic number fields, to efficiently compute
class numbers of these fields.

6.1.32 Definition Let χ1, . . . , χt be characters on Fq. Define the multiple Jacobi sum J(χ1, . . . , χt)
by

J(χ1, . . . , χt) =
∑

α1,...,αt∈Fq
α1+···+αt=1

χ1(α1) · · ·χt(αt).

Similarly define

J0(χ1, . . . , χt) =
∑

α1,...,αt∈Fq
α1+···+αt=0

χ1(α1) · · ·χt(αt).

6.1.33 Remark Jacobi sums have applications to solving diagonal equations over finite fields and
to discrete log cryptosystems [240, Chapter 10]. They have been used to determine the
cardinality of certain classes of irreducible polynomials over Fq with prescribed trace and
restricted norm [1365, 1783]. See [2948, Chapter 16] for an application to primality testing,
and [1146] for an application to coding theory.

6.1.34 Remark The next four theorems can be proved by a straightforward modification of the
proofs in [240, Sections 10.1–10.3].

6.1.35 Theorem If χ1, . . . , χt are all trivial characters on Fq, then

J(χ1, . . . , χt) =
(q − 1)t − (−1)t

q
, J0(χ1, . . . , χt) = J(χ1, . . . , χt) + (−1)t.

6.1.36 Theorem Suppose that χ1, . . . , χt are characters on Fq which are not all trivial. Then

J0(χ1, . . . , χt) =

{
(1− q)J(χ1, . . . , χt) if χ1 · · ·χt is trivial,

0 otherwise.

6.1.37 Theorem (Reduction formula) Suppose that χ1, . . . , χt are characters on Fq such that χt
is nontrivial. Then

J(χ1, . . . , χt) =


−(−1)t if χ1, . . . , χt−1 are all trivial,

J(χt, χ1 · · ·χt−1)J(χ1, . . . , χt−1) if χ1 · · ·χt−1 is nontrivial,

−qJ(χ1, . . . , χt−1) otherwise.
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6.1.38 Theorem Suppose that the characters χ1, . . . , χt on Fq are not all trivial. Then

J(χ1, . . . , χt) =

{
G(χ1) · · ·G(χt)/G(χ1 · · ·χt) if χ1 · · ·χt is nontrivial,

−G(χ1) · · ·G(χt)/q otherwise.

Thus if χ1, . . . , χt are all nontrivial,

|J(χ1, . . . , χt)| =
{
q(t−1)/2 if χ1 · · ·χt is nontrivial,

q(t−2)/2 otherwise.

6.1.39 Remark We next present two theorems on the uniform distribution of Jacobi sums. The
first is due to Katz and Zheng [1713]. For the second and generalizations thereof, see Katz
[1711, Corollary 20.3]. (Katz’s Corollary 20.3 for r = 1 is equivalent to his Theorem 17.5
with n = 1.)

6.1.40 Theorem Consider the collection of (q − 2)(q − 3) normalized Jacobi sums

J(χ, ψ)/
√
q, χ, ψ, χψ all nontrivial on Fq.

As q tends to infinity, this collection is asymptotically equidistributed on the complex unit
circle.

6.1.41 Theorem For a fixed nontrivial character ψ on Fq, consider the collection of q−3 normalized
Jacobi sums

J(χ, ψ)/
√
q, χ 6= χ0, χ 6= ψ.

As q tends to infinity, this collection is asymptotically equidistributed on the complex unit
circle.

6.1.42 Remark Suppose that in place of the collection above, one considers the more general
collection of normalized multiple Jacobi sums

J(χ1, . . . , χm, ψ1, . . . , ψn)/q(n+m−1)/2,

where the ψj are fixed nontrivial characters and where the χi run through all nontrivial
characters for which χ1 · · ·χmψ1 · · ·ψn is nontrivial. Katz [email communication, 2011] has
shown that as q tends to infinity, this collection is asymptotically equidistributed on the
complex unit circle, except in the “degenerate” case where both m = 1 and ψ1 · · ·ψn is
trivial.

6.1.43 Definition (Lifted Gauss sums) Let χ be a character on Fq, and let m be a positive integer.
Recall that the Gauss sum G(χ) on Fq is defined by

G(χ) =
∑
α∈Fq

χ(α)ζTr(α)
p .

The lift of G(χ) to the extension field Fqm is the Gauss sum

Gm(χ′) =
∑
δ∈Fqm

χ′(δ)ζTr(δ)
p ,

where Tr is the trace from Fqm to Fp and χ′ is the character on Fqm defined by

χ′(δ) = χ
(
Norm Fqm/Fq (δ)

)
, δ ∈ Fqm .

We call χ′ the lift of the character χ from Fq to Fqm .
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6.1.44 Definition (Lifted Jacobi sums) Suppose that χ1, . . . , χt are characters on Fq, and let m
be a positive integer. The lift of the Jacobi sum

J(χ1, . . . , χt) =
∑

α1,...,αt∈Fq
α1+···+αt=1

χ1(α1) · · ·χt(αt)

on Fq to the extension field Fqm is the Jacobi sum

Jm(χ′1, . . . , χ
′
t) =

∑
δ1,...,δt∈Fqm
δ1+···+δt=1

χ′1(δ1) · · ·χ′t(δt),

where χ′i is the the lift of χi from Fq to Fqm .

6.1.45 Theorem (Hasse-Davenport theorem on lifted Gauss sums [240, p. 360]) Let χ be a character
on Fq, and let m be a positive integer. Then in the notation of Definition 6.1.43,

Gm(χ′) = (−1)m−1G(χ)m.

6.1.46 Remark The next corollary follows with the aid of Theorem 6.1.38.

6.1.47 Corollary (Hasse-Davenport theorem on lifted Jacobi sums.) Suppose that χ1, . . . , χt are
characters on Fq which are not all trivial, and let m be a positive integer. Then in the
notation of Definition 6.1.44,

Jm(χ′1, . . . , χ
′
t) = (−1)(m−1)(t−1)J(χ1, . . . , χt)

m.

6.1.48 Definition A Gauss or Jacobi sum is pure if some positive integral power of it is real.

6.1.49 Example Quadratic Gauss sums are pure, by Theorem 6.1.86. Another example is given by
the following theorem of Stickelberger, proved in [240, Section 11.6].

6.1.50 Theorem Let χ be a character of order k > 2 on Fq, where q = pr. Suppose that there is
a positive integer t such that pt ≡ −1 (mod k), with t chosen minimal. Then r = 2ts for
some positive integer s, and

q−1/2G(χ) =

{
(−1)s−1 if p = 2,

(−1)s−1+(pt+1)s/k if p > 2.

6.1.51 Theorem [1011] Let χ be a character of order k on Fq. Then the Gauss sums G(χj) are
pure for all integers j if and only if −1 is a power of p (mod k). In the special case that k
is a prime power, G(χ) is pure if and only if −1 is a power of p (mod k).

6.1.52 Theorem [1011] Let χ be a character of order k > 1 on Fq, where q = pr. If G(χ) is pure,
then 2(q − 1)/(k(p− 1)) is an integer with the same parity as r. In particular, if r = 1 and
k > 2, then G(χ) is not pure, i.e., the normalized Gauss sum G(χ)/

√
p on Fp cannot equal

a root of unity when χ is a character on Fp of order > 2. Also, if r = 2, then G(χ) is pure
if and only if k | (p+ 1).

6.1.53 Remark The next theorem, due to Aoki [112], gives further examples of pure Gauss sums.
See also Aoki [113].
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6.1.54 Theorem Let χ be a character of order k > 2 on Fq, where q = pr. For r = 3, if G(χ) is
pure, then either (a) k = 14 and p ≡ 2 or 4 (mod 7); (b) k = 42 and p ≡ 4 or 16 (mod 21);
or (c) k = 78 and p ≡ 16 or 32 (mod 39). For r = 4, G(χ) is pure if and only if k | (p2 + 1),
except in the following four cases: (i) k = 20 and p ≡ 13 or 17 (mod 20); (ii) k = 30 and
p ≡ 17 or 23 (mod 30); (iii) k = 60 and p ≡ 17 or 53 (mod 60); (iv) k = 120 and p ≡ 83 or
107 (mod 120).

6.1.55 Remark The next theorem gives examples of pure Jacobi sums over Fp2 . It is due to
Shiratani and Yamada, who point out an application to algebraic combinatorics [2615]. It
is also due independently to Akiyama, who gave a different proof [66]. Other examples have
been given by Aoki [112].

6.1.56 Theorem Let r = 2, i.e., q = p2, and consider the Jacobi sum J(ρ, χ) on Fq, where ρ, χ are
characters on Fq of orders 2, k, respectively, with k > 2. Then J(ρ, χ) = ±p (and is thus
pure) if either (a) k | (p + 1); (b) 2(p − 1)/k is an odd integer; (c) k = 24 and p ≡ 17 or
19 (mod 24); or (d) k = 60 and p ≡ 41 or 49 (mod 60). Moreover, if none of (a)–(d) hold,
then J(ρ, χ) is not pure.

6.1.57 Remark The Jacobi sums satisfying one of (a)–(d) above of course generate the subfield Q
of Q(ζk). Aoki [111] has determined the subfield of Q(ζk) generated by more general Jacobi
sums in Q(ζk).

6.1.58 Remark Pure multiple Jacobi sums are connected with supersingularity and ranks of certain
elliptic curves; see Aoki [114] and Ulmer [2835, Section 5].

6.1.59 Theorem (Hasse-Davenport product formula for Gauss sums [240, p. 351]) Let ψ be a
character on Fq of order ` > 1. For every character χ on Fq,

`−1∏
i=1

G(χψi)/G(ψi) = χ`(`)G(χ`)/G(χ).

6.1.60 Remark The Hasse-Davenport formula for products of Gauss sums (Theorem 6.1.59) is
the finite field analogue of the Gauss multiplication formula for gamma functions. Work of
Kubert and Lichtenbaum [1809] on Jacobi sum Hecke characters led to identities involving
products of Gauss sums which extended the Hasse-Davenport product formula. (For calcula-
tion of conductors of Jacobi sum Hecke characters, see [2610].) Other examples of identities
involving products of Gauss sums may be found in [813, 1010, 1013, 1014, 1015, 2854]. For
evaluations of special hypergeometric character sums over Fq in terms of products of Gauss
sums, see papers of Evans and Greene [1007, 1008].

6.1.61 Example If ` = 2 and ψ is the quadratic character ρ on Fq, then the Hasse-Davenport
product formula becomes

G(χρ)/G(ρ) = χ(4)G(χ2)/G(χ),

which is equivalent to the following theorem.

6.1.62 Theorem [240, p. 59] Let χ, ρ be characters on Fq with χ nontrivial and ρ quadratic. Then

J(χ, ρ) = χ(4)J(χ, χ).

6.1.63 Remark The next theorem gives a variant of Theorem 6.1.62.

6.1.64 Theorem [240, p. 60] Let χ, ρ be characters on Fq such that χ has order > 2 and ρ is
quadratic. Then

ρ(−1)χρ(4)J(χρ, χρ) = χ(4)J(χ, χ) = χ(−1)J(χ, χρ).
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6.1.65 Remark We next give two congruences for Jacobi sums; see [240, pp. 60, 97]. More general
congruences are given in [1001].

6.1.66 Theorem Let χ, ψ be nontrivial characters on Fq of orders a, b, respectively. Then

J(χ, ψ) ≡ −q (mod (1− ζa)(1− ζb)) .
If moreover a = b > 2, then the right member −q may be replaced by −1.

6.1.67 Theorem Let χ be a character on Fq of order 2`, where ` > 1 is odd, and let n denote an
even integer not divisible by `. Then

J(χ, χn) ≡ −χn(4)
(
mod (1− ζ`)2

)
.

6.1.68 Definition Let γ be a generator of the cyclic group F∗q , and let χ be a character of order k
on Fq for which χ(γ) = ζk. For any pair of integers a, b (mod k), define the cyclotomic
number C(a, b) = C(γ, a, b) of order k over Fq to be the number of α ∈ F∗q for which

χ(α/γa) = χ((α+ 1)/γb) = 1.

6.1.69 Remark Cyclotomic numbers are useful for obtaining residuacity criteria. For example, the
cyclotomic numbers of order 12 can be used to prove that for a prime p ≡ 1 (mod 12), 3
is a quartic residue (mod p) if and only if a3 ≡ −1 (mod 4), where a3 is as in Definition
6.1.74. See [240, p. 231].

6.1.70 Theorem [240, p. 365] In the notation of Definition 6.1.68, the cyclotomic numbers C(a, b)
are related to the Jacobi sums J(χu, χv) by the following finite Fourier series expansions:

k2C(a, b) =

k−1∑
u=0

k−1∑
v=0

χu(−1)J(χu, χv)ζ−au−bvk

and

χu(−1)J(χu, χv) =

k−1∑
a=0

k−1∑
b=0

C(a, b)ζau+bv
k .

6.1.71 Definition Let p be an odd prime. For a positive integer k and an integer a not divisible
by p, define the Jacobsthal sums Uk(a), Vk(a) over Fp by

Uk(a) =

p−1∑
m=0

(
m

p

)(
mk + a

p

)
, Vk(a) =

p−1∑
m=0

(
mk + a

p

)
,

where the symbols in the summands are Legendre symbols.

6.1.72 Remark Jacobsthal sums have applications to the distribution of quadratic residues [240,
Chapter 6], to evaluations of Brewer sums [240, Chapter 13], and to the evaluation of
certain hypergeometric character sums [240, Equation (13.3.2)]. The next theorem expresses
Jacobsthal sums in terms of Jacobi sums.

6.1.73 Theorem [240, pp. 188–189]. For a prime p ≡ 1 (mod 2k), let χ be a character on Fp of
order 2k. Let a be an integer not divisible by p. Then

Uk(a) = χ(−1)

(
a

p

) k−1∑
j=0

χ2j+1(4a)J(χ2j+1, χ2j+1)
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and

Vk(a) =

(
a

p

) k−1∑
j=1

χ2j(4a)J(χ2j , χ2j).

6.1.2 Evaluations of Jacobi and Gauss sums of small orders

6.1.74 Definition For a prime p = 6f + 1, define integer parameters a3, b3, r3, s3, u3, v3 as
follows:

p = a2
3 + 3b23, a3 ≡ −1 (mod 3),

4p = r2
3 + 3s2

3, r3 ≡ 1 (mod 3), s3 ≡ 0 (mod 3),

4p = u2
3 + 3v2

3 , u3 ≡ 1 (mod 3), where{
v3 ≡ ±1 (mod 6) if 2 is a cubic nonresidue (mod p),

v3 = s3 ≡ 0 (mod 3) if 2 is a cubic residue (mod p).

6.1.75 Remark Given p, the parameters a3, r3, and u3 are uniquely determined, but b3, s3, and
v3 are determined only up to sign. These parameters appear below in the evaluations of
cubic and sextic Gauss and Jacobi sums over Fp. In the case that 2 is a cubic nonresidue
(mod p), we have 3 - b3 and the parameters r3, s3, u3, v3 are odd. In the case that 2 is a
cubic residue (mod p), we have 3 | b3 and r3, s3, u3, v3 are even; see [240, Section 3.1].

6.1.76 Theorem (Cubic Jacobi sums [240, Section 3.1]) For q = p = 6f + 1, let χ be a character
of order 3 on Fp. Then

J(χ, χ) = (r3 + is3

√
3)/2.

6.1.77 Theorem (Sextic Jacobi sums [240, Section 3.1]) For q = p = 6f + 1, let χ be a character
of order 6 on Fp. Then

J(χ, χ) = (−1)f (u3 + iv3

√
3)/2 = (−1)fJ(χ, χ4),

J(χ, χ2) = J(χ3, χ2) = a3 + ib3
√

3 = (−1)fJ(χ, χ3).

6.1.78 Definition For a prime p = 4f + 1, define integer parameters a4, b4 by

p = a2
4 + b24, a4 ≡ −(−1)f (mod 4).

6.1.79 Theorem (Quartic Jacobi sums [240, Section 3.2]) For q = p = 4f + 1, let χ be a character
of order 4 on Fp. Then

J(χ, χ) = (−1)f (a4 + ib4) = (−1)fJ(χ, χ2).

6.1.80 Definition For a prime p = 8f + 1, define integer parameters a8, b8 by

p = a2
8 + 2b28, a8 ≡ −1 (mod 4).
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6.1.81 Theorem (Octic Jacobi sums [240, Section 3.3]) For q = p = 8f + 1, let χ be a character of
order 8 on Fp. Then

J(χ, χ) = χ(4)(a8 + ib8
√

2) = χ(−4)J(χ, χ3), J(χ, χ2) = χ(−4)(a4 + ib4).

6.1.82 Theorem (Duodecic Jacobi sums [240, Section 3.5]) For q = p = 12f+1, let χ be a character
of order 12 on Fp so that

J(χ3, χ3) = (−1)f (a4 + ib4)

as in Theorem 6.1.79. Then

χ(−1)J(χ, χ5) = χ(4)J(χ, χ) = χ(4)5J(χ5, χ5) = ±(a4 + ib4),

where the plus sign is chosen if 3 | b4 and the minus sign is chosen if 3 | a4. The three
additional duodecic Jacobi sums below are expressed in terms of previously evaluated Jacobi
sums of orders 6, 4, 3, respectively:

J(χ, χ2) = χ(4)2J(χ2, χ2)/c12, J(χ, χ3) = J(χ3, χ3)/c12, J(χ, χ4) = J(χ4, χ4),

where {
c12 = ±1 with c12 ≡ −a4 (mod 3) if 3 | b4,
c12 = ±i with c12 ≡ −ib4 (mod 3) if 3 | a4.

6.1.83 Remark Values of all duodecic Jacobi sums may be deduced from Theorem 6.1.82. For
example,

J(χ3, χ5) = σ5J(χ, χ3) = J(χ, χ3),

where σ5 is as in Definition 6.1.99 with k = 12. Niitsuma [2288] applied duodecic Jacobi
sum evaluations to count rational points on certain hyperelliptic curves over Fp.

6.1.84 Remark Jacobi sums of various other small orders are explicitly evaluated in [240]; e.g.,
quintic Jacobi sums are computed in [240, Section 3.7]. For the quintic case, see also Hoshi
[1538] for an analysis of Gauss sums, Jacobi sums, and period polynomials. Values of Jacobi
sums of order 16 have been applied to construct regular Hadamard matrices [1908].

6.1.85 Theorem (Quadratic multiple Jacobi sums [240, p. 299]) Suppose that χ1, . . . , χt are all
equal to the quadratic character ρ on Fq. Then

J(χ1, . . . , χt) =

{
ρ(−1)(t−1)/2q(t−1)/2 if t is odd,

−ρ(−1)t/2q(t−2)/2 if t is even.

6.1.86 Theorem (Quadratic Gauss sums [240, p. 362]) Let q = pr for an odd prime p, and let ρ
be the quadratic character on Fq. Then

g(2) = G(ρ) =

{
(−1)r−1√q if p ≡ 1 (mod 4),

(−1)r−1ir
√
q if p ≡ 3 (mod 4).

In particular, if q = p, we obtain the evaluation of Gauss:

p−1∑
n=0

ζn
2

p =

p−1∑
n=0

(
n

p

)
ζnp =

{√
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4),

where (n/p) is the Legendre symbol.
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6.1.87 Remark The Gauss sums in Theorem 6.1.86 lie in a quadratic extension of Q. For evalu-
ations of general Gauss sums over Fq lying in quadratic and multi-quadratic extensions of
Q, see [115, 2042, 3026, 3027].

6.1.88 Theorem (Cubic periods [240, Section 4.1]) Let q = p ≡ 1 (mod 6), so that 4p = r2
3 + 3s2

3

with r3 ≡ 1 (mod 3), s3 ≡ 0 (mod 3). Let b be a primitive root of p. Then the cubic
irreducible polynomial x3−3px−pr3 has the three real zeros g(3), g(b, 3), and g(b2, 3), with
one zero in each of the three intervals (−2

√
p,−√p), (−√p,√p), (

√
p, 2
√
p).

6.1.89 Remark No simple criterion is known for determining which of the three intervals above
contains the cubic Gauss sum g(3). However, g(3) and the Gauss sums G(χ) for cubic
characters χ have been evaluated in terms of products of values of Weierstrass ℘-functions;
see [240, p. 158]. The next theorem, due to Heath-Brown and Patterson [1455], gives an
equidistribution result for cubic Gauss character sums over Fp.

6.1.90 Problem Determining the distribution of n-th order Gauss sums over Fp for a general fixed
n is an open problem.

6.1.91 Theorem Consider the collection of all normalized cubic Gauss sums

G(χ)/
√
p, χ cubic on Fp, q = p ≡ 1 (mod 3), p < x.

As x tends to infinity, this collection is asymptotically equidistributed on the complex unit
circle.

6.1.92 Remark The next theorem determines the sextic Gaussian period g(6) unambiguously, once
g(3) is known.

6.1.93 Theorem (Sextic periods [1003]) Let q = p ≡ 1 (mod 6), so that 4p = r2
3 + 3s2

3 with
r3 ≡ 1 (mod 3), s3 ≡ 0 (mod 3). In the case that 2 is a cubic residue (mod p),

g(6) = g(3) + i(p−1)2/4
(
g(3)2 − p

)
/
√
p.

In the case that 2 is a cubic nonresidue (mod p), then with the sign of s3 specified by
s3 ≡ −r3 (mod 4),

g(6) = g(3) + i(p−1)2/4{4p− g(3)2 + s−1
3

(
2pg(3) + 2pr3 − r3g(3)2

)
}/(2√p).

6.1.94 Remark For the history behind the quartic Gauss sum evaluations in the two theorems
below, see [240, p. 162].

6.1.95 Theorem (Quartic Gauss sums [240, Section 4.2]) Let q = p ≡ 1 (mod 4), and let χ be a
quartic character on Fp. As in Theorem 6.1.79, write J(χ, χ) = a + bi, where p = a2 + b2

with a ≡ −1 (mod 4). (Note that the sign of b depends on the choice of the quartic character
χ.) Define C = ±1 by

C ≡ (−1)(p−1)/4 |b|
a

(
p− 1

2

)
! (mod p).

Then

G(χ) =

( |b|
|a|

)
C(−1)(b2+2b)/8

(√
p+ a

√
p

2
+ i
|b|
b

√
p− a√p

2

)
,

where the first symbol on the right is the Jacobi symbol.
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6.1.96 Theorem (Quartic periods [240, Section 4.2]) In the notation of the previous theorem, if
p ≡ 1 (mod 8),

g(4) =
√
p+ C

( |b|
|a|

)
(−1)(b2+2|b|)/8

√
2p+ 2a

√
p,

while if p ≡ 5 (mod 8),

g(4) =
√
p+ iC

( |b|
|a|

)
(−1)(b2+2|b|)/8

√
2p− 2a

√
p.

6.1.97 Remark The next theorem determines the Gaussian period g(12) unambiguously, once g(3)
is known. For an extension to Fq, see Gurak [1363].

6.1.98 Theorem (Duodecic periods [1003]) Let q = p = 12f + 1, so that as in Theorem 6.1.78,
p = a2 + b2 with a ≡ −(−1)f (mod 4). In the case that −3 is a quartic residue (mod p),

g(12) = g(6) + (g(4)−√p)
(

1 +

(−a
3

)
g(3)/

√
p

)
.

In the case that −3 is a quartic nonresidue (mod p) (which is equivalent to 3 - b by [240,
Section 7.2]) then with the sign of b specified by b ≡ −1 (mod 3),

g(12) = g(6) + g(4)−√p+ 2b

(
2

p

)
g(3)/ (g(4)−√p) .

6.1.3 Prime ideal divisors of Gauss and Jacobi sums

6.1.99 Definition Fix an integer k > 1. In this subsection, q = pf , where f is the order of p
(mod k). For the group R = (Z/kZ)∗, let T denote a complete set of φ(k)/f coset
representatives of the quotient group R/〈p〉. For an integer a, let `(a) denote the least
nonnegative integer congruent to a (mod k). Write

s(a) =

f−1∑
i=0

ai , t(a) =

f−1∏
i=0

ai! ,

where the ai are the digits in the base p expansion

`(a)(q − 1)/k =

f−1∑
i=0

aip
i, 0 ≤ ai ≤ p− 1.

Consider the cyclotomic fields

K = Q(ζk), M = Q(ζk, ζp)

with rings of integers OK , OM , respectively. Let P be a prime ideal of OK above p. Since
Norm(P ) = q, the finite field OK/P is isomorphic to Fq. Since P is totally ramified in
OM , we have

OMP = Pp−1 for a prime ideal P ⊂ OM .
For j ∈ R, let σj denote the element in Gal(Q(ζk, ζp)/Q(ζp)) for which σj(ζk) = ζjk, and
write

Pj = σj(P ), Pj = σj(P), Pj−1 = σj
−1(P).
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6.1.100 Theorem [240, p. 343] Let π = ζp − 1. We have the prime ideal factorizations

πOM =
∏
j∈T

Pj , pOM =
∏
j∈T

Pp−1
j , pOK =

∏
j∈T

Pj .

6.1.101 Definition (Power residue symbol χP ) Define the character χP of order k on the finite
field OK/P by setting χP (α + P ) equal to the unique power of ζk which is congruent
to α(q−1)/k (mod P ), for every α ∈ OK with α /∈ P . If α ∈ P , set χP (α+ P ) = 0.

6.1.102 Theorem (Stickelberger’s congruence for Gauss sums [240, p. 344]) For any integer a, the
Gauss sum G(χ−aP ) over the finite field OK/P is an element of OM satisfying the congruence

G(χ−aP ) ≡ −π
s(a)

t(a)

(
mod Ps(a)+1

)
.

6.1.103 Remark For the following two corollaries, see Conrad [714].

6.1.104 Corollary If 0 ≤ a, b < k with a, b not both 0, then with u := (q − 1)/k,

J(χ−aP , χ−bP ) ≡ −(−1)au
(
q − 1− bu

au

)
(mod P ).

6.1.105 Corollary Let k = q − 1 (so that χP has order q − 1), and let

0 ≤ bi < q − 1, i = 1, 2, . . . , t,

where not all bi equal 0. Then

J(χ−b1P , χ−b2P , . . . , χ−btP ) ≡ (−1)t+1 (b1 + b2 + · · ·+ bt)!

b1!b2! · · · bt!
(mod P ).

6.1.106 Remark A consequence of Stickelberger’s congruence is the prime ideal factorization of
Gauss sums (Theorem 6.1.107). An important application of this factorization is the deter-
mination of the annihilator in Z[Gal(L/Q)] of the ideal class group of an abelian number
field L; see Washington [2948, Theorem 6.10]. For applications of Theorem 6.1.107 to the
theory of difference sets and coding theory, see [144, 580, 1009].

6.1.107 Theorem (Prime ideal factorization of Gauss sums [240, p. 346]) For any integer a,

G(χ−aP )OM =
∏
j∈T

P
s(aj)
j−1 .

6.1.108 Theorem [240, p. 347] For any integer a, we have G(χ−aP )k ∈ OK and

G(χ−aP )kOK =
∏
j∈T

P
ks(aj)/(p−1)
j−1 =

∏
j∈R

P
`(aj)
j−1 .

6.1.109 Theorem (Prime ideal factorization of Jacobi sums [240, p. 346]) Suppose that a, b are
integers such that a+ b is not divisible by k. Then

J(χ−aP , χ−bP )OK =
∏
j∈T

P
v(a,b,j)
j−1 , with v(a, b, j) =

s(aj) + s(bj)− s(aj + bj)

p− 1
.
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In the special case q = p, this reduces to

J(χ−aP , χ−bP )OK =
∏
j∈T

`(aj)+`(bj)>k

Pj−1 .

In particular, for q = p,

J(χP , χP )OK =
∏

1≤j<k/2
(j,k)=1

Pj−1 .

6.1.110 Definition Let Qp denote the field of p-adic rationals, and let Zp be its ring of p-adic
integers. Consider the extension field Qp(ζ), where ζ is a primitive p-th root of the
element 1 ∈ Zp. For π = ζ − 1, let λ denote the prime element in Qp(ζ) satisfying

λp−1 = −p, λ ≡ π (mod π2).

6.1.111 Definition (Morita’s p-adic gamma function Γp) Define Γp : Zp → Z∗p by

Γp(z) = lim
N→z

(−1)N
∏

0<j<N
p - j

j,

where N runs through any sequence of positive integers p-adically approaching z.

6.1.112 Remark The following theorem of Gross-Koblitz expresses the p-adic Gauss sum in terms
of Morita’s p-adic gamma functions. For a relatively elementary proof, see Robert [2463].

6.1.113 Theorem (Gross-Koblitz formula for p-adic Gauss sums) Let a be any integer. Viewing the
Gauss sum G(χ−aP ) ∈ OM as embedded in the subfield Qp(ζ) of the P-adic completion of
M , we have the following equality in Zp[ζ]:

G(χ−aP ) = −λs(a)

f−1∏
i=0

Γp

(
`(api)

k

)
.

6.1.114 Remark The next corollary follows with the aid of Theorem 6.1.38.

6.1.115 Corollary (Gross-Koblitz formula for p-adic Jacobi sums) Let b1, . . . , bt be integers such
that c := b1 + · · ·+ bt is not divisible by k. Viewing the Jacobi sum J(χ−b1P , . . . , χ−btP ) ∈ OK
as embedded in the subfield Qp of the P -adic completion of K, we have the following equality
in Zp:

J(χ−b1P , . . . , χ−btP ) = (−1)t−1(−p)u
f−1∏
i=0

Γp

(
`(b1p

i)

k

)
· · ·Γp

(
`(btp

i)

k

)/
Γp

(
`(cpi)

k

)
,

with u = {(s(b1) + · · ·+ s(bt))− s(c)}/(p− 1).

6.1.116 Remark The exponent u in Theorem 6.1.115 is an integer, since for any integer x, we have
s(x) ≡ x(q − 1)/k (mod p− 1).
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6.1.4 Kloosterman sums

6.1.117 Remark In this subsection, we revert back to the notation q = pr.

6.1.118 Definition For u ∈ Fq and a multiplicative character χ on Fq, define the (twisted) Kloost-
erman sum K(u, χ) over Fq by

K(u, χ) =
∑
α∈F∗q

χ(α)ζTr(α+u/α)
p .

Note that K(0, χ) = G(χ). When χ is trivial, we abbreviate K(u) = K(u, χ).

6.1.119 Remark Kloosterman sums occur frequently in the theory of modular forms, and they have
many applications in analytic number theory [1453, 1581, 2524]. For some applications to
coding theory, see [620, 1562, 1732, 2124]. For further applications, see the references in [503,
p. 448]. Some congruences for Kloosterman sums may be found in [592, 1299, 1946, 2128].
In [1785], it is proved that if K(u) is an integer and p > 3, then K(u) is even. This proves
in particular the nonvanishing of 1 +K(u) for p > 3. For analysis of the cases p = 2, 3, see
[49]. The vanishing of 1 + K(u) has applications to bent functions, defined in Section 9.3.
(See [2086] for recent work on bent and hyper-bent functions.)

6.1.120 Theorem For odd q and u ∈ Fq,

K(u) =
∑
y∈Fq

ρ(y2 − 4u)ζTr(y)
p ,

where ρ is the quadratic character on Fq.

6.1.121 Remark The theorem above follows easily from the definition of K(u), by counting, for
each y ∈ Fq, the number of α ∈ F∗q for which α+ u/α = y. For the case where q is even, see
Conrad [715].

6.1.122 Definition For u ∈ Fq and characters χ1, . . . , χm on Fq, define the (twisted) multiple
Kloosterman sum K(u, χ1, . . . , χm) over Fq by

K(u, χ1, . . . , χm) =
∑

α0,...,αm∈Fq
α0···αm=u

χ1(α1) · · ·χm(αm)ζTr(α0+···+αm)
p .

This is also known as a (twisted) hyper-Kloosterman sum. It reduces to the sum given
in Definition 6.1.118 when m = 1.

6.1.123 Remark Wan [2915] studied the algebraic degree of multiple Kloosterman sums. For further
results on the degrees of Kloosterman sums, see [1784]. The next theorem gives an easily
proved expression for multiple Kloosterman sums in terms of Gauss sums.

6.1.124 Theorem [1701, p. 47] For u ∈ F∗q and characters χ1, . . . , χm on Fq,

K(u, χ1, . . . , χm) =
1

q − 1

∑
χ

χ(u)
m∏
i=0

G(χχi),

where χ0 is the trivial character and where the sum is over all characters χ on Fq.
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6.1.125 Theorem For a positive integer m, let ψ be a character on Fq of order m+ 1. Then for any
u ∈ Fq,

K(u, ψ, ψ2, . . . , ψm) = ε(q,m)qm/2
∑
α∈Fq

αm+1=u

ζTr(α(m+1))
p ,

where

ε(q,m) =

{
1 if 2 | m,
(−1)r−1+(q−1)(m−1)/8i(p−1)2r/4 if 2 - m.

6.1.126 Remark Theorem 6.1.125 is due to Duke [928], who showed it to be equivalent to the Hasse-
Davenport product formula for Gauss sums (Theorem 6.1.59). For a related identity, see
Ye [3034]. The Kloosterman sum K(u, ψ, ψ2, . . . , ψm) is connected to Fourier expansions of
certain Poincaré series [928]. In the case m = 1, Theorem 6.1.125 reduces to the following
well-known evaluation of the Salié sum K(u, ρ).

6.1.127 Theorem (Salié sum) Let u ∈ Fq and let ρ be the quadratic character on Fq. Then

K(u, ρ) =


(−1)r−1i(p−1)2r/4√q if u = 0,

0 if u ∈ F∗q is not a square,

2(−1)r−1i(p−1)2r/4√q cos(4πTr(b)/p) if u = b2 for some b ∈ F∗q .

6.1.128 Remark Theorem 6.1.129 below reduces to Theorem 6.1.127 when χ = ρ and reduces to
Theorem 6.1.120 when χ is trivial.

6.1.129 Theorem [715, Equation (4)] Let u ∈ Fq and let ρ denote the quadratic character on Fq.
Then for any character χ on Fq,

K(u, χ) =
G(ρ)χ(4)

G(χρ)

∑
y∈Fq

χρ(y2 − 4u)ζTr(y)
p .

6.1.130 Remark Sums closely related to the above sum on y form an orthogonal set of eigenfunctions
for a collection of adjacency matrices of “finite upper half plane” Cayley graphs [1000].

6.1.131 Theorem (Upper bound for multiple Kloosterman sums) For u ∈ Fq and characters
χ1, . . . , χm on Fq,

|K(u, χ1, . . . , χm)| ≤ (m+ 1)qm/2.

6.1.132 Remark The upper bound above is due to Deligne for trivial characters, and in full general-
ity to Katz [1701, p. 49]. See Conrad [715] for a nice proof of the special case |K(u, χ)| ≤ 2

√
q,

patterned on Weil’s original proof for trivial χ. Equality in Theorem 6.1.131 can occur; for
example, let u = 1, (m + 1) | (p − 1), p | r in Theorem 6.1.125. However, equality cannot
occur in Theorem 6.1.131 in the case that all m characters are trivial, since then

K(u, χ1, . . . , χm) ≡ (−1)m (mod (1− ζp)).

Nor can equality occur in the case m = 1, q = p ; see [1004, p. 446].

6.1.133 Definition The Weil bound |K(u)| < 2
√
q is a consequence of the formula expressing

−K(u) as a sum of conjugate Frobenius eigenvalues:

−K(u) = g(u) + g(u), u ∈ F∗q ,
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where
g(u) =

√
q exp(iθ(q, u)), θ(q, u) ∈ (0, π).

We call θ(q, u) the Kloosterman angle, noting that

−K(u) = 2
√
q cos(θ(q, u)), u ∈ F∗q .

6.1.134 Definition Let u ∈ F∗q . For a positive integer n, let Kn(u) denote the Kloosterman sum
over Fqn (so that K1(u) = K(u)). We call Kn(u) the lift of the Kloosterman sum K(u)
from Fq to Fqn .

6.1.135 Remark It is shown in [1785] that Kn(u) is an integer if and only if K(u) is an integer.

6.1.136 Remark The following theorem, analogous to the Hasse-Davenport lifting formula for Gauss
sums (Theorem 6.1.45), offers a formula of Carlitz [548] for the lift Kn(u) in terms of
a Dickson polynomial in K(u). For an extension to K(u, χ), see [1581, p. 281]. (Dickson
polynomials over Fq are discussed in Section 9.6.)

6.1.137 Theorem We have
Kn(u) = (−1)n−1Dn(K(u), q),

where Dn(x, a) is the Dickson polynomial of degree n.

6.1.138 Remark In the notation of Definition 6.1.133,

−Kn(u) = g(u)n + g(u)n = 2qn/2 cos(nθ(q, u)), u ∈ F∗q .

Since
g(u) =

(
−K(u)±

√
K(u)2 − 4q

)
/2,

we have

−2nKn(u) =
(
−K(u) +

√
K(u)2 − 4q

)n
+
(
−K(u)−

√
K(u)2 − 4q

)n
.

This is equivalent to Theorem 6.1.137; see [240, pp. 440–441].

6.1.139 Theorem (Equidistribution of Kloosterman angles) The set of Kloosterman angles {θ(q, u) :
u ∈ F∗q} is asymptotically equidistributed with respect to the Sato-Tate measure on (0, π),
as q tends to infinity. In other words, as q tends to infinity, the proportion of these q − 1
Kloosterman angles that lie in a fixed subinterval [x, y] ⊂ (0, π) approaches

2

π

∫ y

x

sin2 t dt.

6.1.140 Conjecture Fix a positive integer u and consider the collection of Kloosterman angles
{θ(p, u) : u < p < x}. As x tends to infinity, this collection is asymptotically equidistributed
with respect to the Sato-Tate measure on (0, π).

6.1.141 Remark Theorem 6.1.139 is due to Katz [1701, p. 240]. For a quantitative refinement and
related results, see [2092, 2245, 2650]. For an extension to Kloosterman sums over rings, see
[1725]. Statements of the conjecture above may be found in Katz’s books [1700, Conjecture
1.2.5] and [1701, p. 5]. See also the references in Shparlinski [2650, p. 420].
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6.1.142 Definition Fix an integer u which is not a perfect square. Motivated by Theorem 6.1.127

with q = p > 2, we define the Salié angle ϑ(p, u) ∈ (0, π) for each prime p with
(
u
p

)
= 1

by
ϑ(p, u) = 2πb(u, p)/p,

where b = b(u, p) is the smallest positive integer for which b2 ≡ u (mod p).

6.1.143 Remark The next theorem gives an equidistribution result for angles of Salié sums K(u, ρ);
see [1581, p. 496] and the references in Shparlinski [2649], where one finds further results of
this type.

6.1.144 Theorem (Equidistribution of Salié angles) Fix an integer u which is not a perfect square.

The set of Salié angles {ϑ(p, u) :
(
u
p

)
= 1, p < x} is asymptotically equidistributed in the

interval (0, π), as x tends to infinity.

6.1.145 Remark The following equidistribution result for normalized Kloosterman sums
K(−1, χ)/

√
q was conjectured by Evans and proved by Katz [1711]. Note that each such

sum is real and lies in the interval [−2, 2] by Theorem 6.1.131.

6.1.146 Theorem (Equidistribution of K(−1, χ)) Consider the collection of q−1 normalized Kloost-
erman sums K(−1, χ)/

√
q, where χ runs through the characters on Fq. As q tends to infinity,

the “angles” of this collection are asymptotically equidistributed with respect to the Sato-
Tate measure on [−2, 2]. In other words, as q tends to infinity, the proportion of the members
of this collection that lie in a fixed subinterval [v, w] ⊂ [−2, 2] approaches

1

2π

∫ w

v

√
4− x2 dx.

6.1.147 Definition Let n be a positive integer. Define the n-th power moment Sn of the Klooster-
man sums K(u) by

Sn =
∑
u∈Fq

K(u)n.

6.1.148 Remark Moisio [2119, 2122] gave evaluations of Sn for n ≤ 10 when q is a power of 2 or 3,
and he related them to cyclic codes; see also [1733]. In the remainder of this subsection, we
restrict our attention to the case q = p > n.

6.1.149 Remark Various congruences have been given for Sn, but explicit evaluations of Sn for all
q = p > n are known only for n = 1, 2, 3, 4, 5, 6 [622]. The values for n ≤ 4 below, due to
Salié, may be found in Iwaniec’s book [1580, Section 4.4] (where −p should be replaced by
−3p in Equation (4.25)).

6.1.150 Theorem (Power moments of Kloosterman sums [622]) Let q = p > n. The power moments
Sn are integer multiples of p. We have

S1 = 0, S2 = p2 − p, S3 =
(p

3

)
p2 + 2p, S4 = 2p3 − 3p2 − 3p.

For p > 5,

S5 = 4
(p

3

)
p3 + (ap + 5)p2 + 4p,
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where ap is the integer of absolute value < 2p satisfying

ap =


2p− 12u2 if p = 3u2 + 5v2,

4x2 − 2p if p = x2 + 15y2,

0 if p ≡ 7, 11, 13, or 14 (mod 15).

Also for p > 5,

S6 = 5p4 − 10p3 − (bp + 9)p2 − 5p,

where bp is the integer of absolute value < 2p3/2 defined to be the coefficient of qp in the
q-expansion of the weight 4, level 6 newform

{η(6z)η(3z)η(2z)η(z)}2.

Here η(z) is the Dedekind eta function.

6.1.151 Remark Evans [1006] has conjectured an explicit formula for S7 in terms of the coefficient
of qp in the q-expansion of a weight 3, level 525 newform.

6.1.152 Definition Let q = p > n ≥ 1. In the notation of Definition 6.1.133, the Kloosterman
power moments Sn can be expressed as

Sn = (−1)n + (−1)n
p−1∑
u=1

(g(u) + g(u))n.

Closely related to Sn is the sum

Tn =

p−1∑
u=1

n∑
j=0

g(u)n−jg(u)
j

=

p−1∑
u=1

pn/2Un(2 cos(θ(p, u))),

where Un is the n-th monic Chebychev polynomial of the second kind. We normalize
the sum Tn by defining

Yn := (−1− Tn)/p2.

6.1.153 Remark For some twists of Sn and Tn, see Liu [1947] and Evans [1005].

6.1.154 Theorem If q = p > n, then Yn is an integer. In particular,

Y1 = Y2 = 0, Y3 =
(p

3

)
, Y4 = 1, Y5 = ap, Y6 = bp,

where ap, bp are defined in Theorem 6.1.150.

6.1.155 Remark Theorem 6.1.154 can be found in Evans [1006]. There it is moreover conjectured
(for p > 7) that

Y7 =
( p

105

)
(|A(p)|2 − p2),

where A(p) is the p-th Fourier coefficient of a weight 3, level 525 eigenform with quartic
nebentypus of conductor 105. Furthermore, Evans [1005, p. 523] conjectured (for p > 7)
that

Y8 = B(p) + p2,
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where B(p) is the p-th Fourier coefficient of a weight 6, level 6 newform with trivial neben-
typus. These conjectured values for Yn satisfy the following upper estimate due to Katz
[1701, Theorem 0.2].

6.1.156 Theorem For q = p > n,

|Yn| ≤
⌊
n− 1

2

⌋
p(n−3)/2.

6.1.5 Gauss and Kloosterman sums over finite rings

6.1.157 Remark Let k be a positive integer. We briefly discuss some basic Gauss and Kloosterman
sums over Z/kZ, as they are natural extensions of sums over the finite field Z/pZ.

6.1.158 Definition For integers m and k > 0, define the quadratic Gauss sum qk(m) over Z/kZ by

qk(m) =
k−1∑
n=0

ζmn
2

k .

6.1.159 Remark The special case qp(m) is the quadratic Gaussian period g(m, 2) over Fp given in
Definition 6.1.11.

6.1.160 Definition For integers a, b, c with ac 6= 0, define a generalized quadratic Gauss sum
S(a, b, c) by

S(a, b, c) =

|c|−1∑
n=0

exp(πi(an2 + bn)/c).

6.1.161 Remark The special case S(2m, 0, k) is the quadratic Gauss sum qk(m) given in Defini-
tion 6.1.158.

6.1.162 Theorem (Reciprocity theorem for Gauss sums [240, p. 13]) For integers a, b, c with ac 6= 0
and ac+ b even,

S(a, b, c) = |c/a|1/2 exp

(
πi

4

(
sgn(ac)− b2

ac

))
S(−c,−b, a).

6.1.163 Theorem [240, Section 1.5] If (m, k) = 1 and k > 1, then

qk(m) =


(
k
m

)
(1 + im)

√
k if k ≡ 0 (mod 4),(

m
k

)√
k if k ≡ 1 (mod 4),

0 if k ≡ 2 (mod 4),(
m
k

)
i
√
k if k ≡ 3 (mod 4).

In particular (cf. Theorem 6.1.86),

qk(1) =
1

2
(1 + i)(1 + i−k)

√
k.
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6.1.164 Theorem [240, p. 47] If (m, k)=1 with k > 1 odd and squarefree, then (cf. Theorem 6.1.86)

qk(m) =
k−1∑
n=1

(n
k

)
ζmnk .

6.1.165 Definition (Gauss character sums over Z/kZ.) Let χ be a Dirichlet character (mod k),
where k > 1. For any integer m, define the Gauss sum τk(m,χ) over Z/kZ by

τk(m,χ) =
k−1∑
n=1

χ(n)ζmnk .

6.1.166 Remark When χ is trivial, τk(m,χ) is a Ramanujan sum. When k = p, τk(m,χ) is the
Gauss sum G(m,χ) over Fp. The next two theorems deal with primitive Gauss sums; for
proofs and generalizations, see [1581, pp. 48–49].

6.1.167 Theorem For k > 1, let χ (mod k) be a primitive Dirichlet character [240, pp. 28–29].
Then

|τk(1, χ)| =
√
k.

If further χ is quadratic, then

τk(1, χ) =

{√
k if χ(−1) = 1,

i
√
k if χ(−1) = −1.

6.1.168 Theorem If χ (mod k) is primitive, then for any integer m,

τk(m,χ) = χ(m)τk(1, χ).

6.1.169 Remark There is a reduction formula which reduces the problem of evaluating τk(m,χ)
to the case where χ (mod k) is primitive, m = 1, and k is a prime power ps; see [240, p.
29]. When s > 1, such Gauss sums have known closed form evaluations; see [240, Section
1.6] and [659]. There are similar reduction formulae for Kloosterman sums. Evaluations and
bounds for Kloosterman sums over Z/psZ with s > 1 are given in [655, 1004]. For Gauss
and Kloosterman sums over rings of algebraic or p-adic integers, see [1002, 1364, 1366].
Extensions of Gaussian periods to finite rings are discussed in [1012]. For Hecke Gauss
sums in quadratic number fields, see [382]. Gauss sums connected with Hecke L-functions
are discussed in [1581, p. 60].

6.1.170 Remark Let k > 1 be an odd integer. We close with an evaluation of a Salié sum over the
ring Z/kZ, which for prime k = p reduces to the evaluation of the Salié sum K(u, ρ) over
Fp given in Theorem 6.1.127. For a short proof, see [2815].

6.1.171 Definition Fix an odd integer k > 1. For an integer a with (a, k) = 1, define the Salié sum
S(a) over Z/kZ by

S(a) =
∑

x∈(Z/kZ)∗

(x
k

)
ζ
x+a/x
k ,

where (x/k) is the Jacobi symbol.
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6.1.172 Theorem (Salié sums over Z/kZ) Fix an odd integer k > 1 and let (a, k) = 1. If a is not
congruent to a square mod k, then S(a) = 0. If a ≡ b2 (mod k) for some integer b, then

S(a) = i(k−1)2/4
√
k
∑

x∈Z/kZ
x2=1

ζ2xb
k .

See Also

§3.1, §3.5 For counting irreducible polynomials with prescribed norm or trace.
§6.2 For more general exponential and character sums.
§6.3 For further applications of character sums.
§7.3 For solutions to diagonal equations over finite fields.
§10.1 For the discrete Fourier transform and Gauss sums.
§12.2, §12.4,
§12.5, §12.7,
§12.8, §12.9
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§14.6 For applications to difference sets.
§15.1 For cyclic codes.
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2791, 2815, 2835, 2854, 2915, 2948, 3026, 3027, 3034]

6.2 More general exponential and character sums

Antonio Rojas-León, University of Sevilla

6.2.1 One variable character sums

6.2.1 Theorem Let f ∈ Fq[x] be a polynomial of degree d > 0 and ψ : Fq → C∗ a non-trivial
additive character. If d is prime to p, then∣∣∣∣∣∣

∑
x∈Fq

ψ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

If d is divisible by p and ψ(t) = ψ(tp) for every t ∈ Fq then∣∣∣∣∣∣
∑
x∈Fq

ψ(f(x))

∣∣∣∣∣∣ ≤ (d′ − 1)
√
q
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if d′ 6= 0, where d′ is the lowest degree of a polynomial in Fq[x] Artin-Schreier equivalent to
f (i.e., of the form f + gp − g with g ∈ Fq[x]).

6.2.2 Theorem Let f ∈ Fq[x] be a polynomial of degree d > 0 and χ : F∗q → C∗ a non-trivial
multiplicative character of order m (extended by zero to Fq). Then, if f is not an m-th
power in Fq[x] (where Fq is the algebraic closure of Fq),∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

6.2.3 Theorem Let f, g ∈ Fq[x] be polynomials of degrees d > 0 and e > 0 respectively,
ψ : Fq → C∗ a non-trivial additive character and χ : F∗q → C∗ a non-trivial multiplica-
tive character of order m (extended by zero to Fq), such that either f is not of the form
f̄p − f̄ with f̄ ∈ Fq[x] or g is not an m-th power in Fq[x]. Then∣∣∣∣∣∣

∑
x∈Fq

ψ(f(x))χ(g(x))

∣∣∣∣∣∣ ≤ (d+ e− 1)
√
q.

6.2.4 Remark The previous three results are a consequence of Weil’s conjectures for curves,
as pointed out by Hasse [1443] and Weil [2961], so they follow from Weil’s proof of the
conjectures [2962]. They are also particular cases of the more general higher dimensional
results stated in this section.

6.2.2 Additive character sums

6.2.5 Definition Let V ⊆ ANFq be an affine variety, f : V → A1
Fq a regular map and ψ : Fq → C∗

a non-trivial additive character. We denote by S(V, f, ψ) the additive character sum

S(V, f, ψ) =
∑

x∈V (Fq)

ψ(f(x)).

6.2.6 Definition The L-function associated to V , f and ψ is the power series

L(V, f, ψ;T ) = exp

( ∞∑
m=1

Sm(V, f, ψ)
Tm

m

)
∈ 1 + TC[[T ]],

where
Sm(V, f, ψ) = S(V ×Fq Fqm , f, ψ ◦ TrFqm/Fq ).

6.2.7 Remark Character sums can be used to count the number of rational points on a variety.
In particular, zeta functions of affine varieties are special cases of L-functions of additive
character sums: it is easy to check that, if V is the affine variety defined by the vanishing
of f1, . . . , fr ∈ Fq[x1, . . . , xn], then for any non-trivial character ψ, and variables y1, . . . , yr,

Sm(An+r, y1f1 + · · ·+ yrfr, ψ) = qmr ·#V (Fqm).
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6.2.8 Definition A number z ∈ C is a Weil integer if it is an algebraic integer and all its
conjugates over Q have the same absolute value. If A ∈ R, A > 0 is fixed, z has weight
w ∈ R (relative to A) if all its conjugates have absolute value Aw/2.

6.2.9 Theorem For every affine variety V ⊆ ANFq of dimension n, every regular map f : V → A1
Fq

and every non-trivial additive character ψ : Fq → C∗, the L-function L(V, f, ψ;T ) is rational,
and all its reciprocal roots and poles are Weil integers of weight ≤ 2n relative to q.

6.2.10 Remark This result is just a particular case of the more general theory of L-functions of
`-adic sheaves on varieties over finite fields; see Section 12.7 for the general statements and
some references. For additive exponential sums, rationality was first proven by Bombieri
[339] following Dwork’s ideas [940].

6.2.11 Remark The L-function encodes the sequence of exponential sums Sm(V, f, ψ) for m ≥ 1.
More precisely, if

L(V, f, ψ;T ) =

∏
i(1− αiT )∏
j(1− βjT )

is the decomposition into linear factors, then

Sm(V, f, ψ) =
∑
j

βmj −
∑
i

αmi .

In this way, estimates about character sums can be derived from statements about the
number of roots and poles of the corresponding L-function and their absolute values.

6.2.12 Remark The type of statements that one tries to prove about these sums are estimates of
the form |Sm(V, f, ψ)| ≤ Cqm(n+i)/2, where i is as small as possible and C is a constant
that depends only on certain quantities attached to the polynomials that define the variety
V and the regular map f . In some particularly nice cases, one can give geometric conditions
that imply the optimal bound (i = 0).

6.2.13 Theorem [795, Théorème 8.4] Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d > 0.
Suppose that

1. d is prime to p.

2. The projective hypersurface defined by the highest degree homogeneous form fd
of f is smooth, that is, the polynomials fd,

∂fd
∂x1

, . . . , ∂fd∂xn
do not have any common

zero in Pn−1(Fq).

Then for every non-trivial ψ, L(AnFq , f, ψ;T )(−1)n is a polynomial of degree (d − 1)n, all
whose reciprocal roots have weight n relative to q. In particular, for every m ≥ 1 the
following estimate holds:

|Sm(An, f, ψ)| ≤ (d− 1)nqmn/2.

6.2.14 Theorem [28, Theorems 1.4, 1.11][2469, Corollary 3] Let f ∈ Fq[x1, . . . , xn] be a polynomial
of degree d. Suppose that

1. d is divisible by p.

2. The projective hypersurface defined by the highest degree homogeneous form fd
of f is smooth.

3. The projective hypersurface defined by the homogeneous form fd−1 of degree
d− 1 of f does not contain any of the common roots of the partial derivatives of
fd.
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Then for every non-trivial ψ, L(AnFq , f, ψ;T )(−1)n is a polynomial of degree ((d − 1)n+1 −
(−1)n+1)/d, all whose reciprocal roots have weight n relative to q. In particular, for every
m ≥ 1 the following estimate holds:

|Sm(An, f, ψ)| ≤ (d− 1)n+1 − (−1)n+1

d
qmn/2.

6.2.15 Theorem [341, Theorem 1] Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d. Then
for every non-trivial ψ, the total degree of the L-function L(AnFq , f, ψ;T ) does not exceed

(4d+ 5)n.

6.2.16 Theorem [341, Theorem 2] Let V ⊆ ANFq be an affine variety of dimension n and degree

e and f ∈ Fq[x1, . . . , xN ] a polynomial of degree d. Then for every non-trivial ψ, the total
degree of the L-function L(V, f, ψ;T ) does not exceed (4 max(e+ 1, d) + 5)2N+1.

6.2.17 Theorem [1532, Theorem 5] Let V ⊆ A3
Fq be the surface defined by g = 0, where

g ∈ Fq[x1, x2, x3], and let f ∈ Fq[x1, x2, x3]. Suppose that

1. All geometric fibres of f : V → A1
Fq have dimension ≤ 1.

2. The generic fibre of f : V → A1
Fq is a geometrically irreducible curve.

Then for every non-trivial ψ : Fq → C∗ and every m ≥ 1 the following estimate holds:

|Sm(V, f, ψ)| ≤ C(f, g)qm,

where C(f, g) depends only on the degrees of f and g.

6.2.18 Theorem [342, Theorem 1] Let V ⊆ ANFq be a geometrically irreducible variety of dimension

n ≥ 3 and f : V → A1
Fq a regular map. Suppose that

1. Every geometric fibre Vt of f has a unique irreducible component V d−1
t of di-

mension d− 1, and possibly other irreducible components of lower dimensions.

2. For all but finitely many t ∈ Fq, Vt = V d−1
t and the Albanese varieties of V and

Vt [1844, Chapter II, Section 3] have the same dimension.

Then, if Fq has sufficiently large characteristic, for every non-trivial ψ all reciprocal roots
and poles of L(V, f, ψ;T ) have weight ≤ 2n−3 relative to q. Morover, its degree is bounded
by a constant C depending only on the number and the degrees of the polynomials that
define V and f . In particular, for every m ≥ 1 the following estimate holds:

|Sm(V, f, ψ)| ≤ C(qm)n−
3
2 .

6.2.19 Theorem [1700, Théorème 5.1.1] Let X ⊆ PNFq be a geometrically connected smooth pro-

jective variety of dimension n, V = X ∩ANFq its affine part, f ∈ Fq[x1, . . . , xN ] a polynomial

of degree d and F ∈ Fq[x0, x1, . . . , xn] its homogenized with respect to x0. Suppose that

1. d is prime to p.

2. The hyperplane at infinity L = PNFq\ANFq intersects X transversally (i.e., the

scheme-theoretic intersection X ∩ L is smooth of dimension n− 1).

3. The hypersurface H defined by F = 0 intersects X ∩ L transversally (i.e., the
scheme-theoretic intersection X ∩H ∩ L is smooth of dimension n− 2).

Then for every non-trivial ψ, L(V, f, ψ;T )(−1)n is a polynomial of degree

C(X, d) =

∣∣∣∣∫
X

c(X)

(1 + L)(1 + dL)

∣∣∣∣
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where c(X) is the total Chern class of X [799, Exposé XVII, 5.2] and L the class of a
hyperplane section, all whose reciprocal roots have weight n relative to q. In particular, for
every m ≥ 1 the following estimate holds:

|Sm(V, f, ψ)| ≤ C(X, d)qmn/2.

6.2.20 Theorem [1704, Theorem 4] Let X ⊆ PNFq be a geometrically irreducible integral projective

variety of dimension n, V = X ∩ ANFq its affine part, f ∈ Fq[x1, . . . , xN ] a polynomial of

degree d and F ∈ Fq[x0, x1, . . . , xn] its homogenized with respect to x0. Suppose that

1. d is prime to p.

2. The scheme-theoretic intersection X ∩ H ∩ L has dimension n − 2, where L =
PNFq\ANFq is the hyperplane at infinity and H is the hypersurface defined by F = 0.
Let δ ≥ −1 be the dimension of its singular locus.

3. The dimension of the singular locus of the scheme-theoretic intersection X ∩ L
is smaller than or equal to δ.

Then for every non-trivial ψ, all reciprocal roots and poles of L(V, f, ψ;T ) have weight
smaller than or equal to n+δ+1 relative to q, and its total degree is bounded by a constant
C(X, d) depending only on number and the degrees of the forms defining X and on d. In
particular, for every m ≥ 1 the following estimate holds:

|Sm(V, f, ψ)| ≤ C(X, d)qm(n+δ+1)/2.

6.2.21 Definition Let f =
∑
i∈Zn aix

i ∈ Fq[x±1
1 , . . . , x±1

n ] be a Laurent polynomial. The Newton
polyhedron ∆∞(f) of f at infinity is the convex hull in Rn of the set {0}∪{i ∈ Zn|ai 6= 0}.
A polynomial f is non-degenerate with respect to ∆∞(f) if, for every face δ of ∆∞(f)
that does not contain the origin, the equations

∂fδ
∂x1

= · · · = ∂fδ
∂xn

= 0

do not have any common solution in (F∗q)n, where fδ =
∑
i∈Zn∩δ aix

i is the restriction
of f to the face δ.

6.2.22 Theorem [23, Theorem 4.2][812, Theorem 1.3] Let Tn be the n-dimensional split torus
over Fq, f ∈ Fq[x±1

1 , . . . , x±1
n ] a Laurent polynomial and ∆∞(f) its Newton polyhedron at

infinity. Suppose that

1. dim ∆∞(f) = n.

2. f is non-degenerate with respect to ∆∞(f).

Then for every non-trivial ψ, L(Tn(Fq), f, ψ;T )(−1)n is a polynomial of degree
n!Vol(∆∞(f)), all whose reciprocal roots have weight smaller than or equal to n relative to
q. If, in addition, the origin is an interior point of ∆∞(f), then all its reciprocal roots have
weight n relative to q. In particular, for every m ≥ 1 the following estimate holds:

|Sm(Tn, f, ψ)| ≤ n!Vol(∆∞(f))qmn/2.
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6.2.3 Multiplicative character sums

6.2.23 Definition Let V ⊆ ANFq be an affine variety, f : V → A1
Fq a regular map and χ : F∗q → C∗

a non-trivial multiplicative character, extended by zero to Fq. We denote by S(V, f, χ)
the multiplicative character sum

S(V, f, χ) =
∑

x∈V (Fq)

χ(f(x)).

6.2.24 Definition The L-function associated to V , f and χ is the power series

L(V, f, χ;T ) = exp

( ∞∑
m=1

Sm(V, f, χ)
Tm

m

)
∈ 1 + TC[[T ]],

where
Sm(V, f, χ) = S(V ⊗ Fqm , f, χ ◦NormFqm/Fq ).

6.2.25 Theorem For every affine variety V ⊆ ANFq of dimension n, every regular map f : V → A1
Fq

and every non-trivial multiplicative character χ : F∗q → C∗, the L-function L(V, f, χ;T ) is
rational, and all its reciprocal roots and poles are Weil integers of weight at most 2n relative
to q.

6.2.26 Remark As in the additive case, this result is a particular case of the more general theory
of L-functions of `-adic sheaves on varieties over finite fields, see Section 12.7 for the general
statements and some references.

6.2.27 Remark More generally, one can construct “mixed” character sums of the form∑
x∈V (Fq)

ψ(f(x))χ(g(x))

where ψ : Fq → C∗ is a non-trivial additive character, χ : F∗q → C∗ a non-trivial multiplica-
tive character and f, g : V → A1

Fq are regular functions. The corresponding L-function is
again rational, and all its reciprocal roots and poles are Weil integers of weight at most 2n
relative to q.

6.2.28 Theorem [1707, Theorems 2.1, 2.2][2468, Theorem 4.4] Let f ∈ Fq[x1, . . . , xn] be a polyno-
mial of degree d > 0. Suppose that

1. The affine scheme defined by f is smooth.

2. The projective scheme defined by the highest degree homogeneous form fd of f
is smooth.

Then for every non-trivial χ, L(An(Fq), f, χ;T )(−1)n is a polynomial of degree (d− 1)n, all
whose reciprocal roots have weight smaller than or equal to n relative to q. In particular,
for every m ≥ 1 the following estimate holds:

|Sm(An, f, χ)| ≤ (d− 1)nqmn/2.

6.2.29 Theorem [1707, Theorem 3.1, 3.2][2468, Corollary 4.3] Let X ⊆ ANFq be a geometri-

cally connected smooth projective variety of dimension n, V = X ∩ ANFq its affine part,

f ∈ Fq[x1, . . . , xN ] a polynomial of degree d and F ∈ Fq[x0, x1, . . . , xn] its homogenized
with respect to x0. Suppose that
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1. The hypersurface H defined by F = 0 intersects X transversally (i.e., the scheme-
theoretic intersection X ∩H is smooth of dimension n− 1).

2. The hyperplane at infinity L = PNFq\ANFq intersects X ∩H transversally (i.e., the

scheme-theoretic intersection X ∩H ∩ L is smooth of dimension n− 2).

Then for every non-trivial χ, L(V, f, χ;T )(−1)n is a polynomial of degree

C(X, d) =

∣∣∣∣∫
X

c(X)

(1 + L)(1 + dL)

∣∣∣∣
where c(X) is the total Chern class of X [799, Exposé XVII, 5.2] and L the class of a
hyperplane section, all whose reciprocal roots have weight smaller than or equal to n relative
to q. In particular, for every m ≥ 1 the following estimate holds:

|Sm(V, f, χ)| ≤ C(X, d)qmn/2.

6.2.30 Theorem [2468, Theorem 1.1] Let X ⊆ PNFq be a geometrically irreducible Cohen-Macaulay

projective variety of dimension n, V = X ∩ ANFq its affine part, f ∈ Fq[x1, . . . , xN ] a poly-

nomial of degree d and F ∈ Fq[x0, x1, . . . , xn] its homogenized with respect to x0. Let
χ : (Fq)? → C∗ be a non-trivial multiplicative character. Suppose that

1. The scheme-theoretic intersection X ∩H ∩ L has dimension n − 2 and singular
locus of dimension δ ≥ −1, where L = PNFq\ANFq is the hyperplane at infinity and
H is the hypersurface defined by F = 0.

2. Either the singular locus of the scheme-theoretic intersection X∩H has dimension
at most δ, or else d is prime to p, χd is non-trivial and the singular locus of the
scheme-theoretic intersection X ∩ L has dimension at most δ.

Then all reciprocal roots and poles of L(V, f, χ;T ) have weights at most n+δ+1 relative to
q, and its total degree is bounded by a constant C(X, d) depending only on the number and
degrees of the forms that define X and on d. In particular, for every m ≥ 1 the following
estimate holds:

|Sm(V, f, χ)| ≤ C(X, d)qm(n+δ+1)/2.

6.2.4 Generic estimates

6.2.31 Theorem [1712, Theorem 5.5.1] Let V ⊆ ANFq be a geometrically connected smooth variety

of dimension n, f1, . . . , fr ∈ Fq[x1, . . . , xN ] such that the map (f1, . . . , fr) : V → ArFq
is finite and ψ : Fq → C∗ a non-trivial additive character. Then there exists a non-zero
polynomial g ∈ Fq[x1, . . . , xr] and a constant C ≥ 0 such that for every m ≥ 1 and every
(a1, . . . , ar) ∈ Frqm with g(a1, . . . , ar) 6= 0 the following estimate holds:

|Sm(V, a1f1 + · · ·+ arfr, ψ)| ≤ Cqmn/2.

6.2.32 Theorem [1703, Corollary 4.1.3] Let V be an affine variety of dimension n over Fq,
f : V → A1

Fq a regular map, π = (π1, . . . , πN ) : V → ANFq a quasi-finite map and
ψ : Fq → C∗ a non-trivial additive character. Then there exists a non-zero polyno-
mial g ∈ Fq[x1, . . . , xN+1] and a constant C ≥ 0 such that for every m ≥ 1 and every
(a1, . . . , aN , b) ∈ FN+1

qm with g(a1, . . . , aN , b) 6= 0 the following estimate holds:

|Sm(V, f + a1π1 + · · ·+ aNπN + b, ψ)| ≤ Cqmn/2.

6.2.33 Theorem [1703, Corollary 4.1.3] Let V be an affine variety of dimension n over Fq,
f : V → A1

Fq a regular map, π = (π1, . . . , πN ) : V → ANFq a quasi-finite map and
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χ : Fq → C∗ a non-trivial multiplicative character. Then there exists a non-zero poly-
nomial g ∈ Fq[x1, . . . , xN+1] and a constant C ≥ 0 such that for every m ≥ 1 and every
(a1, . . . , aN , b) ∈ FN+1

qm with g(a1, . . . , aN , b) 6= 0 the following estimate holds:

|Sm(V, f + a1π1 + · · ·+ aNπN + b, χ)| ≤ Cqmn/2.

6.2.5 More general types of character sums

6.2.34 Theorem [560, Theorem 13][2384] Let X be a smooth projective curve of genus g over Fq,
f, h ∈ Fq(X) rational functions and ψ : Fq → C∗ (respectively χ : F∗q → C∗) a non-trivial

additive (resp. multiplicative) character. Suppose that f is not of the form f̄p − f̄ with
f̄ ∈ Fq(X), and g is not an ord(χ)-th power in Fq(X). Then for every m ≥ 1,∣∣∣∣∣∣

∑
x∈V (Fqm )

ψ(TrFqm/Fqf(x))χ(NormFqm/Fq h(x))

∣∣∣∣∣∣ ≤ (2g − 2 + s+ l + d)qm/2,

where V ⊆ X is the open set where f and h are defined, l is the number of poles of f , s is
the number of zeroes and poles of h and d is the degree of the polar part of the divisor (f).

6.2.35 Theorem [1709, Theorem 1.1] Let f, g ∈ Fq[x1, . . . , xn] be polynomials of degrees d and e,
respectively, prime to p. Suppose that the projective hypersurfaces defined by the highest
degree forms of f and g are smooth and intersect transversally. Then for every m ≥ 1 the
following estimate holds:∣∣∣∣∣∣

∑
x∈Fqm

ψ(TrFqm/Fqf(x))χ(NormFqm/Fq g(x))

∣∣∣∣∣∣ ≤ Cn,d,eqmn/2,
where

Cn,d,e =
∑

a+b=n

(d− 1)a(e− 1)b +
∑

a+b=n−1

(d− 1)a(e− 1)b.

6.2.36 Theorem [1138, Proposition 0.1] Let Tn be the n-dimensional split torus over Fq,
f ∈ Fq[x±1

1 , . . . , x±1
n ] a Laurent polynomial, ∆∞(f) its Newton polyhedron at infinity and

χ : Tn(Fq)→ C∗ a character. Suppose that

1. dim ∆∞(f) = n.

2. f is non-degenerate with respect to ∆∞(f).

Then for every non-trivial ψ and every m ≥ 1 the following estimate holds:∣∣∣∣∣∣
∑

x∈(F∗
qm

)n

ψ(TrFqm/Fqf(x))χ(NormFqm/Fq x)

∣∣∣∣∣∣ ≤ n!Vol(∆∞(f))qmn/2.

6.2.37 Theorem [1702, Theorem 1][2893, Corollary 2.2] Let a ∈ Fqm such that Fqm = Fq(a) and
χ : F∗qm → C∗ a non-trivial multiplicative character. Then the following estimate holds:∣∣∣∣∣∣

∑
x∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (m− 1)
√
q.
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6.2.38 Theorem [2893, Corollary 2.8] Let f ∈ Fq[x] be a monic polynomial, and χ : (Fq[x]/(f))∗ →
C∗ a non-trivial character. Then∣∣∣∑χ(g mod f)

∣∣∣ ≤ 1

d
(deg(f) + 1)qd/2,

where the sum is taken over the set of monic irreducible polynomials of degree d in Fq[x]
which are coprime to f .

6.2.39 Theorem [1140, Theorem 3.7] Let f ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ] be a polynomial of degree
d, r ≥ 1 an integer and let g be the polynomial

r∑
j=1

f(x1,j , . . . , xn,j , y1, . . . , yn′)

in Fq[x1,1, . . . , xn,r, y1, . . . , yn′ ]. Suppose that

1. d is prime to p.

2. The degree d homogeneous part of g defines a smooth hypersurface in Prn+n′−1.

Then for every non-trivial additive character ψ and every m ≥ 1 the following estimate
holds:∣∣∣∣∣∣

∑
xi∈Fqmr ,yj∈Fqm

ψ(TrFqmr/Fqf(x1, . . . , xn, y1, . . . , yn′))

∣∣∣∣∣∣ ≤ (d− 1)nr+n
′
qm(nr+n′)/2.

The constant (d−1)nr+n
′

can be replaced by C(p, f)r3(d+1)n−1, where C(p, f) depends only
on p and f .

See Also

§6.1 For specific results about Gauss, Jacobi, and Kloosterman sums.
§12.7 For the general theory of `-adic sheaves and their L-functions.

[22], [2698] For a study of exponential sums and their L-functions using Dwork’s
p-adic methods.

[253] For applications of p-adic cohomology to the study of exponential sums.
[796], [2589] For the general theory of exponential sums using `-adic cohomology.
[1700], [1867] For a study of the total degree of the L-function associated to an

exponential sum and its change with the characteristic of the base field.
[1869] For a comprehensive survey of the main estimates for exponential

sums obtained using `-adic cohomology.

References Cited: [22, 23, 28, 253, 339, 341, 342, 560, 795, 796, 799, 812, 940, 1138, 1140,
1532, 1700, 1702, 1703, 1704, 1707, 1709, 1712, 1844, 1867, 1869, 2384, 2468, 2469, 2589,
2698, 2893, 2961, 2962]
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6.3 Some applications of character sums

Alina Ostafe, Macquarie University

Arne Winterhof, Austrian Academy of Sciences

The main goal of this chapter is to show that character sums are very useful and friendly
tools for a variety of problems in many areas such as coding theory, cryptography, and
algorithms. There are so many applications of character sums that any survey will be
incomplete. Here we chose a combination of some classical applications and newer, less
known applications using different types of character sums.

6.3.1 Applications of a simple character sum identity

6.3.1 Proposition [1631, Lemma 7.3.7] Let χ denote a nontrivial multiplicative character of Fq.
Then we have ∑

x∈Fq

χ(x+ a)χ(x+ b) = −1, a, b ∈ Fq, a 6= b.

6.3.1.1 Hadamard matrices

6.3.2 Definition A Hadamard matrix of order n is an n×n matrix H with entries from {−1,+1}
satisfying HHT = nI.

6.3.3 Construction (Paley) [2344] Let q be the power of an odd prime, η the quadratic character
of Fq and Fq = {ξ1, . . . , ξq} any fixed ordering of Fq. For q ≡ 3 (mod 4) there exists a
Hadamard matrix H = (hij) of order n = q + 1 defined by

hi,n = hn,i = 1, i = 1, . . . , n, hj,j = −1, j = 1, . . . , n− 1,

hi,j = η(ξj − ξi), i, j = 1, . . . , n− 1, i 6= j.

6.3.4 Remark

1. The inner product of two different rows of H is zero by Proposition 6.3.1.

2. Paley also presented a similar, but slightly more complicated construction for
Hadamard matrices of order n = 2(q + 1) if q ≡ 1 (mod 4).

3. The Hadamard conjecture proposes that a Hadamard matrix of order n = 4k
exists for every positive integer k. The smallest order n for which no Hadamard
matrix of order n = 4k has been constructed is n = 668. The last progress known
by the authors was the construction of a Hadamard matrix of order n = 428
by [1730].

4. For a monograph on Hadamard matrices see [1536]; see also Subsection 14.6.4.

5. Hadamard matrices can be used to construct good error correcting codes [1911].

6. For relations between Hadamard matrices and designs see [260].
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6.3.1.2 Cyclotomic complete mappings and check digit systems

6.3.5 Definition Let n be a positive divisor of q − 1 and γ a primitive element of Fq. Then the
sets Ci =

{
γjn+i : j = 0, 1, . . . , (q − 1)/n− 1

}
, i = 0, 1, . . . , n− 1, are cyclotomic cosets

of order n. For a0, a1, . . . , an−1 ∈ F∗q we define a cyclotomic mapping fa0,a1,...,an−1
(of

index n) by fa0,a1,...,an−1
(0) = 0 and

fa0,a1,...,an−1
(ξ) = aiξ if ξ ∈ Ci, i = 0, 1, . . . , n− 1.

6.3.6 Proposition [998, Theorem 3.7] The mapping fa0,a1,...,an−1 is a permutation of Fq if and
only if aiCi 6= ajCj for all 0 ≤ i < j ≤ n− 1.

6.3.7 Corollary For n ≥ 2 let j be an integer with 0 ≤ j < n, χ a multiplicative character of Fq
of order n, and a, b ∈ Fq with a 6= b. If aj = a and ai = b for i 6= j, then ga,b = fa0,a1,...,an−1

is a permutation if and only if χ(a) = χ(b).

6.3.8 Definition A permutation f of Fq is a complete mapping of Fq if f(x) +x is also a permu-
tation of Fq.

6.3.9 Remark Complete mappings are pertinent to the problem of constructing orthogonal Latin
squares [1939, Section 9.4].

6.3.10 Remark Substituting b = ac we see that ga,b is a complete mapping if and only if χ(c) = 1
and χ(a+ 1) = χ(ac+ 1) and the number N of complete mappings ga,ac with c 6= 1 is

N =
∑

c∈F∗q , χ(c)=1, c6=1

1

n

n−1∑
i=0

∑
a∈F∗q\{1,c−1}

χi(a+ 1)χi(a− c−1).

Proposition 6.3.1 implies the following theorem.

6.3.11 Theorem [2278, Theorem 3] Let n ≥ 2 be a divisor of q− 1 and j ∈ {0, 1, . . . , n− 1}. Then
the number N of ordered pairs (a, b) ∈ F∗q×F∗q with a 6= b such that the cyclotomic mapping
ga,b = fa0,a1,...,an−1

with aj = a and ai = b for i 6= j is a complete mapping of Fq equals
N = (q − n− 1)(q − 2n− 1)/n2.

6.3.12 Definition A check digit system over Fq consists of s permutations p1, . . . , ps of Fq and a
symbol c ∈ Fq such that each word a1 . . . as−1 ∈ Fs−1

q is extended by a check digit as
such that p1(a1) + · · ·+ ps(as) = c.

6.3.13 Remark All single errors are detected since all pi are permutations. Another frequent
family of errors are adjacent transpositions . . . ab . . . → . . . ba . . . which are all detected
if pi+1(x)p−1

i (x)− x are also permutations for i = 1, . . . , s− 1. A permutation f such that
f(x)−x is also a permutation is an orthomorphism. Since f is an orthomorphism whenever
−f is a complete mapping, the number of orthomorphisms and complete mappings of the
form ga,b is the same and the probability that a random choice of the parameters (a, b) gives
an orthomorphism is asymptotically n−2 by Theorem 6.3.11.

6.3.14 Example [International Standard Book Number (ISBN-10)] An ISBN-10 consists of 10
digits x1− x2x3x4x5x6− x7x8x9− x10. The first digit x1 characterizes the language group,
x2x3x4x5x6 is the actual book number, x7x8x9 is the number of the publisher, and x10 is a
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check digit. A correct ISBN satisfies x1+2x2+3x3+4x4+5x5+6x6+7x7+8x8+9x9+10x10 =
0 ∈ F11, i.e., pi(x) = ix, i = 1, . . . , 10, and pi+1p

−1
i (x) = (i−1 + 1)x, i = 1, . . . , 9, which are

all orthomorphisms.

6.3.1.3 Periodic autocorrelation of cyclotomic generators

6.3.15 Definition Put εn = exp(2πi/n). Let (sk) be a T -periodic sequence over Zn. The (periodic)
autocorrelation of (sk) is the complex-valued function defined by

A(t) =
1

T

T−1∑
k=0

εsk+t−sk
n , 1 ≤ t < T.

6.3.16 Remark Sequences with low autocorrelation have several applications in wireless commu-
nication, cryptography, and radar, see the monograph [1303].

6.3.17 Definition The p-periodic sequence (sk) over Zn defined by s0 = 0 and sk = j if k ∈ Cj
for 0 ≤ j < n, 1 ≤ k < p, where Cj denotes the jth cyclotomic coset of order n defined
by Definition 6.3.5, is a cyclotomic generator of order n.

6.3.18 Remark Proposition 6.3.1 implies the exact values of the autocorrelation function of the
cyclotomic generator of order n; see [2068] for the proof of a generalization to arbitrary
finite fields.

6.3.19 Theorem The autocorrelation function f(t) of the cyclotomic generator of order n is given
by A(t) = (−1 + εjn + ε−j−kn )/p if t ∈ Cj and −1 ∈ Ck.

6.3.2 Applications of Gauss and Jacobi sums

6.3.20 Definition Let χ be a multiplicative and ψ be an additive character of Fq and a ∈ Fq of
order T . The sums

G(χ, ψ) =
∑
c∈F∗q

χ(c)ψ(c) and Ga(ψ) =

T−1∑
n=0

ψ(an)

are Gauss sums of first kind and second kind, respectively. Let χ1, . . . , χk be k ≥ 2
multiplicative characters of Fq. The sum

J(χ1, . . . , χk) =
∑

c1+···+ck=1

χ1(c1) . . . χk(ck),

is a Jacobi sum, where the summation is extended over all (c1, . . . , ck) ∈ Fkq such that
c1 + · · ·+ ck = 1.

6.3.21 Remark Gauss sums of the first and second kinds are closely related by

Ga(ψ) =
T

q − 1

(q−1)/T−1∑
j=0

G(χj , ψ),
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where χ is a multiplicative character of order (q − 1)/T , and Gauss sums of first kind and
Jacobi sums by

J(χ1, . . . , χk) =
G(χ1, ψ) · · ·G(χk, ψ)

G(χ1 · · ·χk, ψ)

if all involved characters are nontrivial. For background on Gauss and Jacobi sums see
Section 6.1, [240] or [1939, Chapter 5]. In particular, we have (if all characters are nontrivial)

|G(χ, ψ)| = q1/2, |Ga(ψ)| ≤ q1/2, and |J(χ1, . . . , χk)| = q(k−1)/2. (6.3.1)

We note that the bound on |Ga(ψ)| is only nontrivial if T > q1/2. If q = p is a prime, bounds
which are nontrivial for T ≥ p1/3+ε and T ≥ pε are given in [380, 1454] (see also [371] for
an improvement), respectively.

6.3.2.1 Reciprocity laws

6.3.22 Remark Gauss and Jacobi sums are involved in the proofs and statements of reciprocity
laws. For example, let p and q be two distinct odd primes, let r be the order of p modulo q,

ξ be a primitive q-th root of unity in Fpr , and G =
∑
x∈Fq

(
x
q

)
ξx be a Gauss sum of first

kind over Fq in Fpr . Then from G2 = (−1)(q−1)/2q we get

Gp = (−1)(p−1)(q−1)/4

(
q

p

)
G.

On the other hand, simple calculations give Gp =
(
p
q

)
G (mod p) and we get the following

result.

6.3.23 Theorem (Gauss law of quadratic reciprocity) [1939, Theorem 5.17] For any two distinct
odd primes p and q we have (

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

6.3.24 Definition For an integer n ≥ 2 and two distinct primes p, q ≡ 1 (mod n) we denote by

χp,n(a) =
(
a
p

)
n

the character of order n with values in Fq defined by

(
γj

p

)
n

= ξj , j = 0, . . . , n− 1,

where γ is a fixed primitive element of Fp and ξ a primitive n-th root of unity in Fq.

6.3.25 Remark The sums Kp,n = (−1)(p−1)(q−1)/4
∑
x∈Fp

χp,n(x)χp,n(1 − x) are up to signs Jacobi

sums in Fq and appear in reciprocity laws of higher order.

6.3.26 Theorem (Cubic and biquadratic reciprocity laws) [463] For two distinct primes p, q ≡ 1
(mod 3) we have (

p

q

)
3

(
q

p

)
3

(
Kp,3

q

)
3

= 1.

For two distinct primes p, q ≡ 1 (mod 4) we have(
p

q

)
4

(
p

q

)
4

(
Kp,4

q

)
2

= 1.
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6.3.27 Remark In terms of the decompositions of p and q in the rings of Eisenstein and Gaussian
integers we have

Kp,3 =
ad− bc

3
if p = a2 − ab+ b2; q = c2 − cd+ d2; a, c ≡ 2 (mod 3); b, d ≡ 0 (mod 3)

and

Kp,4 =
ad− bc

2
if p = a2 + b2; q = c2 + d2; a, c ≡ 1 (mod 4); b, d ≡ 0 (mod 2).

6.3.2.2 Distribution of linear congruential pseudorandom numbers

6.3.28 Definition The sequences
xn+1 = axn + b, n ≥ 0,

where x0, a, b ∈ Fp with x0, a 6= 0, and a 6= 1, are linear congruential pseudorandom
number generators.

6.3.29 Remark If a 6= 1, they can also be given explicitly by

xn = anx0 +
an − 1

a− 1
b, n ≥ 0. (6.3.2)

The sequence (xn) is T -periodic if b 6= (1− a)x0, where T is the order of a.

6.3.30 Definition Let Γ be a sequence of N elements (γn)Nn=1 in the unit interval [0, 1). The
discrepancy DN (Γ) is defined by

DN (Γ) = sup
B⊆[0,1)

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where the supremum is taken over all subintervals B = [α, β) ⊆ [0, 1), and TΓ(B) is the
number of elements of Γ inside B.

6.3.31 Remark The discrepancy is a measure for the uniform distribution of Γ and a small dis-
crepancy is a desirable feature for (quasi-)Monte Carlo integration [2248]. The problem of
estimating the discrepancy can be reduced to the problem of estimating certain exponential
sums.

6.3.32 Proposition (Erdős-Turan inequality) [922, Theorem 1.2.1] Let Γ be a sequence (γn)Nn=1

in [0, 1). We have for any integer H ≥ 1,

DN (Γ)� 1

H
+

1

N

H∑
h=1

1

h
|SN (h)|, where SN (h) =

N−1∑
n=0

exp (2πihγn) .

6.3.33 Remark For the sequence (xn/p), n = 0, 1, . . . , T − 1, in [0, 1) derived from a linear pseu-
dorandom number generator (xn) (where we identify Fp with the integers {0, 1, . . . , p− 1}),
the absolute value of the sums SN (h) equals the absolute value of Gauss sums of second
kind provided that b 6= (1 − a)x0 and a 6= 1. A discrepancy bound can be easily obtained
by combining Proposition 6.3.32 with the bound |Ga(ψ)| ≤ p1/2.

6.3.34 Theorem [2230, Theorem 1] For the sequence Γ = (xn/p : n = 0, . . . , N − 1), where xn is
defined by (6.3.2), N < T and T is the order of a, we have DN (Γ)� N−1p1/2(log p)2.
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6.3.2.3 Diagonal equations, Waring’s problem in finite fields, and covering radius

of certain cyclic codes

6.3.35 Definition A diagonal equation over Fq is an equation of the type

c1x
k1
1 + · · ·+ csx

ks
s = b (6.3.3)

for any positive integers k1, . . . , ks, c1, . . . , cs ∈ F∗q , and b ∈ Fq. We denote by Nb the
number of solutions in Fsq of (6.3.3); see Section 7.3.

6.3.36 Theorem [1939, Theorem 6.34] The number Nb of solutions of (6.3.3) for b ∈ F∗q is

Nb = qs−1 +

d1−1∑
j1=1

. . .

ds−1∑
js=1

χj11 (bc−1
1 ) . . . χjss (bc−1

s )J(χj11 , . . . , χ
js
s ),

where χi denotes a multiplicative character of order di = gcd(ki, q − 1).

6.3.37 Remark Put Tj = (q − 1)/ gcd(kj , q − 1) and let aj ∈ F∗q be an element of order Tj for

j = 1, . . . , s. Since {xkj : x ∈ Fq} = {anj : 0 ≤ n < Tj} ∪ {0} =: Gj , we can also express Nb
in terms of Gauss sums of the second kind,

Nb =
1

q

∑
(y1,...,xs)∈G1×...Gs

∑
ψ

ψ(c1y1 + · · ·+ csys − b) =
1

q

∑
ψ

ψ(−b)
s∏
j=1

(
1 +Gaj (ψcj )

)
,

where the sum over ψ runs over all additive characters of Fq and ψcj (x) = ψ(cjx).

6.3.38 Definition Let g(k, q) be the smallest s such that every element b ∈ Fq can be written
as a sum of at most s summands of k-th powers in Fq. The problem of determining or
estimating g(k, q) is Waring’s problem in Fq.

6.3.39 Remark We note that g(k, q) = g(d, q) if d = gcd(k, q − 1) and we may restrict ourselves
to the case that k | (q − 1). Combining Theorem 6.3.36 (with k1 = · · · = ks = k | q − 1
and c1 = · · · = cs) with the result on the absolute value of Jacobi sums (6.3.1) we get
immediately

Nb ≥ qs−1 − (k − 1)sq(s−1)/2

which implies the following bound.

6.3.40 Theorem [2990] For any divisor k of q − 1 we have g(k, q) ≤ s if qs−1 > (k − 1)2s.

6.3.41 Remark Theorem 6.3.40 applies only to k < q1/2−ε and for q3/7 +1 ≤ k < q1/2 we have the
improvement g(k, q) ≤ 8 of [650, Corollary 7]. Moreover, from [1283, Theorem 6] it follows
that for any ε > 0, k ≤ q1−ε and if Fq = Fp(xk) for some x ∈ Fq, there is a constant
c(ε) such that g(k, q) ≤ c(ε). However, if q = p is a prime, a very moderate but nontrivial
bound on Gauss sums of the second kind from [1789] leads to the nontrivial bound on
g(k, p)� (ln k)2+ε if k < p(log log p)1−ε/ log p.

6.3.42 Definition The covering radius ρ(C) of a code C ⊆ Fnq is

ρ(C) = max
x∈Fnq

min
c∈C

d(c,x),

where d is the Hamming distance.
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6.3.43 Proposition [1468, Lemma 1.1] Let H be the parity check matrix of a linear [n, k]-code C
over Fq, i.e., C = {c ∈ Fnq : HcT = 0}. The covering radius is the least integer ρ such that

every x ∈ Fn−kq is a linear combination of at most ρ columns of H.

6.3.44 Remark Let g ∈ Fq[X] be the minimal polynomial of an element α ∈ F∗q of order n and r be
the order of q modulo n, i.e., Fq(α) = Fqr . Then the cyclic code C = (g) is the [n, n−r]-code
with parity check matrix H = (1, α, α2, . . . , αn−1), where the elements of Fqr are identified
with r-dimensional column vectors.

Put N = (qr− 1)/n. Then α = γN for some primitive element γ of Fqr and the columns
of H consist of the nonzero N -th powers in Fqr . By Proposition 6.3.43, ρ(C) is the least
integer ρ such that any x ∈ Fqr can be written as a linear combination of at most ρ N -th
powers in Fqr . Hence, we have ρ(C) ≤ g(N, q), where we have equality for q = 2.

6.3.2.4 Hidden number problem and noisy interpolation

6.3.45 Definition ((Extended) Hidden number problem) [347, 348] Let T ⊆ Fp. Recover a number
a ∈ Fp if for many known t ∈ T the l most significant bits of at are given.

6.3.46 Remark If l is of order log1/2 p and T has some uniform distribution property, a lattice
reduction technique solves the hidden number problem in polynomial time. The uniform
distribution property is fulfilled if the maximum over all nontrivial additive character sums
of Fp over T is small,

max
ψ

∣∣∣∣∣∑
t∈T

ψ(t)

∣∣∣∣∣ = O(#T 1−ε).

If T is a subgroup of F∗p, the sums are Gauss sums of the second kind and the desired uniform

distribution property is fulfilled by the bounds of [1454] and [380, 371] if #T ≥ p1/3+ε and
#T ≥ pε, respectively. The bound of [1789] and ideas reminiscent to Waring’s problem solve
the problem for smaller #T ≥ log p/(log log p)1−ε using more bits, that is, l of order log4 p.

6.3.47 Definition [2655] The sparse polynomial noisy interpolation problem consists of finding
an unknown polynomial f ∈ Fp[X] of small weight from approximate values of f(t) at
polynomially many points t ∈ Fp selected uniformly at random.

6.3.48 Remark

1. The case f(X) = aX corresponds to the hidden number problem.

2. For more details we refer to the survey [2647] and [2644, Chapter 30].

6.3.3 Applications of the Weil bound

6.3.49 Theorem [2548, Theorem 2G] Let g ∈ Fq[X] be of degree n and f ∈ Fq[X] have d distinct
roots in its splitting field over Fq. Let χ be a multiplicative character of Fq of order s and
let ψ be an additive character of Fq. If either s > 1 and f is not, up to a multiplicative
constant, an s-th power, or ψ is nontrivial and gcd(n, q) = 1, we have∣∣∣∣∣∣

∑
c∈Fq

χ(f(c))ψ(g(c))

∣∣∣∣∣∣ ≤ (d+ n− 1)q1/2.
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6.3.50 Remark The condition gcd(n, q) = 1 can be replaced by the weaker condition that
Y q − Y − g(X) is absolutely irreducible. The condition on f is fulfilled if gcd(deg(f), s) = 1.

6.3.3.1 Superelliptic and Artin-Schreier equations

6.3.51 Definition For polynomials f, g ∈ Fq[X] and a divisor s of q − 1

Y s = f(X) and Y q − Y = g(X)

are superelliptic and Artin-Schreier equations defined over Fq, respectively. For s = 2
these equations are hyperelliptic equations and, if additionally deg(f) = 3, elliptic equa-
tions.

6.3.52 Proposition [2711, Lemma 1 and Lemma 2] The number Nf,s,qr of solutions (x, y) ∈ F2
qr

of a superelliptic equation is

Nf,s,qr =
∑

ord(χ)|s

∑
x∈Fqr

χ(f(x)),

where the outer sum runs over all multiplicative characters χ of Fqr such that χs is trivial.
The number Ng,qr of an Artin-Schreier equation is

Ng,qr =
∑
ψr

∑
x∈Fqr

ψr(g(x)),

where the outer sum runs over all additive characters ψ of Fq and ψr(x) = ψ(Tr(x)), and
Tr denotes the trace from Fqr to Fq.

6.3.53 Remark After isolating the trivial characters, the Weil bound implies immediately bounds
on Nf,s,qr and Ng,qr .

6.3.54 Theorem [2711, Chapter 1.4] If f ∈ Fq[X] with gcd(deg(f), s) = 1 and d > 0 different
zeros (in the algebraic closure of Fq), then the number of solutions Nf,s,qr over Fqr of the
superelliptic equation Y s = f(X) satisfies

|Nf,s,qr − qr| ≤ (s− 1)(d− 1)qr/2.

If g ∈ Fq[X] has degree n with gcd(n, q) = 1, then the number of solutions Ng,qr over Fqr
of the Artin-Schreier equation Y q − Y = g(X) satisfies

|Ng,qr − qr| ≤ (n− 1)(q − 1)qr/2.

6.3.3.2 Stable quadratic polynomials

6.3.55 Definition For a polynomial f ∈ Fq[X], q odd, we define

f (0)(X) = X, f (n)(X) = f
(
f (n−1)(X)

)
, n = 1, 2, . . . .

A polynomial f is stable if all polynomials f (n) are irreducible over Fq.
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6.3.56 Definition For a quadratic polynomial f(X) = aX2 + bX + c ∈ Fq[X], a 6= 0, we define
α = −b/2a as the unique critical point of f (that is, the zero of the derivative f ′) and
the critical orbit of f ,

Orb = {f (n)(α) : n = 2, 3, . . .} = {f (n)(α) : n = 2, . . . , tf},

where tf is the smallest value of t with f (t)(α) = f (s)(α) for some positive integer s < t,
i.e., the orbit length.

6.3.57 Proposition [1620, Proposition 3] Let η denote the quadratic character of Fq. A quadratic
polynomial f ∈ Fq[X] is stable if and only if η(x) = −1 for all elements x of the adjusted
orbit Orb(f) = {−f(α)}⋃Orb(f).

6.3.58 Remark If f is stable, then the elements f (n)(α), n = 2, . . . , tf − 1, are different and
Proposition 6.3.57 implies for any positive integer K,

tf − 2 =
1

2K

tf−1∑
n=2

K∏
k=1

(1− η( f (k)(f (n)(α)) )) ≤ 1

2K

∑
x∈Fq

K∏
k=1

(
1− η

(
f (k)(x)

))
.

Expanding the product on the right hand side, we obtain one trivial sum equal to q and
2K − 1 sums which can be bounded by the Weil bound giving

tf =
q

2K
+O(2Kq1/2).

The optimal choice of K gives the following result.

6.3.59 Theorem [2331, Theorem 1] For any odd q and any stable quadratic polynomial f ∈ Fq[X]
we have tf = O

(
q3/4

)
.

6.3.60 Remark Similarly, Gomez and Nicolás estimated in [1310] the number of stable quadratic
polynomials over Fq for an odd prime power q. As for Theorem 6.3.59, this reduces to
estimating the character sum

∑
(a,b,c)∈F∗q×Fq×Fq

K∏
k=1

(1− η (Fk(a, b, c))) ,

where Fk(a, b, c) is the k-th element of the critical orbit of f and K any positive integer
parameter. Gomez and Nicolás [1310] have proved that there are O(q5/2(log q)1/2) stable
quadratic polynomials over Fq for the power q of an odd prime.

6.3.3.3 Hamming distance of dual BCH codes

6.3.61 Definition Let γ be a primitive element of F2r , t be a positive integer with 1 ≤ 2t − 1 ≤
2dr/2e + 1, and Gt denote the set of polynomials

Gt =

{
t∑
i=1

giX
2i−1 ∈ F2r [X]

}
.

For each g ∈ Gt we define a binary word cg of length 2r − 1,

cg =
(

Tr(g(1)),Tr(g(γ)), . . . ,Tr(g(γ2r−2))
)
,
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where Tr denotes the absolute trace from F2r to F2, and define a code

Ct = {cg : g ∈ Gt}.

6.3.62 Remark The code Ct is linear and is the dual of the primitive, binary BCH code with
designed distance 2t+ 1 [1991].

6.3.63 Remark Following [2372], one can use the Weil bound to estimate the Hamming weight
for Ct. To do this, we recall that any nonzero codeword cg ∈ Ct comes from a nonzero

polynomial g(X) =
∑t
i=1 giX

2i−1. Hence, we have

2r − 2wtH(cg) =
∑
x∈F2r

(−1)Tr(g(x)) =
∑
x∈F2r

ψ(g(x)),

where ψ(x) = (−1)Tr(x) is the additive canonical character [2372, Equation (4)]. Applying
now the Weil bound, we get the following result.

6.3.64 Theorem [2372, Theorem 4] For t ≥ 1 the minimum Hamming weight of Ct is at least
2r−1 − (t− 1)2r/2.

6.3.4 Applications of Kloosterman sums

6.3.65 Definition Let ψ be a nontrivial additive character of Fq and let a, b ∈ Fq. We define the
Kloosterman sum (see Section 6.1) by

K(ψ; a, b) =
∑
x∈F∗q

ψ(ax+ bx−1).

6.3.66 Proposition [1939, Theorem 5.45] If ab 6= 0, we have |K(ψ; a, b)| ≤ 2q1/2.

6.3.4.1 Kloosterman equations and Kloosterman codes

6.3.67 Definition For a, b, c ∈ Fq with ab 6= 0

Y q − Y = aX + bX−1 + c

is a Kloosterman equation.

6.3.68 Theorem The number Na,b,c of solutions (x, y) ∈ F2
qr of a Kloosterman equation satisfies

|Na,b,c − qr| ≤ 2(q − 1)qr/2.

6.3.69 Remark We note that this estimate is obtained in a similar way as the number of solutions to
an Artin-Schreier equation in Theorem 6.3.54, but using the estimate in Proposition 6.3.66
instead of the Weil bound.

6.3.70 Definition Let γ be a primitive element of F2r . The codewords of the Kloosterman code
C = {ca,b : a, b ∈ F2r} are defined by

ca,b = (Tr(a+ b),Tr(aγ + bγ−1) + · · ·+ Tr(aγ2r−2 + bγ2−2r )), a, b ∈ F2r .
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6.3.71 Theorem [2372] The minimum weight of the Kloosterman code is at least 2r−1 − 2r/2.

6.3.4.2 Distribution of inversive congruential pseudorandom numbers

6.3.72 Definition For a ∈ F∗p, b ∈ Fp we define, with the convention 0−1 = 0, the sequence (un)
by the recurrence relation

un+1 = au−1
n + b, n = 0, 1, . . . , (6.3.4)

with u0 the initial value. Then the numbers un/p, n = 0, 1, . . ., in the interval [0, 1) form
a sequence of inversive congruential pseudorandom numbers.

6.3.73 Remark The sequence (un) defined by (6.3.4) is purely periodic with some period T ≤ p.
Using the Erdős-Turan inequality given by Theorem 6.3.32, one reduces the problem of
estimating the discrepancy of the elements in the sequence (un/p), n = 0, . . . , T − 1, to
estimating character sums given by

ST (h) =

T−1∑
n=0

ψ(hun)

with a fixed integer h 6≡ 0 (mod p) and ψ is the additive canonical character of Fp. Niederre-
iter and Shparlinski [2270] developed a method to reduce the problem of estimating |ST (h)|
to estimating Kloosterman sums.

6.3.74 Theorem [2270, Theorem 2] For the sequence Γ = (un/p : n = 0, . . . , T − 1), where (un) is
defined by (6.3.4) and T is the period of the sequence (un), we have

DT (Γ)� T−1/2p1/4 log p.

6.3.4.3 Nonlinearity of Boolean functions

6.3.75 Definition Let Br = {0, 1}r . The Fourier coefficients (or Walsh-Hadamard coefficients)

B̂(a) of B(U1, . . . , Ur), where a ∈ Br, are defined as

B̂(a) =
∑
u∈Br

(−1)
B(u)+<a,u>

,

where < a, u >= a1u1 + a2u2 + · · · + arur denotes the standard inner product. The
nonlinearity of the Boolean function B(U1, . . . , Ur) is defined by

N(B) = 2r−1 − 1

2
max
a∈Br

∣∣∣B̂(a)
∣∣∣ .

6.3.76 Remark Boolean functions used in cryptography must have high nonlinearity, see for ex-
ample [523] and Section 9.1.

6.3.77 Remark Each Boolean function B : Fr2 → F2 can be represented with a polynomial f ∈ F2r

and the absolute trace function as B(x1, . . . , xr) = Tr(f(x1β1 + · · · + xrβr)) with some
fixed ordered basis {β1, . . . , βr} of F2r . Moreover, if we identify x ∈ F2r with its coordinate
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vector, we have that x→ (−1)<a,x> is an additive character of F2r . Hence, we get

N(B) = 2r−1 − 1

2
max
b∈F2r

∣∣∣∣∣∣
∑
u∈F2r

ψ(B(u) + bu)

∣∣∣∣∣∣ ,
where ψ is the additive canonical character of F2r . For example, if f(x) = x−1 (with the
convention 0−1 = 0), we get Kloosterman sums on the right hand side.

6.3.5 Incomplete character sums

6.3.78 Theorem (Pòlya-Vinogradov-Weil bound) Let χ be a nontrivial multiplicative character of
order s of Fp and f ∈ Fp[X] with d > 0 different zeros such that f is not, up to a constant
multiple, an s-th power. Then we have∣∣∣∣∣

N−1∑
n=0

χ(f(n))

∣∣∣∣∣ ≤ dp1/2 log p, 1 ≤ N < p.

6.3.79 Remark The bound of Theorem 6.3.78 can be obtained using the standard method for
reducing incomplete character sums to complete ones, see for example [1581, Section 12.2],
and the Weil bound. This reducing method can be traced back to Pòlya and Vinogradov; for
references see [1581]. Generalizations to certain incomplete character sums over arbitrary
finite fields are given in [776, 2989, 2991, 2993].

6.3.5.1 Finding deterministically linear factors of polynomials

6.3.80 Algorithm [1887] Let f ∈ Fp[X], p an odd prime, be a squarefree polynomial with f(0) 6= 0
which splits over Fp. For t = 0, 1, . . . , N we compute

Lt(X) = gcd((X + t)(p−1)/2 − 1, f(X)) = gcd(gt(X)− 1, f(X))

via the Euclidean algorithm, where N is the main parameter of the algorithm, hoping that
at least one polynomial Lt is nontrivial, that is, is equal to neither 1 nor f .

For each t, the polynomial

gt(X) ≡ (X + t)(p−1)/2 (mod f(X)), deg(gt) < deg(f)

is calculated efficiently using repeated squaring.

6.3.81 Remark Since x(p−1)/2 = 1 if and only if x is a quadratic residue modulo p, Lt is trivial,
i.e., either 1 or f , only if (

a+ t

p

)
=

(
b+ t

p

)
for any two distinct roots of f . Therefore, the algorithm does not determine a nontrivial
factor of f only if

N + 1 =

N∑
t=0

(
(a+ t)(b+ t)

p

)
� p1/2 log p

by Theorem 6.3.78.

6.3.82 Remark Any polynomial f can be factorized into squarefree polynomials by calculating
gcd(f, f ′). The part of a squarefree polynomial f which splits over Fp and is not divisible
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by X is gcd(Xp−1 − 1, f). More details about the factorization of univariate polynomials
over finite fields can be found in Section 11.4.

6.3.83 Remark Shoup [2626] extended Legendre’s idea to design a deterministic factoring algo-
rithm for all squarefree polynomials.

6.3.5.2 Measures of pseudorandomness

6.3.84 Definition [Mauduit and Sárközy [2037]] For a finite binary sequence EN = (e1, . . . , eN ) ∈
{−1,+1}N the well-distribution measure of EN is defined by

W (EN ) = max
a,b,M

∣∣∣∣∣∣
M∑
j=1

ea+bj

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b,M ∈ Z and b,M > 0 such that 1 ≤ a + b ≤
a+ bM ≤ N , and the correlation measure of order ` of EN is defined as

C`(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1en+d2 · · · en+d`

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, . . . , d`) and M is such that 0 ≤ d1 <
. . . < d` ≤ N −M .

6.3.85 Definition Let p be an odd prime. The binary sequence Ep = (1, e1, . . . , ep−1) defined by

en =

(
n

p

)
, 0 ≤ n < p,

is the Legendre sequence.

6.3.86 Remark The sums in the definitions of well-distribution measure and correlation measure
of order ` for the Legendre sequence are essentially sums of products of Legendre symbols
which can be estimated by Theorem 6.3.78.

6.3.87 Remark We note that W (EN ) and C`(EN ) of a “truly random” sequence are of the order
of magnitude N1/2 logN and N1/2(logN)c(`), respectively, see [82, 554].

6.3.88 Theorem [2037] For the Legendre sequence Ep we have

W (Ep)� p1/2 log p and C`(Ep)� `p1/2 log p.

6.3.89 Remark The linear complexity is a measure for the unpredictability and thus suitability
of a sequence in cryptography. For sequences (u0, . . . , uN−1) ∈ FN2 it is closely related to
the correlation measure of order ` of the sequence (e0, . . . , eN−1) ∈ {−1,+1}N defined by
en = (−1)un , n = 0, . . . , N − 1. Hence, from a suitable upper bound on C`(EN ) up to a
sufficiently large ` we can derive a lower bound on the linear complexity of (un), see [393]
and Subsection 10.4.5.
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6.3.6 Other character sums

6.3.6.1 Distribution of primitive elements and powers

6.3.90 Theorem (Vinogradov’s Formula) [1631, Lemma 7.5.3] For a subset S ⊆ F∗q , the number Q
of primitive elements in S is

Q =
ϕ(q − 1)

q − 1

∑
d|(q−1)

µ(d)

ϕ(d)

∑
χ

ord(χ)=d

∑
x∈S

χ(x),

where µ and ϕ denote Möbius’ and Euler’s totient function, respectively, and χ is a nontrivial
multiplicative character of Fq.

6.3.91 Theorem [1631, Lemma 7.5.3] Let S be a subset of F∗q . Then the number R of s-th powers
in S is

R =
1

s

∑
ord(χ)|s

∑
x∈S

χ(x).

6.3.92 Remark [1939, Theorem 5.4] For a set S of 1 ≤ N ≤ p consecutive elements in Fp, the
Burgess bound [464]

M+N∑
n=M+1

χ(n)� N1−1/rp(r+1)/4r2+ε,

which is nontrivial for any N ≥ p1/4+ε, implies Q = ϕ(p−1)
p−1 (N + O(N1−1/rp(r+1)/4r2+ε))

and R = N
s + O(N1−1/rp(r+1)/4r2+ε). For generalizations of the Burgess bound see [375,

583, 584, 1791].

6.3.93 Remark For Fpr with 2 ≤ r < p1/2 and a defining element α of Fpr , the bound∣∣∣∣∣∣
∑
x∈Fp

χ(α+ x)

∣∣∣∣∣∣ ≤ (r − 1)p1/2

of [1702] guarantees the existence of primitive elements in rather small subsets of Fpr .

6.3.6.2 Distribution of Diffie-Hellman triples

6.3.94 Remark Let g ∈ Fp be an element of order T | (p − 1). The Diffie-Hellman key ex-
change [859] is a way for two parties to establish a common secret key over an insecure
channel. The question of studying the distribution of the Diffie-Hellman triples (gx, gy, gxy),
x, y = 0, . . . , T−1, is motivated by the assumption that these triples cannot be distinguished
from totally random triples in feasible computational time, see [487, 488]. In the series of
papers [197, 368, 487, 488, 587, 1191] it has been shown that such triples are uniformly
distributed via estimating double exponential sums with linear combinations of the entries
in such triples.

6.3.95 Definition Let ψ be the additive canonical character of Fp. For integers a, b, c, we define
the exponential sum

Sa,b,c(T ) =

T∑
x,y=1

ψ (agx + bgy + cgxy) .
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6.3.96 Remark Bounds on the sums Sa,b,c(T ) were obtained by actually estimating different sums

Wa,c(T ) =
T∑
y=1

∣∣∣∣∣
T∑
x=1

ψ(agx + cgxy)

∣∣∣∣∣
since |Sa,b,c(T )| ≤ Wa,c(T ). In [487] the bound Wa,c(T ) � T 5/3p1/4 is obtained, which
is nontrivial for T > p3/4+ε. Moreover, Bourgain [368] gave a nontrivial estimate for
T > pε for any ε > 0 and Garaev [1191] improved not only the bound in [487] obtain-
ing Wa,c(T ) � T 7/4p1/8+ε, but also the range of nontriviality T > p1/2+ε. Furthermore,
Chang and Yao [587] gave an estimate that works in a range that was not covered by any
explicit bound in any other work.

6.3.6.3 Thin sets with small discrete Fourier transform

6.3.97 Definition Let ψ denote the additive canonical character of the prime field Fp. Given a
set T = {t1, t2, . . . , tn} of n elements in Fp, the sequence

fT (k) =

n∑
j=1

ψ(tjk), k = 0, 1, . . . , p− 1,

is the discrete Fourier transform of T .

6.3.98 Remark It is well known that the discrete Fourier transform (see Section 10.1) captures
a lot of information about the “random-like” behavior of sets, that is, “good” sets have a
small discrete Fourier transform for all 1 ≤ k < p. In [59, 1702], several constructions of
thin sets T were given, that is, sets of size |T | = O((log p)2+ε) with small maximum discrete
Fourier transform max

1≤k≤p−1
|fT (k)| = O(|T |(log p)−ε).

6.3.99 Remark Constructions of thin sets have applications in graph theory, computer sci-
ence [1161], and in combinatorial number theory [2510, 2996]. For example, in additive
number theory, for an infinite set A of natural numbers, one defines the lower density of A
as

d(A) = lim inf
x→∞

N(x)

x
,

where N(x) = #{a ∈ A | a ≤ x}. One problem of interest is to construct essential com-
ponents, that are sets H with the property that d(A + H) > d(A) for all such A with
0 < d(A) < 1, and investigate how thin an essential component is. For such estimates,
see [59, 2510, 2996].

6.3.6.4 Character sums over arbitrary sets

6.3.100 Theorem [1384, Corollaries 1 and 5] Let A,B ⊆ Fq and ψ and χ be a nontrivial additive
and multiplicative character, respectively. Then we have∣∣∣∣∣∣

∑
a∈A,b∈B

ψ(ab)

∣∣∣∣∣∣ ≤ (|A||B|q)1/2 and

∣∣∣∣∣∣
∑

a∈A,b∈B

χ(ab+ 1)

∣∣∣∣∣∣ ≤ (|A||B|q)1/2.

6.3.101 Remark Based on Theorem 6.3.100, Gyarmati and Sárközy showed in [1385, Corollaries 1
and 2] that for all subsets A,B,C,D ⊆ Fq with |A||B||C||D| > q3, the equation

a+ b = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D
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has a solution, and with |A||B||C||D| > 100q3, the equation

ab+ 1 = cd, a ∈ A, b ∈ B, c ∈ C, d ∈ D

has a solution.

6.3.102 Remark When q = p and ψ is the additive canonical character of Fp, Bourgain and Garaev
proved in [378, Theorem 1.2] the following estimate for any subsets A,B,C of F∗p,∣∣∣∣∣∣

∑
a∈A,b∈B,c∈C

ψ(abc)

∣∣∣∣∣∣ < (|A||B||C|)13/16p5/18+o(1).

See Also

§3.1, §3.5, §4.2 For estimating the number of polynomials with certain features.
§6.1, §6.2 For basics on character sums.
§6.4, §7.3 For diagonal equations and Waring’s problem.
§7.1 For Kummer and Artin-Schreier curves.
§9.1, §9.3 For Boolean functions and nonlinearity.
§10.3, §10.4, §17.3 For correlation and related measures.
§10.5 For nonlinear recurrence sequences.
§11.4 For univariate factorization.
§11.6, §17.2 For discrete logarithm based cryptosystems.
§14.1 For Latin squares.
§14.5, §14.6 For Hadamard matrices and related combinatorial structures.
§15.1 For basics on coding theory.
§17.2 For applications of character sums in quantum information theory.

References Cited: [59, 82, 197, 240, 260, 347, 348, 368, 371, 375, 378, 380, 393, 463, 464,
487, 488, 523, 554, 583, 584, 587, 650, 776, 859, 922, 998, 1161, 1191, 1283, 1303, 1310, 1384,
1385, 1454, 1468, 1536, 1581, 1620, 1631, 1702, 1730, 1789, 1791, 1887, 1911, 1939, 1991,
2037, 2068, 2230, 2248, 2270, 2278, 2331, 2344, 2372, 2510, 2548, 2626, 2644, 2655, 2647,
2711, 2989, 2990, 2991, 2993, 2996]

6.4 Sum-product theorems and applications

Moubariz Z. Garaev, Universidad Nacional Autónoma de México

6.4.1 Notation

6.4.1 Remark The order q = pn of the field Fq is assumed to be sufficiently large. The elements
of the prime residue field Fp are occasionally associated with their concrete representatives.
The cardinality of a finite set X is denoted by |X|.
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6.4.2 Definition Given nonempty sets A and B the sum set A+B is defined by

A+B := {a+ b : a ∈ A, b ∈ B}

and the product set AB is defined by

AB = {ab : a ∈ A, b ∈ A}.

The number of solutions of the equation

a1b1 = a2b2, (a1, a2) ∈ A×A, (b1, b2) ∈ B ×B

is denoted by E×(A,B) and is the multiplicative energy between the sets A and B.

6.4.3 Remark There is a simple and important connection between the cardinality of the product
set AB and the multiplicative energy E×(A,B):

|AB| ≥ |A|
2|B|2

E×(A,B)
.

6.4.4 Remark All subsets in this section are assumed to be nonempty. For quantities U and V ,
the notations U = O(V ), U � V and V � U are all equivalent to the statement that the
inequality |U | ≤ cV holds with some absolute constant c > 0. We use the abbreviation ep(x)
to denote e2πix/p.

6.4.2 The sum-product estimate and its variants

6.4.5 Remark Bourgain, Katz, and Tao [381], with subsequent refinement by Bourgain, Glibichuk
and Konyagin [380], proved the following theorem, which is called the sum-product estimate
in prime fields.

6.4.6 Theorem [381] For any ε > 0 there exists δ = δ(ε) > 0 such that, if A ⊂ Fp and |A| < p1−ε,
then

max{|A+A|, |AA|} ≥ |A|1+δ.

6.4.7 Remark The proof of Theorem 6.4.6 uses results from additive combinatorics and ideas of
Edgar and Miller [955]. The condition |A| < p1−ε is essential, because if the cardinality of
|A| is close to p, then |A+A| and |AA| have cardinalities close to |A|.

6.4.8 Theorem [1194] There is a positive constant c such that for any nonempty set A ⊂ Fp the
following bound holds:

max{|A+A|, |AA|} > cmin
{ |A|2
p1/2

, p1/2|A|1/2
}
.

6.4.9 Remark Theorem 6.4.8 is meaningful for sets A of cardinality larger than p1/2. Explicit
sum-product estimates for large subsets for the first time were given by Hart, Iosevich, and
Solymosi [1424]. Theorem 6.4.8 is due to Garaev [1194]. It follows that if |A| > p2/3, then

max{|A+A|, |AA|} > cp1/2|A|1/2.

This bound is optimal in the sense that for any positive integer N < p there exists A ⊂ Fp
with |A| = N such that

max{|A+A|, |AA|} < c1p
1/2|A|1/2,
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where c1 is some positive constant.

6.4.10 Theorem [378] For any subset A ⊂ Fp there exists a subset A′ ⊂ A with |A′| ≥ 0.1|A| such
that

E×(A′, A′)4 �
(
|A−A|+ |A|

3

p

)
· |A|3 · |A−A|7 · log4(e|A|).

6.4.11 Remark Theorem 6.4.10 in this formulation is convenient for applications to explicit expo-
nential sum estimates. It also implies that if |A| < p1/2 then one has

max{|A−A|, |AA|} > |A|13/12+o(1).

An explicit sum-product estimate for subsets of cardinality |A| < p1/2 was given for the
first time by Garaev [1192] in the form

max{|A+A|, |AA|} > |A|15/14+o(1).

This estimate subsequently was improved by several authors; the most recent one is due to
Rudnev [2500]: if |A| < p1/2, then max{|A+A|, |AA|} > |A|12/11+o(1).

6.4.12 Theorem [1195] Let A,B ⊂ F∗p, L = min
{
|B|, p|A|−1

}
. Then

|A−A|2 · |A|
2|B|2

E×(A,B)
� |A|3 L1/9 (logL)−1.

6.4.13 Remark Theorem 6.4.12 is an explicit version of Bourgain’s sum product estimate for
subsets of incomparable sizes. The presence of the multiplicative energy is important in
applications to multilinear exponential sum estimates. The proof can be found in [1195]
and is based on ideas from [371, 1192, 1193].

6.4.14 Theorem [371] Let A,B ⊂ F∗p. Then

|8AB − 8AB| ≥ 1

2
min{|A||B|, p− 1}.

6.4.15 Remark Here 8AB − 8AB = {∑8
i=1 aibi −

∑16
i=9 aibi : ai ∈ A, bi ∈ B}. From the result of

Glibichuk and Konyagin [1284] it was known that

|3AA− 3AA| ≥ 1

2
min{|A|2, p− 1}.

6.4.16 Remark Theorem 6.4.14 is proved by Bourgain [371] with subsequent application to mul-
tilinear exponential sum estimates with nearly optimal entropy conditions.

6.4.17 Theorem [379] Let A,B ⊂ Fq such that |A| > 1 and B is not contained in any proper
subfield of Fq. Then

max{|A+AB|, |A−AB|} ≥ 1

2
|A|6/7 min{|A||B|, q}1/7.

6.4.18 Remark Theorem 6.4.17 is proved by Bourgain and Glibichuk [379] with subsequent appli-
cations to exponential sum estimates over small subgroups of F∗q . Because of the presence of
subfields an additional condition on subsets is needed. An explicit sum-product estimate in
Fq for the first time was obtained by Katz and Shen [1696] in the following form: suppose
that A is a subset of Fq such that for any A′ ⊂ A with |A′| ≥ |A|18/19 and for any G ⊂ Fq
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a subfield (not necessarily proper) and for any elements c, d ∈ Fq if A′ ⊂ cG + d then
|A′| ≤ |G|1/2. Then it must be that

max{|A+A|, |AA|} � |A|20/19−ε,

where the implied constant depends only on a small positive quantity ε. This estimate
subsequently has been improved in several works, the most recent one is due to Li and
Rocher-Newton [1920].

6.4.19 Remark There are many interesting versions of sum-product estimates, see the works of
Ahmadi and Shparlinski [53], Shparlinski [2651], Hart, Li, and Shen [1425] among others.
The following useful result is due to Bukh and Tsimerman [456].

6.4.20 Theorem [456] Let f be a polynomial over Fp of degree d ≥ 2. Then, for every set A ⊂ Fp
of size |A| ≤ p1/2, we have

|A+A|+ |f(A) + f(A)| � |A|1+1/(16·6d),

where the implied constant depends only on d.

6.4.21 Theorem Let A,B be finite subsets of an additive group. Assume that E ⊂ A×B is such
that |E| ≥ |A||B|/K. Then there exists a subset A′ ⊂ A such that |A′| ≥ 0.1|A|/K and

|{a− b : (a, b) ∈ E|4 ≥ |A
′ −A′||A||B|2

104K5
.

6.4.22 Remark Theorem 6.4.21 is a version of the Balog-Szemerédi-Gowers estimate, which is an
important tool in additive combinatorics. It takes its origin from the works by Balog and Sze-
merédi [194] and Gowers [1347]. Balog-Szemerédi-Gowers type estimates are also important
in multilinear exponential sum estimates over small subsets. The proof of Theorem 6.4.21
can be found in [378] and is based on ideas and results from [193, 2738, 2781].

6.4.3 Applications

6.4.23 Remark The sum-product estimate and its variants have found many spectacular applica-
tions in various areas of mathematics. Using sum-product estimates, Bourgain, Glibichuk,
and Konyagin [380] obtained a new estimate of multilinear rational trigonometric sums,
which has important applications to classical Gauss trigonometric sums.

6.4.24 Theorem [380] For any ε > 0 there exists δ = δ(ε) > 0 and a positive integer k = k(ε) such
that if X ⊂ Fp with |X| > pε, then

max
(a,p)=1

∣∣∣ ∑
x1∈X

. . .
∑
xk∈X

ep(ax1 . . . xk)
∣∣∣ < |X|kp−δ.

6.4.25 Corollary [380] For any ε > 0 there exists δ = δ(ε) > 0 such that if H is a subgroup of the
multiplicative group F∗p with |H| > pε, then

max
(a,p)=1

∣∣∣∑
h∈H

ep(ah)
∣∣∣ < |H|p−δ.

6.4.26 Theorem [371] Let 0 < δ < 1/4 and r ≥ 2 be an integer. There is a δ′ > (δ/r)Cr such that
if p is a sufficiently large prime and X1, X2, . . . , Xr ⊂ Fp satisfy |Xi| ≥ pδ for all 1 ≤ i ≤ r
and if

r∏
i=1

|Xi| > p1+δ,
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then there is the exponential sum bound∣∣∣ ∑
x1∈X1

. . .
∑
xr∈Xr

ep(x1 . . . xr)
∣∣∣ < |X1| · · · |Xr|p−δ

′
.

6.4.27 Remark Theorem 6.4.26 is due to Bourgain [371]. It gives a nontrivial estimate for multi-
linear exponential sums under nearly optimal conditions on the sizes of the sets Xi.

6.4.28 Theorem [1195] Let 3 ≤ r ≤ 1.44 log log p be an integer, ε be a fixed positive constant. Let
X1, X2, . . . , Xr be subsets of F∗p such that

|X1| · |X2| ·
(
|X3| · · · |Xr|

)1/81

> p1+ε.

Then ∣∣∣ ∑
x1∈X1

. . .
∑
xr∈Xr

ep(x1 . . . xr)
∣∣∣ < |X1| · · · |Xr|p−0.45 ε/2r

for all sufficiently large primes p > p0(ε).

6.4.29 Remark Theorem 6.4.28 is an explicit version of Bourgain’s exponential sum estimate
from [371].

6.4.30 Corollary [1195] Let H be a subgroup of F∗p with

|H| > e57 log p/ log log p.

Then, as p→∞, we have

max
(a,p)=1

∣∣∣∑
x∈H

ep(ax)
∣∣∣ = o(|H|).

6.4.31 Corollary [1195] Let g be a generator of F∗p and let N > e57 log p/ log log p. Then, as p→∞,
we have

max
(a,p)=1

∣∣∣∑
x≤N

ep(ag
x)
∣∣∣ = o(N).

6.4.32 Theorem [1195] Let X,Y, Z ⊂ F∗p be such that |X||Y | > δ p for some constant δ > 0. Then,
for any ε > 0 one has the bound∣∣∣∑

x∈X

∑
y∈Y

∑
z∈Z

ep(xyz)
∣∣∣� |X| · |Y | · |Z|539/540+ε,

where the implied constant depends only on ε and δ.

6.4.33 Theorem [368] For any δ > 0 there exists δ′ > 0 such that if θ ∈ F∗p is of multiplicative

order t and t ≥ t1 > pδ, t ≥ t2 > pδ, then

max
(a,b,p)=1

t1∑
x=1

∣∣∣ t2∑
y=1

ep(aθ
y + bθxy)

∣∣∣ < t1t2p
−δ′ .

6.4.34 Remark Theorem 6.4.33 is due to Bourgain [368]. Previously known results only applied for
large values of t, t1, t2. The exponential sum that appears in Theorem 6.4.33 for the first time
was investigated by Canetti, Friedlander, and Shparlinski [488] motivated by cryptographic
applications. Subsequently Banks, Conflitti, Friedlander, and Shparlinski [196] found ap-
plications to estimate exponential sums with Mersenne numbers. For further details, see
Bibak [268], Chang [587] and the references therein.
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6.4.35 Theorem [369] Given a positive integer r and ε > 0, there exists δ = δ(r, ε) > 0 satisfying
the following property: if

f(x) =
r∑
i=1

aix
ki ∈ Z[x], (ai, p) = 1,

where the exponents ki, 1 ≤ ki < p1−ε, satisfy

(ki, p− 1) < p1−ε for all i, 1 ≤ i ≤ r,

(ki − kj , p− 1) < p1−ε for all i, j, 1 ≤ i < j ≤ r,
then there is an exponential sum estimate∣∣∣p−1∑

x=1

ep(f(x))
∣∣∣ < p1−δ.

6.4.36 Remark Theorem 6.4.35 is due to Bourgain, its proof is based on sum-product estimates for
subsets of Fp×Fp. It gives a nontrivial bound for the exponential sums under essentially op-
timal conditions on the exponents ki. The exponential sum that appears in Theorem 6.4.33
was estimated by Mordell [2143] in 1932, see Cochrane, Coffelt, and Pinner [654] for more
details.

6.4.37 Definition Denote Tr(x) = 1 + xp + · · · + xp
n−1

the trace of x ∈ Fq. Let ψ(x) =
ep(aTr(x)), a ∈ F∗q , be a nontrivial additive character of Fq.

6.4.38 Theorem [373] Let 0 < δ, δ2 < 1 and r ≥ 2 be integer. Let A1, . . . , Ar ⊂ Fq satisfy

|Ai| > qδ for 1 ≤ i ≤ r,

|Ai ∩ (aG+ b)| < q−δ2 for 1 ≤ i ≤ r,
whenever a, b ∈ Fq and G a proper subfield, and let

|A1||A2|
r∏
i=3

|Ai|1/2 > q1+δ.

Then ∣∣∣∣∣ ∑
x1∈A1

. . .
∑
xr∈Ar

ψ(x1 . . . xr)

∣∣∣∣∣ < |A1| · · · |Ar|q−δ
′
,

where we may take δ′ = C−r/δ2(δ/r)Cr for some positive constant C.

6.4.39 Theorem [379] Let 0 < η ≤ 1 be fixed and H be a multiplicative subgroup of F∗q with

|H| ≥ q
max(135/η,180000)

log2 log2 q .

Suppose that for any subfield G we have

|H ∩G| ≤ |H|1−η.

Then for sufficiently large q there is an exponential sum estimate∣∣∣∣∣∑
h∈H

ψ(h)

∣∣∣∣∣ < 2−0.0045(log2 q)
0.1 |H|.
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6.4.40 Remark Using the sum-product estimate in Fp, Bourgain, Katz, and Tao [380] obtained
the following Fp - analogy of the Szemerédi-Trotter theorem.

6.4.41 Theorem [380] Let P (correspondingly L) be a set of points (correspondingly a set of lines)
in the plane Fp × Fp. Assume that for some α < 2 we have max{|P|, |L|} ≤M < pα. Then
for some constant γ = γ(α) > 0 one has

W (P,L) := #
{(

(x, y), `
)
∈ P × L : (x, y) ∈ `

}
�M3/2−γ .

6.4.42 Remark An explicit bound for W (P,L) has been obtained by Helfgott and Rudnev [1465].
When the cardinalities of P and L are large, a sharp bound for W (P,L) has been obtained
by Vinh [2876]; see also Cilleruelo [643].

6.4.43 Remark The following two results are due to Bourgain [370]. They solve one of the questions
of Wigderson on expander maps in two variables. Their proofs are based on the Fp - analogy
of Szemerédi-Trotter theorem.

6.4.44 Theorem [370] Let A,B be subsets of Fp with |A| = |B| = N < pα, where α < 1 is a
positive constant. Then for some constant β = β(α) > 0 one has

|{a2 + ab : a ∈ A, b ∈ B}| ≥ N1+β .

6.4.45 Theorem [370] Let A,B be subsets of Fp with |A| < p1/2, |B| < p1/2. Then

max
(a,p)=1

∣∣∣∑
x∈A

∑
y∈B

ep(a(xy + x2y2))
∣∣∣ < p1−γ ,

where γ > 0 is an absolute constant.

6.4.46 Remark From Theorem 6.4.45 one can deduce that there are absolute constants ρ > 0 and
γ > 0 such that for any subsets A,B ⊂ Fp of cardinalities |A| > p1/2−ρ, |B| > p1/2−ρ, the
following bound holds:∣∣∣∑

x∈A

∑
y∈B

sign
(

sin
(2π

p
(xy + x2y2)

))∣∣∣ < p−γ |A||B|.

Thus, at the same time Bourgain constructed 2-source extractors with entropies less than
1/2, breaking the barrier 1/2. Regarding the problem of extractors and applications of
sum-product results to problems of computer science, see [200, 268, 370].

6.4.47 Definition Let G be a finite group, A ⊂ G be a set of generators of G (that is, every g ∈ G
can be expressed as a product of elements of A ∪ A−1). The Cayley graph Γ(G,A) is
the graph (V,E) with vertex set V = G and edge set E = {(ag, g) : g ∈ G, a ∈ A}. The
diameter of a graph X = (V,E) is maxv1,v2∈V d(v1, v2), where d(v1, v2) is the length of
the shortest path between v1 and v2 in X.

6.4.48 Theorem [1463] Let p be a prime. Let A be a set of generators of G = SL2(Z/pZ). Then
the Cayley graph Γ(G,A) has diameter O((log p)c), where c and the implied constant are
absolute.

6.4.49 Remark Theorem 6.4.48 is due to Helfgott [1463], the sum-product estimate played a crucial
role in the proof of this result. It initiated a series of very important works in the diameter
problem and expansion theory of Cayley graphs of finite groups. See also [376, 377, 1464,
1466] for further references.
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6.4.50 Remark The sum product estimates have found numerous applications in many other prob-
lems. For instance, in the work of Chang [583] the sum-product estimate and its versions
have found a number of applications to multiplicative character sum estimates. Cochrane
and Pinner [656] applied the sum-product estimates to finite field versions of the Waring
problem. Ostafe and Shparlinski [2333] applied the result of Glibichuk and Rudnev [1282]
to a version of the Waring problem with Dickson’s function.

References Cited: [53, 193, 194, 196, 200, 268, 368, 370, 371, 373, 376, 377, 378, 379, 380,
381, 456, 488, 587, 643, 654, 656, 955, 1192, 1193, 1194, 1195, 1282, 1284, 1347, 1424, 1425,
1463, 1464, 1465, 1466, 1696, 1697, 2143, 2333, 2500, 2651, 2738, 2781, 2876]
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7.1 General forms

Daqing Wan, University of California Irvine

7.1.1 Remark There are lots of results on equations over finite fields. In this section, we give a
collection of sample results and examples focusing on hypersurfaces. Additional results can
be found in [1708, 2548, 2902] and in the references of this section.

7.1.1 Affine hypersurfaces

7.1.2 Definition For a polynomial f(x1, . . . , xn) ∈ Fq[x1, . . . , xn], let Af denote the affine hyper-
surface in the affine n-space An defined by the equation f = 0. Then, Af (Fq) denotes
the set of Fq-rational points (x1, . . . , xn) ∈ Fnq such that

f(x1, . . . , xn) = 0.

The notation #Af (Fq) denotes the cardinality of the set Af (Fq), namely, the number
of Fq-rational points on the affine hypersurface Af .

7.1.3 Remark More generally, for a system of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], let
Af1,··· ,fm(Fq) denote the set of Fq-rational points (x1, . . . , xn) ∈ Fnq such that

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.

It is straightforward to check the simple relation

#Af1,...,fm(Fq) =
1

qm − qm−1
(#Ay1f1+···+ymfm(Fq)− qm+n−1),

193
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where y1, . . . , ym are variables. Thus, for simplicity and without too much loss of generality,
we shall focus on the hypersurface case.

7.1.4 Theorem [2548] For a non-zero polynomial f of (total) degree d in Fq[x1, . . . , xn], we have

1. 0 ≤ #Af (Fq) ≤ dqn−1.

2. If #Af (Fq) ≥ 1, then #Af (Fq) ≥ qn−d.
3. If f is homogenous of degree d, then qn−d ≤ #Af (Fq) ≤ d(qn−1 − 1) + 1.

7.1.5 Definition Let Ωd,n(q) denote the Fq-vector space of polynomials in Fq[x1, ..., xn] with
degree at most d.

7.1.6 Theorem [2548] For positive integers d and n, we have

1

|Ωd,n(q)|
∑

f∈Ωd,n(q)

#Af (Fq) = qn−1,

1

|Ωd,n(q)|
∑

f∈Ωd,n(q)

(#Af (Fq)− qn−1)2 = qn−1 − qn−2.

7.1.7 Remark The above average or probabilistic result suggests that for most polynomials
f ∈ Ωd,n(q), one should expect that #Af (Fq) is approximately qn−1 for large q. This is
indeed the case, as the next few theorems show. The first one is an effective version of the
Lang-Weil theorem.

7.1.8 Definition A polynomial f ∈ F [x1, . . . , xn] over a field F is absolutely irreducible if it is
irreducible over an algebraic closure of F .

7.1.9 Theorem [473, 1849] If f ∈ Fq[x1, . . . , xn] is an absolutely irreducible polynomial over Fq
of degree d > 0, then

|#Af (Fq)− qn−1| ≤ (d− 1)(d− 2)qn−
3
2 + 5d13/3qn−2.

If in addition, q > 15d13/3, one has

|#Af (Fq)− qn−1| ≤ (d− 1)(d− 2)qn−
3
2 + (5d2 + d+ 1)qn−2.

7.1.10 Definition A polynomial f ∈ Fq[x1, . . . , xn] (or the affine hypersurface it defines) is smooth
if the following system of equations

∂f

∂x1
= · · · = ∂f

∂xn
= f = 0

has no solutions in the algebraic closure of Fq. A homogenous polynomial f (or the
projective hypersurface it defines) is smooth if the above system of equations has no
solutions other than possibly the trivial one (0, . . . , 0).

7.1.11 Theorem Let f ∈ Fq[x1, . . . , xn] be a smooth non-homogenous polynomial of degree d such
that its homogenous leading form is also smooth. Then,

|#Af (Fq)− qn−1| ≤ (d− 1)nq(n−1)/2.

7.1.12 Remark This result follows from Deligne’s well known theorem for projective hypersurfaces
in the next subsection. One simply applies Deligne’s theorem twice, to the projective closure
of Af (which is itself smooth) and to the infinite part of Af .
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7.1.13 Definition The singular locus Sing(f) of a polynomial f ∈ Fq[x1, . . . , xn] (or the affine
hypersurface it defines) is the affine algebraic set in An defined by the following system
of equations

∂f

∂x1
= · · · = ∂f

∂xn
= f = 0.

Similarly, the singular locus Sing(f) of a homogeneous polynomial f (or the projective
hypersurface it defines) is the projective algebraic set in the projective space Pn−1

defined by the same system of equations.

7.1.14 Theorem Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d > 0 such that the singular
loci of both f and its homogenous leading form have dimension at most s for some integer
s ≥ −1. Then,

|#Af (Fq)− qn−1| ≤ Cd,nq(n+s)/2,

where Cd,n is an explicit constant depending only on d and n.

7.1.15 Remark This result is the affine version of the Hooley-Katz theorem [1533] which unifies
the previous two theorems, at least in a qualitative way. If f is absolutely irreducible, then
we can take s ≤ n − 2 and this recovers the Lang-Weil theorem. If f and its leading form
are both smooth, then we can take s = −1 and this recovers Deligne’s theorem.

7.1.2 Projective hypersurfaces

7.1.16 Definition For a homogeneous polynomial f ∈ Fq[x0, x1, . . . , xn] of degree d, let Pf denote
the projective hypersurface in Pn defined by f = 0. Thus, Pf (Fq) denotes the set of
projective solutions (x0, . . . , xn) ∈ Fn+1

q of the equation

f(x0, . . . , xn) = 0,

where two solutions are identified if they differ by a non-zero scalar multiple.

7.1.17 Theorem For a homogeneous polynomial f ∈ Fq[x0, x1, . . . , xn] of degree d > 0, we have

qn+1−d − 1

q − 1
≤ #Pf (Fq) ≤ d

qn − 1

q − 1
.

7.1.18 Remark This is simply a consequence of the corresponding affine theorem in the previous
subsection.

7.1.19 Theorem [795] If f ∈ Fq[x0, x1, . . . , xn] is a smooth homogeneous polynomial of degree
d > 0, then ∣∣∣∣#Pf (Fq)−

qn − 1

q − 1

∣∣∣∣ ≤ d− 1

d
((d− 1)n − (−1)n)q(n−1)/2.

7.1.20 Theorem [1270, 1533] If f ∈ Fq[x0, x1, . . . , xn] is a homogeneous polynomial of degree d > 0
such that the projective singular locus Sing(f) is of dimension at most s for some integer
s ≥ −1, then ∣∣∣∣#Pf (Fq)−

qn − 1

q − 1

∣∣∣∣ ≤ Cd,nq(n+s)/2,

where Cd,n is an explicit constant depending only on d and n.

7.1.21 Remark Similar results hold for more general complete intersections, see [1270].
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7.1.3 Toric hypersurfaces

7.1.22 Definition Let f ∈ Fq[x±1
1 , . . . , x±1

n ]. The Newton!polytope ∆(f) of f is the convex closure
in Rn of the exponents of the non-zero monomials in f . We shall assume that ∆(f) = ∆
is a fixed n-dimensional integral polytope in Rn.

7.1.23 Definition A Laurent polynomial f ∈ Fq[x±1
1 , . . . , x±1

n ] is ∆-regular if ∆(f) = ∆ and for
every face δ (of any dimension) of ∆, the system

fδ = x1
∂fδ

∂x1
= · · · = xn

∂fδ

∂xn
= 0

has no solutions in (F̄∗q)n, where

fδ =
∑

u∈δ∩Zn
aux

u

is the restriction of f to the face δ.

7.1.24 Definition For a Laurent polynomial f ∈ Fq[x±1
1 , . . . , x±1

n ], let Tf denote the toric affine
hypersurface in the n-torus Gnm defined by f = 0. Thus, Tf (Fq) is the set of n-tuples
(x1, . . . , xn) ∈ (F∗q)n such that f(x1, . . . , xn) = 0.

7.1.25 Theorem [23, 812, 2902] Assume that f ∈ Fq[x±1
1 , . . . , x±1

n ] is ∆-regular. Then,∣∣∣∣#Tf (Fq)−
(q − 1)n − (−1)n

q

∣∣∣∣ ≤ (n!Vol(∆)− 1)q(n−1)/2.

7.1.26 Example [2471] Let f = x1 + · · ·+ xn + 1
x1···xn − λ, where λ ∈ Fq and n ≥ 2. Assume that

the characteristic p does not divide n+ 1. If (λ/(n+ 1))n+1 6= 1, then f is ∆(f)-regular and
thus ∣∣∣∣#Tf (Fq)−

(q − 1)n − (−1)n

q

∣∣∣∣ ≤ nq(n−1)/2.

If (λ/(n+ 1))n+1 = 1, then f is singular and we have the improved bound∣∣∣∣#Tf (Fq)−
(q − 1)n − (−1)n

q

∣∣∣∣ ≤ (n− 1)q(n−1)/2.

If, in addition, n is even, then we have the even better bound∣∣∣∣#Tf (Fq)−
(q − 1)n − (−1)n

q

∣∣∣∣ ≤ (n− 2)q(n−1)/2 + q(n−2)/2.

These results are used to obtain improved bounds for the number of elements with given
trace and norm, see [2125]. The toric hypersurface Tf in this example is a toric Calabi-Yau
hypersurface. It is the most important example in arithmetic mirror symmetry, see [2900].

7.1.27 Remark For results on more general toric complete intersections, see [27].
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7.1.4 Artin-Schreier hypersurfaces

7.1.28 Definition Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d > 0. Let ASf denote the
Artin-Schreier hypersurface in An+1 defined by the equation

yq − y = f(x1, . . . , xn).

For any positive integer k, let #ASf (Fqk) denote the number of Fqk -rational points on
ASf .

7.1.29 Remark We note that for k = 1, one has the relation #ASf (Fq) = q#Af (Fq), where Af is
the affine hypersurface in An defined by f = 0.

7.1.30 Theorem Assume that d is not divisible by p and the leading form of f is smooth. Then,

|#ASf (Fqk)− qkn| ≤ (d− 1)nq(kn+2)/2.

In particular, taking k = 1, we deduce the estimate

|#Af (Fq)− qn−1| ≤ (d− 1)nqn/2.

7.1.31 Remark This is simply a consequence of Deligne’s estimate [795] for exponential sums, see
Section 6.2 for more details. It can be improved and generalized in various ways as the
next few theorems show. The next theorem is a consequence of Katz’s estimate [1704] for
singular exponential sums.

7.1.32 Theorem Assume that d is not divisible by p and the singular locus of the leading form of
f has dimension at most s for some integer s ≥ −1. Then,

|#ASf (Fqk)− qkn| ≤ Cd,nq(kn+s+3)/2,

where Cd,n is an explicit constant depending only on d and n. In particular, taking k = 1,
we deduce the estimate

|#Af (Fq)− qn−1| ≤ Cd,nq(n+s+1)/2.

7.1.33 Remark In the case s = −1, that is, the leading form of f is smooth, the above result
reduces to Deligne’s estimate. In this case, the subscheme defined by the Jacobian ideal
< ∂f/∂x1, . . . , ∂f/∂xn > has at most a finite number of points and the above Deligne
estimate can be improved further in some cases.

7.1.34 Theorem [2472] Assume that d is not divisible by p > 2 and the leading form of
f is smooth. Assume further that the Jacobian subscheme in An defined by the ideal
< ∂f/∂x1, . . . , ∂f/∂xn > is a zero-dimensional smooth variety and the image of its F̄q-
points under f are distinct (a Morse condition). If nk is even, suppose additionally that the
hypersurface defined by

f(x11, . . . , x1n) + · · ·+ f(xk1, . . . , xkn) = 0

is also smooth in Akn. Then,

|#ASf (Fqk)− qkn| ≤ Cd,k,nq(kn+1)/2,

for some explicit constant Cd,k,n.
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7.1.35 Corollary Assume d is not divisible by p > 2, the leading form of f is smooth, and the Ja-
cobian subscheme in An defined by the ideal < ∂f/∂x1, . . . , ∂f/∂xn > is a zero-dimensional
smooth variety and the images of its F̄q-points under f are distinct. Assume that n is odd,
then

|#Af (Fq)− qn−1| ≤ Cd,1,nq(n−1)/2.

7.1.36 Definition Let f(x, y) ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ] be a polynomial with two sets of vari-
ables, where n, n′ ≥ 1. For a positive integer k, let Nk(f) denote the number of solutions
of the equation

xp0 − x0 = f(x1, . . . , xn, y1, . . . , yn′)

such that (x0, x1, . . . , xn) ∈ Fn+1
qk

and (y1, . . . , yn′) ∈ Fn′q .

7.1.37 Remark We note that the two sets of coordinates in the previous definition run over different
extension fields of Fq.

7.1.38 Definition Let f(x, y) be a polynomial as in the previous definition. For a positive integer
k, we define the k-th fibred sum of f along y to be the new polynomial

⊕kyf := f(x11, . . . , x1n, y1, . . . , yn′) + · · ·+ f(xk1, . . . , xkn, y1, . . . , yn′).

7.1.39 Theorem [1140] Given f of degree d > 0 as above. Let fd be the homogeneous leading form
of f . Assume that the k-th fibred sum ⊕kyfd is smooth in Pkn+n′−1 and assume that d is
not divisible by p. Then, we have the following two estimates

|Nk(f)− qkn+n′ | ≤ (p− 1)(d− 1)kn+n′q(kn+n′)/2,

|Nk(f)− qkn+n′ | ≤ c(p, n, n′)k3(d+1)n−1q(kn+n′)/2,

where the constant c(p, n, n′), depending only on p, n, n′, is not known to be effective if
n′ ≥ 2.

7.1.40 Remark In the case k = 1, the first estimate reduces to Deligne’s theorem as above. More
generally, for a degree d polynomial f ∈ Fq[x1, . . . , xn] and positive integers k1, . . . , kn, let
Nk1,...,kn(f) denote the number of solutions of the equation f(x1, . . . , xn) = 0 with xi ∈ Fqki
for all 1 ≤ i ≤ n. Under suitable nice conditions, one expects [2898] the estimate of the type

|Nk1,...,kn(f)− qk1+···+kn−k| ≤ Cd,n,kq(k1+···+kn)/2,

where k is the least common multiple of the integers ki. The above theorem is one example
of this kind. For two additional examples, see [1705, 2471].

7.1.5 Kummer hypersurfaces

7.1.41 Definition Let f ∈ Fq[x1, . . . , xn] be a polynomial of degree d > 0. For a positive integer
m not divisible by p, let Kf,m denote the Kummer hypersurface in An+1 defined by

ym = f(x1, . . . , xn).
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7.1.42 Theorem [1707, 2468] Assume that f is smooth in An and its leading form fd is also smooth
in Pn−1. Then,

|#Kf,m(Fq)− qn| ≤ (m− 1)(d− 1)nqn/2.

7.1.43 Remark Since #Kf,m(Fq) = #Kf,(m,q−1)(Fq), we may assume that m divides q− 1. Write
m = (q − 1)/e, then for fixed e, the above bound reduces to

|#Kf,m(Fq)− qn| ≤
1

e
(d− 1)nq(n+2)/2.

Similar to the Artin-Schreier hypersurface case, we expect that for fixed e, under suitable
hypotheses, an improved estimate of the form

|#Kf,m(Fq)− qn| ≤ c(n, k, d)q(n+1)/2,

see Rojas-Leon [2470] for new results in this direction.

7.1.6 p-Adic estimates

7.1.44 Remark In this subsection, we review several results on p-divisibility of the solution number
for an affine algebraic set, where p is the characteristic of the finite field Fq. We begin with
the well known Chevalley-Warning theorem.

7.1.45 Theorem [2548] Let f1, . . . fm ∈ Fq[x1, . . . , xn] be polynomials of degrees d1, . . . , dm respec-
tively. Assume that n > d1 + · · ·+ dm. Then,

#Af1,...,fm(Fq) ≡ 0 (mod p).

7.1.46 Theorem Let f1, . . . fm ∈ Fq[x1, . . . , xn] be polynomials of degrees d1, . . . , dm respectively.
Let µ be the smallest integer such that

µ ≥ n− (d1 + · · ·+ dm)

maxi di
.

Then,
#Af1,...,fm(Fq) ≡ 0 (mod qµ).

7.1.47 Remark This theorem is due to Ax [150] in the case m = 1 and to Katz [1698] for gen-
eral m. Ax’s proof is elementary and based on the Stickelberger relation for Gauss sums
(for Gauss sums, see Section 6.1). Katz’s proof uses more advanced methods from Dwork’s
p-adic theory. In [2907], it was noted that Katz’s result can be proved by Ax’s more ele-
mentary method. Later, a short elementary reduction of Katz’s theorem for general m to
Ax’s theorem for m = 1 was given in [1540]. This is consistent with Remark 7.1.3 that
a system of equations can often be reduced to the one equation case. Additional simpler
proofs to more general results are given in [2914]. If one takes into account the actual terms
(the polytope) of the polynomials f1, . . . , fm, the Ax-Katz theorem can be generalized or
improved in certain cases, see Adolphson-Sperber [21] for p-divisibility of exponential sums.
We next describe its consequence for equations over finite fields.

7.1.48 Theorem Let ∆ be an integral convex polytope in Rm+n which contains all the exponents of
the monomials in the polynomial y1f1(x1, . . . , xn)+ · · ·+ymfm(x1, . . . , xn) with coefficients
in Fq. Let ω be the smallest positive integer such that the dilation ω∆ contains a lattice
point in Zm+n with all coordinates positive. Then,

#Af1,...,fm(Fq) ≡ 0 (mod qω−m).
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7.1.49 Remark For non-prime fields (i.e., q is not a prime), the Ax-Katz theorem can be improved
in some cases by considering the p-weights of the exponents of the polynomials fi and the
Weil descent, see Moreno-Moreno [2151]. Let q = pr, and let {α1, . . . , αr} be an Fp-basis of
Fq. Then, any element xi ∈ Fq can be written uniquely as

xi =
r∑
j=1

xijαj , xij ∈ Fp.

Let e = e0 + e1p+ · · ·+ er−1p
r−1 be the p-digit expansion of an integer e ∈ [0, q− 1]. Then,

one has the relation

xei =
r−1∏
j=0

(xi1α
pj

1 + · · ·+ xirα
pj

r )ej .

In this way, one finds a system of mr polynomials gij ∈ Fp[x11, . . . , xmr] such that

#Af1,...,fm(Fq) = #Ag11,...,gmr (Fp).

One can then apply the Ax-Katz theorem to the right side over the prime field Fp.

7.1.50 Remark For a homogeneous polynomial f ∈ Fq[x0, . . . , xn] of degree d > 0, the Ax-Katz
theorem implies that the projective hypersurface Pf in Pn satisfies the congruence

#Pf (Fq) ≡ #Pn−1(Fq) (mod qu),

where µ is the smallest positive integer greater than or equal to (n + 1 − d)/d. This gives
a non-trivial congruence only in the case n+ 1 > d (Fano varieties). In the case n+ 1 = d
(Calabi-Yau variety) or n + 1 < d (varieties of general type), one cannot expect such
general p-divisibility results. However, the following example suggests that one may still
expect some congruences for some pair of varieties. For λ ∈ Fq, let Xλ denote the Dwork
family of Calabi-Yau hypersurfaces in Pn defined by the equation

xn+1
0 + · · ·+ xn+1

n + λx0x1 · · ·xn = 0.

Let Yλ be the projective closure in the projective toric variety P∆ of the toric affine hyper-
surface defined by

x1 + · · ·+ xn +
1

x1 · · ·xn
+ λ = 0,

where ∆ is the simplex in Rn with vertices

{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (−1,−1, . . . ,−1)}.

Then, we have the mirror congruence [2900]

#Xλ(Fq) ≡ #Yλ(Fq) (mod q).

In this example, the mirror variety Yλ is a quotient of Xλ by a finite group G, see [254, 1141]
for extensions of such congruence to a pair of more general quotient varieties.

7.1.51 Remark From a zeta function point of view, see Section 12.7 for more on zeta functions,
the p-adic estimate in this subsection corresponds to an estimate for the first non-trivial
slope. The study of all slopes for the zeta function is significantly deeper, and the reader is
refered to Section 12.8.
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See Also

§6.1 For Gauss, Jacobi, and Kloosterman sums.
§6.2 For other related results to character sums.
§7.3 For diagonal equations.
§11.6 For discrete logarithms.
§12.7 For zeta functions.
§12.8 For p-adic estimates of zeta functions.

References Cited: [21, 23, 27, 150, 254, 473, 795, 812, 1140, 1141, 1270, 1533, 1540, 1698,
1704, 1705, 1707, 1708, 1849, 2125, 2151, 2468, 2470, 2471, 2472, 2548, 2898, 2900, 2902,
2907, 2914]

7.2 Quadratic forms

Robert Fitzgerald, Southern Illinois University

7.2.1 Basic definitions

7.2.1 Definition A quadratic form f over a field F is a homogeneous polynomial over F of degree
two:

f(X) =
∑
i≤j

aijxixj aij ∈ F,

where X is the (column) vector of the variables xi.
Let CMf be the upper triangular matrix of coefficients. Two quadratic forms, f and

g are equivalent, denoted f ' g, if there is an invertible matrix P over F such that
f(PX) = g(X).

7.2.2 Remark The theory is different in the characteristic 2 and odd characteristic cases.

7.2.3 Definition A quadratic space is a pair (Q,V ) where V is a finite dimensional vector space
over F and Q : V → F satisfies

1. Q(λv) = λ2v, for all λ ∈ F and v ∈ V , and

2. for char(F ) = 2, we require BQ(v, w) = Q(v + w) +Q(v) +Q(w) to be a sym-
metric bilinear form; for char(F ) 6= 2, we require that BQ(v, w) = 1

2 (Q(v+w)−
Q(v)−Q(w)) to be a symmetric bilinear form.

7.2.4 Remark Each choice of a basis {e1, . . . , en} of V yields a quadratic form f(X) = Q(
∑
i xiei);

a different choice of basis yields an equivalent form.

7.2.5 Remark Suppose char(F ) = 2. The associated matrix of f is CMf . Then f(X) =
XTCMfX. There are many matrices M with f(X) = XTMX but CMf is the only up-
per triangular one. The matrix for the associated symmetric bilinear form bf (X,Y ) =
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BQ(
∑
i xiei,

∑
j yjej) is CMf + CMT

f . Inequivalent f may have the same associated sym-
metric bilinear form.

7.2.6 Definition The radical of a quadratic space is:

rad(Q) = {v ∈ V : BQ(v, w) = 0 for all w ∈ V }.

If rad(Q) = 0, Q is non-degenerate.

7.2.7 Remark Continue to assume char(F ) = 2. Suppose Q is non-degenerate. Then there is a
symplectic basis e1, f1, e2, f2, . . . , en, fn with associated matrix

α1 1 0 0 . . . 0 0
0 β1 1 0 . . . 0 0
0 0 α2 1 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . αn 1
0 0 0 0 . . . 0 βn


.

Let P(F ) be the additive subgroup {a2 + a : a ∈ F}. The Arf invariant ∆(Q) is
∑
αiβi ∈

F/P(F ). ∆(Q) does not depend on the choice of the symplectic basis. If Q is degenerate
then write V = rad(Q)⊕W . Then Q|W is non-degenerate and we define ∆(Q) = ∆(Q|W ).

Now suppose char(F ) 6= 2. The associated matrix of f is Mf = 1
2 (CMf +CMT

f ). Then

f(X) = XTMfX. There are many matrices M with f(X) = XTMX but Mf is the only
symmetric one. The matrix for the associated symmetric bilinear form bf is also Mf . The
function BQ determines Q (and bf determines f) via Q(v) = BQ(v, v). Suppose Q is non-
degenerate. Then there is an orthogonal basis with the associated matrix diagonal. Let F ∗2

be the multiplicative subgroup {a2 : a ∈ F}. The determinant of f is detMf ∈ F ∗/F ∗2

(equivalently, the product of the entries in the diagonalization) and it does not depend
on the choice of basis. Again, if Q is degenerate then write V = rad(Q) ⊕ W and set
det(Q) = det(Q|W ).

7.2.2 Quadratic forms over finite fields

7.2.8 Remark Details on the results of this section can be found in [1939, Section 6.2].

7.2.9 Theorem Let q be even and let (Q,V ) be a quadratic space over Fq. Let n = dimV and
r = dim rad(Q). Then:

1. n− r = 2s is even.

2. |Fq/P(Fq)| = 2.

3. Fix 0 6= d ∈ Fq/P(Fq). Then V has a symplectic basis such that the resulting
quadratic form is one of the following:

(a) E1 : x1x2 + x3x4 + · · ·+ x2s−1x2s,

(b) E2 : x2
1 + x1x2 + dx2

2 + x3x4 + · · ·+ x2s−1x2s,

(c) E3 : x2
0 + x1x2 + x3x4 + · · ·+ x2s−1x2s.

4. E1 occurs if and only if Q(rad(Q)) = 0 and ∆(Q) = 0; E2 occurs if and only if
Q(rad(Q)) = 0 and ∆(Q) = d 6= 0; E3 occurs if and only if Q(rad(Q)) 6= 0.
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7.2.10 Definition The rank of Q is the minimal number of variables in a quadratic form induced
from Q.

7.2.11 Remark The rank of Q is dimV − dim rad(Q) except for the case E3 when it is dimV −
dim rad(Q) + 1.

7.2.12 Theorem Let q be odd and let (Q,V ) be a quadratic space over Fq. Let n = dimV and
r = dim rad(Q). Write n− r = 2s or 2s+ 1. Then

1. |F∗q/F∗2q | = 2.

2. Fix 1 6= d ∈ F∗q/F∗2q . Then V has a basis such the resulting quadratic form is one
of the following:

(a) O1 : x1x2 + x3x4 + · · ·+ x2s−1x2s,

(b) O2 : x2
1 − dx2

2 + x3x4 + · · ·+ x2s−1x2s,

(c) O3 : x2
0 + x1x2 + x3x4 + · · ·+ x2s−1x2s,

(d) O4 : dx2
0 + x1x2 + x3x4 + · · ·+ x2s−1x2s.

3. In cases O1, O3, detQ = (−1)s, and in cases O2, O4, detQ = (−1)sd.

7.2.13 Remark When char(F ) 6= 2:

1. we always have Q(rad(Q)) = 0;

2. the rank of Q is always dimV − dim rad(Q); and

3. xy ' x2 − y2 so that each form in Theorem 7.2.12 can be written as a diagonal
form.

7.2.14 Definition For a quadratic space (Q,V ) over a finite field, let N(Q = 0) denote the number
of v ∈ V such that Q(v) = 0.

7.2.15 Theorem Let (Q,V ) be a quadratic space over Fq, where q is even. Let n = dimV and
r = dim rad(Q). Then

N(Q = 0) =
1

q

[
qn + (q − 1)Λ(Q)

√
qn+r

]
,

where

Λ(Q) =


+1, if Q is type E1,

−1, if Q is type E2,

0, if Q is type E3.

7.2.16 Theorem Let (Q,V ) be a quadratic space over Fq, where q is odd. Let n = dimV and
r = dim rad(Q). Then

N(Q = 0) =
1

q

[
qn + (q − 1)Λ(Q)

√
qn+r

]
,

where

Λ(Q) =


+1, if Q is type O1,

−1, if Q is type O2,

0, if Q is type O3 or O4.

7.2.17 Remark With a little more work [1745, 1746], one can give the number of solutions to
Q(x) = c, for any scalar c, and even to Q(x) + F (x) = c, where F (x) is an arbitrary linear
function.
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7.2.3 Trace forms

7.2.18 Remark In almost all applications the quadratic spaces arise as follows: Let F = Fq, K =

Fqn and let L(x) =
∑m
i=0 αix

qi be a linearized polynomial over K, see Definition 2.1.103.

7.2.19 Definition A trace form over F = Fq is the quadratic space (QKL ,K) where K = Fqn and
QKL : K → F is given by QKL (x) = TrK/F (x · L(x)).

7.2.20 Remark If (Q,V ) is a quadratic space with dimV = n then, replacing V by K, Q is a QKL
for some linearized L(x). In even characteristic, for m = bn/2c, L is uniquely determined
except that if n = 2m then αm is only determined modulo Fqm [1073]. We set

L∗(x) =
m∑
i=1

αi(x
qm+i − xqm−i).

7.2.21 Proposition For F,K and L as above:

1. [1073] |rad(QKL )| is equal to the number of roots of L∗(x) in K.

2. [1075] If all αi ∈ F then dim rad(QKL ) = deg(L∗(x)dn, x
k − 1). Here L∗dn is the

polynomial associated to L∗, namely

L∗(x)dn =

m∑
i=1

αi(x
m+i − xm−i).

7.2.22 Remark The invariants dim rad(Q) = d and Λ(Q) are completely determined only in the
case of q even and L having one term. Let v2(k) demote the highest power of 2 dividing k.

7.2.23 Theorem Let F = Fq with q even. Let Q(x) = TrK/F (γx ·xqa), where K = Fqn and γ ∈ K.
Set d = (n, a).

1. [1747] If v2(n) ≤ v2(a) then dim rad(Q) = d and Λ(Q) = 0.

2. [1745] If v2(n) = v2(a) + 1 then

(dim rad(Q),Λ(Q)) =

{
(2d,+1) if γ is a (qa + 1)-th power in K,

(0,−1) if γ is not a (qa + 1)-th power in K.

3. [1745] If v2(n) > v2(a) + 1 then

(dim rad(Q),Λ(Q)) =

{
(2d,−1) if γ is a (qa + 1)-th power in K,

(0,+1) if γ is not a (qa + 1)-th power in K.

7.2.24 Theorem [1746] Let F = Fq with q odd. Let Q(x) = TrK/F (γx · xqa), where K = Fqn
and γ ∈ K. Set d = (n, a). Let ω be a primitive element of K and write γ = ωg for some
0 ≤ g < qn − 1.

1. If v2(n) ≤ v2(a) then dim rad(Q) = 0.

2. If v2(n) = v2(a) + 1 then

(dim rad(Q),Λ(Q)) =

{
(2d,+1), if g ≡ 1

2 (qd + 1) (mod qd + 1),

(0,−1), if g 6≡ 1
2 (qd + 1) (mod qd + 1).
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3. If v2(n) > v2(a) + 1 then

(dim rad(Q),Λ(Q)) =

{
(2d,−1), if g ≡ 0 (mod qd + 1),

(0,+1), if g 6≡ 0 (mod qd + 1).

7.2.25 Problem Find the value of Λ(Q) in Case 1 above.

7.2.26 Remark In the following we use the Jacobi symbol ( an ).

7.2.27 Theorem [1074] Let F = F2, K = F2n and Q(x) = TrK/F (x(x2a + x2b)) with a < b. Set
d = (b− a, b+ a) and M = max{v2(b− a), v2(b+ a)}. Then

dim rad(Q) =

{
(b− a, n) + (b+ a, n)− (d, n) if v2(n) ≤M,

(b− a, n) + (b+ a, n) if v2(n) > M.

We have Λ(Q) = 0 if and only if v2(b−a) = v2(b+a) = v2(n)− 1. For an intermediate field

E = F2m write Λ(m) for the invariant of TrE/F (x(x2a + x2b)). Let k = v2(n).

1. If n is odd then Λ(n) =
∏

( 2
p ), where the product is over odd prime divisors p of

n with vp(n) + min{vp(n),max{vp(b− a), vp(b+ a)}} odd.

2. If n is even and b± a is odd then Λ(n) =
∏

( 2
p )Λ(2k), where the product is over

odd prime divisors p of n with min{vp(n), vp(b−a)}+ min{vp(n), vp(b+a)} odd.

3. If n is even and b± a is even then Λ(n) = Λ(2k).

4. For n = 2k:

(a) If k ≤M then Λ(n) = +1.

(b) If k = 1 +M and v2(b− a) 6= v2(b+ a) then Λ(n) = −1.

(c) If k = 1 +M and v2(b− a) = v2(b+ a) then Λ(n) = 0.

(d) If k ≥ 2 +M and v2(b− a) 6= v2(b+ a) then Λ(n) = −1.

(e) If k ≥ 2 +M and v2(b− a) = v2(b+ a) then

i. If k = 2 and one of a, b is odd and the other is equivalent to 2 (mod 4)
then Λ(n) = +1.

ii. If k ≥ 3 and one of a, b is odd and the other is divisible by 4 then
Λ(n) = +1.

iii. Otherwise, Λ(n) = −1.

7.2.4 Applications

7.2.28 Remark The first appearance of trace forms seems to be Welch’s Theorem [231] which is
Theorem 7.2.23 for γ = 1 and 2a dividing n. It was used to compute weight enumerators of
double-error correcting BCH codes. Other particular trace forms have been used to compute
weight enumerators of second order Reed-Muller codes [1991] and minimal codes [3000].
Weights of irreducible codes have been found via counting the number of polynomials L
with fixed invariants by Feng and Luo [1056, 1981].

7.2.29 Remark Quadratic forms have been used to construct Artin-Schreier curves yq+y = xL(x)
with many rational points [1072, 1075, 2844]. Quadratic forms over F2, partitioned by
their bilinear forms, were used to construct systems of linked symmetric designs in [483].
Maximal rank quadratic forms give rise to the first examples of bent functions which have
cryptographic importance, see Section 9.3. Piecewise functions, with each piece a trace form,
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yield other bent functions and a presentation of the Kerdock code in [536]. Families of trace
forms have been used to construct Gold-like sequences [1077, 1731]. Correlations of maximal
and other sequences have been computed with trace forms [1475, 1736, 1745, 1746].

See Also

§9.3, §10.3, §12.6, §15.2 For more information on applications of quadratic forms.

References Cited: [231, 483, 536, 1056, 1072, 1073, 1074, 1075, 1077, 1475, 1731, 1736,
1745, 1746, 1747, 1939, 1981, 1991, 2844, 3000]

7.3 Diagonal equations

Francis Castro and Ivelisse Rubio, University of Puerto Rico

7.3.1 Preliminaries

We present a summary of results on diagonal equations. The selection gives an overview of
the area as well as some of its recent developments. General references for diagonal equations
are: Chapter 10 in [240], Chapter 8 in [1575], Chapters 3-6 in [1617], Chapter 6, Section 3
in [1939], and Chapter 6 in [2681].

7.3.1 Definition A diagonal equation over Fq is an equation of the type

c1x
k1
1 + · · ·+ csx

ks
s = b (7.3.1)

for any positive integers k1, . . . , ks; c1, . . . , cs ∈ F∗q , and b ∈ Fq. We denote by Nb the
number of solutions in Fsq of (7.3.1). A deformed diagonal equation is a diagonal equation
with b = g (x1, . . . , xs) ∈ Fq [x1, . . . , xs].

7.3.2 Remark The number of solutions Nb can be expressed in terms of Jacobi and Gauss sums.
The relation between Jacobi and Gauss sums and other results on these sums are included
in Section 6.3.

7.3.3 Theorem [1939, Theorem 6.33] The number N0 of solutions of (7.3.1) for b = 0 is

N0 = qs−1 +
∑

(j1,...,js)∈T

χj11 (c1) · · ·χjss (cs) J0

(
χj11 , . . . , χ

js
s

)
, (7.3.2)

where T is the set of all (j1, . . . , js) ∈ Zs such that 1 ≤ ji ≤ di− 1 for 1 ≤ i ≤ s, χj11 . . . χjss
is trivial, χi is a multiplicative character of order di = gcd(ki, q − 1), and J0 is a Jacobi
sum.

7.3.4 Theorem [1939, Theorem 6.34] The number Nb of solutions of (7.3.1) for b ∈ F∗q is

Nb = qs−1 +

d1−1∑
j1=1

· · ·
ds−1∑
js=1

χj11
(
bc−1

1

)
· · ·χjss

(
bc−1
s

)
J
(
χj11 , . . . , χ

js
s

)
, (7.3.3)
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where χi is a multiplicative character of order di = gcd(ki, q − 1), and J is a Jacobi sum.

7.3.5 Remark Results on N0 and Nb can be related to the s-tuples (j1, . . . , js) ∈ Zs, ji ≥ 1, such
that

j1
k1

+ · · ·+ js
ks

(7.3.4)

is an integer.

7.3.6 Definition Let I(k1, . . . , ks) be the number of s-tuples (j1, . . . , js) ∈ Zs such that 1 ≤ ji ≤
ki − 1 and expression (7.3.4) is an integer.

7.3.7 Remark Note that I(k1, . . . , ks) ≤ (k1 − 1) · · · (ks − 1). The number I(k1, . . . , ks) can be

interpreted as the degree of the numerator of the zeta-function of
s∑
i=1

cix
ki
i ; see [2681]. This

number appears in the estimates (7.3.5) and (7.3.6) for the number of solutions N0 and
Nb, b 6= 0, of Equation (7.3.1).

7.3.8 Theorem [1939, Theorems 6.36, 6.37] Let di = gcd(ki, q − 1) for i = 1, . . . , s. Then,

1. For b = 0,

|N0 − qs−1| ≤ I(d1, . . . , ds)(q − 1)q
s−2

2 . (7.3.5)

2. For b 6= 0,

|Nb − qs−1| ≤
[
(d1 − 1) · · · (ds − 1)−

(
1− q−1/2

)
I(d1, . . . , ds)

]
q
s−1

2 . (7.3.6)

7.3.9 Remark Note that if q is sufficiently large with respect to d1, . . . , ds then (7.3.5) and (7.3.6)
imply that Equation (7.3.1) is solvable. One can obtain an improvement of (7.3.5) and
(7.3.6) if the p-weights of all the di’s are small and the solutions are in Fq2 [1274].

7.3.2 Solutions of diagonal equations

7.3.10 Remark When dealing with any type of equation, the first question that one might ask is
whether or not the equation has solutions over a given field. A classical result is Chevalley’s
theorem [615] that guarantees a non-trivial solution whenever the number of variables is
larger than the degree of the polynomial and there is no constant term. In [2151] the authors
improve Chevalley’s result by considering the p-weight degree of the polynomial instead of
its degree. The following results determine solvability of some families of diagonal equations.

7.3.11 Theorem [2809] Let q be any prime power and k a positive integer such that k 6= p− 1 in
the case q = p. The equation

∑s
i=1 cix

k
i = 0 has a nontrivial solution for s ≥ k+3

2 .

7.3.12 Theorem [2679, Theorems 1, 2] Let Fq′ ⊆ Fq be finite fields, and suppose that c1, . . . , cs ∈
Fq′ .

1. If s ≥ 2 and q >
∏s
i=1(ki− 1)

2
s−1 , then Equation (7.3.1) is solvable in Fq for any

b ∈ Fq.
2. If s ≥ 3 and

qs−1 − 1

(q − 1)q
s
2−1

>
1

D

∣∣∣∣∣∣
D−1∑
l=0

∏
ki | l

(1− ki)

∣∣∣∣∣∣ ,
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where D =
∏
i ki, then Equation (7.3.1) has a nontrivial solution over Fq for

b = 0.

7.3.13 Theorem [2165] If
∑s
i=1

1
ki
> 1, then Equation (7.3.1) is solvable over Fq for any b. Fur-

thermore, for b = 0 there is a nontrivial solution.

7.3.14 Remark It is not easy to find general formulas for the exact number of solutions of the
diagonal Equation (7.3.1) and, in most cases, the formulas are rather complex. Results on
the exact number of solutions of particular families of diagonal equations can be found in
[199, 1548, 2120]. The case b = 0 has been studied separately and some general results are
included below.

7.3.15 Theorem [3001, Theorem 1] Let q = p2t, s ≥ 2, nk = q − 1, and consider
∑s
i=1 cix

k
i = b.

If there exists a divisor r of t such that pr ≡ −1 (mod k), then

N0 = qs−1 +
εsq

s
2−1(q − 1)

k

k−1∑
j=0

(1− k)τ(j), and,

for b 6= 0, Nb = qs−1 − εs+1q
s
2−1

(1− k)θ(b)q
1
2 − (q

1
2 − ε)
k

k−1∑
j=0

(1− k)τ(j)

 ,
where ε = (−1)

t
r , θ(b) = |{i | cni = (−b)n}| , τ(j) =

∣∣{i | cni = (αj)n
}∣∣ , 1 ≤ i ≤ s, and α

is a primitive root in Fq.

7.3.16 Theorem [2432] Let kj = 2mj for j = 1, . . . , s − 2, ks−1 = kms−1, ks = krms, where
r ≥ 1, (2k,m1 · · ·ms) = 1 and m1, . . . ,ms are pairwise coprime.

1. If k = 1 or if s and k are odd, then N0 = qs−1.

2. If s is even, then

N0 = qs−1 + (−1)
(s−2)(q−1)

4 (q − 1)q
s−2

2


(

1 + (−1)
q−1
k

)
k

2
− 1

 .
7.3.17 Remark Theorem 7.3.16 holds when the number of variables s is even. Explicit formulas

for the case when s is odd are given in [199].

7.3.18 Theorem [2744] Let s > 2. Then I(k1, . . . , ks) = 0 (and hence N0 = qs−1) if and only if
one of the following holds:

1. For some i,
(
ki,

k1···ks
ki

)
= 1.

2. If {ki1 , . . . , kir | 1 ≤ i1 < · · · < ir ≤ s} is the set of all even integers among

{k1, . . . , ks}, then 2 - r, ki1
2 , . . . ,

kir
2 are pairwise coprime, and kij is coprime

to any odd number in {k1, . . . , ks} for j = 1, . . . , r and r < s.

7.3.19 Remark Diagonal equations with few variables have received special attention [2144, 2714].
Hermitian curves, a particular case of “Fermat like” equations, have been studied extensively
because they provide good examples of curves with maximal number of rational points
[1199, 1278, 1514, 2499]. We present a recent result on Fermat equations and refer the
reader to [110, 1717] for results on other specific families of “Fermat like” equations.
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7.3.20 Theorem [1798, Theorem 1.1] The number of solutions of Xk + Y k + Zk = 0 over Fqm is
N0 = 3k + k2(q − 2) + (d− 1)(d− 2) provided that

p >

 2

t+1

√
sin( kπ2N )

+ 1


N(t−1)
k−d

,

where N = qm−1
q−1 , k |N , d = (Nk , t+ 1), and q ≡ t (mod N

k ) with 0 < t < N
k .

7.3.21 Definition Let L(k1, . . . , ks) be the least positive integer represented by (7.3.4) if there is
such an integer, or, otherwise, let L(k1, . . . , ks) = s− 1.

7.3.22 Definition For k an integer, let vq(k) denote the highest power of q dividing k.

7.3.23 Remark Many results on diagonal equations give bounds for the number of solutions Nb of
(7.3.1), while others give bounds for vp (Nb). Most of these bounds depend on the numbers
I and L of Definitions 7.3.6 and 7.3.21. Exact values for I and L are hard to compute in
general; [2743] includes their exact values for certain equations, and [1350] provides sharp
general lower bounds for I.

7.3.24 Theorem [1939, 2679, 2744]

I(k1, . . . , ks) = (−1)s +
s∑
r=1

(−1)s−r
∑

1≤i1<i2<···<ir≤s

ki1 · · · kir
lcm [ki1 , . . . , kir ]

.

7.3.25 Theorem [2906, Theorem 1] If there is a positive integer µ such that

1

k1
+ · · ·+ 1

ks
> µ ≥ 1,

then vq (Nb) ≥ µ.

7.3.26 Theorem [2449] Let q = pn, ki|(q − 1), ri be the least integer such that ki| (pri − 1),
Kiki = pri − 1 for i = 1, . . . , s, and µ1 be the least integer such that

µ1 ≥
s∑
i=1

n (Ki, p− 1)

ri(p− 1)
.

If µ =
[
µ1

n

]
− 1, then vq (Nb) ≥ µ, where [a] denotes the integer part of a.

7.3.27 Theorem [2956] Suppose ki|(q − 1), I(k1, . . . , ks) > 0 and let wi = gcd (ki, lcm [kj |i 6= j]).

Then L(k1, . . . , ks) =
⌈∑s

i=1
1
wi

⌉
if one of the following conditions holds:

1.
∑s
i=1

1
wi
≡ 0 (mod 1),

2. lcm [w1, . . . , ws] |ws,
3. I(k1, . . . , ks) ≤ 10,

4. s ≤ 3.

7.3.28 Theorem [2745, Theorems 2,4] For each i, define ui = gcd
(
ki,

k1k2···ks
ki

)
. Then,

1. I(k1, . . . , ks) = I(u1, . . . , us) and L(k1, . . . , ks) = L(u1, . . . , us).

2. For all 1 ≤ j ≤ s, I(k1, . . . , ks) ≤
∏
i6=j(ui − 1).
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3. The following are equivalent:

(a) I(k1, . . . , ks) = 1,

(b) s is even and ui = 2 for all i except uj = 2m, m > 0 for one j.

7.3.29 Corollary Assume that each ki satisfies one of the conditions of Part 3 of Theorem 7.3.28.
Then L(k1, . . . , ks) = s

2 .

7.3.30 Theorem [2906, Theorem 3] vq (N0) ≥ L(k1, . . . , ks)− 1.

7.3.31 Definition Let k = a0 + a1p + · · · + arp
r, where 0 ≤ ai ≤ p − 1. The p-weight of k is

defined and denoted as σp(k) =
∑r
i=0 ai. The p-weight degree of a monomial xk1

1 · · ·xkss
is defined and denoted as wp(x

k1
1 · · ·xkss ) = σp(k1) + · · · + σp(ks). The p-weight degree

wp(g) of a polynomial g is the largest p-weight degree of the terms in g.

7.3.32 Remark Some of the bounds for the powers of p dividing the number of solutions of diagonal
equations can be improved if one considers the p-weight σp(ki) of the degrees of the terms
in the equation instead of their degrees ki.

7.3.33 Theorem [2149, Theorem 10] Let q = pn. If µ is the least integer satisfying

µ ≥ n
(

1

σp(k1)
+ · · ·+ 1

σp(ks)
− 1

)
,

then vp (Nb) ≥ µ.

7.3.34 Remark If
∑s
i=1

1
σp(ki)

> 1 then the equation
∑s
i=1 cix

ki
i = 0 has a non-trivial solution.

7.3.35 Theorem [2149, Theorem 2] Let γ = min(j1,...,js)

{∑s
i=1 σp(ji(q−1)/ki)

p−1

}
−1, where (j1, . . . , js)

satisfies (7.3.4). If N0 is the number of solutions of Equation (7.3.1) over Fqm , then

vp (N0) ≥ mγ. Also, mγ is best possible, i.e., there exists an equation c1x
k1
1 + · · ·+csxks1 = 0

such that vp (N0) = mγ.

7.3.36 Remark We note that Theorem 7.3.35 uses a calculation on Fq to give information on
vp (N0) for any extension of Fq.

7.3.3 Generalizations of diagonal equations

7.3.37 Remark Generalizations of diagonal equations have been considered by several authors.
Some examples are systems of diagonal equations [21, 1698, 2151, 2808], deformed diagonal
equations [546, 2698], and equations with terms of disjoint support [501, 502, 563].

7.3.38 Theorem [1051, Theorem 5] Let F = c1x
k
1 + · · ·+ csx

k
s + g(x1, . . . , xs) be a polynomial over

Fp, where c1 · · · cs 6= 0 and deg(g) < k. Then F = 0 is solvable in Fsp if s ≥
⌈

p−1

b p−1
k c

⌉
.

7.3.39 Remark Theorem 7.3.38 was proved using the combinatorial nullstellensatz and it general-
izes Theorem 1 in [546] to include the case k - (p−1). Prior to this result, Newton polyhedra
were used in [23] to prove results that allows one to estimate the number of zeros of poly-
nomials of the type in Theorem 7.3.38. Note that, even if s > k, Chevalley’s theorem does
not guarantee the solvability of the equations in Theorem 7.3.38.
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7.3.40 Theorem [2746, Theorem 1.1] Let q = pn and F = xk1 + · · · + xks + g(x1, . . . , xs) be a
polynomial over Fq where deg(g) < k. Then, for nonempty subsets A1, . . . , As ⊂ Fq,

|{F (a1, . . . , as) | ai ∈ Ai}| ≥ min

{
p,

s∑
i=1

⌊ |Ai| − 1

k

⌋
+ 1

}
.

7.3.41 Remark If q = p and A1 = · · · = As = F∗p, s > k, one obtains Theorem 1.3 in [1838].

7.3.42 Theorem Let q = pn and ki > 1 be positive integers satisfying ki |(p − 1). Let F =
xk1

1 + · · · + xkss + g(x1, . . . , xs) be a polynomial over Fq, where wp(g) < mini {ki}, and N0

be the number of solutions of F = 0. Then, vp (N0) = n
(∑s

i=1
1
ki
− 1
)

whenever
∑s
i=1

1
ki

is an integer. In particular, F is solvable over Fq.
7.3.43 Remark The result in Theorem 7.3.42 is a special case of Theorem 15 of [562].

7.3.4 Waring’s problem in finite fields

7.3.44 Remark Waring’s problem is to find the smallest s = g(k, q) such that every element b ∈ Fq
can be written as a sum of s summands of k-th powers in Fq. This is an active area of
research and the introduction of new techniques from arithmetic combinatorics has allowed
the improvement of the bounds on g(k, q). Some results on Waring’s problem and their
application to coding theory were presented in Section 6.3.

7.3.45 Definition The smallest s = g(k, q) such that the equation xk1 + · · ·+xks = b has a solution
for every b ∈ Fq is Waring’s number for Fq with respect to k.

7.3.46 Theorem Waring’s number g(k, pn) exists if and only if pn−1
pd−1

- k for all d|n, d 6= n. Also, if

d = gcd(k, q − 1), then g(k, q) = g(d, q).

7.3.47 Remark Because of the previous theorem it is enough to consider k| (q − 1). From now on
we assume that g(k, q) exists and k| (q − 1).

7.3.48 Theorem [566] We have g(k, p) ≤ k and equality holds if k = 1, 2, p−1
2 , p− 1.

7.3.49 Theorem [2677] If 2 ≤ k < q
1
4 + 1, then g(k, q) = 2.

7.3.50 Remark To find the exact value for g(k, q) is a difficult problem and, given Theorem 7.3.49,
one might ask, for each k, which is the largest q such that g(k, q) 6= 2 [2677]. The next table
contains some of the exact values known for g(k, p). These and other exact values can be
found in [12, 2148, 2676, 2678].

k k 6= p− 1, p−1
2 5 6 6 7 7 8

31, 41 37 ≤ p ≤ 67 71, 113
p p ≤ 29 61 31 109, 139, 223 43 127 41

g(k, p)
⌊
k
2

⌋
+ 1 3 4 3 4 3 4

k 8 9 10 10 10 11 11 11
73, 109 71 ≤ p ≤ 491

p 73 ≤ p ≤ 137 127, 163 31 41 521 ≤ p ≤ 631 89 67 199, 331
233, 257 181, 199 61 661 ≤ p ≤ 881 353, 419
337, 761 271, 307 641, 911 463, 617

g(k, p) 3 3 5 4 3 4 5 3

7.3.51 Remark If the value of g(k, p) for any 3 ≤ k ≤ 11, k 6= p − 1, p−1
2 is not included in the

table above, then g(k, p) = 2. Hence, the table and Theorem 7.3.48 provide all the exact
values of Waring’s number for k = 1, . . . , 11.
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7.3.52 Theorem [2149, Theorem 18] Let l 6= 1. If k|(pn + 1), k 6= pn + 1, then g(k, p2nl) = 2.

7.3.53 Theorem [651, Theorem 2] Let t = p−1
k . If a, b are the unique positive integers with a > b

and a2 +b2 +ab = p, then, for t = 3, g(k, p) = a+b−1, and for t = 6, g(k, p) =
⌊

2
3a+ 1

3b
⌋
. If

t = 4 and a, b are the unique positive integers with a > b and a2+b2 = p, then g(k, p) = a−1.

7.3.54 Theorem [1782, Theorems 1,2] Let φ denote Euler’s function, m be a positive integer and
p,r be primes such that p is a primitive root modulo rm. Then,

g

(
pφ(rm) − 1

rm
, pφ(rm)

)
=

(p− 1)φ(rm)

2
.

If, in addition, p and r are odd primes, then

g

(
pφ(rm) − 1

2rm
, pφ(rm)

)
=


rm−1

⌊
pr
4 −

p
4r

⌋
if r < p,

rm−1
⌊
pr
4 − r

4p

⌋
if r ≥ p.

7.3.55 Remark Theorem 7.3.54 generalizes the results in [2995]. A good survey on bounds for
g(k, q) can be found in [2990].

7.3.56 Theorem [1282, Theorem 5] If k <
√
q, then g(k, q) ≤ 8.

7.3.57 Theorem [2990, Theorem 2] If d = p−1

gcd( p
n−1
k ,p−1)

, then g(k, pn) ≤ ng(d, p).

7.3.58 Theorem [1206, Theorem 4] If k ≥ 2 is a proper divisor of p − 1 and k ≥ (p− 1)
4/7

, then

g(k, p) ≤ 170 k7/3

(p−1)4/3 log p.

7.3.59 Remark By using a result in [2030] an improvement to Theorem 7.3.58 can be obtained.

7.3.60 Theorem [1789, Theorem 2] For any ε > 0 there exists cε > 0 such that for any k ≥ 2, p ≥
k ln k

(ln(ln k+1))1−ε , we have g(k, p) ≤ cε (ln k)
2+ε

.

7.3.61 Theorem [651, Theorem 1] Let t = p−1
k and l be a positive integer. If φ(t) ≥ l, then

g(k, p) ≤ C(l)k
1
l for some constant C(l), where φ is Euler’s function.

7.3.62 Remark Theorems 7.3.60 and 7.3.61 prove conjectures made by Heilbronn in [1460]. The
next theorem gives an explicit value for the constant C(l) in Theorem 7.3.61 when l = 2.
Other estimates for C(l) are also given in [656].

7.3.63 Theorem [656, Theorem 1.1] For t = p−1
k > 2 we have the uniform upper bound g(k, p) ≤

83k1/2.

7.3.64 Definition Let Ak :=
{
xk : x ∈ Fq

}
define the set of k-th powers of the elements in the

field Fq, and A′k := Ak ∩ Fp.

7.3.65 Theorem [650, Theorems 1, 3, 4], [2550, Theorem 4.1]

1. g(k, pn) ≤ 8n
⌈

(k+1)1/n−1
|A′k|−1

⌉
. If |A′k| ≤ 3, then g(k, pn) ≤ 4n

⌈
(k+1)1/n−1
|A′k|−1 + 2

⌉
.

2. For any ε > 0, if |A′k| ≥ 42/εn, then g(k, pn) ≤ C(ε)kε, for some constant C(ε).

3. g(k, p2) ≤ 16
√
k + 1. If n ≥ 3, then g(k, pn) ≤ 10

√
k + 1.

4. If |A′k| ≥ pε for ε > 41
83 , then, for all sufficiently large p, we have g(k, p) ≤ 6.



Equations over finite fields 213

7.3.66 Remark Part 1 of Theorem 7.3.65 improves Theorem 1 in [2992]. Parts 2 and 3 prove the
extensions of Heilbronn’s conjectures [1460] to arbitrary fields. See also [374].

7.3.67 Remark Waring’s problem has been generalized to systems of diagonal equations [561, 2808],
to general polynomials [372, 549, 658], to Dickson polynomials [1314], to factorials [1197],
and to reciprocals [754, 2643].

7.3.68 Theorem [1196, Theorem 1] Any residue class λ modulo p can be represented in

the form
∑5
i=1mi!ni! ≡ λ (mod p) for some positive integers m1, n1, . . . ,m5, n5 with

max1≤i≤5{mi, ni} ≤ cp27/28, where c is an absolute constant.

7.3.69 Theorem [1196, Theorem 2] Let l(p) be the smallest integer such that for every integer
λ the congruence n1! + · · · + nl! ≡ λ (mod p) has a solution in positive integers. Then
l(p) ≤ C log3(p), for some constant C.

7.3.70 Definition Let Dk(x, a) be the Dickson polynomial of degree k and parameter a ∈ Fq
(see Section 8.3). The Waring problem for Dickson polynomials over Fq is to find the
smallest positive integer s = ga(k, q) such that the equation

Dk(x1, a) + · · ·+Dk(xs, a) = b, x1, . . . , xs ∈ Fq

is solvable for any b ∈ Fq.

7.3.71 Theorem [2333, Theorem 1] Let ga(k, q) be defined as in Definition 7.3.70. The inequality
ga(k, q) ≤ 16 holds

1. For any a ∈ F∗q and (k, q − 1) ≤ 2−3/2(q − 1)1/2.

2. For any a that it is a square in F∗q and (k, q + 1) ≤ 2−3/2(q − 1)1/2.

See Also

[168], [1917], [1918], References on solvability/divisibility of diagonal equations.
[2137], [2146], [2147],
[2150], [2697], [3066]
[21], [24], [30], [150], For solvability/divisibility of general systems of equations.
[1540], [1698], [2151]
[511], [515], [538], [2883] For studies of diagonal equations over function fields.
[416], [1757] For results on diagonal equations over p-adic fields.
[494], [2146], [2147], For applications of diagonal equations to coding theory.
[3002], [3003]

References Cited: [12, 21, 23, 24, 30, 110, 150, 168, 199, 240, 372, 374, 416, 494, 501, 502,
511, 515, 538, 546, 549, 561, 562, 563, 566, 615, 650, 651, 656, 658, 754, 1051, 1196, 1197,
1199, 1206, 1274, 1278, 1282, 1314, 1350, 1460, 1514, 1540, 1548, 1575, 1617, 1698, 1717,
1757, 1782, 1789, 1798, 1838, 1917, 1918, 1939, 2030, 2120, 2137, 2144, 2146, 2147, 2148,
2149, 2150, 2151, 2165, 2333, 2432, 2449, 2499, 2550, 2643, 2676, 2677, 2678, 2679, 2681,
2697, 2698, 2714, 2743, 2744, 2745, 2746, 2808, 2809, 2883, 2906, 2956, 2990, 2992, 2995,
3001, 3002, 3003, 3066]
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8.1 One variable

Gary L. Mullen, The Pennsylvania State University

Qiang Wang, Carleton University

8.1.1 Introduction

8.1.1 Definition For q a prime power, let Fq denote the finite field containing q elements. A
polynomial f ∈ Fq[x] is a permutation polynomial (PP) of Fq if the function f : c→ f(c)
from Fq into itself induces a permutation. Alternatively, f is a PP of Fq if the equation
f(x) = a has a unique solution for each a ∈ Fq.

8.1.2 Remark The set of all PPs on Fq forms a group under composition modulo xq−x, isomorphic
to the symmetric group Sq of order q!. For q > 2, the group Sq is generated by xq−2 and all
linear polynomials ax+ b, and if c is a primitive element in Fq, Sq is generated by cx, x+ 1,
and xq−2.

8.1.3 Remark Given a permutation g of Fq, the unique permutation polynomial Pg(x) of Fq of
degree at most q−1 representing the function g can be found by the Lagrange Interpolation
Formula (see Theorem 1.71 in [1939]). In particular Pg(x) =

∑
a∈Fq g(a)(1 − (x − a)q−1);

see also Theorem 2.1.131.

215
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8.1.4 Remark If f is a PP and a 6= 0, b 6= 0, c ∈ Fq, then f1 = af(bx+ c) is also a PP. By suitably
choosing a, b, c we can arrange to have f1 in normalized form so that f1 is monic, f1(0) = 0,
and when the degree n of f1 is not divisible by the characteristic of Fq, the coefficient of
xn−1 is 0.

8.1.5 Remark A few well known classes of PPs from [1939]:
Monomials: The monomial xn is a PP of Fq if and only if (n, q − 1) = 1.

Dickson: For a 6= 0 ∈ Fq, the polynomial Dn(x, a) =
∑bn/2c
i=0

n
n−i
(
n−i
i

)
(−a)ixn−2i is a

PP of Fq if and only if (n, q2 − 1) = 1; see Section 9.6.

Linearized: The polynomial L(x) =
∑n−1
s=0 asx

qs ∈ Fqn [x] is a PP of Fqn if and only if

det(aq
j

i−j) 6= 0, 0 ≤ i, j ≤ n − 1. The set of linearized PPs forms the Betti-Mathieu group
isomorphic to the group GL(n,Fq), the general linear group of all non-singular n×n matrices
over Fq under matrix multiplication. Recently, there have been several papers devoted to
explicit constructions of linearized PPs; see for example, [504, 3047, 3065].

For odd q, f(x) = x(q+1)/2 + ax is a PP of Fq if and only if a2− 1 is a nonzero square in
Fq. Moreover, the polynomial f(x) + cx is a PP of Fq for (q − 3)/2 values of c ∈ Fq [1939].

The polynomial xr(f(xd))(q−1)/d is a PP of Fq if (r, q − 1) = 1, d | q − 1, and f(xd) has
no nonzero root in Fq.

8.1.6 Remark For more information, we refer to Chapter 7 of [1939], and survey papers [681,
1933, 1935, 2176, 2178].

8.1.2 Criteria

8.1.7 Theorem (Hermite) Let p be the characteristic of Fq. A polynomial f ∈ Fq[x] is a PP if
and only if

1. the polynomial f has exactly one root in Fq;
2. for each integer t with 1 ≤ t ≤ q− 2 and t 6≡ 0 (mod p), the reduction of (f(x))t

(mod xq − x) has degree at most q − 2.

8.1.8 Remark Hermite’s criterion was used by Dickson to obtain all normalized PPs of degree at
most 5 [1939] in the list below.

Normalized PPs of Fq q
x any q
x2 q ≡ 0 (mod 2)
x3 q 6≡ 1 (mod 3)

x3 − ax (a not a square) q ≡ 0 (mod 3)
x4 ± 3x q = 7

x4 + a1x
2 + a2x (if its only root in Fq is 0) q ≡ 0 (mod 2)

x5 q 6≡ 1 (mod 5)
x5 − ax (a not a fourth power) q ≡ 0 (mod 5)

x5 + ax (a2 = 2) q = 9
x5 ± 2x2 q = 7

x5 + ax3 ± x2 + 3a2x (a not a square) q = 7
x5 + ax3 + 5−1a2x (a arbitrary) q ≡ ±2 (mod 5)
x5 + ax3 + 3a2x (a not a square) q = 13
x5 − 2ax3 + a2x (a not a square) q ≡ 0 (mod 5)

A list of PPs of degree 6 over finite fields with odd characteristic can be found in [840]. A
list of PPs of degree 6 and 7 over finite fields with characteristic two can be found in [1916].
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A recent preprint [2605] tabulates all monic PPs of degree 6 in the normalized form.

8.1.9 Theorem [1939] The polynomial f is a PP of Fq if and only if
∑
c∈Fq χ(f(c)) = 0 for all

nontrivial additive characters χ of Fq.

8.1.10 Remark Another criterion for PPs conjectured by Mullen [2176] in terms of the size |Vf |
of the value set Vf = {f(a) | a ∈ Fq} of a polynomial f of degree n was proved by Wan
[2911]. Namely, if |Vf | > q − q−1

n then f is a PP of Fq [2911]. We refer to Section 8.3 for
more information on value sets. A variation of Hermite’s criterion in terms of combinatorial
identities is given in [2018]. Hermite’s criterion can be rewritten in terms of the invariant,
up(f), the smallest positive integer k such that

∑
x∈Fq f(x)k 6= 0. That is, f is a PP of Fq if

and only if up(f) = q − 1. In the case q = p, this criterion was improved in [1813] and only
requires k > p−1

2 . Using Teichmüller liftings, Wan et al. [2919] obtained an upper bound
for |Vf | and improved Hermite’s criterion. Several other criteria were obtained by Turnwald
[2826] in terms of invariants associated with elementary symmetric polynomials, without
using Teichmüller liftings.

8.1.11 Theorem [2826] Let f ∈ Fq[x] be a polynomial of degree n with 1 ≤ n < q. Let u be
the smallest positive integer k with sk 6= 0 if such k exists and otherwise set u = ∞,
where sk denotes the k-th elementary symmetric polynomial of the values f(a). Let v be
the size of the value set Vf = {f(a) | a ∈ Fq}. Let w be the smallest positive integer k
with pk =

∑
a∈Fq f(a)k 6= 0 if such k exists and otherwise set w = ∞. The following are

equivalent:

(1) f is a PP of Fq; (2) u = q − 1; (3) u > q − q
n ;

(4) u > q − v; (5) v > q − q−1
n ; (6) w = q − 1;

(7) 2q
3 − 1 < w <∞; (8) q − q+1

n < w <∞; (9) q − u ≤ w <∞;

(10) u > q−1
2 and w <∞.

8.1.12 Remark A criterion in terms of resultants was given by von zur Gathen [1221]. Using the
Euclidean algorithm to compute the resultant, von zur Gathen provided a probabilistic test
to determine whether a given polynomial is a PP or not. The number of operations in Fq
has a softly linear running time O(n log q(log(n log q))k) for some k. Furthermore, Ma and
von zur Gathan showed that this decision problem has a zero-error probabilistic polynomial
time in [1983] and provided a random polynomial time test for rational functions over
finite fields, along with several related problems in [1984]. Earlier, Shparlinski had given a
deterministic superpolynomial time algorithm for testing PP [2638]. In 2005 Kayal provided
a deterministic polynomial-time algorithm for testing PP [1716].

8.1.3 Enumeration and distribution of PPs

8.1.13 Problem [1935] Let Nn(q) denote the number of PPs of Fq which have degree n. We have
the trivial boundary conditions: N1(q) = q(q− 1), Nn(q) = 0 if n is a divisor of q− 1 larger
than 1, and

∑
Nn(q) = q! where the sum is over all 1 ≤ n < q − 1 such that n is either 1

or is not a divisor of q − 1. Find Nn(q).

8.1.14 Remark In an invited address before the MAA in 1966, Carlitz conjectured that for each
even integer n, there is a constant Cn so that for each finite field of odd order q > Cn,
there does not exist a PP of degree n over Fq. A polynomial f over Fq is exceptional if
the only absolutely irreducible factors of f(x) − f(y) in Fq[x, y] are scalar multiples of
x− y. One can also characterize an exceptional polynomial as a polynomial which induces
a permutation of infinitely many finite extension fields of Fq. As first proved by Cohen in
[667], any exceptional polynomial is a PP, and the converse holds if q is large compared to
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the degree of f . Cohen’s equivalent statement of Carlitz’s conjecture [677] says that there is
no exceptional polynomial of even degree in odd characteristic. This was proved by Fried,
Guralnick, and Saxl in [1120]; in fact an even stronger result was obtained through the use
of powerful group theoretic methods, including the classification of finite simple groups.

8.1.15 Remark For the next theorem we require the concept of an exceptional cover; see Section
9.7.

8.1.16 Theorem [1120] There is no exceptional cover of nonsingular absolutely irreducible curves
over Fq of degree 2p where q is a power of p and p is prime.

8.1.17 Remark Several partial results on Carlitz’s conjecture can be found in [677, 2908]. Moreover,
Wan generalized Carlitz’s conjecture in [2909] proving that if q > n4 and (n, q−1) = 1 then
there is no PP of degree n over Fq. Later Cohen and Fried [688] gave an elementary proof
of Wan’s conjecture following an argument of Lenstra and this result was stated in terms of
exceptional polynomials; see Section 8.4 for more information on exceptional polynomials.

8.1.18 Theorem [688, 2909] There is no exceptional polynomial of degree n over Fq if (n, q−1) > 1.

8.1.19 Theorem [551]

1. Let ` > 1. For q sufficiently large, there exists a ∈ Fq such that the polynomial
x(x(q−1)/` + a) is a PP of Fq.

2. Let ` > 1, (r, q−1) = 1, and k be a positive integer. For q sufficiently large, there
exists a ∈ Fq such that the polynomial xr(x(q−1)/` + a)k is a PP of Fq.

8.1.20 Remark Any non-constant polynomial h(x) ∈ Fq[x] of degree ≤ q − 1 can be written
uniquely as axrf(x(q−1)/`) + b with index ` [61]. Namely, write

h(x) = a(xn + an−i1x
n−i1 + · · ·+ an−ikx

n−ik) + b,

where a, an−ij 6= 0, j = 1, . . . , k. Here we suppose that j ≥ 1 and n − ik = r. Then

h(x) = axrf(x(q−1)/`) + b, where f(x) = xe0 + an−i1x
e1 + · · ·+ an−ik−1

xek−1 + ar,

` =
q − 1

(n− r, n− r − i1, . . . , n− r − ik−1, q − 1)
,

and (e0, e1, . . . , ek−1, `) = 1. Clearly, h is a PP of Fq if and only if g(x) = xrf(x(q−1)/`) is
a PP of Fq. Then ` is the index of h.

8.1.21 Remark If ` = 1 then f(x) = 1 so that g(x) = xr. In this case g(x) is a PP of Fq if and
only if (r, q − 1) = 1. We can assume ` > 1.

8.1.22 Remark More existence and enumerative results for binomials can be found in [61, 64, 1833,
2018, 2019, 2020, 2825, 2905, 2913]. In [1833], Laigle-Chapuy proved the first assertion of

Theorem 8.1.19 assuming q > `2`+2
(
1 + `+1

``+2

)2
. In [2020], Masuda and Zieve obtained a

stronger result for more general binomials of the form xr(xe1(q−1)/` + a). More precisely
they showed the truth of Part 1 of Theorem 8.1.19 for q > `2`+2. Here we present a general
result of Akbary-Ghioca-Wang (Theorem 8.1.25) which shows that there exist permutation
polynomials of index ` for any prescribed exponents satisfying conditions (8.1.1). This result
generalizes all the existence results from [551, 1833, 2020].

8.1.23 Definition [61] Let q be a prime power, and ` ≥ 2 be a divisor of q − 1. Let m, r be
positive integers, and ē = (e1, . . . , em) be an m-tuple of integers that satisfy the following
conditions:

0 < e1 < e2 < · · · < em ≤ `− 1, (e1, . . . , em, `) = 1 and r + ems ≤ q − 1, (8.1.1)
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where s := (q − 1)/`. For a tuple ā := (a1, . . . , am) ∈
(
F∗q
)m

, we let

gār,ē(x) := xr (xems + a1x
em−1s + · · ·+ am−1x

e1s + am) .

We define Nm
r,ē(`, q) as the number of all tuples ā ∈

(
F∗q
)m

such that gār,ē(x) is a PP of
Fq. In other words Nm

r,ē(`, q) is the number of all monic permutation (m + 1)-nomials

gār,ē(x) = xrf(x(q−1)/`) over Fq with vanishing order at zero equal to r, set of exponents
ē for f(x), and index `. Note that if r and ē satisfy (8.1.1) then gār,ē(x) has index `.

8.1.24 Theorem [61] With the above notation, we have∣∣∣∣Nm
r,ē(`, q)−

`!

``
qm
∣∣∣∣ < `!`qm−1/2.

8.1.25 Theorem [61] For any q, r, ē, m, ` that satisfy (8.1.1), (r, s) = 1, and q > `2`+2, there exists
an ā ∈ (F∗q)m such that the (m+ 1)-nomial gār,ē(x) is a permutation polynomial of Fq.

8.1.26 Remark For q ≥ 7 we have `2`+2 < q if ` < log q
2 log log q .

8.1.27 Theorem [771] The value Np−2(p) ∼ (ϕ(p)/p)p! as p→∞, where ϕ is the Euler function.

More precisely,
∣∣∣Np−2(p)− ϕ(p)

p p!
∣∣∣ ≤√pp+1(p−2)+p2

p−1 .

8.1.28 Theorem [1787] Let q be a prime power. Then |Nq−2(q)− (q − 1)!| ≤
√

2e
π q

q
2 .

8.1.29 Theorem [1788] Fix j integers k1, . . . , kj with the property that 0 < k1 < · · · < kj < q − 1
and define N(k1, . . . , kj ; q) as the number of PPs of Fq of degree less than q − 1 such that
the coefficient of xki equals 0, for i = 1, . . . , j. Then∣∣∣∣N(k1, . . . , kj ; q)−

q!

qj

∣∣∣∣ <
(

1 +

√
1

e

)q
((q − k1 − 1)q)q/2.

In particular, Nq−2(q) = q!−N(q − 2; q).

8.1.30 Remark We note that for 1 ≤ t ≤ q − 2 the number of PPs of degree at least q − t − 1
is q! − N(q − t − 1, q − t, . . . , q − 2; q). In [1788] Konyagin and Pappalardi proved that
N(q − t − 1, q − t, . . . , q − 2; q) ∼ q!

qt holds for q → ∞ and t ≤ 0.03983 q. This result

guarantees the existence of PPs of degree at least q − t− 1 for t ≤ 0.03983 q (as long as q
is sufficiently large). However, the following theorem establishes the existence of PPs with
exact degree q − t− 1.

8.1.31 Theorem [61] Let m ≥ 1. Let q be a prime power such that q−1 has a divisor ` with m < `

and `2`+2 < q. Then for every 1 ≤ t < (`−m)
` (q − 1) coprime with (q − 1)/` there exists an

(m+ 1)-nomial gār,ē(x) of degree q − t− 1 which is a PP of Fq.

8.1.32 Corollary [61] Let m ≥ 1 be an integer, and let q be a prime power such that (m+1) | (q−1).
Then for all n ≥ 2m+ 4, there exists a permutation (m+ 1)-nomial of Fqn of degree q − 2.

8.1.33 Definition Let m[k](q) be the number of permutations of Fq which are k-cycles and are
represented by polynomials of degree q − k.

8.1.34 Theorem [2967] Every transposition of Fq is represented by a unique polynomial of degree
q − 2. Moreover,

m[3](q) =


2
3q(q − 1) if q ≡ 1 (mod 3),
0 if q ≡ 2 (mod 3),
1
3q(q − 1) if q ≡ 0 (mod 3).
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8.1.35 Theorem [1996]

1. If q ≡ 1 (mod k), then m[k](q) ≥ ϕ(k)
k q(q − 1).

2. If char(Fq) > e(k−3)/e, then m[k](q) ≤ (k−1)!
k q(q − 1).

8.1.36 Remark It is conjectured in [1996] that the above upper bound for m[k](q) holds for any
k < q. Small k-cycles such as k = 4, 5 are also studied in [1995, 1996, 1997].

8.1.37 Theorem [2967] Let r and s be fixed positive integers, and k2, . . . , ks be non-negative
integers such that

∑s
i=2 iki = r. Let P (k2, . . . , ks) be the set of permutations of Fq which are

the disjoint products of k2 transpositions, k3 3-cycles, etc. Then the number of permutations
in P (k2, . . . , ks) represented by a polynomial of degree q − 2 is asymptotic to the number
of all permutations in P (k2, . . . , ks) as q goes to ∞.

8.1.4 Constructions of PPs

8.1.38 Remark For the purpose of introducing the construction of PPs in the next few sections,
we present the following recent result by Akbary-Ghioca-Wang (AGW).

8.1.39 Theorem (AGW’s criterion, [62]) Let A, S, and S̄ be finite sets with #S = #S̄, and let
f : A→ A, f̄ : S → S̄, λ : A→ S, and λ̄ : A→ S̄ be maps such that λ̄ ◦ f = f̄ ◦ λ. If both
λ and λ̄ are surjective, then the following statements are equivalent:

1. f is a bijection (a permutation of A);

2. f̄ is a bijection from S to S̄ and f is injective on λ−1(s) for each s ∈ S.

8.1.40 Remark We note that this criterion does not require any restriction on the structures of
the sets S and S̄ in finding new classes of PPs of a set A. In particular, if we take A as
a group and S and S̄ as homomorphic images of A, then we obtain the following general
result for finding permutations of a group.

8.1.41 Theorem [62] Let (G,+) be a finite group, and let ϕ,ψ, ψ̄ ∈ End(G) be group endomor-
phisms such that ψ̄ ◦ ϕ = ϕ ◦ ψ and #im(ψ) = #im(ψ̄). Let g : G −→ G be any mapping,
and let f : G −→ G be defined by f(x) = ϕ(x) + g(ψ(x)). Then,

1. f permutes G if and only if the following two conditions hold:

a. ker(ϕ)∩ker(ψ) = {0} (or equivalently, ϕ induces a bijection between ker(ψ)
and ker(ψ̄)); and

b. the function f̄(x) := ϕ(x) + ψ̄(g(x)) restricts to a bijection from im(ψ) to
im(ψ̄).

2. For any fixed endomorphisms ϕ, ψ and ψ̄ satisfying Part 1.a, there are

(#im(ψ))! ·
(
# ker(ψ̄)

)#im(ψ)
such permutation functions f (when g varies).

3. Let g : G −→ G be such that
(
ψ̄ ◦ g

)
|im(ψ) = 0. Then f = ϕ+ g ◦ ψ permutes G

if and only if ϕ is a permutation of G.

4. Assume ϕ ◦ ψ = 0 and g : G −→ G is a mapping such that g(x) restricted to
im(ψ) is a permutation of im(ψ). Then f(x) = ϕ(x) + g(ψ(x)) permutes G if and
only if ϕ and ψ satisfy Part 1.a, and ψ̄ restricted to im(ψ) is a bijection from
im(ψ) to im(ψ̄).

8.1.42 Remark One can apply this result to a multiplicative group of a finite field, an additive
group of a finite field, or the group of rational points of an elliptic curve over finite fields
[62]. This reduces a problem of determining whether a given polynomial over a finite field
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Fq is a permutation polynomial to a problem of determining whether another polynomial
permutes a smaller set.

8.1.43 Corollary [2359, 2940, 3076] Let q − 1 = `s for some positive integers ` and s. Then
P (x) = xrf(xs) is a PP of Fq if and only if (r, s) = 1 and xrf(x)s permutes the set µ` of
all distinct `-th roots of unity.

8.1.44 Remark The above corollary is a consequence of Theorem 8.1.41 when taking multiplicative
group endomorphisms xr and xs. There are several other equivalent descriptions of PPs of
the form xrf(xs); see for example, [65, 2359, 2916, 2940, 3076]. All of the classes of PPs
in Subsection 8.1.5 are of this type. There are also many recent results on new classes of
PPs when taking additive group endomorphisms in Theorem 8.1.41, see [62, 2003, 3046,
3077]. We give some classes of PPs in Subsection 8.1.6. We note that AGW’s criterion does
not require any restriction on the structures of subsets S and S̄, which has even broader
applications in finding new classes of PPs. Many classes of PPs in Subsection 8.1.7 can be
obtained through this general construction method.

8.1.5 PPs from permutations of multiplicative groups

8.1.45 Definition [2278, 2940] Let γ be a primitive element of Fq, q − 1 = `s for some positive
integers ` and s, and the set of all nonzero `-th powers of Fq be C0 = {γ`j : j =
0, 1, . . . , s−1}. Then C0 is a subgroup of F∗q of index `. The elements of the factor group
F∗q/C0 are the cyclotomic cosets

Ci := γiC0, i = 0, 1, . . . , `− 1.

For any integer r > 0 and any A0, A1, . . . , A`−1 ∈ Fq, we define an r-th order cyclotomic
mapping frA0,A1,...,A`−1

of index ` from Fq to itself by frA0,A1,...,A`−1
(0) = 0 and

frA0,A1,...,A`−1
(x) = Aix

r if x ∈ Ci, i = 0, 1, . . . , `− 1.

Moreover, frA0,A1,...,A`−1
is an r-th order cyclotomic mapping of the least index ` if the

mapping cannot be written as a cyclotomic mapping of any smaller index.

8.1.46 Remark Cyclotomic mapping permutations were introduced in [2278] when r = 1 and
in [2940] for any positive r. Let ζ = γs be a primitive `-th root of unity in Fq
and P (x) = xrf(xs) be a polynomial of index ` over Fq with positive integer r. Then
P (x) = xrf(xs) = frA0,A1,...,A`−1

(x) where Ai = f(ζi) for 0 ≤ i ≤ ` − 1. We note that
the least index of a cyclotomic mapping is equal to the index of the corresponding polyno-
mial. If P is a PP of Fq then (r, s) = 1 and Ai = f(ζi) 6= 0 for 0 ≤ i ≤ ` − 1. Under these
two necessary conditions, P (x) = xrf(xs) is a PP of Fq if and only if frA0,A1,...,A`−1

is a PP

of Fq [2940]. The concept of cyclotomic mapping permutations have recently been general-
ized in [2943] allowing each branch to take a different ri value so that P (x) has the form∑n
i=0 x

rifi(x
s). More results can be found in [2943] and related piecewise constructions in

[1061, 3058].

8.1.47 Remark There are several other equivalent descriptions of PPs of the form xrf(xs), see [65,
2359, 2916, 2940, 3076] for example. In particular, in [65], it is shown that P (x) = xrf(xs)

is a PP of Fq if and only if (r, s) = 1, Ai = f(ζi) 6= 0 for 0 ≤ i ≤ `− 1, and
`−1∑
i=0

ζcriAcsi = 0

for all c = 1, . . . , ` − 1. This criterion is equivalent to Hermite’s criterion when the index
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` equals q − 1. However, if ` < q − 1, this criterion in fact improves Hermite’s criterion
because we only need to verify that the coefficient of xq−1 is 0 for `− 1 different powers of
P instead of all of the q − 2 powers of P . We note that ` = 2 implies that q must be odd.

8.1.48 Remark [65] For odd q, the polynomial P (x) = xrf(x(q−1)/2) is a PP of Fq if and only
if (r, (q − 1)/2) = 1 and η(f(−1)f(1)) = (−1)r+1. Here η is the quadratic character of Fq
with the standard convention η(0) = 0.

8.1.49 Remark Let P (x) = xk+axr be a binomial of index ` and s = q−1
` . Then P (x) = xr(xes+a)

for some e such that (e, `) = 1. If a = bs for some b ∈ Fq, then xr(xes + a) is a PP of Fq if
and only if xr(xes + 1) is a PP of Fq.

8.1.50 Remark Necessary conditions for P (x) = xr(xes + 1) of index ` to be a PP are as follows:

(r, s) = 1, (2e, `) = 1, (2r + es, `) = 1, and 2s = 1. (8.1.2)

8.1.51 Remark For ` = 3, the conditions in (8.1.2) are sufficient to determine whether P is a PP of
Fq [2927]. However, for ` > 3, it turns out not to be the case (for example, see [63, 64, 2927]).
For general `, a characterization of PPs of the form xr(xes+1) in terms of generalized Lucas
sequences of order k := `−1

2 is given in [2940, 2942].

8.1.52 Definition [64] For any integer k ≥ 1 and η a fixed primitive (4k + 2)-th root of unity,
the generalized Lucas sequence (or unsigned generalized Lucas sequence) of order k is
defined as {an}∞n=0 such that

an =

2k∑
t=1
t odd

(ηt + η−t)n =

k∑
t=1

((−1)t+1(ηt + η−t))n.

The characteristic polynomial of the generalized Lucas sequence is defined by g0(x) = 1,
g1(x) = x− 1, gk(x) = xgk−1(x)− gk−2(x) for k ≥ 2.

8.1.53 Theorem [2940, 2942] Let q = pm be an odd prime power and q − 1 = `s with odd ` ≥ 3
and (e, `) = 1. Let k = `−1

2 . Then P (x) = xr(xes + 1) is a PP of Fq if and only if (r, s) = 1,
(2r + es, `) = 1, 2s = 1, and

Rjc,k(L)(acs) = −1, for all c = 1, . . . , `− 1, (8.1.3)

where acs is the (cs)-th term of the generalized Lucas sequence {ai}∞i=0 of order k over Fp,
jc = c(2eφ(`)−1r+ s) (mod 2`), Rjc,k(x) is the remainder of the Dickson polynomial Djc(x)
of the first kind of degree jc divided by the characteristic polynomial gk(x), and L is a left
shift operator on sequences. In particular, all jc are distinct even numbers between 2 and
2`− 2.

8.1.54 Remark We note that the degree of any remainder Rn,k is at most k−1 and Rn,k is either a
Dickson polynomial of degree ≤ k− 1 or the degree k− 1 characteristic polynomial gk−1(x)
of the generalized Lucas sequence of order k, or a negation of the above polynomials [2942].
We can extend the definition of {an} to negative subscripts n using the same recurrence
relations. We also remark that, for ` ≤ 7, the sequences used in the descriptions of per-
mutation binomials have simple structures and are fully described [63, 2927]. We note that
signed generalized Lucas sequences are defined in [2942] and they are used to compute the
coefficients of the compositional inverse of permutation binomials xr(xes + 1). Finally we
note that Equation (8.1.3) always holds if the sequence {an} is s-periodic over Fp, which
means that an ≡ an+ks (mod p) for integers k and n. We remark that these sequences are
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defined over prime fields and checking the s-periodicity of these sequences is a much simpler
task than checking whether the polynomial is a PP over the extension field directly.

8.1.55 Theorem [64] Assume the conditions (8.1.2) on `, r, e, and s hold. If {an} is s-periodic
over Fp, then the binomial P (x) = xr(xes + 1) is a permutation binomial of Fq.

8.1.56 Theorem [65] Let p be an odd prime and q = pm and let `, r, s be positive integers satisfying
that q − 1 = `s, (r, s) = 1, (e, `) = 1, and ` odd. Let p ≡ −1 (mod `) or p ≡ 1 (mod `) and
` | m. Then the binomial P (x) = xr(xes + 1) is a permutation binomial of Fq if and only
if (2r + es, `) = 1. In particular, if p ≡ 1 (mod `) and ` | m, then the conditions (r, s) = 1,
(e, `) = 1, and ` odd imply that (2r + es, `) = 1 [60].

8.1.57 Remark For a = 1 (equivalent to a = bs for some b), under the assumptions on q, s, `, r, e,
it is shown in [3076] that the s-periodicity of the generalized Lucas sequence implies that
(η+η−1)s = 1 for every (2`)-th root of unity η. However, we note that these two conditions
are in fact equivalent for a = 1. The following result extends Theorem 8.1.55 as it also deals
with even characteristic.

8.1.58 Theorem [3076] For q, s, `, e, r, a satisfying q − 1 = `s, (r, s) = 1, (e, `) = 1, r, e > 0 and
a ∈ F∗q , suppose (−a)` 6= 1 and (z + a/z)s = 1 for every (2`)-th root of unity z. Then
P (x) = xr(xes + a) is a permutation binomial of Fq if and only if (2r + es, 2`) ≤ 2.

8.1.59 Theorem [2020] Suppose xr(xes + a) permutes Fp, where a ∈ F∗p and r, e, s > 0 such that

p− 1 = `s and (`, e) = 1. Then s ≥
√
p− 3/4− 1/2 >

√
p− 1.

8.1.60 Remark For earlier results on permutation binomials, we refer to [569, 2018, 2020, 2127,
2680, 2681, 2825, 2905, 2913].

8.1.61 Theorem [65] Let q − 1 = `s. Assume that f(ζt)s = 1 for any t = 0, . . . , ` − 1. Then
P (x) = xrf(xs) is a PP of Fq if and only if (r, q − 1) = 1.

8.1.62 Corollary Let q − 1 = `s and g be any polynomial over Fq. Then P (x) = xrg(xs)` is a PP
of Fq if and only if (r, q − 1) = 1 and g(ζt) 6= 0 for all 0 ≤ t ≤ `− 1.

8.1.63 Corollary [65, 1833] Let p be a prime, ` be a positive integer and v be the order of p in
Z/`Z. For any positive integer n, let q = pm = p`vn and `s = q−1. Assume f is a polynomial
in Fpvn [x]. Then the polynomial P (x) = xrf(xs) is a PP of Fq if and only if (r, q − 1) = 1
and f(ζt) 6= 0 for all 0 ≤ t ≤ `− 1.

8.1.64 Remark Corollary 8.1.63 is reformulated as Theorem 2.3 in [3076]. Namely, let `, r > 0
satisfy `s = q − 1. Suppose q = qm0 where q0 ≡ 1 (mod `) and ` | m, and f ∈ Fq0 [x]. Then
P (x) = xrf(xs) permutes Fq if and only if (r, s) = 1 and f has no roots in the µ`, the set
of `-th roots of unity.

8.1.65 Theorem [65] Let q − 1 = `s, and suppose that Fq (the algebraic closure of Fq) contains a
primitive (j`)-th root of unity η. Assume that

(
η−utf(ηjt)

)s
= 1 for any t = 0, . . . , ` − 1

and a fixed u. Moreover assume that j | us. Then P (x) = xrf(xs) is a PP of Fq if and only
if (r, s) = 1 and (r + us

j , `) = 1.

8.1.66 Remark Some concrete classes of PPs satisfying the above assumptions can be found in
[60, 65, 2033, 3075, 3076]. For example, let hk(x) := xk + · · ·+x+ 1. Then the permutation
behavior of the polynomials xrhk(xs) = xr(xks + · · · + xs + 1) and xrhk(xes)t has been
studied in detail. Moreover, for certain choices of indices ` and finite fields Fq (for example,
p ≡ −1 (mod 2`) where ` > 1 is either odd or 2`1 with `1 odd), several concrete classes of
PPs can be obtained [65, 3075, 3076].
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8.1.67 Remark When ` ≤ 5, much simpler descriptions involving congruences and gcd conditions
can be found in [60, 2033]. A reformulation of these results in terms of roots of unity can be
found in [3075] which also covers the case of ` = 7. For larger index `, one can also construct
PPs of this form when ` is an odd prime such that ` < 2p+ 1.

8.1.68 Theorem [60] Let ` be an odd prime such that ` < 2p+1, then P (x) = xr(xks+ · · ·+xs+1)
is a PP of Fq if and only if (r, s) = 1, (`, k + 1) = 1, (2r + ks, `) = 1, and (k + 1)s ≡ 1
(mod p).

8.1.6 PPs from permutations of additive groups

8.1.69 Remark There are several results on new classes of PPs when using additive group endo-
morphisms ψ, ψ̄, and ϕ in Theorem 8.1.39 [62, 2003, 3046, 3077].

8.1.70 Theorem [62] Consider any polynomial g ∈ Fqn [x], any additive polynomials ϕ,ψ ∈ Fqn [x],
any Fq-linear polynomial ψ̄ ∈ Fqn [x] satisfying ϕ ◦ψ = ψ̄ ◦ϕ and #ψ(Fqn) = #ψ̄(Fqn), and
any polynomial h ∈ Fqn [x] such that h(ψ(Fqn)) ⊆ Fq \ {0}. Then

1. f(x) := h(ψ(x))ϕ(x) + g(ψ(x)) permutes Fqn if and only if

a. ker(ϕ) ∩ ker(ψ) = {0}; and

b. f̄(x) := h(x)ϕ(x) + ψ̄(g(x)) is a bijection between ψ(Fqn) and ψ̄(Fqn).

2. For any fixed h, ϕ, ψ and ψ̄ satisfying the above hypothesis and Part 1.a, there

are (#im(ψ))! ·
(
# ker(ψ̄)

)#im(ψ)
such permutation functions f (when g varies)

(where ψ and ψ̄ are viewed as endomorphisms of (Fqn ,+)).

3. Assume in addition that
(
ψ̄ ◦ g

)
|im(ψ) = 0. Then f(x) = h(ψ(x))ϕ(x) + g(ψ(x))

permutes Fqn if and only if ker(ϕ)∩ker(ψ) = {0} and h(x)ϕ(x) induces a bijection
from ψ(Fqn) to ψ̄(Fqn).

4. Assume in addition that ϕ ◦ψ = 0, and that g(x) restricted to im(ψ) is a permu-
tation of im(ψ). Then f(x) = h(ψ(x))ϕ(x) + g(ψ(x)) permutes Fqn if and only
if ker(ϕ) ∩ ker(ψ) = {0} and ψ̄ restricted to im(ψ) is a bijection between im(ψ)
and im(ψ̄).

8.1.71 Theorem [62, 3046] Let q = pe for some positive integer e.
1. If k is an even integer or k is odd and q is even, then fa,b,k(x) = axq + bx+ (xq −x)k,

a, b ∈ Fq2 , permutes Fq2 if and only if b− aq ∈ F∗q and a+ b 6= 0.

2. If k and q are odd positive integers, then fa,k(x) = axq + aqx + (xq − x)k, a ∈ F∗q2

and a+ aq 6= 0, permutes Fq2 if and only if (k, q − 1) = 1.

8.1.72 Remark The classes fa,b,k with a, b ∈ Fq and k even and fa,k for a ∈ Fq and p and k
odd were first constructed in [62]. The remaining classes were obtained in [3046]. For other
concrete classes of PPs of additive groups, we refer to [62, 325, 730, 1832, 2003, 3046, 3077].

8.1.7 Other types of PPs from the AGW criterion

8.1.73 Remark In this subsection, we give several other constructions of PPs that can be obtained
by using arbitrary surjective maps λ and λ̄ in Theorem 8.1.39, instead of using multiplicative
or additive group homomorphism.

8.1.74 Theorem [62] Let q be a prime power, let n be a positive integer, and let L1, L2, L3 be
Fq-linear polynomials over Fq seen as endomorphisms of (Fqn ,+). Let g ∈ Fqn [x] be such
that g(L3(Fqn)) ⊆ Fq. Then f(x) = L1(x) + L2(x)g(L3(x)) is a PP of Fqn if and only if
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1. ker(Fy) ∩ ker(L3) = {0}, for any y ∈ im(L3), where Fy(x) := L1(x) + L2(x)g(y);
and

2. f̄(x) := L1(x) + L2(x)g(x) permutes L3(Fqn).

8.1.75 Remark The above result extends some constructions in [325, 730].

8.1.76 Theorem [62] Let q be any power of the prime number p, let n be any positive integer,
and let S be any subset of Fqn containing 0. Let h, k ∈ Fqn [x] be polynomials such that
h(0) 6= 0 and k(0) = 0, and let B ∈ Fqn [x] be any polynomial satisfying h(B(Fqn)) ⊆ S and
B(aα) = k(a)B(α) for all a ∈ S and all α ∈ Fqn . Then the polynomial f(x) = xh(B(x)) is
a PP of Fqn if and only if f̄(x) = xk(h(x)) induces a permutation of the value set B(Fqn).

8.1.77 Remark The case that S = Fq and k(x) = x2 was considered in [2003]. Some examples
of B are given in [62]. It is remarked in [62] that Theorem 8.1.76 can be generalized for
f(x) = A(x)h(B(x)) and f̄(x) = C(x)k(h(x)) where A,C ∈ Fqn [x] are polynomials such
that B(A(x)) = C(B(x)) with C(0) = 0 and A is injective on B−1(s) for each s ∈ B(Fqn),
under the similar assumptions h(B(Fqn)) ⊆ S \ {0} and B(aα) = k(a)B(α) for all a ∈ S
and all α ∈ Fqn .

8.1.78 Definition [62] Let S ⊆ Fq and let γ, b ∈ Fq. Then γ is a b-linear translator with respect
to S for the mapping F : Fq −→ Fq, if

F (x+ uγ) = F (x) + ub

for all x ∈ Fqn and for all u ∈ S.

8.1.79 Remark The above definition is a generalization of the concept of b-linear translator studied
in [593, 595, 1817], which deals with the case q = pmn, and S = Fpm . The relaxation on
the condition for S to be any subset of Fq provides a much richer class of functions (see
examples in [62]). Using the original definition of linear translators, several classes of PPs
of the form G(x) +γTr(H(x)) are constructed in [593, 595, 1817]. In the case that G is also
a PP, it is equivalent to constructing polynomials of the form x+ γTr(H ′(x)).

8.1.80 Theorem [62] Let S ⊆ Fq and F : Fq −→ S be a surjective map. Let γ ∈ Fq be a b-linear
translator with respect to S for the map F . Then for any G ∈ Fq[x] which maps S into S,
we have that x+ γG(F (x)) is a PP of Fq if and only if x+ bG(x) permutes S.

8.1.81 Definition A complete mapping f of Fq is a permutation polynomial f(x) of Fq such that
f(x) + x is also a permutation polynomial of Fq.

8.1.82 Corollary [62, 593] Under the conditions of Theorem 8.1.80, we have

1. If G(x) = x then x+ γF (x) is a PP of Fq if and only if b 6= −1.

2. If q is odd and 2S = S, then x+ γF (x) is a complete mapping of Fq if and only
if b 6∈ {−1,−2}.

8.1.83 Theorem [1817] Let L : Fqn −→ Fqn be an Fq-linear mapping of Fqn with kernel αFq, α 6= 0.
Suppose α is a b-linear translator with respect to Fq for the mapping f : Fqn −→ Fq and
h : Fq −→ Fq is a permutation of Fq. Then the mapping G(x) = L(x) + γh(f(x)) permutes
Fqn if and only if b 6= 0 and γ does not belong to the image set of L.

8.1.84 Corollary [1817] Let t be a positive integer with (t, q − 1) = 1, H ∈ Fqn [x] and γ, β ∈ Fqn .

Then the mapping G(x) = xq − x + γ (Tr(H(xq − x)) + βx)
t

is a PP of Fqn if and only if
Tr(γ) 6= 0 and Tr(β) 6= 0.
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8.1.85 Theorem [3046] Let A be a finite field, S and S̄ be finite sets with #S = #S̄ such that the
maps ψ : A→ S and ψ̄ : A→ S̄ are surjective and ψ is additive, i.e., ψ̄(x+y) = ψ̄(x)+ψ̄(y),
for all x, y ∈ A. Let g : S → A and f : A→ A be maps such that ψ̄(f + g ◦ ψ) = f ◦ ψ and
ψ̄(g(ψ(x))) = 0 for every x ∈ A. Then the map f(x) + g(ψ(x)) permutes A if and only if f
permutes A.

8.1.86 Corollary [3046] Let n and k be positive integers such that (n, k) = d > 1, and let s be any

positive integer with s(qk−1) ≡ 0 (mod qn−1). Let L1(x) = a0x+a1x
qd+· · ·+an/d−1x

qn−d

be a polynomial with L1(1) = 0 and let L2 ∈ Fq[x] be a linearized polynomial and g ∈ Fqn [x].
Then f(x) = (g(L1(x)))s + L2(x) permutes Fqn if and only if L2 permutes Fqn .

8.1.87 Corollary [3046] Let n and k be positive integers such that (n, k) = d > 1, let s be any

positive integer with s(qk − 1) ≡ 0 (mod qn − 1). Then h(x) = (xq
k − x+ δ)s + x permutes

Fqn for any δ ∈ Fqn .

8.1.88 Remark More classes of PPs of the form (xq
k −x+ δ)s +L(x) and their generalization can

be found in [1061, 3058]. See [1481, 3043, 3044, 3057] for more classes of PPs of the form

(xp
k

+x+δ)s+L(x). One can also find several classes of PPs of the form xd+L(x) over F2n

in [1929, 2363, 2362]. It is proven in [1929] that, under the assumption gcd(d, 2n − 1) > 1,
if xd +L(x) is a PP of F2n then L must be a PP of F2n . Hence some of these classes of PPs
of the form xd + L(x) are compositional inverses of PPs of the form L1(x)d + x.

8.1.89 Remark See [872, 3045] for some explicit classes of PPs over F3m .

8.1.8 Dickson and reversed Dickson PPs

8.1.90 Remark The permutational behavior of Dickson polynomials of the first kind is simple and
classical; see Remark 8.1.5. For more information on Dickson polynomials, see Section 9.6.

8.1.91 Definition For any positive integer n, let En(x, a) be the Dickson polynomial of the second
kind (DPSK) defined by

En(x, a) =

bn/2c∑
i=0

(
n− i
i

)
(−a)ixn−2i.

8.1.92 Remark Matthews observed in his Ph.D. thesis [2034] that if q is a power of an odd prime
p and n satisfies the system of congruences

n+ 1 ≡ ±2 (mod p),
n+ 1 ≡ ±2 (mod 1

2 (q − 1)),
n+ 1 ≡ ±2 (mod 1

2 (q + 1)),
(8.1.4)

then En is a PP of Fq. However, the above is not a necessary condition in general. When
p = 3 or 5 and q is composite there are examples of DPSK En known which are PP for which
(8.1.4) does not hold, see [1592, 2175]. Moreover, there are several papers concentrating on
the permutational behavior of DPSK over finite fields with small characteristics including
characteristic two and general a which is not necessarily ±1 [733, 1482, 1483, 1484]. On the
other hand, when q = p or p2 and a = 1, Cipu and Cohen proved that the condition (8.1.4)
is also necessary [652, 653, 679, 680].
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8.1.93 Definition [1547] For any positive integer n, the reversed Dickson polynomial, Dn(a, x), is
defined by

Dn(a, x) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−x)ian−2i.

8.1.94 Remark It is easy to check that Dn(0, x) = 0 if n is odd and Dn(0, x) = 2(−x)k if n = 2k.
Hence Dn(0, x) is a PP of Fq if and only if q is odd, n = 2k, and (k, q − 1) = 1. For a 6= 0,
we can also check that Dn(a, x) = anDn(1, x/a2). Hence Dn(a, x) is a PP of Fq where a 6= 0
if and only if Dn(1, x) is a PP of Fq. If Dn(1, x) is a PP of Fq, then (q, n) is a desirable pair.

8.1.95 Definition A mapping f from Fq to Fq is almost perfect nonlinear (APN) if the difference
equation f(x+ a)− f(x) = b has at most two solutions for any fixed a 6= 0, b ∈ Fq.

8.1.96 Remark We refer to Section 9.2 for more information on APN functions and their applica-
tions.

8.1.97 Theorem [1547] Let q = pe with p a prime and e > 0. If p = 2 or p > 3 and n is odd, then
xn is an APN on Fq2 implies that Dn(1, x) is a PP of Fq, which also implies that xn is an
APN over Fq.

8.1.98 Theorem [1545] The pair (pe, n) is a desirable pair in each of the following cases:

p e n
2 2k + 1, (k, 2e) = 1 [1295, 1547]
2 22k − 2k + 1, (k, 2e) = 1 [1547, 1690]
2 even 2e + 2k + 1, k > 0, (k − 1, e) = 1 [1547]
2 5k 28k + x6k + 24k + 22k − 1 [906, 1547]
3 (3k + 1)/2, (k, 2e) = 1 [1547]
3 even 3e + 5 [1542]
5 (5k + 1)/2, (k, 2e) = 1 [1479]
≥ 3 pk + 1, k ≥ 0, pk ≡ 1 (mod 4), v2(e) ≤ v2(k) [1547]
≥ 3 pe + 2, k ≥ 0, pe ≡ 1 (mod 3) [1479, 1547]
≥ 5 3

8.1.99 Remark Two pairs (q, n1) and (q, n2), where n1 and n2 are positive integers, are equivalent
if n1 and n2 are in the same p-cyclotomic coset modulo q2 − 1, i.e., Dn1

(1, x) ≡ Dn2
(1, x)

(mod xq−x). No desirable pairs outside the ten families (up to equivalence) given in Theo-
rem 8.1.98 are known. There are several papers on necessary conditions for a reverse Dickson
polynomial to be a PP [1544, 1545]. In particular, it is proved in [1545] that (pe, n) is a
desirable pair if and only if fn(x) =

∑
j≥0

(
n
2j

)
xj is a PP of Fpe . However, it is not known

whether the above classes are the only non-equivalent desirable pairs. Several new classes
of reversed Dickson polynomials can be found in [1542, 1544].

8.1.100 Remark Dickson polynomials are used to prove the following class of PPs.

8.1.101 Theorem [1527] Let m ≥ 1 and 1 ≤ k, r ≤ m− 1 be positive integers satisfying that kr ≡ 1

(mod m). Let q = 2m, σ = 2k, and Tr(x) := x + x2 + · · · + x2m−1

. For α, γ in {0, 1}, we
define

Hα,γ(x) := γTr(x) +
(αTr(x) +

∑r−1
i=0 x

σi)σ+1

x2
.

Then Hα,γ(x) is a PP of F2m if and only if r + (α+ γ)m ≡ 1 (mod 2).
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8.1.9 Miscellaneous PPs

8.1.102 Remark Cyclic and Dickson PPs play a vital role in the Schur Conjecture from 1922
which postulated that if f is a polynomial with integer coefficients which is a PP of Fp
(when considered modulo p) for infinitely many primes p, then f must be a composition of
binomials axn+ b and Dickson polynomials. This has been shown to be true; see [1109], the
notes to Chapter 7 of [1939] and [2192]. A proof without the use of complex analysis can be
found in [2827]. More generally, a matrix analogue of the Schur conjecture was studied in
[2178]. Let Fm×mq denote the ring of m×m matrices over the finite field Fq. A polynomial
f ∈ Fq[x] is a permutation polynomial (PP) on Fm×mq if it gives rise to a permutation of
Fm×mq . Using a characterization of PPs of the matrix ring over finite fields Fq in [396], it is
shown by Mullen in [2178] that any polynomial f with integral coefficients which permutes
the matrices of fixed size over a field of p elements for infinitely many p is a composition of
linear polynomials and Dickson polynomials Dn(x, a) with n 6= 3 an odd prime and a 6= 0
an integer. Several related questions are also addressed in [2178]; see Section 9.7 for more
information on Schur’s conjecture.

8.1.103 Remark Let f be an integral polynomial of degree n ≥ 2. Cohen [676] proved one of
the Chowla and Zassenhaus conjectures [632] (concerning irreducible polynomials), which
postulated that if f is a PP over Fp of degree n modulo p for any p > (n2 − 3n+ 4)2, then
f(x) + cx is not a PP of Fp unless c = 0. This shows that if both f and g are integral PPs
of degree n ≥ 2 over a large prime field, then their difference h = f − q cannot be a linear
polynomial cx where c 6= 0. Suppose that t ≥ 1 denotes the degree of h. More generally, it
is proved in [699] that t ≥ 3n/5. Moreover, if n ≥ 5 and t ≤ n− 3 then (t, n) > 1. Roughly
speaking, two PPs over a large prime field Fp cannot differ by a polynomial with degree less
than 3n/5.

8.1.104 Remark Evans [998] considers orthomorphisms, mappings θ with θ(0) = 0 so that θ and
θ(x)−x are both PPs of Fq. He studies connections between orthomorphisms, latin squares,
and affine planes. A map θ is an orthomorphism if and only if θ(x)− x is a complete map-
ping. Complete mappings of small degrees and existence of complete mappings (in partic-
ular, binomials) are studied in [2268]. Enumeration results for certain types of cyclotomic
orthomorphisms are provided in [2278]. It is proved in [2268] for odd q and in [2904] for
even q that the degree of a complete mapping is at most q − 3. It is known that families of
permutation polynomials of the form f(x) + cx can be used in the construction of maximal
sets of mutually orthogonal Latin squares [997, 2918]. Let C(f) be the number of c in Fq
such that f(x) + cx is a permutation polynomial over Fq. Cohen’s theorem [676] on the
Chowla-Zassenhaus conjecture shows that C(f) ≤ 1 if the degree n of f is not divisible by
p and q is sufficiently large compared to n. Chou showed that C(f) ≤ q− 1−n in his thesis
[624]. Then Evans, Greene, and Niederreiter proved C(f) ≤ q − q−1

n−1 in [1016], which also
proves a conjecture of Stothers [2729] when q is prime. In the case that q is an odd prime,
it gives the best possible result C(f) ≤ (q− 3)/2 for polynomials of the form x(q+1)/2 + cx.
A general bound for C(f) which implies Chou’s bound was obtained by Wan, Mullen, and
Shiue in [2918], as well as a significant bound C(f) ≤ r where r is the least nonnegative
residue of q − 1 modulo n under certain mild conditions. It is conjectured in [1016] that
f(x)− f(0) is a linearized p-polynomial over Fq if C(f) ≥ bq/2c; this was proved to be true
for q = p or any monomial f(x) = xe in [1016]. Wan observed that this conjecture holds
also for q = p2 from the results in [624, 1016]. Several other related results on the function
C(f) can be found in [997, 2826, 2912].

8.1.105 Remark Results on the cycle structure of monomials and of Dickson polynomials can be
found in [44] and [1934], respectively. Cycle decomposition, in particular, decomposition of
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them into cycles of the same length (which are motivated by Turbo codes [2742, 2769]), are
studied in [44, 2152, 2296, 2495, 2496, 2519]. Moreover, we refer readers to [68, 575, 625] for
cycle structure of permutation polynomials with small Carlitz rank [575] or with full cycles.

8.1.106 Remark Finding the compositional inverse of a PP is a hard problem except for the triv-
ial well known classes such as the inverses of linear polynomial, monomials, and Dickson
polynomials. There are several papers on the explicit format of the inverses of some special
classes of permutation polynomials, for example, [727, 1817, 2205, 2206, 2942]. Because the
problem is equivalent to finding the inverses of PPs of the form xrf(xs), the most general
result can be found in [2941].

8.1.107 Remark PPs are related to special functions. For example, Dobbertin constructed several
classes of PPs [903, 904] over finite fields of even characteristic and used them to prove
several conjectures on APN monomials. The existence of APN permutations on F22n is a
long-term open problem in the study of vectorial Boolean functions. Hou [1541] proved that
there are no APN permutations over F24 and there are no APN permutations on F22n with
coefficients in F2n . Only recently the authors in [424] found the first APN permutation over
F26 . However, the existence of APN permutations on F22n for n ≥ 4 remains open. Over
finite fields of odd characteristics, a function f is a planar function if f(x + a) − f(x) is a
PP for each nonzero a; see Sections 9.2 and 9.5. In [874], Ding and Yuan constructed a new
family of planar functions over F3m , where m is odd, and then obtained the first examples
of skew Hadamard difference sets, which are inequivalent to classical Paley difference sets.
Permutation polynomials of F32h+1 obtained from the Ree-Tits slice symplectic spreads in
PG(3, 32h+1) were studied in [192]. Later on, they were used in [871] to construct a family
of skew Hadamard difference sets in the additive group of this field. For more information
on these special functions and their applications, we refer the readers to Sections 9.2, 9.5,
and 14.6.

8.1.108 Remark Golomb and Moreno [1305] show that PPs are useful in the construction of circular
Costas arrays, which are useful in sonar and radar communications. They gave an equivalent
conjecture for circular Costas arrays in terms of permutation polynomials and provided some
partial results. The connection between Costas arrays and APN permutations of integer
rings Zn was studied in [917]. Composed with discrete logarithms, permutation polynomials
of finite fields are used to produce permutations of integer rings Zn with optimum ambiguity
and deficiency [2353, 2355], which generate APN permutations in many cases. Earlier results
on PPs of Zn can be found in Section 5.6 of [870] and [2171, 2460, 3062].

See Also

§8.2 For discussion of PPs in several variables.
§8.3 For value sets of polynomials.
§8.4 For exceptional polynomials over finite fields.
§9.2 For discussion of PN and APN functions.
§9.5 For studies of planar functions.
§9.6 For Dickson polynomials over finite fields.
§9.7 For connections to Schur’s Conjecture.

[902] For connections with monomial graphs.
[2603] For connections with check digit systems.

References Cited: [44, 60, 61, 62, 63, 64, 65, 68, 192, 325, 396, 424, 504, 551, 569, 575, 593,
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595, 624, 625, 632, 652, 653, 667, 676, 677, 679, 680, 681, 688, 699, 727, 730, 733, 771, 840,
870, 871, 872, 874, 902, 903, 904, 906, 917, 997, 998, 1016, 1061, 1109, 1120, 1221, 1295,
1305, 1479, 1481, 1482, 1483, 1484, 1527, 1541, 1542, 1544, 1545, 1547, 1592, 1690, 1716,
1787, 1788, 1813, 1817, 1832, 1833, 1916, 1929, 1933, 1934, 1935, 1936, 1939, 1983, 1984,
1995, 1996, 1997, 2003, 2018, 2019, 2020, 2033, 2034, 2127, 2152, 2171, 2175, 2176, 2178,
2192, 2205, 2206, 2268, 2278, 2296, 2353, 2355, 2359, 2362, 2363, 2460, 2495, 2496, 2519,
2603, 2605, 2638, 2680, 2681, 2729, 2742, 2769, 2825, 2826, 2827, 2904, 2905, 2908, 2909,
2911, 2912, 2913, 2916, 2918, 2919, 2927, 2940, 2941, 2942, 2943, 2967, 3043, 3044, 3045,
3046, 3047, 3057, 3058, 3062, 3065, 3075, 3076, 3077]

8.2 Several variables

Rudolf Lidl, University of Tasmania

Gary L. Mullen, The Pennsylvania State University

8.2.1 Definition A polynomial f ∈ Fq[x1, . . . , xn] is a permutation polynomial in n variables
over Fq if the equation f(x1, . . . , xn) = α has exactly qn−1 solutions in Fnq for each
α ∈ Fq.

8.2.2 Remark A permutation polynomial f(x1, . . . , xn) induces a mapping from Fqn to Fq but
does not induce a 1− 1 mapping unless n = 1.

8.2.3 Remark [2172] A combinatorial computation shows that there are (qn)!/((qn−1)!)q permu-
tation polynomials in n variables over Fq.

8.2.4 Definition A set of polynomials fi(x1, . . . , xn) ∈ Fq[x1, . . . , xn], 1 ≤ i ≤ r, forms an
orthogonal system in n variables over Fq if the system of equations fi(x1, . . . , xn) = αi,
1 ≤ i ≤ r, has exactly qn−r solutions in Fnq for each (α1, . . . , αr) ∈ Frq.

8.2.5 Theorem [2228] For every orthogonal system f1, . . . , fm ∈ Fq[x1, . . . , xn], 1 ≤ m < n,
over Fq and every r, 1 ≤ r ≤ n − m, there exist fm+1, . . . , fm+r ∈ Fq[x1, . . . , xn] so that
f1, . . . , fm+r forms an orthogonal system over Fq.

8.2.6 Theorem [542] The system f1, . . . , fm, 1 ≤ m ≤ n, is orthogonal over Fq if and only if∑
(c1,...,cn)∈Fnq

χb1(f1(c1, . . . , cn)) · · ·χbm(fm(c1, . . . , cn)) = 0

for all additive characters χb1 , . . . , χbm of Fq with (b1, . . . , bm) 6= (0, . . . , 0).

8.2.7 Corollary [542] A polynomial f ∈ Fq[x1, . . . , xn] is a permutation polynomial over Fq if and
only if ∑

(c1,...,cn)∈Fnq

χ(f(c1, . . . , cn)) = 0

for all nontrivial additive characters χ of Fq.

8.2.8 Theorem [2228] A set of polynomials f1, . . . , fr in n variables over Fq forms an orthogonal
system over Fq if and only if the polynomial b1f1 + · · ·+ brfr is a permutation polynomial
for each (b1, . . . , br) 6= (0, . . . , 0) ∈ Frq.
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8.2.9 Theorem [1937] Suppose f ∈ Fq[x1, . . . , xn] is of the form

f(x1, . . . , xn) = g(x1, . . . , xm) + h(xm+1, . . . , xn), 1 ≤ m < n.

If at least one of g and h is a permutation polynomial over Fq then f is a permutation
polynomial over Fq. If q is prime, then the converse holds.

8.2.10 Theorem [2032] Let f1, . . . , ft be polynomials in disjoint sets of variables, where fi is a
polynomial in vi variables, i = 1, . . . , t. Then f1 + · · ·+ ft is a permutation polynomial over
Fq, q = pe, if and only if, for every subgroup H of the additive group G of Fq of order pe−1,
there is an fi which distributes Fviq uniformly over the cosets of H in G.

8.2.11 Theorem [1937] If q is not prime then for 1 ≤ m < n there exist polynomials g(x1, . . . , xm)
and h(xm+1, . . . , xn) over Fq such that g(x1, . . . , xm) + h(xm+1, . . . , xn) is a permutation
polynomial over Fq but neither g(x1, . . . , xm) nor h(xm+1, . . . , xn) is a permutation poly-
nomial over Fq.

8.2.12 Theorem [2228] If n = mk for positive integers n,m, k, there is a 1-1 correspondence
between orthogonal systems over Fq consisting of m polynomials over Fq of degree less than
q in each of their n variables and permutation polynomials over Fqm of degree less than qm

in each of their k variables.

8.2.13 Corollary [2228] There is a 1-1 correspondence between orthogonal systems over Fq con-
sisting of n polynomials over Fq of degree less than q in each of their n variables and
permutation polynomials in one variable over Fqn of degree less than qn.

8.2.14 Remark Dickson permutation polynomials are studied in Section 8.1 and in Section 9.6
where results related to them in both one as well as several variables are provided.

8.2.15 Theorem [1940]

1. For a ∈ F∗q the system gk(a) (see Definition 9.6.51) is orthogonal over Fq if and
only if (k, qs − 1) = 1 for s = 1, . . . , n+ 1.

2. The system gk(0) is orthogonal if and only if (k, qs − 1) = 1 for s = 1, . . . , n.

8.2.16 Definition Two polynomials are equivalent if one can be transformed into the other by a
transformation of the form xi =

∑n
j=1 aijyj + bi, 1 ≤ i ≤ n, where aij , bi ∈ Fq and the

matrix (aij) is nonsingular.

8.2.17 Theorem [2227] Let f ∈ Fq[x1, . . . , xn] with the degree of f at most two and n ≥ 2. For q
odd, f is a permutation polynomial over Fq if and only if f is equivalent to a polynomial
of the form g(x1, . . . , xn−1) + xn for some g. For q even, f is a permutation polynomial
over Fq if and only if f is equivalent to a polynomial of the form g(x1, . . . , xn−1) + xn or
g(x1, . . . , xn−1) + x2

n.

8.2.18 Theorem [2174] If q is odd and n ≥ 2, then f(x1, . . . , xn) of degree at most two is a non-
singular feedback function if and only if f(x1, . . . , xn) = cx1 + f0(x2, . . . , xn), c ∈ Fq where
f0(x2, . . . xn) is any polynomial in the variables x2, . . . , xn of degree at most two over Fq.

8.2.19 Remark Niederreiter [2229] provides criteria for quadratic polynomials over Z to be per-
mutation polynomials modulo p, i.e., permutation polynomials over Fp, that involve the
rank of a matrix of coefficients. A result similar to Theorem 8.2.18 is obtained in [2174] for
q even; see the corresponding result for quadratic forms in Theorem 8.2.17. These results
provide an application of several variable permutation polynomials.

8.2.20 Remark [2736] Results are given on permutation polynomials in several variables over a
finite field and orthogonal systems of polynomials whose image spaces are allowed to be
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arbitrary subfields of the finite field. The results developed in this paper are used to con-
struct additional complete sets of frequency squares, rectangles and hyperrectangles, and
orthogonal arrays. Some of the theorems present a relationship between permutation poly-
nomials of a finite field and field permutation functions, an implicit bound on the possible
number of functions in an orthogonal field system, and results related to the generation of
orthogonal field systems.

8.2.21 Remark For finite rings there are two concepts to distinguish: permutation polynomials
(as above) and strong permutation polynomials. The latter are defined via the cardinality
of the inverse image. Polynomials are strong permutation polynomials (or strong orthogonal
systems) in n variables if they can be completed to an orthogonal system of n polynomials
in n variables.

8.2.22 Theorem [1132] If R is a local ring whose maximal ideal has a minimal number m of
generators, then for every n > m there exists a permutation polynomial in n variables that
is not a strong permutation polynomial.

8.2.23 Corollary [1132] Every permutation polynomial in any number of variables over a local
ring R is strong if and only if R is a finite field.

8.2.24 Remark Wei and Zhang showed [2957] that if n ≤ m in the setting of Theorem 8.2.22, then
every orthogonal system of k polynomials in n variables can be completed to an orthogonal
system of n polynomials (and in particular, every permutation polynomial is strong).

See Also

§9.4 Considers κ-polynomials used for constructions of semifields.
§14.1 Discusses orthogonal latin squares and hypercubes.

[1939] Section 7.5 discusses permutations and orthogonal systems in several variables.
[2188] Considers bounds for value sets of polynomial vectors in several variables.
[2326] Considers an application of permutation polynomials and orthogonal systems

to pseudorandom number generation.
[3062] Considers permutation polynomials over finite commutative rings.

References Cited: [542, 1132, 1937, 1939, 1940, 2032, 2172, 2174, 2227, 2228, 2229, 2326,
2736, 2957, 3062]

8.3 Value sets of polynomials

Gary L. Mullen, The Pennsylvania State University

Michael E. Zieve, University of Michigan

8.3.1 Definition For f ∈ Fq[x], the value set of f is the set Vf = {f(a)|a ∈ Fq}; the cardinality
of Vf is denoted by #Vf .
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8.3.2 Remark Every subset of Fq occurs as Vf for some f ∈ Fq[x] of degree at most q− 1 (by the
Lagrange Interpolation Formula); see Theorem 2.1.131.

8.3.1 Large value sets

8.3.3 Remark Any f ∈ Fq[x] satisfies #Vf ≤ q; equality occurs precisely when f is a permutation
polynomial; see Section 8.1.

8.3.4 Theorem Suppose f ∈ Fq[x] of degree n is not a permutation polynomial. Then:

1. [2826, 2911, 2982] #Vf ≤ q − d(q − 1)/ne.
2. [1086, 1367, 1368] If #Vf 6= (1−1/n)q and n > 5 then #Vf ≤ (1−2/n)q+On(

√
q).

3. [1367] If gcd(n, q) = 1 then #Vf ≤ (5/6)q +On(
√
q).

8.3.5 Example [760] Let q = rk where r is a prime power and k is a positive integer. Then
f(x) := xr + xr−1 satisfies #Vf = q − q/r, and hence achieves equality in (1).

8.3.2 Small value sets

8.3.6 Remark If f ∈ Fq[x] has degree n, then #Vf ≥ dq/ne (since each α ∈ Fq has at most n
preimages under f).

8.3.7 Definition A polynomial f ∈ Fq[x] of degree n is a minimal value set polynomial if
#Vf = dq/ne.

8.3.8 Theorem [549] Let f ∈ Fp[x] have degree n, where p is prime. If n < p and #Vf = dp/ne ≥ 3,
then n divides p− 1 and f(x) = a(x+ b)n + c with a, b, c ∈ Fp.

8.3.9 Theorem [2105] Let f ∈ Fq[x] be monic of degree n, where gcd(n, q) = 1 and n ≤ √q. If
#Vf = dq/ne, then n divides q − 1 and f(x) = (x+ b)n + c with b, c ∈ Fq.

8.3.10 Problem Determine all minimal value set polynomials over Fpk . This is done for k ≤ 2 in
[2105].

8.3.11 Remark Minimal value set polynomials whose values form a subfield are characterized in
[351]. A connection between minimal value set polynomials and Frobenius non-classical
curves is given in [350].

8.3.12 Theorem [628, 1308] If f(x) ∈ Fq[x] is monic of degree n > 15, where n4 < q and
#Vf < 2q/n, then f(x) has one of the forms:

1. (x+ a)n + b, where n | (q − 1);

2. ((x+ a)n/2 + b)2 + c, where n | (q2 − 1);

3. ((x+ a)2 + b)n/2 + c, where n | (q2 − 1).

8.3.13 Theorem [289] Let f ∈ Fp[x] have degree less than 3
4 (p−1), where p is prime. If #f(F∗p) = 2

then f is a polynomial in x(p−1)/d for some d ∈ {2, 3}.
8.3.14 Remark This result indicates that some phenomena become apparent only when one con-

siders #f(F∗p) rather than #Vf .
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8.3.3 General polynomials

8.3.15 Theorem [285, 2981] Fix n, and let en :=
∑n
j=1(−1)j−1/j!. There is a constant an such

that, for each q, there are qn+On(qn−1) monic polynomials f ∈ Fq[x] of degree n satisfying
|#Vf − enq| ≤ an√q.

8.3.16 Remark The previous result says that if q is large compared to n then most polynomials
over Fq of degree n take approximately enq values. Note that en → 1− 1/e as n→∞.

8.3.17 Theorem [667] For fixed n, there is a finite set Tn of rational numbers such that: for any q,
and any f ∈ Fq[x] of degree n, there is an element cf ∈ Tn such that #Vf = cfq+On(

√
q).

8.3.18 Remark The set Tn may be chosen to be {a/n! : (n− 1)! ≤ a ≤ n!}.
8.3.19 Remark For fixed n, if q is large and f ∈ Fq[x] has degree n, then #Vf/q lies in a tiny

interval around a member of a finite set; crucially, this finite set depends only on n, and
not on q.

8.3.20 Theorem [667] Let f ∈ Fq[x] have degree n, and write f = g(xp
j

) where j ≥ 0 and
g ∈ Fq[x] \ Fq[xp]; here p is the characteristic of Fq. Let t be transcendental over Fq, and
let A and G be the Galois groups of g(x) − t over Fq(t) and F̄q(t), respectively, where F̄q
denotes an algebraic closure of Fq. Then G is a normal subgroup of A, and A/G is cyclic.
The quantity cf in Theorem 8.3.17 may be taken to be the proportion of elements in a
generating coset of A/G which fix at least one of the roots of g(x)− t.

8.3.21 Example Let f ∈ Fq[x] have degree n.

1. If n = 2 then #Vf ∈ {q/2, (q + 1)/2, q}.
2. If n = 3 then #Vf ∈ {q/3, (q + 2)/3, (2q − 1)/3, 2q/3, (2q + 1)/3, q}.
3. [2043] If n = 4 and q is an odd prime then #Vf is either (q + 3)/4, (q + 1)/2,

(3q + 4 + i)/8 with ±i ∈ {1, 3, 5}, or 5q/8 +O(
√
q).

8.3.4 Lower bounds

8.3.22 Theorem [2919] If µq(f) is the smallest positive integer i so that
∑
a∈Fq (f(a))i 6= 0, then

#Vf ≥ µq(f) + 1.

8.3.23 Remark Assume that for a polynomial f the degree n of f satisfies n < q − 1. Write
(f(x))i =

∑q−1
j=0 aij mod (xq−x). Let Af be the matrix Af = (aq−1

ij ), for 1 ≤ i, j ≤ q− 1 so

that the (i, j)-th entry of Af is 1 if the coefficient of xj in (f(x))i mod (xq − x) is nonzero.
If f is not the zero polynomial, then Af has at least one nonzero column. If the j-th column
of Af consists entirely of 0s or entirely of 1s, set lj = 0. Otherwise, for a nonzero j-th
column of Af , arrange the entries in a circle and define lj to be the maximum number of
consecutive zeros appearing in this circular arrangement. Let Lf be the maximum of the
values of lj , where the maximum is taken over all of the q − 1 columns of the matrix Af .

8.3.24 Theorem [774] With notation as above, |Vf | ≥ Lf + 2.

8.3.25 Remark [630] If f is a polynomial over Fq and A
′

f is the matrix from Remark 8.3.23 without

the (q − 1)-st powers, i.e., the matrix A
′

f = (aij), then #Vf = 1 + rank(A
′

f ).

8.3.26 Corollary Since |Vf | ≥ lq−1 + 2, we have the result of Theorem 2.1 of [2919].

8.3.27 Remark The Hermite/Dickson criterion from Section 8.1 is essentially equivalent to the
first q − 2 consecutive elements of the last column of the matrix Af being 0, with the last
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element being 1. Thus f is a permutation polynomial if and only if Lf = q − 2.

8.3.28 Remark See [2826] for further inequalities.

8.3.5 Examples

8.3.29 Theorem #Vxn = 1 + (q − 1)/(n, q − 1).

8.3.30 Definition The Dickson polynomial of degree n and parameter a ∈ Fq is defined by

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i.

8.3.31 Remark See Section 9.6 for a discussion of Dickson polynomials over Fq.

8.3.32 Theorem [628] Suppose q is odd with 2r || (q2 − 1). Then for each n ≥ 1, and each a ∈ F∗q ,

#VDn(x,a) =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α,

where α = 1 if 2r−1 || n; α = 1/2 if 2t || n and 1 ≤ t ≤ r − 2; α = 0 otherwise. Here η
denotes the quadratic character defined by η(0) = 0, η(a) = 1 if a is a square in Fq and
η(a) = −1 if a is a nonsquare in Fq.

8.3.33 Remark If (n1, q
2 − 1) = (n2, q

2 − 1), then #VDn1
(x,a) = #VDn2

(x,a).

8.3.34 Theorem [628] Suppose q is even. Then for each n ≥ 1, and each a ∈ F∗q ,

#VDn(x,a) =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)

8.3.35 Remark For further examples, see for instance [757, 758].

8.3.6 Further value set papers

8.3.36 Remark There are many other papers describing results concerning value sets of polynomi-
als over finite fields; however, for lack of space, we are unable to precisely state them. Pages
379-381 of [1939] provide a wealth of descriptions of older papers dealing with value sets;
pages 388-389 of [1939] provide summaries of value set results for polynomials in several
variables. The paper [2826] presents the state of knowledge about value sets as of 1995.

8.3.37 Remark Since the publication of [1939], in [772] are given formulas for the number of
polynomials of degree q − 1 with a value set of cardinality k. Paper [773] describes values
sets of diagonal equations over finite fields by giving a new proof of the Cauchy-Davenport
theorem. See [757] and [758] for a discussion of polynomials over F2n which take on each
nonzero value only a small number of times (at most six).

8.3.38 Remark Paper [1222] shows that if f is not a permutation polynomial over Fq and q ≥ n4,
then #Vf < q − q/(2n), while [760] shows that by using the polynomial (x + 1)xq−1,
Wan’s bound is sharp for every extension of the base field. The paper [57] discusses results
concerning the size of the intersection of the value sets of two nonconstant polynomials and
[1458] discusses lower bounds for the size of the value set for the polynomial (xm + b)n

improving the bound given in [1307]. Paper [2746] discusses cardinalities of value sets for
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diagonal kinds of polynomials in several variables where the preimage points come from
subsets of the field rather than the entire field.

See Also

§8.1 Discusses permutation polynomials in one variable.
§8.2 Discusses permutation polynomials in several variables.
§8.4 Considers exceptional polynomials.

[629] Considers polynomials whose value sets lie in a subfield.
[734] Studies value sets as they relate to Dembowski-Ostrom and planar polynomials.
[2188] Considers bounds for value sets of polynomial vectors in several variables.

References Cited: [57, 285, 289, 350, 351, 549, 628, 629, 630, 667, 734, 757, 758, 760, 772,
773, 774, 1086, 1222, 1307, 1308, 1367, 1368, 1458, 1939, 2043, 2105, 2188, 2746, 2826, 2911,
2919, 2981, 2982]

8.4 Exceptional polynomials

Michael E. Zieve, University of Michigan

8.4.1 Fundamental properties

8.4.1 Definition An exceptional polynomial over Fq is a polynomial f ∈ Fq[x] which is a permu-
tation polynomial on Fqm for infinitely many m.

8.4.2 Remark If f ∈ Fq[x] is exceptional over Fqk for some k, then f is exceptional over Fq.

8.4.3 Definition A polynomial F (x, y) ∈ Fq[x, y] is absolutely irreducible if it is irreducible in
F̄q[x, y], where F̄q is an algebraic closure of Fq.

8.4.4 Theorem [667] A polynomial f ∈ Fq[x] is exceptional over Fq if and only if every absolutely
irreducible factor of f(x)− f(y) in Fq[x, y] is a constant times x− y.

8.4.5 Corollary If f ∈ Fq[x] is exceptional, then there are integers 1 < e1 < e2 < · · · < ek such
that: f is exceptional over Fqn if and only if n is not divisible by any ei.

8.4.6 Corollary If f ∈ Fq[x] is exceptional, then there is an integer M > 1 such that f permutes
each field Fqm for which m is coprime to M .

8.4.7 Corollary For g, h ∈ Fq[x], the composition g ◦ h is exceptional if and only if both g and h
are exceptional.
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8.4.8 Definition A polynomial f ∈ Fq[x] is indecomposable if it cannot be written as the com-
position f = g ◦ h of two nonlinear polynomials g, h ∈ Fq[x].

8.4.9 Corollary A polynomial f ∈ Fq[x] is exceptional if and only if it is the composition of
indecomposable exceptional polynomials.

8.4.2 Indecomposable exceptional polynomials

8.4.10 Theorem [1120] Let f be an indecomposable exceptional polynomial over Fq of degree n,
and let p be the characteristic of Fq. Then either

1. n is coprime to p, or

2. n is a power of p, or

3. n = pr(pr−1)
2 where r > 1 is odd and p ∈ {2, 3}.

8.4.11 Theorem [1755, 2192] The indecomposable exceptional polynomials over Fq of degree co-
prime to q are precisely the polynomials of the form `1 ◦f ◦ `2 where `1, `2 ∈ Fq[x] are linear
and either

1. f(x) = ax+ b with a ∈ F∗q and b ∈ Fq, or

2. f(x) = xn where n is a prime which does not divide q − 1, or

3. f(x) = Dn(x, a) (a Dickson polynomial) where a ∈ F∗q and n is a prime which
does not divide q2 − 1.

8.4.12 Theorem [1372, 1374] The indecomposable exceptional polynomials over Fq of degree
s(s− 1)/2, where s = pr > 3 and q = pm with p prime, are precisely the polynomials
of the form `1 ◦ f ◦ `2 where `1, `2 ∈ Fq[x] are linear, r > 1 is coprime to 2m, and f is one
of the following polynomials:

1. x−s T (axe)(s+1)/e where p = 2, T (x) = xs/2 + xs/4 + · · · + x, e | (s + 1), and
a ∈ F∗q ,

2.

(
T (x) + a

x

)s
·
(
T (x) +

T (x) + a

a+ 1
· T
( x(a2 + a)

(T (x) + a)2

))
where p = 2, a ∈ Fq \ F2,

and T (x) = xs/2 + xs/4 + · · ·+ x,

3. x(x2e − a)(s+1)/(4e)

(
(x2e − a)(s−1)/2 + a(s−1)/2

x2e

)(s+1)/(2e)

where p = 3, e
∣∣ s+1

4 ,

and a ∈ F∗q is an element whose image in F∗q/(F∗q)2e has even order.

8.4.13 Remark The proofs of Theorems 8.4.10 and 8.4.12 rely on the classification of finite simple
groups.

8.4.14 Theorem [1120, 1755] For prime p, the degree-p exceptional polynomials over Fpm are pre-
cisely the polynomials `1◦f ◦`2 where `1, `2 ∈ Fpm [x] are linear and f(x) = x(x(p−1)/r − a)r

with r | (p− 1) and a ∈ Fpm such that ar(p
m−1)/(p−1) 6= 1.

8.4.15 Proposition [674, 840] Let L be a linearized polynomial (i.e., L(x) =
∑d
i=0 aix

pi with
ai ∈ Fpm), and let S(x) = xjH(x)k where H ∈ Fpm [x] satisfies L(x) = xjH(xk). Then S is
exceptional over Fpm if and only if S has no nonzero roots in Fpm .



238 Handbook of Finite Fields

8.4.16 Proposition [1369] Let s = pr where p is an odd prime. If a ∈ Fpm is not an (s − 1)-th
power, then

(xs − ax− a) · (xs − ax+ a)s +
(

(xs − ax+ a)2 + 4a2x
)(s+1)/2

2xs

is an indecomposable exceptional polynomial over Fpm .

8.4.17 Proposition [1371] Let s = 2r. If a ∈ F2m is not an (s− 1)-th power, then

(xs + ax+ a)s+1

xs
·
(

xs + ax

xs + ax+ a
+ T

(
a2x

(xs + ax+ a)2

))
is an indecomposable exceptional polynomial over F2m , where T (x) = xs/2 + xs/4 + · · ·+ x.

8.4.18 Remark The previous three Propositions describe all known indecomposable exceptional
polynomials over Fpm of degree pr with r > 0, up to composing on both sides with linear
polynomials. It is expected that there are no further examples. Theorem 8.4.14 shows this
when r = 1, and [1371, 2126] show it under different hypotheses.

8.4.3 Exceptional polynomials and permutation polynomials

8.4.19 Theorem A permutation polynomial over Fq of degree at most q1/4 is exceptional over Fq.

8.4.20 Remark A weaker version of Theorem 8.4.19 was proved in [777]; the stated result is
obtained from the same proof by using the fact that an absolutely irreducible degree-d
bivariate polynomial over Fq has at least q + 1 − (d − 1)(d − 2)

√
q roots in Fq × Fq. For

proofs of this estimate, see [145, 1122, 1886]. A stronger (but false) version of this estimate
was stated in [1939], and [1222] deduced Theorem 8.4.19 from this false estimate. Finally,
[145] states a stronger version of Theorem 8.4.19, but the proof is flawed and when fixed it
yields Theorem 8.4.19.

8.4.21 Remark Up to composing with linears on both sides, the only known non-exceptional

permutation polynomials over Fq of degree less than
√
q are x10 +3x over F343 and (x+1)N+1

x
over F24r−1 , where r ≥ 3 and N = (4r + 2)/3.

8.4.22 Remark Heuristics predict that “at random” there would be no permutation polynomials
over Fq of degree less than q

2 log q .

8.4.23 Remark There are no known examples of non-exceptional permutation polynomials over
Fq of degree less than q

2 log q when q is prime.

8.4.24 Remark Nearly all known examples of permutation polynomials over Fq of degree less than
q

2 log q can be written as the restriction to Fq of a permutation π of an infinite algebraic

extension K of Fq, where π is induced by a rational function in the symbols σi(x), with σ
being a fixed automorphism of K. Such a permutation π may be viewed as an exceptional
rational function over the difference field (K,σ); see [703, 1912, 1913].

8.4.4 Miscellany

8.4.25 Theorem [543, 3074] Every permutation of Fq is induced by an exceptional polynomial.

8.4.26 Theorem [688, 1369, 1898] Exceptional polynomials over Fq have degree coprime to q − 1.
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8.4.27 Remark Theorem 8.4.26 is called the Carlitz–Wan conjecture. It follows from Theo-
rems 8.4.10, 8.4.11, and 8.4.12. However, the known proofs of Theorems 8.4.10 and 8.4.12
rely on the classification of finite simple groups, whereas [688, 1369, 1898] present short
self-contained proofs of Theorem 8.4.26.

8.4.28 Theorem If f ∈ Z[x] is a permutation polynomial over Fp for infinitely many primes p,
then f is the composition of linear and Dickson polynomials.

8.4.29 Remark Theorem 8.4.28 was proved in [2563] when f has prime degree. It was shown in
[2192] (confirming an assertion in [2563]) that the full Theorem 8.4.28 follows quickly from
the main lemma in [2563] together with a group-theoretic result from [2564]. A different
proof of Theorem 8.4.28 appears in [1109, 1936, 2827], which combines this group-theoretic
result with Weil’s bound on the number of Fq-rational points on a genus-g curve over Fq.

8.4.30 Remark Theorem 8.4.28 is called the Schur conjecture, although Schur did not pose this
conjecture. The paper [1109] made the incorrect assertion that Schur had conjectured The-
orem 8.4.28 in [2563], and this assertion has become widely accepted despite its falsehood.

8.4.31 Remark The concept of exceptionality can be extended to rational functions or more general
maps between varieties [1373]. In particular, many exceptional rational functions arise as
coordinate projections of isogenies of elliptic curves [1115, 1370, 2193].

8.4.5 Applications

8.4.32 Remark Exceptional polynomials were used in [2785] to produce families of hyperelliptic
curves whose Jacobians have an unusually large endomorphism ring. These curves were
used in [770] to realize certain groups PSL2(q) as Galois groups of extensions of certain
cyclotomic fields.

8.4.33 Remark Exceptional polynomials were used in [516, 2341] to produce curves whose Jacobian
is isogenous to a power of an elliptic curve, and in particular to produce maximal curves
(see Section 12.5).

8.4.34 Lemma [862] We have (x+ 1)N + xN + 1 = f(x2 + x) in F2[x], where N = 4r − 2r + 1 and

f(x) = T (x)2r+1/x2r with T (x) = x2r−1

+x2r−2

+ · · ·+x. This polynomial f(x) is obtained
from case 1 of Theorem 8.4.12 by putting a = 1 and e = 1.

8.4.35 Remark This result (together with exceptionality of f) has been used to produce new
examples of binary sequences with ideal autocorrelation [862], cyclic difference sets with
Singer parameters [864], almost perfect nonlinear functions [863], and bent functions [864,
3012]. See Sections 10.3, 14.6, 9.2, and 9.3, respectively.

8.4.36 Remark For further results about the polynomials f from Lemma 8.4.34, including formulas
for a polynomial inducing the inverse of the permutation induced by f on F2m , see [905].
These polynomials are shown to be exceptional in [696, 697, 864, 905, 3073].

8.4.37 Remark The polynomials in cases 1 and 3 of Theorem 8.4.12 have been used to produce
branched coverings of the projective line in positive characteristic whose Galois group is
either symplectic [9] or orthogonal [8].
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See Also

§8.1 For discussion of permutation polynomials in one variable.
§8.3 For value sets of polynomials.

[58], [1368] For Davenport pairs, which are pairs (f, g) of polynomials in Fq[x]
such that f(Fqm) = g(Fqm) for infinitely many m. This notion
generalizes exceptionality, since f ∈ Fq[x] is exceptional if and
only if (f, x) is a Davenport pair.

[696], [697], [3073] For the factorization of f(x)− f(y) where f(x) is a polynomial
from case 1 or 3 of Theorem 8.4.12.

[696], [1900], [2190] For the discovery of some of the polynomials in Theorem 8.4.12.
[840] For a thorough study of exceptional polynomials using only the

Hermite–Dickson criterion, and the discovery of the polynomials
in Theorem 8.4.11 and Proposition 8.4.15.
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9.1.1 Definition Let n be a positive integer.

1. An n-variable Boolean function (or Boolean function in dimension n) is a func-
tion defined over the vector space Fn2 and valued in F2. Notation: f(x), where
x = (x1, . . . , xn) ∈ Fn2 .

2. The domain Fn2 can be endowed with the structure of the field F2n . Same no-
tation: f(x), where x ∈ F2n .

9.1.2 Remark In this section, we study single-output Boolean functions. Multi-output (or vecto-
rial) Boolean functions are studied in Section 9.2.

9.1.3 Remark Endowing Fn2 with the structure of F2n allows taking advantage of the field struc-
ture for designing Boolean functions (this is more true for multi-output Boolean functions,
however, see Section 9.2), despite the fact that the important parameters in applications
are more related to the vector space structure of Fn2 than to the field structure of F2n .

9.1.4 Remark We emphasize that in all the definitions and propositions of this section, “x ∈ Fn2 ”
can be replaced by “x ∈ F2n ,” except when the coordinates of x are specifically involved or
when the Hamming weight of x plays a role.

9.1.1 Representation of Boolean functions

9.1.5 Remark The simplest way of representing a Boolean function is its truth table. But this
representation gives little insight on the function. Another well-known way is with the
disjunctive and conjunctive normal forms. But these representations, which do not allow
uniqueness, are not well adapted to coding, cryptography, and sequences for communica-
tions, which are main applications of Boolean functions.

9.1.1.1 Algebraic normal form

9.1.6 Proposition Every n-variable Boolean function f can be represented by a multivariate
polynomial (i.e., is a polynomial mapping) over F2 of the form

f(x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
∈ F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn). (9.1.1)

This representation is unique.

9.1.7 Remark The sum in (9.1.1) is in F2. Every coordinate xi appears in this polynomial with
exponents at most 1 (more precisely, we consider the polynomial f modulo the ideal gener-
ated by x2

1 +x1, . . . , x
2
n +xn) because xi represents a bit and every bit in F2 equals its own

square.

9.1.8 Definition Representation (9.1.1) is the algebraic normal form of f (in brief, ANF). The
terms

∏
i∈I xi are monomials.

9.1.9 Remark The ANF can also be represented in the form

f(x) =
∑
u∈Fn2

au

 n∏
j=1

xj
uj

 =
∑
u∈Fn2

aux
u, (9.1.2)
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with the convention 00 = 1.

9.1.10 Example The 3-variable function f(x) = x1x2x3 +x1x3 +x2 +1 = x111 +x101 +x010 +x000

takes at input (1, 0, 1), for instance, the value 0 + 1 + 0 + 1 = 0.

9.1.11 Proposition Let the Boolean function f be given by (9.1.1) or equivalently by (9.1.2). We
have

f(x) =
∑

I⊆supp(x)

aI =
∑
u�x

au, (9.1.3)

where supp(x) denotes the support {i ∈ {1, . . . , n} |xi = 1} of x and u � x means that
supp(u) ⊆ supp(x). Conversely, for every I ⊆ {1, . . . , n}, respectively, u ∈ Fn2

aI =
∑

x∈Fn2 | supp(x)⊆I

f(x), respectively, au =
∑

x∈Fn2 | x�u

f(x). (9.1.4)

9.1.12 Remark The transform giving the expression of the coefficients of the ANF by means of
the values of f , and vice versa, is the binary Möbius transform.

9.1.13 Remark Proposition 9.1.11 results in an algorithm for calculating the ANF from the truth
table of the function and vice versa, with complexity O(n2n) (so, a little higher than linear,
since the size of the input f is 2n), see for example [523].

9.1.14 Remark A multivariate representation similar to the ANF but over Z also exists, called
numerical normal form, with similar formulas involving the Möbius transform over Z
[530],[523, Section 8.2.1].

9.1.1.2 Trace representation

9.1.15 Proposition [1303] Let Fn2 be identified with F2n and let f be an n-variable Boolean function
of even weight (i.e., of algebraic degree at most n−1). There exists a unique representation
of f as a univariate polynomial mapping of the form

f(x) =
∑
j∈Γn

TrF
2o(j)

/F2
(Ajx

j), x ∈ F2n , (9.1.5)

where Γn is the set of integers obtained by choosing one element in each cyclotomic coset
of 2 (mod 2n − 1), o(j) is the size of the cyclotomic coset containing j, Aj ∈ F2o(j) and
TrF

2o(j)
/F2

is the trace function from F2o(j) to F2.

9.1.16 Remark The Aj ’s can be calculated by using the Mattson-Solomon polynomial [523, 1992].

9.1.17 Definition Representation (9.1.5) is the trace representation (or univariate representation)
of f .

9.1.18 Example Let n be even. Then we can define the function f(x) = TrF2n/F2
(x3) +

TrF
2n/2

/F2
(x2n/2+1).

9.1.19 Remark Any Boolean function f can be simply represented in the form TrF2n/F2
(P (x))

where P is a polynomial over F2n , but there is no uniqueness of such a representation,
unless o(j) = n for every j such that Aj 6= 0.



244 Handbook of Finite Fields

9.1.2 The Walsh transform

9.1.20 Definition The Walsh transform Wf of an n-variable Boolean function f is the discrete
Fourier transform (or Hadamard transform) of the sign function (−1)f(x). Given an
inner product x · y in Fn2 (for instance x · y =

∑n
i=1 xiyi over Fn2 , or x · y = TrF2n/F2

(xy)
over F2n), the value of the Walsh transform of f at u ∈ Fn2 is given by:

Wf (u) =
∑
x∈Fn2

(−1)f(x)+x·u,

where the sum is over the integers. The set {u ∈ Fn2 |Wf (u) 6= 0} is the Walsh support
of f .

9.1.21 Remark There exists also a normalized version, in which the value Wf (u) above is divided
by
√

2n, which simplifies the inverse Walsh transform formula (see below) but gives a non-
integer value.

9.1.22 Remark There exists an algorithm for calculating the Walsh transform whose complexity
is O(n2n), see for example [523]. A more general definition and an example are given in
Section 9.3.

9.1.23 Proposition (Inverse Walsh transform) [1992], [523, Section 8.2.2] For every x ∈ Fn2 and
every n-variable Boolean function f , we have∑

u∈Fn2

Wf (u)(−1)u·x = 2n(−1)f(x).

9.1.24 Proposition (Parseval’s relation) [1992], [523, Section 8.2.2] For every n-variable Boolean
function f , we have ∑

u∈Fn2

W 2
f (u) = 22n.

9.1.25 Proposition (Poisson summation formula) [523, Section 8.2.2] For every n-variable Boolean
function f , for every vector subspace E of Fn2 , and for all elements a and b of Fn2 , we have∑

u∈a+E⊥

(−1)b·uWf (u) = |E⊥| (−1)a·b
∑

x∈b+E

(−1)f(x)+a·x,

where E⊥ is the orthogonal subspace of E (that is, E⊥ = {u ∈ Fn2 |u ·x = 0, for all x ∈ E})
and |E⊥| denotes the cardinality of E⊥.

9.1.26 Proposition [491] Let E and E′ be two supplementary vector subspaces of Fn2 . Then, for
every element a of Fn2 , we have

∑
u∈a+E⊥

W 2
f (u) = |E⊥|

∑
b∈E′

( ∑
x∈b+E

(−1)f(x)+a·x

)2

.

9.1.3 Parameters of Boolean functions

9.1.27 Definition The degree d◦f of the ANF is the algebraic degree of the function: if f is given
by (9.1.1), respectively, by (9.1.2), then d◦f = max{|I| | aI 6= 0} = max{wt(u) | au 6= 0}.
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9.1.28 Remark A function is affine (respectively, quadratic) if it has algebraic degree at most 1
(respectively, 2). Affine functions are those functions of the form x 7→ u · x + ε, u ∈ Fn2 ,
ε ∈ F2.

9.1.29 Example The function of Example 9.1.10 has algebraic degree 3.

9.1.30 Proposition [523, Section 8.2.1] Let f be represented by its trace representation (9.1.5).
Then f has algebraic degree max

j∈Γn |Aj 6=0
w2(j), where w2(j) is the Hamming weight of the

binary expansion of j (called the 2-weight of j).

9.1.31 Example The function of Example 9.1.18 has algebraic degree 2 (i.e., is quadratic).

9.1.32 Proposition [523, Section 8.2.1] The algebraic degree of any n-variable Boolean function
f equals the maximum dimension of the subspaces {x ∈ Fn2 | supp(x) ⊆ I}, where I is any
subset of {1, . . . , n} (equivalently, of all affine subspaces of Fn2 ), on which f takes value 1
an odd number of times.

9.1.33 Definition The Hamming weight of an n-variable Boolean function f is the integer
wt(f) = |{x ∈ Fn2 | f(x) = 1}|. The function is balanced if it has Hamming weight 2n−1

(that is, if its output is uniformly distributed over F2).

9.1.34 Proposition An n-variable Boolean function has algebraic degree at most n− 1 if and only
if it has even Hamming weight.

9.1.35 Proposition (McEliece’s theorem) Let f be an n-variable Boolean function of algebraic

degree at most r with 0 < r < n. Then the Hamming weight of f is divisible by 2dnr e−1 =

2bn−1
r c (equivalently, the Walsh transform of f takes values divisible by 2dnr e = 2bn−1

r c+1).

9.1.36 Proposition [1855], [523, Section 8.2.2] For n ≥ 2 and 1 ≤ k ≤ n, if the Walsh transform
of f takes values divisible by 2k, then f has algebraic degree at most n− k + 1.

9.1.37 Proposition A quadratic Boolean function f is balanced if and only if its restriction to the
vector subspace Ef = {a ∈ Fn2 |Daf(x) := f(x) + f(x + a) ≡ cst} = {a ∈ Fn2 |Daf(x) =
Daf(0), for all x ∈ Fn2} (the linear kernel of f) is not constant. If it is not balanced, then

its Hamming weight equals 2n−1 ± 2
n+k

2 −1 where k is the dimension of Ef .

9.1.38 Definition The Hamming distance between two n-variable Boolean functions f and g
equals the size of the set {x ∈ Fn2 | f(x) 6= g(x)}, that is, equals wt(f + g).

The nonlinearity NL(f) of a Boolean function f is its minimal distance to affine
functions.

9.1.39 Proposition [1992], [523, Section 8.4.1] For every n-variable Boolean function, we have

NL(f) = 2n−1 − 1

2
max
u∈Fn2

|Wf (u)|. (9.1.6)

9.1.40 Proposition [1992], [523, Section 8.4.1] Parseval’s relation implies the covering radius bound

NL(f) ≤ 2n−1 − 2n/2−1.

9.1.41 Definition The Boolean functions achieving the covering radius bound with equality are
bent (see Section 9.3 and the references therein).

9.1.42 Proposition [1992] An n-variable Boolean function is bent if and only if its Walsh transform
takes values ±2n/2 only (n even).
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9.1.43 Definition For every 0 ≤ r ≤ n, the r-th order nonlinearity NLr(f) of a Boolean function
f equals its minimum Hamming distance to Boolean functions of algebraic degrees at
most r.

9.1.44 Remark This notion is related to the Gowers norm [267].

9.1.45 Proposition [522] Let f be any n-variable function and r a positive integer smaller than n.
Denoting (again) by Daf(x) = f(x) + f(x+ a) the first-order derivatives of f , we have

NLr(f) ≥ max

1

2
max
a∈Fn2

NLr−1(Daf); 2n−1 − 1

2

√
22n − 2

∑
a∈Fn2

NLr−1(Daf)

 .

9.1.46 Remark Proposition 9.1.45, iteratively applied, allows deducing lower bounds on the higher
order nonlinearity of a function from lower bounds on the nonlinearities (i.e., the first-order
nonlinearities) of its higher-order derivatives.

9.1.4 Equivalence of Boolean functions

9.1.47 Remark The parameters above (algebraic degree, Hamming weight, nonlinearity) are in-
variant under composition of the Boolean function on the right by any affine automorphism
x 7→ L(x) + a (where L is linear bijective). The algebraic degree and the nonlinearity are
invariant under addition of any affine Boolean function (in the case of the algebraic degree,
though, the invariance needs the function to be non-affine) [1992].

9.1.48 Definition Two n-variable Boolean functions f and g are extended-affine equivalent (in
brief, EA-equivalent) if there exists a linear automorphism L, an affine Boolean function
` and a vector a such that g(x) = f(L(x) + a) + `(x). A parameter is EA-invariant if it
is preserved by EA-equivalence.

9.1.49 Remark If x is in Fn2 (and is viewed as a 1×n matrix over F2), then L(x) = x×A where A is

a non-singular n×n matrix over F2. If x lives in F2n , then L(x) = a1x+a2x
2+· · ·+an−1x

2n−1

where a1, a2, . . . , an−1 are chosen in F2n such that the kernel of L is reduced to {0}.
9.1.50 Remark Little is known on the number of n-variable Boolean functions up to EA-

equivalence, except of course that it is larger than the number 22n of Boolean functions
divided by the number 2n(2n − 1)(2n − 2)(2n − 22) · · · (2n − 2n−1) of affine automorphisms
of Fn2 and by the number 2n+1 of affine Boolean functions.

9.1.51 Remark There exists another notion of equivalence: the CCZ-equivalence; for vectorial
functions, it is more general than EA-equivalence, but for Boolean functions, it coincides
with EA-equivalence [444].

9.1.5 Boolean functions and cryptography

9.1.52 Remark Boolean functions are used in pseudo-random generators, in stream ciphers (in
conventional cryptography), to ensure a sufficient “nonlinearity” (since linear ciphers are
weak [2011]), see Section 16.2. They must then be balanced to avoid distinguishing attacks.

9.1.53 Remark A high algebraic degree of a Boolean function f ensures a good resistance of the
stream ciphers (using it as the nonlinear part) against the Berlekamp-Massey attack [2011]
and the Rønjom-Helleseth attack [2474] and its variants.
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9.1.54 Remark A large nonlinearity (that is, a nonlinearity near the covering radius bound) is
an important cryptographic characteristic which ensures resistance to the fast correlation
attack [2075].

9.1.55 Remark Vectorial Boolean functions are also used in cryptography (in block ciphers); they
are addressed in Section 9.2.

9.1.56 Definition Let n be a positive integer and m < n a non-negative integer. A Boolean
function over Fn2 is m-resilient (respectively, m-th order correlation immune) if any of
its restrictions obtained by fixing at most m of its input coordinates xi is balanced
(respectively, has same output distribution as f itself). The resiliency order of f is the
largest value of m such that f is m-resilient.

9.1.57 Remark The notions of resilient and correlation immune functions have a sense for x ∈ Fn2
only (that is, not for x ∈ F2n).

9.1.58 Remark A function is m-resilient if and only if it is balanced and m-th order correlation
immune. Since Boolean functions used in stream ciphers must be balanced, we shall address
only resiliency in the sequel.

9.1.59 Remark The resiliency order quantifies the resistance to the Siegenthaler correlation attack
[2663] of a stream cipher using f as a combiner (that is, combining the outputs to linear
feedback registers by applying f , see Section 16.2).

9.1.60 Remark The resiliency order is not EA-invariant. It is invariant under permutations of the
coordinates of x ∈ Fn2 .

9.1.61 Proposition (Siegenthaler’s bound) [2663], [523, Section 8.7] Any m-resilient n-variable
Boolean function has algebraic degree smaller than or equal to n−m− 1 if 0 ≤ m < n− 1
and is affine if m = n− 1.

9.1.62 Proposition (Xiao-Massey’s characterization) [3015] Any n-variable Boolean function f is
m-resilient if and only if Wf (u) = 0 for all u ∈ Fn2 such that 0 ≤ wt(u) ≤ m.

9.1.63 Proposition (Improved Sarkar-Maitra’s bound) [520, 534, 2522], [523, Section 8.7] Let f be
any n-variable m-resilient function (m ≤ n−2) and let d be its algebraic degree. The values

of the Walsh transform of f are divisible by 2m+2+bn−m−2
d c. Hence, according to Equation

(9.1.6), the nonlinearity of f is divisible by 2m+1+bn−m−2
d c and is therefore bounded above

by the largest number divisible by 2m+1+bn−m−2
d c and smaller than 2n−1 − 2n/2−1. In

particular, if m + 1 +
⌊
n−m−2

d

⌋
< n

2 and n is even, we have NL(f) ≤ 2n−1 − 2n/2−1 −
2m+1+bn−m−2

d c.
9.1.64 Remark The divisibility property in Proposition 9.1.63, combined with known bounds on

the nonlinearity, implies improvements of these bounds (as shown in Proposition 9.1.63 for
the covering radius bound).

9.1.65 Definition [2073] A function g such that fg = 0 is an annihilator of f . The minimum
algebraic degree of the nonzero functions g such that fg = 0 or (f + 1)g = 0 is the
algebraic immunity of f . It is denoted by AI(f).

9.1.66 Example The function f(x1, x2, x3) = x1x2x3 + x2 + 1 has algebraic immunity 1 since,
being non-constant, it does not have algebraic immunity 0, and since f + 1 has annihilator
x2 + 1.
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9.1.67 Remark The algebraic immunity quantifies the resistance to the algebraic attack [741] of
the ciphers using f as a combiner, or as a filter (taking as input n bits at fixed positions in
an LFSR, see Section 16.2).

9.1.68 Remark The set of annihilators of f equals the ideal of all multiples of f + 1.

9.1.69 Remark Let g be any function of algebraic degree at most d, then expressing that g is an
annihilator of f (that is, f(x) = 1 implies g(x) = 0, for every x ∈ Fn2 ) by means of the
(unknown) coefficients of the ANF of g results in a system of homogeneous linear equations.

In this system, we have
∑d
i=0

(
n
i

)
number of variables (the coefficients of the monomials of

degrees at most d) and wt(f) many equations.

9.1.70 Proposition [741] For every n-variable Boolean function, we have: AI(f) ≤
⌈
n
2

⌉
.

9.1.71 Remark Let f filter an LFSR. Let us assume for instance that the LFSR has length 256
(it can then be initialized for instance with a key of length 128 and an IV of length 128
as well). Then Proposition 9.1.70 requires n ≥ 16 to ensure a complexity of the algebraic
attack larger than exhaustive search, see e.g., [490]. A minimal security margin would be
n ≥ 18. Algebraic attacks have therefore changed the number of variables of the Boolean
functions used in practice (before them, for reasons of efficiency, the number of variables
was rarely more than 10).

9.1.72 Proposition (Bounds on the weight, Lobanov’s bound on the nonlinearity) [523, Section

8.9] For every n and every n-variable Boolean function f , we have
∑AI(f)−1
i=0

(
n
i

)
≤ wt(f) ≤∑n−AI(f)

i=0

(
n
i

)
(in particular, if n is odd and f has optimal algebraic immunity n+1

2 , then f

is balanced) and NL(f) ≥ 2
∑AI(f)−2
i=0

(
n−1
i

)
.

9.1.73 Remark Bounds also exist for the higher order nonlinearities [523, Section 8.9], [2085].

9.1.74 Proposition [490] If an n-variable balanced Boolean function f , with n odd, has no non-zero
annihilator of algebraic degree at most n−1

2 , then it has optimal algebraic immunity.

9.1.75 Remark

1. Stream ciphers must also resist fast algebraic attacks, which work if one can find
g 6= 0 of low degree and h of algebraic degree not much larger than dn/2e, such
that fg = h [735, 1446]. These attacks need more data (of a particular shape)
than standard algebraic attacks but can be faster if g has lower degree due to
the relaxation of the condition on h.

2. Stream ciphers must also resist algebraic attacks on the augmented function
[1069].

3. Finally, they must resist the already mentioned attack by Rønjom and Helleseth
(designed for the filter generator and later generalized) which requires f to have
an algebraic degree close to n.

9.1.76 Definition Let 1 ≤ l ≤ n. An n-variable Boolean function f satisfies the propagation
criterion of order l, denoted by PC(l), if for every a ∈ Fn2 such that 1 ≤ wt(a) ≤ l, the
derivative Daf is balanced. Property PC(1) is the strict avalanche criterion.

9.1.77 Remark This characteristic is related to the diffusion of the cipher in which f is involved.
It is less important than the characteristics seen above, but it has attracted some attention.

9.1.78 Remark Other cryptographic characteristics (less essential than the algebraic degree, the
nonlinearity and the algebraic immunity) exist [523]: the non-existence of nonzero linear
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structure, the global avalanche criterion, the maximum correlation to subsets, the algebraic
thickness, the nonhomomorphicity.

9.1.6 Constructions of cryptographic Boolean functions

9.1.79 Remark Boolean functions being tools for the design of cryptosystems, an important as-
pect of the research in this domain is to design constructions of Boolean functions having
the necessary cryptographic features (contrary to other domains of the study of Boolean
functions, which mainly study their properties).

9.1.80 Remark A Boolean function obtained by some construction and satisfying a given crypto-
graphic criterion, or several criteria, will be considered as new if it is EA-inequivalent to all
previously found functions satisfying the same criteria.

9.1.81 Remark We call secondary the constructions which use already defined functions satisfying
a given property, to build a new one satisfying the same property. A construction from first
principles will be primary.

9.1.6.1 Primary constructions of resilient functions

9.1.82 Proposition (Maiorana-McFarland’s construction) [485, 519], [523, Section 8.7] Let r and s
be positive integers; let g be any s-variable Boolean function and let φ be a mapping from
Fs2 to Fr2. Then the function

fφ,g(x, y) = x · φ(y) + g(y), x ∈ Fr2, y ∈ Fs2, (9.1.7)

where “·” is an inner product in Fr2, is (at least) k-resilient where k = min{wt(φ(y)), y ∈
Fs2} − 1, and has nonlinearity satisfying:

2n−1 − 2r−1 max
a∈Fr2
|φ−1(a)| ≤ NL(fφ,g) ≤ 2n−1 − 2r−1

√
max
a∈Fr2
|φ−1(a)|.

9.1.83 Remark This construction was originally developed for bent functions (see Section 9.3) and
has been later adapted to resilient functions.

9.1.84 Remark The resiliency order of fφ,g can be larger, for some well-chosen functions g [519].

9.1.85 Remark The Maiorana-McFarland construction has been generalized in several ways [523].

9.1.6.2 Secondary constructions of resilient functions

9.1.86 Proposition (Indirect sum) [521], [523, Section 8.7] Let r and s be positive integers and let
0 ≤ t < r and 0 ≤ m < s. Let f1 and f2 be two r-variable t-resilient functions. Let g1 and
g2 be two s-variable m-resilient functions. Then the function

h(x, y) = f1(x) + g1(y) + (f1 + f2)(x) (g1 + g2)(y); x ∈ Fr2, y ∈ Fs2

is an (r+s)-variable (t+m+1)-resilient function. The Walsh transform of h takes the value

Wh(a, b) =
1

2
Wf1(a) [Wg1(b) +Wg2(b)] +

1

2
Wf2(a) [Wg1(b)−Wg2(b)] . (9.1.8)

If the Walsh transforms of f1 and f2 have disjoint supports and if the Walsh transforms
of g1 and g2 have disjoint supports, then

NL(h) = min
i,j∈{1,2}

(
2r+s−2 + 2r−1NL(gj) + 2s−1NL(fi)−NL(fi)NL(gj)

)
. (9.1.9)
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In particular, if f1 and f2 have nonlinearity 2r−1 − 2t+1 and disjoint Walsh supports, if
g1 and g2 have nonlinearity 2s−1 − 2m+1 and disjoint Walsh supports, and if f1 + f2 has
algebraic degree r − t − 1 and g1 + g2 has algebraic degree s − m − 1, then h achieves
Siegenthaler’s and (improved) Sarkar-Maitra’s bounds with equality.

9.1.87 Remark Some particular choices of functions f1, f2, g1, g2 give secondary constructions pre-
viously introduced by several authors (Siegenthaler, Tarannikov) [523, Section 8.7]; in par-
ticular the well-known direct sum h(x, y) = f(x) + g(y) is obtained by putting g1 = g2

and/or f1 = f2.

9.1.88 Remark The indirect sum gives also a secondary construction of bent functions [523].

9.1.89 Proposition (Secondary construction without extension of the number of variables) [523,
Section 8.7] Let 0 ≤ k ≤ n. Let f1, f2 and f3 be three k-resilient n-variable functions. Then
the function s1 = f1 +f2 +f3 is k-resilient if and only if the function s2 = f1f2 +f1f3 +f2f3

is k-resilient. Moreover

NL(s2) ≥ 1

2

(
NL(s1) +

3∑
i=1

NL(fi)

)
− 2n−1, (9.1.10)

and if the Walsh supports of f1, f2 and f3 are pairwise disjoint, then

NL(s2) ≥ 1

2

(
NL(s1) + min

1≤i≤3
NL(fi)

)
. (9.1.11)

9.1.90 Remark It has been impossible until now to obtain resilient functions of sufficient orders
with good algebraic immunity. For this reason, the filter model is preferred to the combiner
model (the correlation attack works on the latter).

9.1.6.3 Constructions of highly nonlinear functions with optimal algebraic

immunity

9.1.91 Proposition [528] Let n be any positive integer and α a primitive element of the field F2n .

Let f be the balanced Boolean function on F2n whose support equals {0, αs, . . . , αs+2n−1−2}
for some s. Then f has optimum algebraic immunity dn/2e. Moreover, f has algebraic degree
n− 1 and nonlinearity NL(f) ≥ 2n−1 − n · ln 2 · 2n2 − 1.

9.1.92 Remark This bound on the nonlinearity, which has been recently slightly improved, is not
enough for ensuring that the function allows resisting the fast correlation attacks, but it
has been checked, for n ≤ 26, that the exact value of NL(f) is much better than this lower
bound. Improving significantly the bound of Proposition 9.1.91 is an open problem.

9.1.93 Remark The function in Proposition 9.1.91 shows also good immunity against fast algebraic
attacks as shown by Liu et al. [1951].

9.1.94 Remark Despite the fact that complexity for computing the output is roughly the same as
for computing the discrete logarithm, the function can be efficiently computed because n is
small; the Pohlig-Hellman method is efficient, at least for some values (n = 18 or 20).

9.1.95 Remark We note that a similar function had been previously studied by Brandstätter,
Lange, and Winterhof in [391] but the algebraic immunity was not addressed by these
authors.

9.1.96 Remark Other infinite classes of balanced functions with optimal algebraic immunity have
been found [2777, 3056] which have good nonlinearity and good resistance to fast algebraic
attacks (checked by computer), at least for small n. More classes exist but, either their
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optimal algebraic immunity is not completely proved, or they are closely related to the
classes mentioned above, or they do not have good nonlinearity, or they have bad resistance
to fast algebraic attacks.

9.1.7 Boolean functions and error correcting codes

9.1.97 Remark Boolean functions are used to design error correcting codes whose lengths are
powers of 2, in particular Reed-Muller codes (see Section 15.1).

9.1.7.1 Reed-Muller codes

9.1.98 Definition Let n be any positive integer and 0 ≤ r ≤ n. The Reed-Muller code of length 2n

and order r is the set of binary words of length 2n corresponding to the output columns
of the truth-tables of all the n-variable Boolean functions of algebraic degrees at most
r.

9.1.99 Proposition [1992] The Reed-Muller code of length 2n and order r is a linear code over F2

(i.e., is a vector subspace of F2n

2 ) of dimension 1+n+
(
n
2

)
+ · · ·+

(
n
r

)
and minimum distance

2n−r.

9.1.100 Remark The Reed-Muller code of order 1 is optimal according to the Griesmer bound
[1992].

9.1.7.2 Kerdock codes

9.1.101 Remark The Reed-Muller code of length 2n and of order 2 contains a nonlinear optimal
code: the Kerdock code of the same length, introduced in [1728] (not as in the definition
below, though). The Kerdock code of length 2n is the union of cosets of the first order
Reed-Muller code, chosen such that the sum of two elements from different cosets is a bent
function.

9.1.102 Definition The Kerdock code of length 2n is the set of functions of the form (x, ε) ∈ F2n−1×
F2 7→ f(ux, ε) + TrF2n−1/F2

(ax) + ηε + τ where f(x, ε) = TrF2n−1/F2

(∑n
2−1
i=1 x2i+1

)
+

εTrF2n−1/F2
(x), with u, a ∈ F2n−1 , and η, τ ∈ F2.

9.1.103 Proposition [1992] The Kerdock code of length 2n has size 22n and minimum distance
2n−1 − 2n/2−1.

9.1.104 Remark The Kerdock code of length 2n is optimal, as proved by Delsarte [800].

9.1.105 Remark Other codes with the same parameters exist, called generalized Kerdock codes
[1673].

9.1.106 Remark The Kerdock code of length 2n is not linear but it is the image of a linear code
over Z/4Z by a distance preserving mapping called the Gray map [1409].

9.1.8 Boolean functions and sequences

9.1.107 Remark Boolean functions are related to sequences for communications: see Chapter 10.



252 Handbook of Finite Fields

9.1.8.1 Boolean functions and cross correlation of m-sequences

9.1.108 Definition A sequence (si)i≥0 over F2 satisfying an order n linear homogeneous recurrence
relation (with constant coefficients), is an m-sequence if it has (optimal) period 2n − 1.

9.1.109 Proposition [1303] The m-sequences of period 2n − 1 are the sequences of the form si =
TrF2n/F2

(λαi), where λ ∈ F∗2n and α is a primitive element of F2n . Given such an m-
sequence, any other m-sequence of the same period differs with (si)i≥0, up to a cyclic shift,
by a decimation d such that gcd(d, 2n−1) = 1 (that is, the second sequence equals (sdi+t)i≥0,
where t is some integer).

9.1.110 Remark Since sequences are viewed up to cyclic shifts, we shall, in the sequel, take λ equal
to 1 and the integer t equal to 0.

9.1.111 Remark According to Proposition 9.1.109, the crosscorrelation Cd(τ) =
∑n−1
t=0 (−1)st+τ+sdt

between two m-sequences equals ∑
x∈F∗

2n

(−1)TrF2n/F2 (cx+xd)

where c = ατ ; hence, 1 + Cd(τ) is the value at c of the Walsh transform of the monomial
function f(x) = TrF2n/F2

(xd). The nonlinearity of f(x) = TrF2n/F2
(xd) is therefore

NL(f) = 2n−1 − 1

2
max
τ
|1 + Cd(τ)|. (9.1.12)

9.1.112 Remark A family of balanced sequences of period 2n − 1 with good correlation properties
and large linear complexity can be constructed from a bent function. These sequences are
bent sequences [2317]. Let n = 0 (mod 4), k = n/2 and h : F2k → F2 be a bent function.
Let (e1, e2, . . . , ek) be a basis of the vector space F2k over F2 and let σ ∈ F2n \ F2k . Let

hi(y1, y2, . . . , yk) = h(y1, y2, . . . , yk) + a1y1 + a2y2 + · · ·+ akyk

for some ordering of the 2k possible choices of (a1, . . . , ak) in Fk2 . Let

fi(x) = hi(TrF2n/F2
(e1x),TrF2n/F2

(e2x), . . . ,TrF2n/F2
(ekx)) + TrF2n/F2

(σx)

for i = 1, 2, . . . , 2k. The family is composed of the sequences
(
s

(i)
t

)
0≤t≤2n−2

for 1 ≤ i ≤ 2k,

where s
(i)
t = fi(α

t) for some fixed primitive element α in F2n .

See Also

§15.1 For properties of Reed-Muller codes and their sub-codes; see also [1992].

[523] For a survey on Boolean functions for coding and cryptography (the chapter
which follows it in the same monograph deals with vectorial functions, which
are the subject of Section 9.2 in the present handbook). This survey includes
binary bent functions (see also Section 9.3 in the present handbook).

[1303] For a recent survey on sequences.

References Cited: [267, 391, 444, 485, 490, 491, 519, 520, 521, 522, 523, 528, 530, 534,
735, 741, 800, 1069, 1303, 1409, 1446, 1673, 1728, 1855, 1951, 1992, 2011, 2073, 2075, 2085,
2317, 2474, 2522, 2663, 2777, 3015, 3056]
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9.2 PN and APN functions

Pascale Charpin, INRIA

9.2.1 Remark Around 1992, two cryptanalysis methods had been introduced in the literature
devoted to symmetric cryptosystems, the differential cryptanalysis [278], and the linear
cryptanalysis [2026]. It was shown later that these methods are basically linked [577]. In
order to resist these attacks the round function used in an iterated block cipher must
satisfy some mathematical properties. These properties are mainly covered by the concepts
of nonlinearity and of differential uniformity for functions on extension fields.

9.2.1 Functions from F2n into F2m

9.2.2 Definition Any function from F2n into F2m is an (n,m)-function. It is a Boolean function
when m = 1 and a function on F2n when m = n. Here we assume that n ≥ m. Basic
properties on Boolean functions can be found in Section 9.1.

9.2.3 Definition Let F be an (n,m)-function. The component functions of F are the Boolean
functions

fλ : x ∈ F2n 7→ Tr(λF (x)), λ ∈ F∗2m ,

where Tr is the absolute trace on F2m (see Definition 2.1.80).

9.2.4 Definition An (n,m)-function F is balanced when it is uniformly distributed, i.e., F takes
every value of F2m each 2n−m times.

9.2.5 Proposition [524] An (n,m)-function is balanced if and only if all its component functions
are balanced.

9.2.6 Remark When m = n, a balanced function is a permutation of F2n , as it is shown in a
more general context in [1939, Theorem 7.7].

9.2.7 Remark The nonlinearity of a Boolean function f is usually computed by means of the
highest magnitude of its Walsh spectrum Wf . These quantities are denoted by NL(f) and
L(f) respectively (see the definitions in Section 9.1).

9.2.8 Definition A Boolean function f is plateaued if its Walsh coefficients take at most three
values, namely 0,±L(f). Then, L(f) = 2s with s ≥ n/2.
If s = n/2 (and n even) then f is bent and its Walsh coefficients take two values only,
namely ±2

n
2 .

Also, f is semi-bent if s = (n+ 1)/2 for odd n and s = (n+ 2)/2 for even n.
An (n,m)-function is plateaued when its components are plateaued.

9.2.9 Definition Let F be an (n,m)-function with components fλ. Let NL(fλ) be the nonlin-
earity of fλ. The nonlinearity of F , say NL(F ), is the lowest nonlinearity achieved by
one of its components:

NL(F ) = min
λ∈F2m

(NL(fλ)) = 2n−1 − L(F )

2
,

where L(F ) is the highest magnitude appearing in the Walsh spectrum of all fλ.
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9.2.10 Remark By definition the nonlinearity of an (n,m)-function F satisfies

NL(F ) ≤ 2n−1 − 2n/2−1.

Indeed, this holds for any fλ (see the covering radius bound in Definition 9.1.41).

9.2.11 Definition Let an (n,m)-function F be expressed as a univariate polynomial of degree less
than 2n. The algebraic degree of F is the maximal Hamming weight of its exponents,
considering the 2-ary expansion of exponents.

9.2.12 Definition Let F be an (n,m)-function. For any a ∈ F2n , the derivative of F with respect
to a is the (n,m)-function DaF defined for all x ∈ F2n by

DaF (x) = F (x+ a) + F (x).

9.2.2 Perfect Nonlinear (PN) functions

9.2.13 Definition An (n,m)-function F is a bent function, also called a perfect nonlinear (PN)
function, if and only if NL(F ) = 2n−1 − 2(n/2−1), i.e., all its components are Boolean
bent functions.

9.2.14 Theorem [2302] An (n,m)-function can be PN only if n is even and m ≤ n/2.

9.2.15 Remark To construct a PN function is exactly to characterize a subspace of Boolean bent
functions. This PN function is an (n,m)-function if this subspace is of dimensionm composed
of bent functions on F2n . Primary constructions, by means of the main classes of bent
functions are explained in [524, Section 3.1.1]. To find subspaces of bent functions is an
important research problem (see recent results in [264, 495]).

9.2.16 Proposition [2302] An (n,m)-function F is PN if and only if all of its derivatives are
balanced. In other terms, let

δa,b(F ) = |{x ∈ F2n |DaF (x) = b}|, a ∈ F∗2n , b ∈ F2m . (9.2.1)

Then F is PN if and only δa,b(F ) = 2n−m for any a and any b.

9.2.17 Remark From Theorem 9.2.14, PN functions do not exist for m = n. However they do
exist for odd characteristics. They are planar functions and were introduced in [808]. They
are functions on Fpn , p odd, such that for every non-zero α ∈ F the difference mapping
x 7→ F (x+ α)− F (x) is a permutation of Fpn (see Section 9.5).

9.2.18 Remark In cryptology, PN functions were introduced in 1990-95 as functions which provide
the optimal resistance to linear attacks and to differential attacks (see [2302] and [2304]).
They have the best nonlinearity, by Definition 9.2.13, and the δa,b are as small as possible,
by Proposition 9.2.16. A major drawback is that these optimal functions are not balanced;
also, they presuppose the use of non-invertible round functions (see [489], [496, Chapter 3]).
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9.2.3 Almost Perfect Nonlinear (APN) and Almost Bent (AB)
functions

9.2.19 Remark In cryptography, most works focused on optimal functions with respect to diffe-
rential attacks. The aim is to exhibit such functions that, moreover, are bijective and oppose
a good resistance to linear attacks. According to Remark 9.2.18, functions on F2n , i.e., (n, n)-
functions) are generally considered. Algebraic properties of almost perfect nonlinear (resp.
almost bent) functions and their links with error-correcting codes are introduced in [525].

9.2.20 Definition A function F on F2n is almost perfect nonlinear (APN) if and only if all the
equations

F (x) + F (x+ a) = b, a ∈ F2n , a 6= 0, b ∈ F2n , (9.2.2)

have at most two solutions. The function F is almost bent (AB) if and only if the value
of

WF (β, λ) =
∑
x∈F2n

(−1)Tr(λF (x)+βx) (9.2.3)

is equal either to 0 or to ±2
n+1

2 , for any β and λ in F2n , β 6= 0.

9.2.21 Theorem [577] AB functions exist for n odd only. Any AB function is APN.

9.2.22 Remark A function F on F2n is APN if and only if all its derivatives are 2-to-1. This can
be derived from the definition.

9.2.23 Proposition [525, Theorem 1] Let F be an AB function on F2n . Then the algebraic degree
of F is less than or equal to (n+ 1)/2.

9.2.24 Remark According to (9.2.3), a function F on F2n is an AB function if and only if its
components fλ are semi-bent. Thus

NL(fλ) = 2n−1 − 2(n−1)/2, i.e., L(fλ) = 2(n+1)/2, for all λ ∈ F∗2n .

Consequently, L(F ) = 2(n+1)/2.

9.2.25 Proposition [493] Let n be odd. Then F is an AB function on F2n if and only if F is APN
and all Walsh coefficients of all components fλ are divisible by 2(n+1)/2.

9.2.26 Remark APN functions are optimal concerning the resistance of a cipher to differential at-
tacks and to its variants. More generally, this resistance is related to the following quantities,
introduced in [2304].

9.2.27 Definition Let F be a function on F2n . For any a ∈ F∗2n and b ∈ F2n , we denote

δ(a, b) = |{x ∈ F2n | DaF (x) = b}|.

Then, the differential uniformity of F is

δ(F ) = max
a6=0, b∈F2n

δ(a, b).

9.2.28 Remark Those functions for which δ(F ) = 2 are APN. It is worth noticing that such
functions are rare and hard to find. From a recent result of Voloch [2885], it follows that
these functions asymptotically have density zero in the set of all functions. Few infinite
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families are known. The monomial APN functions are related with exceptional objects (see
Subsection 9.2.8). The known infinites families of non-monomial APN functions are listed
in [388]. They are all quadratic. Edel and Pott propose in [954] an original construction
providing a sporadic non-quadratic non-monomial APN function.

9.2.29 Problem AB functions on F2n , with n odd, provide an optimal resistance to both differential
attacks and linear attacks. There are several classes of AB permutations. The situation
is different for even n: there are APN functions F such that L(F ) = 2(n+2)/2 and it is
conjectured that this value is the minimum; also the existence of APN permutations, for
n > 6, is not resolved.

9.2.30 Example The inverse function∗, F (x) = x−1, is an APN (not AB) permutation on F2n

when n is odd. For even n, it is a permutation too, but δ(a, b) takes three values, namely 0,
2 and 4 so that δ(F ) = 4. This function has the highest degree and satisfies L(F ) = 2(n+2)/2

for n even. The inverse function on F28 is used in the AES S-boxes (see Section 16.2).

9.2.31 Remark Regarding the PN property, the APN property can be extended on fields of odd
characteristic (see [908, 1479], for instance).

9.2.4 APN permutations

9.2.32 Remark The first APN permutation of F26 (n = 6) was presented by Dillon at the conference
Finite Fields and their Applications (Fq 9) in 2009. Thus, a long-standing (and famous)
conjecture stating that there is no APN permutation of F2n when n is even was disproved.
The method, explained in [424], uses mostly the representation of APN functions by codes
(see Theorem 9.2.47). However the existence of APN permutations of an even number n
(with n ≥ 8) of variables remains a research problem of great interest. The next theorem,
is due to several authors [228, 1541, 2303].

9.2.33 Conjecture APN permutations on F2n exist for any n ≥ 6.

9.2.34 Theorem [228, Theorem 3] Let F be any permutation polynomial on F2n , n = 2t. Then F
is not APN when one of the statements below is satisfied:

1. n = 4;

2. F ∈ F4[x];

3. F ∈ F2t [x];

4. F is plateaued, i.e., all its components fλ are plateaued.

9.2.35 Remark When n is odd, any APN monomial is bijective; little is known about the other
APN functions. Clearly, they are not generally bijective. For example, in the case where n
is even the APN monomials are 3-to-1.

9.2.36 Proposition [228, Proposition 3] Let r be a divisor of n. Let F be any function on F2n such
that F ∈ F2r [x]. If F satisfies for some a ∈ F2r

F (y) + F (y + a) = β, β ∈ F2r ,

for some y 6∈ F2r such that y2r + y + a 6= 0, then F is not APN.
Consequently, if F is an APN monomial, F (x) = xd, then gcd(d, 2n − 1) = 1 for odd n and
gcd(d, 2n − 1) = 3 for even n.

∗Note that, as a function on F2n , F (x) = x2
n−2 so that F (0) = 0.
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9.2.37 Remark It was conjectured in [525] that for any AB function F , there exists a linear function
L such that F + L is a permutation. A counterexample for this conjecture is given in [449,
Remark 4].

9.2.38 Example [447, Proposition 1] Let n = 3k where k is odd and not divisible by 3. Let u be
any element in F∗2n of order 22k + 2k + 1. Then any function

F (x) = x2s+1 + ux2ik+2tk+s

with gcd(s, 3k) = 1, i ≡ sk (mod 3), t = 3− i, is an AB permutation.

9.2.5 Properties of stability

9.2.39 Definition Let F and F ′ be two functions on F2n . They are equivalent if F ′ is obtained
from F by compositions of 1 and/or 2:

1. F 7→ A1 ◦ F ◦ A2 + A, where A1 and A2 are affine permutations and A is any
function which is affine or constant;

2. F 7→ F−1, the inverse function of F when F is a permutation.

They are extended affine equivalent (EA-equivalent) when F ′ is obtained from F by
transformations of type 1.

9.2.40 Proposition [525] Let F be a function on F2n which is APN (resp. AB). Then any function
which is equivalent to F is an APN (resp. AB) function too.

9.2.41 Remark The definition of Carlet-Charpin-Zinoviev (CCZ)-equivalence, naturally derived
from [525, Proposition 3], was proposed in [449]. It necessitates to introduce the graph of
any function F on F2n :

GF = { (x, F (x)) | x ∈ F2n}.

9.2.42 Definition Let F and F ′ be two functions on F2n . They are CCZ-equivalent if their graphs
are affine equivalent, i.e., if there exists an affine automorphism A of F2n × F2n such
that A(GF ) = GF ′ .

9.2.43 Theorem [449, Proposition 2] Let F, F ′ be CCZ-equivalent functions. Then F is APN (resp.
AB) if and only if F ′ is APN (resp. AB). In this case, F and F ′ have the same nonlinearity
but may have different algebraic degrees.

9.2.44 Remark In [449], Budaghyan, Carlet, and Pott proved that CCZ-equivalence is more general
than equivalence. They are then able to present APN functions which are EA-inequivalent
to all known APN functions.

9.2.45 Remark The important question whether affinely inequivalent functions are CZZ-equivalent
was first investigated by Edel, Kyureghyan, and Pott [953]. They exhibited an APN bi-
nomial, which is new since it cannot be obtained from another known APN function (see
example below). A number of constructions of APN functions followed the definition of CCZ-
equivalence (see, for instance: [386, 423, 443, 447]). A classification up to CCZ-equivalence,
for small dimensions, is proposed in [417].

9.2.46 Example [953, Theorem 2] Let the function F on F210 , F (x) = x3+ux36. Let ω ∈ F4\{0, 1}.
Then F is APN for any u = ωiy, i ∈ {1, 2} and y ∈ F∗25 . Moreover, these APN functions
are not CCZ-equivalent to any APN monomial on F210 .
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9.2.6 Coding theory point of view

9.2.47 Theorem [525] Let F be a function on F2n such that F (0) = 0. Let α be a primitive element
of F2n . Let us denote by CF the linear binary code of length 2n − 1 defined by its parity
check matrix

HF =

[
1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
where each entry is viewed as a binary vector. The dual code is denoted by (CF )⊥. Then
we have

1. The function F is APN if and only if the code CF has minimum distance five.

2. The function F is AB if and only if the weights of the non zero codewords of the
code (CF )⊥ form the following set: {2n−1, 2n−1 ± 2(n−1)/2}.

9.2.48 Corollary [525] Let F be a function on F2n such that F (0) = 0. Then we have

1. If F is APN then the dimension of CF is equal to 2n − 2n− 1.

2. If F is APN then (CF )⊥ does not contain the all-one vector.

3. If F is AB then the weight distribution of (CF )⊥ is unique and the same as the
weight distribution of the dual of the 2-error-correcting BCH code.

9.2.49 Remark The weight distribution of (CF )⊥ exactly corresponds to the Walsh spectrum of F ,
that is the multiset of the values WF (β, λ) given by (9.2.3). Thus, if this weight distribution
is known, the nonlinearity of F is also known.

9.2.50 Definition A binary code C is 2`-divisible if the weight of any of its codewords is divisible
by 2`. Moreover C is exactly 2`-divisible if, additionally, it contains at least one codeword
whose weight is not divisible by 2`+1.

9.2.51 Theorem [494] Let F be a function on F2n , with n = 2` + 1. Then F is AB if and only if
F is APN and the code (CF )⊥, defined in Theorem 9.2.47, is 2`-divisible.

9.2.52 Remark The determination of the weight distributions of codes of type CF remains an open
problem except when the code is optimal in a certain sense. The work of Kasami remains
fundamental, proving notably the uniqueness of the weight enumerator of these optimal
codes ([1688, 1689]; see also an extensive study in [590, Section 3.4.2]).

9.2.53 Example The functions F (x) = xd, d = 22i − 2i + 1 with gcd(i, n) = 1 are APN for any n.
Such exponents d are called the Kasami exponents. When n is odd, the code CF is equivalent
to the cyclic code with two zeros α2i+1 and α23i+1 (α being a primitive root of F2n) and F
is AB. The proof is due to Kasami [1688] for odd n (see also [590, Theorem 3.32]) and to
Janwa and Wilson [1595] for even n.

9.2.54 Remark The code CF always contains a subcode which is a cyclic code. This is of most
interest when F is a monomial as we will see later (see [525] for more details).

9.2.7 Quadratic APN functions

9.2.55 Definition A function F on F2n is quadratic when it has algebraic degree 2.

9.2.56 Proposition [525, Section 3.4] Let F be a quadratic function on F2n with n odd. Then F
is AB if and only if F is APN.



Special functions over finite fields 259

9.2.57 Proposition [525] Let F be a quadratic function. Then F is APN if and only if the code
CF does not contain any codeword of weight three.

9.2.58 Remark When F is quadratic, C⊥F is contained in the punctured Reed-Muller code of order
2 (see [1991, Chapter 15]).

9.2.59 Example The functions F (x) = x2i+1 with gcd(i, n) = 1 are APN for any n (see [1689,
2303]). Such quadratic exponents are called Gold exponents.

9.2.60 Remark There are several constructions of quadratic non-monomial APN functions; no-
tably, there are infinite families of such functions (see [272, 386, 388, 443, 447, 449] and
Remark 9.2.28). There is only one infinite family of binomials, which was introduced and
extensively studied in [447, Section II] by Budaghyan, Carlet, and Leander. Their Walsh
spectrum was computed in [387]. Some such binomials are bijective (see Example 9.2.38).

9.2.61 Problem The Walsh spectrum of a non-monomial quadratic function is generally not known.
Concerning APN such functions, the problem is discussed in [387]. For the computation of
some spectrum, see [384, 385, 387].

9.2.62 Example The function F (x) = x3 + Tr(x9), was recently discovered [448]. It is APN for
any n and inequivalent (in any sense) to the Gold functions, while it has the same Walsh
spectrum [385].

9.2.63 Theorem [389, Theorem 3] Let F be a quadratic APN function and G be a Gold function,

i.e., G(x) = x2k+1 with gcd(k, n) = 1, on F2n . If F and G are CCZ-equivalent then they
are EA-equivalent.

9.2.64 Theorem [228, Theorem 6] There are no APN quadratic mappings on F2n of the form

F (x) =

n−1∑
i=1

cix
2i+1 , ci ∈ F2n (9.2.4)

unless F is a monomial: F (x) = cx2k+1 with gcd(k, n) = 1, c ∈ F2n .

9.2.65 Definition The APN function F , on F2n , is crooked if for every a ∈ F∗2n the image of its
derivative DaF is a hyperplane or the complement of a hyperplane.

9.2.66 Proposition Any APN quadratic function is crooked.

9.2.67 Remark Definition 9.2.65 was introduced in [1816], as an extension of the original definition
where crooked functions are implicitly bijective (see [224, 2838] for crooked AB functions).
The next conjecture is strengthened by the work of Bierbrauer and Kyureghyan (Theo-
rem 9.2.69).

9.2.68 Conjecture Any APN function, which is crooked, is quadratic.

9.2.69 Theorem [277, 1816] Let F (x) = xd + βxe be an APN function on F2n , where β ∈ F2n and
d, e are integers modulo 2n − 1. If F is crooked then F is quadratic.

9.2.70 Proposition [2838] Let F be an APN permutation on F2n which is crooked. Then n is odd
and F is an AB function.

9.2.71 Proposition [1816, 2838] Any APN function, which is is crooked, is plateaued.
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9.2.8 APN monomials

9.2.72 Remark In cryptography, monomials are usually called power functions. They were inten-
sively studied, since they have a lower implementation cost in hardware. Moreover, their
properties regarding differential attacks can be studied more easily, since they are related
to the weight enumerators of some cyclic codes with two zeros [590, Section 3.4.2].

9.2.73 Proposition [525] Let F (x) = xd be a function on F2n . Then CF , defined as in Theorem
9.2.47, is the binary cyclic code of length 2n−1 whose zeros are α, αd and their conjugates;
CF is a cyclic code with two zeros.

9.2.74 Remark According to Corollary 9.2.48, if F is APN then the cyclotomic coset of d modulo
2n−1 has size n (with F (x) = xd). In this case, CF has minimum distance 5 and dimension
2n − 2n− 1.

9.2.75 Example The Melas code is the cyclic code of length 2n − 1 with two zeros α and α−1.
Its minimum distance is 5 for odd n and 3 for even n. It is the code CF corresponding to
the inverse function F (x) = x−1 (see Example 9.2.30). Lachaud and Wolfmann described
in [1828] the set of weights of C⊥F .

9.2.76 Proposition [494, 1467] Let F (x) = xd with gcd(d, 2n − 1) = 1. Then C⊥F is exactly 2-
divisible if and only if CF is the Melas code, i.e., d = −1.

9.2.77 Remark Let F (x) = xd with gcd(d, 2n − 1) = 1. The study of the weights of the code C⊥F
corresponds to the study of the crosscorrelation of a pair of maximal length linear sequences,
called m-sequences (see Section 10.3).

9.2.78 Remark Janwa, McGuire, and Wilson characterized several classes of cyclic codes with two
zeros whose minimum distance is at most four. More precisely, by applying a form of Weil’s
theorem, they showed that, for a large class of such codes, only a finite number could be
good, i.e., have minimum distance five [1594, 1595].

9.2.79 Theorem [1594] For any fixed d satisfying d ≡ 3 (mod 4) and d > 3, the cyclic codes CF ,
F (x) = xd, of length 2n − 1, with two zeros α and αd, have codewords of weight 4 for all
but finitely many values of n.

9.2.80 Remark By their work [1594], the authors strengthened the conjecture that APN (a fortiori
AB) functions are exceptional. Their main conjecture was solved recently by Hernando and
McGuire (see Theorem 9.2.83 below).

9.2.81 Definition Let F (x) = xd. The exponent d is exceptional if F is APN on infinitely many
extension fields of F2.

9.2.82 Remark The epithet exceptional is due to Dillon who observed that Gold and Kasami
exponents can be defined by means of exceptional polynomials (see Section 8.4). Dillon
extensively describes the links between these exceptional codes, maps, difference sets, and
polynomials in [863], a review of great interest. More can be found in [862, 864]. Moreover,
reversed permutation Dickson polynomials are closely related with APN monomials [1547].

9.2.83 Theorem [1490] Only the Gold and the Kasami numbers are exceptional exponents.

9.2.84 Problem Gold functions and Kasami functions, presented in Examples 9.2.59 and 9.2.53,
form the exceptional classes of APN power functions. The other classes, known as sporadic,
are listed in Example 9.2.85. It is currently conjectured that any APN power function, which
is not exceptional, belongs to one of the known “sporadic” classes (up to equivalence).
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9.2.85 Example The “sporadic” classes, which are known, are the following classes of APN power
functions. Such a function F on F2n , F (x) = xd, is designed by its exponent d.

1. The Welch functions: d = 2t + 3 with n = 2t + 1. Any Welch function is AB,
proved by Canteaut, Charpin, and Dobbertin [493] (see also [492, 494]). This was
conjectured by Welch around 1968, concerning the crosscorrelation function of
binary m-sequences. Dobbertin previously proved that F is APN [904].

2. The Niho functions: for n = 2t+ 1,

d =

{
2t + 2t/2 − 1 if t is even,
2t + 2(3t+1)/2 − 1 otherwise

(proposed by Niho [2287], also concerning properties of sequences). The APN
property was proved by Dobbertin [903]. Hollmann and Xiang proved that Niho
functions are AB in [1526], where they also give another proof of Welch’s conjec-
ture.

3. The Dobbertin functions: d = 24k + 23k + 22k + 2k − 1 with n = 5k. Dobbertin
introduced these functions as potential APN and in [906] proved that these func-
tions are APN. For odd n, the Dobbertin functions are not AB [494, Proposition
7.13].

4. The inverse function: d = 2n−1 − 1 for odd n (see Examples 9.2.30 and 9.2.75).

9.2.86 Remark The nonlinearity of APN functions is generally not known. Our last general result
concerns monomials: Let n = 2t and F (x) = xd with s = gcd(d, 2n − 1), s > 1. Then
L(F ) ≥ 2t+1 and, if equality holds, then s = 3 (see [228] and [489, Theorem 8.14]). We note
that if F is APN then s = 3 (Proposition 9.2.36).

9.2.87 Conjecture If gcd(d, 2n − 1) = 1, n even, then L(xd) ≥ 2(n+2)/2.

9.2.88 Remark APN monomials appear as specific objects with very particular properties. Al-
though these are rare they are not completely classified, as explained in Problem 9.2.84.
Very little is known about differential properties of other power functions. It is important
to explore these properties, in view of future possible applications [331].

9.2.89 Remark Monomial APN functions in odd characteristic are investigated in [908, 1479]. We
note that there exist planar monomial PN functions (see Section 9.5).

See Also

§8.4 For exceptional polynomials.
§9.1 For basic properties on Boolean functions.
§9.5 For planar functions, that is, PN functions in odd characteristics.
§10.3 For connections to m-sequences.
§16.2 For the design of block ciphers.

References Cited: [224, 228, 264, 272, 277, 278, 331, 384, 385, 386, 387, 388, 389, 417, 423,
424, 443, 447, 448, 449, 489, 492, 493, 494, 495, 496, 524, 525, 577, 590, 808, 862, 863, 864,
903, 904, 906, 908, 953, 954, 1467, 1479, 1490, 1526, 1541, 1547, 1594, 1595, 1688, 1689,
1816, 1828, 1939, 1991, 2026, 2287, 2302, 2303, 2304, 2838, 2885]
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9.3 Bent and related functions

Alexander Kholosha, University of Bergen

Alexander Pott, Otto-von-Guericke-Universität Magdeburg

9.3.1 Remark In this section, we give basics and mainly focus on recent results on Boolean bent
functions and also provide a rather comprehensive survey of generalized bent functions. For
other results on Boolean bent functions, together with most of the proofs, the reader is
referred to [523].

9.3.1 Definitions and examples

9.3.2 Definition (Walsh transform) Let f : Fnp → C be a complex-valued function, where p

is a prime. Let ζp = e
2πi
p be a primitive complex p-th root of unity. Then the Walsh

transform of f is the function f̂ : Fnp → C such that f̂(y) =
∑
x∈Fnp

f(x) · ζy·xp , where “·”
denotes some non-degenerate symmetric bilinear form on Fnp , sometimes also called an
inner product. If f : Fnp → Fp, we may define a corresponding complex-valued function

fc by fc(x) = ζ
f(x)
p . The Walsh transform of f is by definition the Walsh transform of

fc. The normalized Walsh coefficients are the numbers p−n/2f̂(y).

9.3.3 Remark

1. When we compute ζy·xp , we interpret the exponent as an integer in {0, . . . , p−1}.
2. The Walsh transform is a special case of the discrete Fourier transform of Abelian

groups.

3. More information about the Walsh transform of Boolean functions is contained
in Section 9.1, where f̂(y) is denoted Wf (y), instead.

4. If we identify the vector space Fnp with the additive group of Fpn , we may use
the trace function to define the bilinear form x · y that occurs in Definition 9.3.2.
We take the bilinear form x · y := Trn(xy), where x, y ∈ Fpn .

5. The standard inner product on Fnp is (x1, . . . , xn) · (y1, . . . , yn) =
∑n
i=1 xiyi.

9.3.4 Remark

1. If we identify Fnp with Fpn , all p-ary functions can be described by Trn(F (x))
for some function F : Fpn → Fpn of degree at most pn − 1. This is the univari-
ate representation. If we do not identify Fnp with Fpn , the p-ary function has a
representation as a multinomial in x1, . . . , xn, where the variables xi occur with
exponent at most p− 1. This is the multivariate representation.

2. The multivariate representation is unique.

3. The univariate representation is not unique. Unique univariate form of a Boolean
function, trace representation, is discussed in Section 9.1. The case of odd p is
similar.

9.3.5 Definition The algebraic degree of a p-ary function is the degree of the polynomial giving
its multivariate representation.
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9.3.6 Remark The algebraic degree of a p-ary function is not the degree of the polynomial F
in the univariate representation, see Section 9.1. Throughout this section, degree always
means the algebraic degree.

9.3.7 Remark The Walsh transform can also be defined for functions F : Fnp → Fmp . In this case,
one considers all functions Fa : Fpn → Fp of the form Fa(x) = a · F (x), where a · x denotes
an inner product on Fmp . In this section, we mostly consider functions Fnp → Fp, where p
is prime. Interesting classes of functions Fnp → Fnp include planar functions, APN functions
and permutation polynomials, see Chapter 8 and Sections 9.2, 9.5.

9.3.8 Definition [1812] A function f : Fnp → Fp is a p-ary bent function (or generalized bent

function) if all its Walsh coefficients satisfy |f̂(y)|2 = pn. A bent function f is regular if

for every y ∈ Fnp , the normalized Walsh coefficient p−n/2f̂(y) is equal to a complex p-th

root of unity, i.e., p−n/2f̂(y) = ζ
f∗(y)
p for some function f∗ mapping Fnp into Fp. A bent

function f is weakly regular if there exists a complex number u having unit magnitude

such that up−n/2f̂(y) = ζ
f∗(y)
p for all y ∈ Fnp . Hereafter, pn/2 with odd n stands for the

positive square root of pn. If f is a weakly regular p-ary bent function (in particular, a
Boolean bent function) then f∗ is the dual of f .

9.3.9 Definition [2486] A Boolean function f : Fn2 → F2 is bent if

|f̂(y)| = |
∑
x∈Fn2

(−1)f(x)+y·x| = 2n/2

for all y ∈ Fn2 .

9.3.10 Remark Definition 9.3.9 is a special case of Definition 9.3.8. We include it here since most
papers on bent functions just deal with the Boolean case. In the Boolean case, the dimension
n must obviously be even. Boolean bent functions are regular.

9.3.11 Remark Boolean bent functions that are equal to their dual are self-dual and those whose
dual is the complement of the function are anti self-dual [526, 1543]. The class of self-dual
bent functions can be extended by defining formally self-dual Boolean functions [1565].

9.3.12 Example

1. The function

f(x1, . . . , x2m) := x1x2 + x3x4 + · · ·+ x2m−1x2m

is bent on F2m
2 .

2. If we identify Fnp with the additive group of Fpn , the function f(x) = Trn(x2) is
p-ary bent for all odd primes p. This example shows that in the odd characteristic
case, the dimension n need not be even.

9.3.13 Definition (EA-equivalence) Functions f, g : Fnp → Fp are extended-affine equivalent (in
brief, EA-equivalent) if there exists an affine permutation L of Fnp , an affine function
l : Fnp → Fp and a ∈ F∗p such that g(x) = a(f ◦ L)(x) + l(x).
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9.3.14 Definition A class of functions is complete if it is a union of EA-equivalence classes. The
completed class is the smallest possible complete class that contains the original one.

9.3.15 Remark

1. EA-equivalence of Boolean functions from Definition 9.1.48 is the case p = 2 in
Definition 9.3.13.

2. If a function f is not affine then any function EA-equivalent to it has the same
algebraic degree as f . On the other hand, the function f and its dual f∗ do not
necessarily have the same degree (this can be seen in many examples below).

3. Any function which is EA-equivalent to a bent function is bent.

4. For bent functions, CCZ equivalence coincides with EA equivalence (see [451,
Theorem 3]).

5. Each Boolean quadratic bent function over F2m
2 is EA-equivalent to the function

in Example 9.3.12 (1). Thus, the class of Boolean quadratic bent functions is
complete and consists of a single equivalence class. For the case of odd p, see
Remark 9.3.36.

9.3.16 Definition [3038] A Boolean function f over F2n is hyper bent if f(xk) is bent for any k
coprime with 2n − 1 [529, 591].

9.3.2 Basic properties of bent functions

9.3.17 Theorem [1539, 2486] If f is a p-ary bent function on Fnp then

2 ≤ deg f ≤ (p− 1)n

2
+ 1.

Moreover, if f is a weakly regular bent function (that includes the case of Boolean bent
functions) with (p− 1)n ≥ 4 then

2 ≤ deg f ≤ (p− 1)n

2
.

9.3.18 Remark The Maiorana-McFarland and Dillon classes of bent functions (see Construc-
tion 9.3.37, Remark 9.3.39, and Theorem 9.3.59) contain examples of regular functions
where the upper bound on the degree is achieved when n is even. Other examples of ternary
(weakly) regular bent functions in even dimension that achieve the maximal degree come
from Theorem 9.3.62 and are given by Coulter-Matthews exponents with k = n − 1 (see
Remark 9.3.65). Infinite classes of ternary bent functions in odd dimension (both weakly
and non weakly regular) attaining the bound are obtained from plateaued functions using
Construction 9.3.69. This construction also gives examples of weakly regular functions in
odd dimension with p = 5 that have maximal degree.

9.3.19 Problem It is not known whether the bound for the degree of non weakly regular bent
functions is sharp for general p. The same question remains open for weakly regular bent
functions with odd n and p > 5.

9.3.20 Theorem [1812, 2486] The dual of a weakly regular bent function is again a weakly regular
bent function.
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9.3.21 Theorem [1812, Property 8] The Walsh transform coefficients of a p-ary bent function f
with odd p satisfy

p−n/2f̂(y) =

{
± ζf

∗(y)
p if n is even or n is odd and p ≡ 1 (mod 4),

± i ζf
∗(y)

p if n is odd and p ≡ 3 (mod 4),

where i is a complex primitive 4-th root of unity. Regular bent functions can only be found
for even n and for odd n with p ≡ 1 (mod 4). Also, for a weakly regular bent function, the
constant u in Definition 9.3.8 can only be equal to ±1 and ±i.

9.3.22 Theorem [1812, 2486] (Propagation criterion) A function f : Fnp → Fp is bent if and only if
the mappings Da(f) : Fnp → Fp with Da(f)(x) = f(x+ a)− f(x) are balanced for all a 6= 0,
i.e., the number of solutions f(x+ a)− f(x) = b is pn−1 for all a 6= 0 and all b ∈ Fp.

9.3.23 Example If f(x) = Trn(xp+1), defined on Fpn with p odd and n odd, then Da(f)(x) =
f(x + a) − f(x) = Trn(xpa + apx + ap+1). The polynomial xpa + apx is linearized and
xpa + apx = 0 if and only if x = 0 or (x/a)p−1 + 1 = 0. But the latter expression has no
solution if n is odd, hence xpa+apx is a permutation polynomial and Trn(xpa+apx+ap+1)
is balanced, hence f is bent.

9.3.24 Theorem Let n = 2m and f : Fpn → Fp be a p-ary bent function. Then

N(0) = pn−1 − µ(pm − pm−1), N(1) = · · · = N(p− 1) = pn−1 + µpm−1 ,

where µ = ±1 and N(j) = #{x ∈ Fpn : f(x) = j}. In particular, f̂(0) = ±pm.

9.3.3 Bent functions and other combinatorial objects

9.3.25 Remark Weakly regular bent functions are useful for constructing certain combinatorial
objects such as partial difference sets, strongly regular graphs, and association schemes (see
[598, 1058, 2424, 2775]).

9.3.26 Theorem [861] A function f : Fn2 → F2 is bent if and only if the set {x ∈ Fn2 : f(x) = 1}
is a difference set in Fn2 with parameters (2n, 2n−1 ± 2(n/2)−1, 2n−2 ± 2(n/2)−1; 2n−2) (see
Section 14.6.4). Equivalent difference sets give rise to EA-equivalent bent functions, but
EA-equivalent bent functions need not necessarily give rise to equivalent difference sets, see
Example 9.3.28.

9.3.27 Remark Theorem 9.3.26 does not hold for p-ary bent functions with p odd. For general p,
the set Rf := {(x, f(x)) : x ∈ Fnp} ⊂ Fn+1

p is a relative difference set [2423].

9.3.28 Example If f and g are EA-equivalent Boolean bent functions, the corresponding differ-
ence sets need not be equivalent. One reason is that the complemented function f , i.e.,
f + 1 describes the complementary difference set. But, more seriously, adding a linear map-
ping l to f may not preserve equivalence of the corresponding difference sets. Using the
bivariate notation introduced in Remark 9.3.52, the functions f(x, y) = Tr4(x · y7) and
g(x, y) = f(x, y) + Tr4(x) with x, y ∈ F24 , are EA equivalent. Both functions describe dif-
ference sets with parameters (256, 120, 56; 64). These difference sets are inequivalent since
the corresponding designs are not isomorphic.

9.3.29 Theorem [1475] The function f : Fn2 → F2 is bent if and only if

#{x ∈ Fn2 : f(x) 6= l(x) + ε} = 2n−1 ± 2(n/2)−1
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for all linear mappings l : Fn2 → F2 and all ε ∈ {0, 1}.

9.3.30 Remark Theorem 9.3.29 shows that f has the largest distance to all affine functions, hence
bent functions solve the covering radius problem for first order Reed-Muller codes of length
2n with n even. In other words, bent functions are maximum nonlinear functions Fn2 → F2

if n is even.

9.3.4 Fundamental classes of bent functions

9.3.31 Example [2486] The following is a complete list of Boolean bent functions on F2m
2 for

1 ≤ m ≤ 3 (up to equivalence). For the functions F3, F4, F5, and F6, we have m = 3.

1. x1x2 for m = 1,

2. x1x2 + x3x4 for m = 2,

3. x1x4 + x2x5 + x3x6 = F3,

4. F3 + x1x2x3 = F4,

5. F4 + x2x4x6 + x1x2 + x4x6 = F5,

6. F5 + x3x4x5 + x1x2 + x3x5 + x4x5 = F6.

9.3.32 Remark The corresponding difference sets are inequivalent, but the design corresponding
to the difference set from F3 is equivalent to the design corresponding to F4.

9.3.33 Proposition [1991, Chapter 15] Let f be a quadratic function
∑
i,j ai,jxixj in 2m variables

over F2. Then f is bent if and only if one of the following equivalent conditions is satisfied:

1. The matrix (ai,j + aj,i)i,j=1,...,2m ∈ F(2m,2m)
2 is invertible.

2. The symplectic form B(x, y) := f(x+ y) + f(x) + f(y) is nondegenerate.

9.3.34 Example The matrix corresponding to the Boolean function f(x) = x1x2 + x2x3 + x3x4 is
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 and it is invertible, hence f is bent. Similarly, the function x1x2 + x2x3 +

x3x4 + x1x4 is not bent, since the corresponding matrix


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 is singular.

9.3.35 Proposition [1470] Any quadratic p-ary function f mapping Fpn to Fp is bent if and only if
the bilinear form B(x, y) := f(x+y)−f(x)−f(y)+f(0) associated with f is nondegenerate.
Moreover, all quadratic p-ary bent functions are (weakly) regular.

9.3.36 Remark There are exactly two inequivalent nondegenerate quadratic forms on Fpn with p
odd:

f1 := x2
1 + x2

2 + · · ·+ x2
n,

f2 := x2
1 + x2

2 + · · ·+ g · x2
n,

where g is a nonsquare in Fp. Here “equivalence” of quadratic forms is the usual linear
algebra equivalence. Both functions are bent. If n is odd, then g · f2 is EA-equivalent to f1,
hence there is only one quadratic bent function if n is odd. If n is even, the two quadratic
bent functions are EA-inequivalent.
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9.3.37 Construction [861, 1812, 2051] (Maiorana-McFarland) Take any permutation π of Fmp and
any function σ : Fmp → Fp. Then f : Fmp ×Fmp → Fp with f(x, y) := x · π(y) + σ(y) is a bent
function. Moreover, the bijectiveness of π is necessary and sufficient for f being bent. Such
bent functions are regular and the dual function is equal to f∗(x, y) = y ·π−1(x)+σ(π−1(x)).
Boolean quadratic bent functions all belong to the completed Maiorana-McFarland class.
On the other hand, for odd p and even n, quadratic bent function f2 in Remark 9.3.36 does
not belong to the completed Maiorana-McFarland class [445].

9.3.38 Example The Boolean function x1x4 +x2x5 +x3x6 +x4x5x6 is a Maiorana-McFarland bent
function on 6 variables.

9.3.39 Remark The Maiorana-McFarland construction can be used to construct bent functions of
degree (p− 1)m by choosing a function σ of degree (p− 1)m.

9.3.40 Construction [861] (Partial spread) Let V = Fn2 with n = 2m. Let Ui, i ∈ I, be a collection
of subspaces of dimension m with Ui ∩ Uj = {0} for all i 6= j. If |I| = 2m−1, the set D−I =⋃
i∈I Ui \{0} is a difference set with parameters (22m, 22m−1−2m−1, 22m−2−2m−1; 22m−2).

Similarly, if |I| = 2m−1 + 1, the union D+
I =

⋃
i∈I Ui is a difference set with parameters

(22m, 22m−1 + 2m−1, 22m−2 + 2m−1; 22m−2). The functions f− : V → F2 (or f+) with
f−(x) = 1 if and only if x ∈ D−I (or f+(x) = 1 if and only if x ∈ D+

I ) are bent functions
(see Theorem 9.3.26). For more information on difference sets see Section 14.6.

9.3.41 Remark These functions are bent functions of partial spread type, since a collection of
subspaces of dimension m with pairwise trivial intersection is a partial spread. The functions
f+ are of type PS+, the others of type PS−.

9.3.42 Example Let q = 2m, and view Fq2 as a 2-dimensional space over Fq, but also as a 2m-
dimensional vector space over F2. Then the 1-dimensional subspaces of Fq2 (viewed as a
2-dimensional vector space) are m-dimensional subspaces over F2. The q + 1 subspaces of
dimension 1 over Fq are

Uα := {α · x : x ∈ Fq}

where αq+1 = 1, i.e., α is in the multiplicative group of order q+ 1 in Fq2 . These subspaces
intersect pairwise trivially, hence we may take any 2m−1 or 2m−1 + 1 of these subspaces to
construct f− or f+.

9.3.43 Remark

1. The parameters of D+
I are complementary to the parameters of D−I , but the

difference sets are, in general, not complements of each other.

2. All functions in PS− have algebraic degree n/2. On the contrary, if n/2 is even
then class PS+ contains all quadratic bent functions [861].

3. A partial spread where the union of the subspaces covers the entire vector space
is called a spread.

4. The spread constructed in Example 9.3.42 is the regular spread.

5. Spreads of subspaces of dimension m in 2m-dimensional subspaces can be used
to describe translation planes.

6. There are numerous spreads, hence many partial spreads. Many partial spreads
are not contained in spreads. For partial spreads contained in spreads, the two
constructions in Construction 9.3.40 are complements of each other, i.e., for any
f−, there is another partial spread such that f− = f+ + 1.
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9.3.44 Definition The class PSap is a subclass of PS− where a subspread of the regular spread
is used.

9.3.45 Remark [523] All of the functions in the PSap class are hyper bent (see Definition 9.3.16).

9.3.46 Remark Some of the known constructions of bent functions are direct, that is, do not use as
building blocks previously constructed bent functions. We call these primary constructions.
The others, sometimes leading to recursive constructions, will be called secondary construc-
tions. Most of the secondary constructions of Boolean bent functions are not explained here
and can be found in [523, Section 6.4.2].

9.3.47 Construction (Recursive construction) Let f1 : Fm1
p → Fp and f2 : Fm2

p → Fp be p-ary
bent functions, then f1 ∗ f2 : Fm1+m2

p with (f1 ∗ f2)(x1, x2) = f1(x1) + f2(x2) is p-ary bent.

9.3.48 Remark This construction was formulated originally in a much more general form using
relative difference sets [2423]. Since the function f : Fp → Fp with f(x) = x2 is a p-ary bent
function if p is odd, Construction 9.3.47 yields bent functions Fnp → Fp for all n (p odd).

9.3.5 Boolean monomial and Niho bent functions

9.3.49 Example The following monomial functions f(x) = Trn(αxd) are bent on F2n with
n = 2m:

1. d = 2k + 1 with n/ gcd(k, n) being even and α /∈ {yd : y ∈ F2n} [1295];

2. d = r(2m−1) with gcd(r, 2m+ 1) = 1 and α ∈ F2m being −1 of the Kloosterman
sum (see Remark 9.3.61) [591, 861];

3. d = 22k − 2k + 1 with gcd(k, n) = 1 and α /∈ {y3 : y ∈ F2n} [864, 1856];

4. d = (2k + 1)2 with n = 4k and k odd, α ∈ ωF2k with ω ∈ F4 \ F2 [594, 1879];

5. d = 22k + 2k + 1 with n = 6k and k > 1, α ∈ F23k with TrF
23k/F2k

(α) = 0 [495].

9.3.50 Remark These functions are monomial bent functions. Functions in Part 1 are quadratic,
and those in Parts 4 and 5 belong to the Maiorana-McFarland class. Functions in Part 2
are in the class PSap. An exhaustive search shows that there are no other monomial bent
functions for n ≤ 20.

9.3.51 Example [531, 532, 907, 1474, 1878] (Niho bent functions) A positive integer d (always
understood modulo 2n − 1 with n = 2m) is a Niho exponent if d ≡ 2j (mod 2m − 1) for
some j < n. As we consider Trn(axd) with a ∈ F2n , without loss of generality, we can
assume that d is in normalized form, i.e., with j = 0. Then we have a unique representation
d = (2m − 1)s+ 1 with 2 ≤ s ≤ 2m. Following are examples of bent functions consisting of
one or more Niho exponents:

1. Quadratic function Trm(ax2m+1) with a ∈ F∗2m (here s = 2m−1 + 1).

2. Binomials of the form f(x) = Trn(α1x
d1+α2x

d2), where 2d1 ≡ 2m + 1 (mod 2n − 1)
and α1, α2 ∈ F∗2n are such that (α1 + α2m

1 )2 = α2m+1
2 . Equivalently, denoting

a = (α1 + α2m

1 )2 and b = α2 we have a = b2
m+1 ∈ F∗2m and

f(x) = Trm(ax2m+1) + Trn(bxd2).

We note that if b = 0 and a 6= 0 then f is a bent function listed under number 1.
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The possible values of d2 are:

d2 = (2m − 1)3 + 1,

6d2 = (2m − 1) + 6 (with the condition that m is even).

These functions have algebraic degree m and do not belong to the completed
Maiorana-McFarland class [446].

3. Take r > 1 with gcd(r,m) = 1 and define

f(x) = Trn

(
ax2m+1 +

2r−1−1∑
i=1

xdi

)
,

where 2rdi = (2m − 1)i + 2r and a ∈ F2n is such that a + a2m = 1. The dual of
f , calculated using Proposition 9.3.56, is equal to

f∗(y) = Trm

((
u(1 + y + y2m) + u2n−r + y2m

)
(1 + y + y2m)1/(2r−1)

)
,

where u ∈ F2n is arbitrary with u + u2m = 1. Moreover, if d < m is a positive
integer defined uniquely by dr ≡ 1 (mod m) then the algebraic degree of f∗ is
equal to d+ 1. Both functions f and its dual belong to the completed Maiorana-
McFarland class. On the other hand, f∗ is not a Niho bent function.

4. Bent functions in a bivariate representation obtained from the known o-
polynomials (see Remarks 9.3.52 and 9.3.54).

9.3.52 Remark The bivariate representation of a Boolean function is defined as follows: we identify
Fn2 with F2m × F2m and consider the argument of f as an ordered pair (x, y) of elements
in F2m . There exists a unique bivariate polynomial

∑
0≤i,j≤2m−1 ai,jx

iyj over F2m that
represents f . The algebraic degree of f is equal to max(i,j) | ai,j 6=0(w2(i) + w2(j)) (w2(j)
is the Hamming weight of the binary expansion of j). Since f is Boolean the bivariate
representation can be written in the form of f(x, y) = Trm(P (x, y)), where P (x, y) is some
polynomial of two variables over F2m .

9.3.53 Construction [532, 861] Define class H of functions in their bivariate representation as
follows

g(x, y) =

{
Trm

(
xH( yx )

)
if x 6= 0,

Trm(µy) if x = 0,
(9.3.1)

where µ ∈ F2m and H is a mapping from F2m to itself with G(z) := H(z) + µz satisfying

z 7→ G(z) + βz is 2-to-1 on F2m for any β ∈ F∗2m . (9.3.2)

Condition (9.3.2) is necessary and sufficient for g to be bent.

9.3.54 Remark

1. Any mapping G on F2m that satisfies (9.3.2) is an o-polynomial.

2. Any o-polynomial defines a hyperoval in PG(2, 2m). Using Construction 9.3.53,
every o-polynomial results in a bent function in class H. For a list of known, up
to equivalence, o-polynomials, see [532].

9.3.55 Remark A bent function F2n → F2 with n = 2m belongs to class H if and only if its
restriction to each coset uF2m with u ∈ F∗2n is linear. Thus, Niho bent functions from
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Example 9.3.51 are just functions of class H viewed in their univariate representation. In
particular, binomial Niho bent functions with d2 = (2m − 1)3 + 1 correspond to Subiaco
hyperovals [1474], functions with 6d2 = (2m−1) + 6 correspond to Adelaide hyperovals and
functions listed under number 3 (consisting of 2r terms) are obtained from Frobenius map

G(z) = z2m−r (i.e., translation hyperovals) [531].

9.3.56 Proposition [532] Let g be a bent function having the form of (9.3.1). Then its dual function
g∗, represented in its bivariate form, satisfies g∗(α, β) = 1 if and only if the equation
H(z) + βz = α has no solutions in F2m .

9.3.6 p-ary bent functions in univariate form

9.3.57 Theorem [1470] Consider an odd prime p and nonzero a ∈ Fpn . Then for any j ∈ {1, . . . , n},
the quadratic p-ary function f mapping Fpn to Fp and given by

f(x) = Trn
(
axp

j+1
)

is bent if and only if

p gcd(2j,n) − 1 6
∣∣∣∣ pn − 1

2
− ind(a)(pj − 1) , (9.3.3)

where ind(a) denotes the unique integer t ∈ {0, . . . , pn − 1} with a = ξt and ξ being a
primitive element of Fpn .

9.3.58 Remark The functions in Theorem 9.3.57 are quadratic, hence they are (weakly) regular.
In [1471], the dual function has been determined explicitly.

9.3.59 Theorem [1470] Let n = 2m and t be an arbitrary positive integer with gcd(t, pm + 1) = 1
for an odd prime p. For any nonzero a ∈ Fpn , define the following p-ary function mapping
Fpn to Fp

f(x) = Trn
(
axt(p

m−1)
)
. (9.3.4)

Let K denote the Kloosterman sum (see Definition 6.1.118). Then for any y ∈ F∗pn , the
corresponding Walsh transform coefficient of f is equal to

f̂(y) = 1 +K
(
ap

m+1
)

+ pmζ−Trn(ap
m
yt(p

m−1))
p and

f̂(0) = 1− (pm − 1)K
(
ap

m+1
)
.

Assuming pm > 3, then f is bent if and only if K
(
ap

m+1
)

= −1. Moreover, if the latter
holds then f is a regular bent function of degree (p− 1)m.

9.3.60 Remark According to the result of Katz and Livné [1695] (see also [2121, Theorem 6.4]),
with c running over F∗3m , the Kloosterman sum K(c) takes on all the integer values in the
range (−2

√
3m, 2

√
3m) that are equal to −1 modulo 3. In particular, there exists at least

one a ∈ F3n such that K
(
a3m+1

)
= −1. This means that in the ternary case (i.e., when

p = 3) and given the conditions of Theorem 9.3.59, there exists at least one a ∈ F3n such
that the function (9.3.4) is bent. Moreover, there are no bent functions having the form of
(9.3.4) when p > 3 since in this case, the Kloosterman sum never takes on the value −1 as
shown in [1785]. More on Kloosterman sums is contained in Section 6.1.

9.3.61 Remark Let p = 2 and without loss of generality assume a ∈ F2m . Then exactly the same
result as in Theorem 9.3.59 holds for any m in the binary case giving the Dillon class of
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bent functions [591, 861, 1879] (see Example 9.3.49 Part 2). Moreover, the Kloosterman
sum over F2m takes on all the integer values in the closed range [−2

√
2m, 2

√
2m] that are

equal to −1 modulo 4 [1828]. This means that binary Dillon bent functions exist.

9.3.62 Theorem [1315, 1469, 1470] Let n = 2m with m odd and a = ξ
3m+1

4 , where ξ is a primitive
element of F3n . Then the ternary function f mapping F3n to F3 and given by

f(x) = Trn

(
ax

3n−1
4 +3m+1

)
is a weakly regular bent function of degree n.

For any y ∈ F3n the Walsh transform coefficient of f is equal to f̂(y) = −3mζ
g(y)
3 with

g(y) = −Trn
(
a−1y

3n−1
4 +3m+1

) ∑
t∈Im

Tro(t)
(
(ay−2)t(3

m+1)
)
,

where o(t) is the size of the cyclotomic coset modulo 3m − 1 that contains t and the set Im
is defined as follows. Select all such integers in the range {0, . . . , 3m−1} that do not contain
2-digits in the ternary expansion and none of 1-digits are adjacent (the least significant digit
is cyclically linked with the most significant). Split this set into cyclotomic cosets modulo
3m − 1, take coset leaders and denote this subset Im.

9.3.63 Theorem [1472] Let n = 4k. Then the p-ary function f mapping Fpn to Fp and given by

f(x) = Trn

(
xp

3k+p2k−pk+1 + x2
)

is a weakly regular bent function of degree (p − 1)k + 2. Moreover, for any y ∈ Fpn the
corresponding Walsh transform coefficient of f is equal to

f̂(y) = −p2kζTrk(x0)/4
p ,

where x0 is a unique root in Fpk of the polynomial

yp
2k+1 + (y2 +X)(p2k+1)/2 + yp

k(p2k+1) + (y2 +X)p
k(p2k+1)/2.

In particular, if y2 ∈ Fp2k then x0 = −TrF
p2k/Fpk

(
y2
)
.

9.3.64 Remark Some sporadic examples of ternary (non) weakly regular bent functions consisting
of one or two terms in the univariate representation can be found in [1473].

9.3.7 Constructions using planar and s-plateaued functions

9.3.65 Remark Definition and other information on planar functions can be found in Section 9.5.
In particular, except for one class, all known planar functions are quadratic [451] which
means that they can be represented by so called Dembowski-Ostrom polynomials (see Def-
inition 9.5.17 and [732]). The only known example of a nonquadratic planar function is

F (x) = x
3k+1

2 over F3n with gcd(k, n) = 1 and odd k, known as Coulter-Matthews function
[732]. The following theorem shows that every planar function gives a family of generalized
bent functions.

9.3.66 Theorem [527] A function F mapping Fpn to itself is planar if and only if for every nonzero
a ∈ Fpn the function Trn(aF ) is generalized bent.
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9.3.67 Remark The generalized bent functions Trn(aF ) obtained from Dembowski-Ostrom poly-
nomials are quadratic, hence they are weakly regular (see Proposition 9.3.35). It was shown
in [1055, 3042] that the bent functions coming from the Coulter-Matthews planar functions
are also weakly regular.

9.3.68 Definition A function f mapping Fpn to Fp is s-plateaued if its Walsh coefficients either

equal zero or satisfy |f̂(y)|2 = pn+s. The case s = 0 corresponds to bent functions.

9.3.69 Construction [571, 572] For every a = (a1, a2, . . . , as) ∈ Fsp let fa be an s-plateaued

function from Fpn to Fp such that f̂a(t) · f̂b(t) ≡ 0 for any a, b ∈ Fsp with a 6= b and t ∈ Fpn .
Then function f(x, y1, y2, . . . , ys) from Fpn × Fsp to Fp defined by

f(x, y1, y2, . . . , ys) = (−1)s
∑
a∈Fsp

∏s
i=1 yi(yi − 1) · · · (yi − (p− 1))

(y1 − a1) · · · (ys − as)
fa(x)

is bent. Moreover, for any t ∈ Fpn and a ∈ Fsp, the corresponding Walsh transform coefficient
of f is equal to

f̂(t,a) = ζ−a·yp f̂y(t),

where y ∈ Fsp is unique with f̂y(t) 6= 0.

9.3.70 Remark Quadratic functions are always plateaued. Then one can construct s-plateaued
functions with the prescribed properties by adding suitably chosen linear functions to such
quadratic s-plateaued functions. In this case, the constructed bent function f has degree
(p − 1)s + 2 (resp. (p − 1)s + 1) if

∑
a∈Fsp

fa is quadratic (resp. affine). It is possible to

construct specific families of quadratic s-plateaued functions that lead to weakly regular
bent functions when n − s is even. Similar constructions with n − s odd can lead both to
weakly and non weakly regular bent functions. On the other hand, one can take a suitable
family of (n − 1)-plateaued quadratic functions (maximal order achievable by a non affine
function). Then in the case when the degree of the corresponding bent function exceeds
(p − 1)n/2 being the maximum for a weakly regular function (see Theorem 9.3.17), the
obtained functions are non weakly regular.

9.3.8 Vectorial bent functions and Kerdock codes

9.3.71 Definition A mapping f : Fnp → Fmp is a vectorial bent function if all its component
functions fa : Fnp → Fp defined by fa(x) = a · x are bent for all a 6= 0. Here “·” denotes
a symmetric bilinear form (see Definition 9.3.2).

9.3.72 Example We identify the vector spaces Fnp and Fmp with the finite fields Fpn and Fpm .

1. Any planar function is a vectorial bent function Fpn → Fpn .

2. If n = 2m, then f(x, y) = xy is a vectorial bent function Fpm × Fpm → Fpm . All
component functions are quadratic.

3. If n = 2m, then f(x, y) = xyp
m−2 is a vectorial bent function Fpm ×Fpm → Fpm .

9.3.73 Theorem [2302] If f : F2m
2 → Fn2 is vectorial bent, then n ≤ m and equality can be attained

(see Example 9.3.72).

9.3.74 Remark A collection of 22m−1 − 1 quadratic Boolean bent functions in 2m variables such
that the sum of any two of them is bent again, gives rise to a Kerdock code of length 22m.
The Boolean functions in Example 9.3.72 Part 2 only give rise to 2m−1 such bent functions.
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9.4 κ-polynomials and related algebraic objects

Robert Coulter, The University of Delaware

9.4.1 Definitions and preliminaries

9.4.1 Definition A polynomial f(x1, . . . , xn) is a κ-polynomial over Fq if

ka = #{(x1, . . . , xn) ∈ Fnq : f(x1, . . . , xn) = a},

is independent of a for a ∈ F∗q .

9.4.2 Theorem [2034] The polynomial f(x1, . . . , xn) is a κ-polynomial over Fq if and only if∑
a∈Fnq

χ(f(a)) = 0

for all non-trivial multiplicative characters χ of Fq.

9.4.3 Remark This should be compared to Corollary 8.2.7 of Section 8.2. There are almost no
results in the literature directly discussing κ-polynomials. This seems altogether surprising
since the specified regularity on preimages of all non-zero elements of the field suggests such
polynomials must almost certainly appear in many guises other than those outlined here.

9.4.4 Lemma [2034] Let f(x1, . . . , xn) be a κ-polynomial over Fq and g be any polynomial in
variables disjoint from x1, . . . , xn. Then fg is a κ-polynomial.
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9.4.5 Definition Let S = 〈S,+, ?〉 be a set with two binary operations, addition + and multi-
plication ? and where 〈S,+〉 forms a group.

1. S is a Cartesian group if it has no zero divisors and 〈S∗, ?〉 forms a loop.

2. S is a left (resp. right) quasifield if, in addition to being a Cartesian group, S
also has a left (resp. right) distributive law.

3. S is a semifield if it is a non-associative division ring – that is, a Cartesian group
with both distributive laws.

If we do not insist on a multiplicative identity, so that 〈S∗, ?〉 forms a quasigroup
instead of a loop, then we may speak of a pre-Cartesian group, prequasifield, or pre-
semifield.

9.4.6 Remark Each algebraic object corresponds with a type of projective plane under the Lenz-
Barlotti classification. Specifically, Cartesian groups correspond to type II, quasifields to
type IV, and semifields to type V. For more information along these lines see Section 14.3,
as well as the classical texts of Dembowski [807] and Hughes and Piper [1560]. See also
Subsection 2.1.7.6.

9.4.7 Theorem

1. The additive group of a quasifield is necessarily an elementary abelian p-group.

2. [1764] Any semifield of prime or prime squared order is necessarily a finite field.

3. [1764] Proper semifields, i.e., semifields which are not fields, exist for all prime
power orders pe ≥ 16 with e ≥ 3.

9.4.8 Theorem Let M(x, y) be a κ-polynomial over Fq satisfying M(x, y) = 0 if and only if
xy = 0. Define the sets L and R as follows:

L = {M(x, a) ∈ Fq[x] : a ∈ F∗q}; R = {M(a, x) ∈ Fq[x] : a ∈ F∗q}.

Consider the algebraic object S = 〈Fq,+, ?〉 where x ? y = M(x, y) for all x, y ∈ Fq.

1. If L∪R contains only permutation polynomials over Fq, then S is a pre-Cartesian
group.

2. If in addition to Part 1, precisely one of L or R contains only linearized polyno-
mials, then S is a prequasifield.

3. If in addition to Part 1, L ∪R contains only linearized polynomials, then S is a
presemifield.

9.4.9 Remark Theorem 9.4.8 shows how κ-polynomials underpin all of these algebraic structures.
Indeed, it follows from Theorem 9.4.7 Part 1 that there is a one-to-one correspondence
between either quasifields or semifields and κ-polynomials satisfying the corresponding part
of Theorem 9.4.8. Hence, when we talk of a quasifield or semifield S = 〈Fq,+, ?〉, we may
refer to the κ-polynomial corresponding to S, by which we mean the reduced bivariate
polynomial M ∈ Fq[x, y] satisfying M(x, y) = x ? y for all x, y ∈ Fq. It is this point
that underlines the philosophy behind the presentation of material in this section, which
is essentially to provide a polynomial-based or, if one prefers, algebraic approach to this
area, thematically linking the material with the chapter in which it resides. That said, it
needs to be underlined that the literature on quasifields and especially semifields is vast, and
that κ-polynomials represent only one approach to this subject. An excellent and detailed
survey of what might be termed the geometric approach to semifields was recently given by
Lavrauw and Polverino [1871]; there one will find many more results, along with discussions
on several topics reluctantly omitted here, such as the Knuth operations.
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9.4.10 Remark There are many examples of quasifield planes – for example, the classification
of translation planes of order 49 by Mathon and Royle [2025] reveals there are 1347 non-
isomorphic such planes. However, there does not appear to have been any attempt to study
the corresponding κ-polynomials, nor the non-linearized permutation polynomials in L or
R that arise from quasifields (through the known examples or by attempting to prove
restrictions on the permissible sets of permutation polynomials which can represent the
non-distributive side of a quasifield).

9.4.11 Remark Unsurprisingly, given the significant amount of extra structure, much more is
known about semifields than quasifields or Cartesian groups. Consequently, the remainder
of this section focuses on the semifield case.

9.4.2 Pre-semifields, semifields, and isotopy

9.4.12 Definition Let S1 = 〈Fq,+, ?〉 and S2 = 〈Fq,+, ∗〉 be two presemifields. Then S1 and S2

are isotopic if there exists three non-singular linear transformations L,M,N ∈ Fq[x] of
Fq over Fp such that

for all x, y ∈ Fq : M(x) ? N(y) = L(x ∗ y).

The triple (M,N,L) is an isotopism between S1 and S2. An isotopism of the form
(N,N,L) is a strong isotopism and two presemifields are strongly isotopic if there exists
a strong isotopism between them.

9.4.13 Remark This definition of equivalence, which is clearly much weaker than the standard
ring isomorphism, arises from projective geometry, where its importance is underlined by
the following result of Albert.

9.4.14 Theorem [71] Two presemifields coordinatize isomorphic planes if and only if they are
isotopic.

9.4.15 Remark Any presemifield S = 〈Fq,+, ◦〉 is isotopic to a semifield via the following trans-
formation: choose any α ∈ F∗q and define a new multiplication ? by

(x ◦ α) ? (α ◦ y) = x ◦ y

for all x, y ∈ Fq. Then S ′ = 〈Fq,+, ?〉 is a semifield with identity α ◦ α, isotopic to S. Any
such S ′ ia a semifield corresponding to S. If S is commutative, then S ′ is strongly isotopic
to S.

9.4.16 Remark There is no general classification result for semifields, in direct contrast to finite
fields, which were classified in the 1890s. However, some computational results on the clas-
sification problem do exist. In light of Menichetti’s results – see Theorem 9.4.24 below –
the problem remains open for semifields of order pe with e ≥ 4. Semifields of order N have
been classified up to isotopism for the following N : N = 16 [1751], N = 32 [2891], N = 64
[2492], N = 81 [810], and N = 243 [2491].

9.4.3 Semifield constructions

9.4.17 Proposition (Dickson’s commutative semifields) Let q = pe with p an odd prime, e > 1
and let {1, λ} be basis for Fq2 over Fq. For any j a non-square of Fq and any non-trivial
automorphism σ of Fq, we define a binary operation ? by
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for all a, b, c, d ∈ Fq, (a+ λb) ? (c+ λd) = ac+ j(bd)σ + λ(ad+ bc).

1. [847] Dj,σ = 〈Fq2 ,+, ?〉 is a commutative semifield.

2. [845] For j, k distinct non-squares of Fq, Dj,σ and Dk,σ are isotopic.

3. [466, 2521] Dj,σ and Dj,τ are isotopic if and only if σ = τ or σ = τ−1. In such
cases, they are strongly isotopic.

9.4.18 Proposition (Albert’s generalized twisted fields) [72, 73] For any prime power q, select
σ, τ ∈ Aut(Fq) and let j ∈ Fq be any element satisfying (xy)−1xσyτ = j has no solution for
x, y ∈ F∗q . Define a binary operation ? by

for all x, y ∈ Fq, x ? y = xy − jxσyτ .

1. A(σ, τ, j) = 〈Fq,+, ?〉 is a presemifield.

2. A(σ, τ, j) is isotopic to a commutative semifield if and only if σ = τ−1 and j = −1.

3. A(σ, τ, j) is isomorphic to a finite field if and only if σ = τ .

9.4.19 Remark The Dickson semifields of Proposition 9.4.17 were the first published examples
of non-associative finite division rings, while Albert’s construction is both historically im-
portant and fundamental, as it has played a significant role in subsequent classification
results, see Theorem 9.4.24 below. These two constructions are the only ones needed for our
discussion. To highlight the variety of construction techniques developed, even for isotopic
semifields, we direct the interested reader to the following not exhaustable list:

1. the paper [1764] of Knuth which contains several constructions;

2. the Cohen-Ganley and Ganley commutative semifields [689, 1170];

3. the Jha-Johnson semifields [1608, 1680];

4. the Hiramine-Matsumoto-Oyama quasifield construction [1508, 1679];

5. the Kantor-Williams semifields [1682];

6. the semifield construction using spread sets viewed as linear maps [518, 952].

9.4.4 Semifields and nuclei

9.4.20 Definition Let S = 〈Fq,+, ?〉 be a finite semifield. We define the left, middle, and right
nucleus of S, denoted by Nl,Nm and Nr, respectively, as follows:

Nl(S) = {α ∈ S | (α ? x) ? y = α ? (x ? y) for all x, y ∈ S},
Nm(S) = {α ∈ S | (x ? α) ? y = x ? (α ? y) for all x, y ∈ S},
Nr(S) = {α ∈ S | (x ? y) ? α = x ? (y ? α) for all x, y ∈ S}.

The set N (S) = Nl ∩Nm ∩Nr is the nucleus of S.

9.4.21 Remark It is easy to show that all nuclei are finite fields. The nuclei measure how far S is
from being associative. Moreover, the orders of the nuclei are invariants of S under isotopy
and so act as a coarse signature of the semifield. We note that if S is commutative, then
Nl = Nr ⊂ Nm.

9.4.22 Theorem (Restricting the corresponding κ-polynomial) [729] Let n and e be natural num-
bers. Set q = pe for some odd prime p and t(x) = xq − x. Let S be a semifield of order qn

with middle nucleus containing Fq. Then there exists a semifield S ′ = 〈Fqn ,+, ?〉, isotopic to
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S, with corresponding κ-polynomial M ∈ Fqn [x, y] satisfying M(x, y) = K(t(x), t(y)) + 1
2xy

and where K(x, y) is of the shape

K(x, y) =

(n−1)e−1∑
i,j=0

aijx
piyp

j

.

Furthermore, if S ′ is commutative and N = Fpk , then K is symmetric in x and y and the

only non-zero terms of K are of the form xp
ki

yp
kj

.

9.4.23 Remark Any semifield S can be represented as a right vector space over Nl, a left vector
space over Nr and both a left or right vector space over Nm. The concept of dimension
therefore naturally arises in the study of semifields.

9.4.24 Theorem (Menichetti’s classification results based on dimension)

1. [2081] Any three dimensional semifield over N is necessarily either a finite field
or a twisted field.

2. [2082] Fix d to be a prime. For sufficiently large q, any semifield of dimension d
over N = Fq is necessarily either a finite field or a twisted field.

9.4.25 Theorem (Dimension two results for commutative semifields) Let S be a commutative
semifield of order q2n with [S : Nm] = 2.

1. [689] If q is even, then S is a finite field.

2. [327] If q is odd and q ≥ 4n2 − 8n + 2, then S is necessarily a finite field or a
Dickson semifield.

9.4.26 Theorem (Strong isotopy for commutative semifields) [728] Let S1 = 〈Fq,+, ?〉 and
S2 = 〈Fq,+, ∗〉 be isotopic commutative presemifields and let S ′1 be any commutative semi-
field corresponding to S1. Set d = [Nm(S ′1) : N (S ′1)].

1. If d is odd, then S1 and S2 are strongly isotopic.

2. If d is even, then either S1 and S2 are strongly isotopic or the only isotopisms
between any two corresponding commutative semifields S ′1 and S ′2 are of the form
(α ? N,N,L) where α is a non-square element of Nm(S ′1).

In particular, if q = pe with p = 2 or e odd, then S1 and S2 are strongly isotopic.
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[138] For a recent attempt to resolve the problem of establishing inequivalence between
projective planes. Whether dealing with Cartesian groups, quasifields or
semifields, present methods for establishing the inequivalence of examples are
technical and generally unwieldy. Of major interest would be a new and
efficient method for doing so.

[787] Determines many ovals in semifields, as well as in the planes generated by
the planar functions of Proposition 9.5.11 Part 2 of the next section.

[1560] Gives a good discussion on the coordinatization method for projective planes.
[1678] Gives a conjecture concerning the asymptotic number of pairwise non-isotopic

semifields of fixed characteristic. The conjecture is proved for characteristic
two by Kantor [1677]; see also [1679, 1682].

[1871] For a recent survey emphasizing the geometric approach to semifields by two
of the leading authors in that field.

[2969] Conjectures the existence of left or right primitive elements (suitably defined)
in finite semifields. This was proved by Gow and Sheekey [1346] for semifields
of sufficiently large order relative to the characteristic. See [1487, 2490] for
counterexamples of small order in characteristic two.

References Cited: [71, 138, 327, 466, 518, 689, 728, 729, 787, 807, 810, 845, 847, 952, 1170,
1346, 1487, 1508, 1560, 1608, 1677, 1678, 1679, 1680, 1682, 1751, 1764, 1871, 2025, 2034,
2081, 2082, 2490, 2491, 2492, 2521, 2891, 2969]

9.5 Planar functions and commutative semifields

Robert Coulter, The University of Delaware

9.5.1 Definitions and preliminaries

9.5.1 Definition Let G and H be arbitrary finite groups, written additively, but not necessarily
abelian. A function f : G → H is a planar function if for every non-identity a ∈ G the
functions ∆f,a : x 7→ f(a + x) − f(x) and ∇f,a : x 7→ −f(x) + f(x + a) are bijections.
A polynomial f ∈ Fq[x] is planar over Fq if the function induced by f on Fq is a planar
function (on 〈Fq,+〉).

9.5.2 Remark A few points should be made clear from the outset.

1. Planar functions do not exist over groups of even order.

2. If f : G→ H is planar with G and H abelian, then so is f +φ+ c where φ is any
homomorphism from G to H and c ∈ H a constant. In particular, if f ∈ Fq[x] is
planar, then so is f + L for any linearized polynomial L ∈ Fq[x].

3. At the time of writing, all known planar functions can be defined over finite fields;
that is, when G = H = 〈Fq,+〉 with q odd.
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4. The polynomial x2 is planar over any finite field of odd characteristic.

5. A planar function is a perfect non-linear function in one variable, see Section 9.2.

9.5.3 Theorem [326] Suppose f : G→ H is a planar function with G and H abelian. Then G×H
is a p-group of order p2b for some natural number b and the minimum number of generators
of G×H is at least b+ 1.

9.5.4 Remark In a letter to the author, Jill C.D.S. Yaqub claimed to have a proof of “about
8 hand-written pages” in length which showed that if a planar function existed mapping
G to H, then G and H were necessarily abelian. Along with the above result, this would
go a long way to proving that G and H are necessarily elementary abelian. Unfortunately,
Yaqub passed away before she received my return correspondence urging her to publish. In
her memory, we record this as a conjecture.

9.5.5 Conjecture (Yaqub’s Conjecture) If f : G → H is a planar function, then G and H are
abelian.

9.5.2 Constructing affine planes using planar functions

9.5.6 Remark Given groupsG andH as in Definition 9.5.1 and a function f : G→ H, an incidence
structure I(G,H; f) may be defined as follows: “Points” are the elements of G×H; “Lines”
are the symbols L(a, b) with (a, b) ∈ G × H, together with the symbols L(c) with c ∈ G;
incidence is defined by

(x, y) ∈ L(a, b) if and only if y = f(x− a) + b; and

(x, y) ∈ L(c) if and only if x = c.

9.5.7 Theorem [808] Let G and H be groups and f : G→ H be a function.

1. The function f is planar if and only if I(G,H; f) is an affine plane.

2. Suppose G×H is abelian and f is planar. Then I(G,H; f) allows a collineation
group, isomorphic to G×H, which acts transitively on the affine points as well
as on the set of lines {L(a, b) : (a, b) ∈ G×H}.

9.5.8 Remark Theorem 9.5.7 constitutes Dembowski and Ostrom’s original motivation for study-
ing planar functions. In the case where f is planar over Fq, we use I(f) to denote the
corresponding affine plane and P (f) its projective closure.

9.5.9 Lemma [2393] If f ∈ Fq[x] is a planar polynomial, then P (f) can only be of Lenz-Barlotti
type II.1, V.1, or VII.2.

9.5.10 Lemma [811] Let Γ = ΓL(1, q) denote the group of all semilinear automorphisms of Fq,
viewed as a vector space over its prime field, and set G = 〈Fq,+〉. If xn is planar over Fq
and P (xn) is Lenz-Barlotti type II.1, then Aut(P (xn)) ≈ Γ · (G×G).

9.5.3 Examples, constructions, and equivalence

9.5.11 Proposition

1. [732] xp
α+1 is planar over Fpe if and only if e/ gcd(α, e) is odd.

2. [732] x(3α+1)/2 is planar over F3e if and only if gcd(α, 2e) = 1.

3. [732, 874] For any a ∈ F3e , x
10 + ax6 − a2x2 is planar over F3e if and only if e is

odd or e = 2.
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9.5.12 Remark Many more examples can be generated from commutative semifields of odd order,
see Section 9.5.5. The examples of Proposition 9.5.11 Part 2 do not generalize to larger
characteristic – apply Proposition 9.5.24 Part 2. When e is odd, these examples generate
the only Lenz-Barlotti type II planes of non-square order known [732]; see [263, 787, 1758]
for more concerning these planes.

9.5.13 Definition Let f, g ∈ Fq[x] be two planar polynomials over Fq. Set f1 (respectively g1)
to be the polynomial which results when f (respectively g) is stripped of all linearized
and constant terms. Then f and g are planar equivalent if there exist two linearized
permutation polynomials L,M ∈ Fq[x] satisfying L(f1(x)) ≡ g1(M(x)) mod (xq − x).

9.5.14 Theorem [732] Let f ∈ Fq[x] and let L ∈ Fq[x] be a linearized polynomial. Then the
following are equivalent.

1. f(L) is a planar polynomial.

2. L(f) is a planar polynomial.

3. f is a planar polynomial and L is a permutation polynomial.

9.5.15 Theorem (Isomorphic planes and planar equivalence)

1. [732] Let f, g ∈ Fq[x] be planar polynomials. If f and g are planar equivalent,
then I(f) and I(g) are isomorphic.

2. [811] Let xm and xn be planar over Fpe . Then I(xm) and I(xn) are isomorphic
if and only if m ≡ npi mod (pe − 1) for some suitable choice of integer i.

9.5.16 Remark The converse of Theorem 9.5.15 Part 1 is false as both situations of Theorem 9.4.26
Part 2 do actually occur; see Theorem 9.5.25 below.

9.5.4 Classification results, necessary conditions, and the
Dembowski-Ostrom Conjecture

9.5.17 Definition A Dembowski-Ostrom (or DO) polynomial over a field of characteristic p is any
polynomial of the shape ∑

i,j

aijx
pi+pj .

9.5.18 Theorem [732] Let f ∈ Fq[x] with deg(f) < q. The following are equivalent.

1. f = D + L + c, where D is a Dembowski-Ostrom polynomial, L is a linearized
polynomial and c ∈ Fq is a constant.

2. For each a ∈ F∗q , ∆f,a = La + ca where La is a linearized polynomial and ca ∈ Fq
is a constant (both depending on a).

9.5.19 Conjecture (The Dembowski-Ostrom Conjecture) Let q be a power of a prime p ≥ 5. If
f ∈ Fq[x] is a planar polynomial, then f(x) = D(x)+L(x)+c, where D is a DO polynomial,
L is a linearized polynomial and c is a constant.

9.5.20 Remark Though it was only formally made a conjecture by Rónyai and Szönyi [2481],
the conjecture stems from a question posed by Dembowski and Ostrom in [808], hence the
attribution. Originally stated for all odd characteristics, Proposition 9.5.11 Part 2 shows the
conjecture is false in characteristic 3. However, the class of all polynomials planar equivalent
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to those examples remain the only known counterexamples in any characteristic and it is
eminently possible that no other non-DO examples exist.

9.5.21 Theorem (Classification results)

1. [1286, 1506, 2481] The polynomial f ∈ Fp[x] is planar over Fp if and only if the
reduced form of f is a quadratic.

2. [726] The polynomial xn is planar over Fp2 if and only if n ≡ 2pi mod (p2 − 1)
for some integer i ∈ {0, 1}.

3. [731] For prime p ≥ 5, the polynomial xn is planar over Fp4 if and only if n ≡
2pi mod (p4 − 1) for some integer i ∈ {0, 1, 2, 3}.

9.5.22 Remark These results represent the only general classification results on planar polynomials
so far obtained.

9.5.23 Proposition (General necessary conditions) [734, 871, 1818] Let f ∈ Fq[x] and let V (f) =
{f(a) : a ∈ Fq}. A necessary condition for f to be planar over Fq is #V (f) ≥ (q + 1)/2. If
f is a DO polynomial, then this condition is also sufficient.

9.5.24 Proposition (Necessary conditions for monomials) Let xn be planar over Fpe . The following
statements hold.

1. [808] gcd(n, pe − 1) = 2.

2. [1611] n ≡ 2 mod (p− 1).

3. [726] If 2|e, then n ≡ 2pi mod (p2 − 1).

4. [731] If 4|e, then n ≡ 2pi mod (p4 − 1).

9.5.5 Planar DO polynomials and commutative semifields of odd order

9.5.25 Theorem (Correspondence) If S = 〈Fq,+, ?〉 is a commutative presemifield of odd order,
then f(x) = 1

2 (x?x) describes a planar DO polynomial. Conversely, let f ∈ Fq[x] be a planar
DO polynomial and define the κ-polynomial M ∈ Fq[x, y] by M(x, y) = f(x+ y)− f(x)−
f(y). Then Sf = 〈Fq,+, ?〉, where x ? y = M(x, y) for all x, y ∈ Fq, defines a commutative
presemifield, the presemifield corresponding to f .

9.5.26 Remark More information on κ-polynomials can be found in Section 9.4.

9.5.27 Remark By Theorem 9.5.25, classifying commutative semifields of odd order is equivalent to
determining the “isotopism classes” of planar DO polynomials. Moreover, Theorem 9.4.26
shows that any strong isotopism class of commutative semifields can split into at most
two isotopism classes, so that there are sound reasons for considering the strong isotopism
problem on planar DO polynomials instead of the more difficult isotopism problem.

9.5.28 Theorem (Strong isotopy and planar equivalence) [728] Let f, g ∈ Fq[x] be planar DO
polynomials with corresponding commutative presemifields Sf and Sg. There is a strong
isotopism (N,N,L) between Sf and Sg if and only if f(N(x)) ≡ L(g(x)) mod (xq − x).
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§9.2 For APN functions that are closely related to planar functions.
§9.3 For bent functions that are closely related to planar functions.
§14.3 For affine and projective planes; the seminal paper [808] clearly outlines the

main properties of the planes constructed via planar functions.
§14.6 Discusses difference sets. Ding and Yuan [874] used the examples of

Proposition 9.5.11 Part 3 to disprove a long-standing conjecture on skew
Hadamard difference sets; see also [871, 2972].

[273] Construct further classes of planar DO polynomials; see also [274], [450], [451],
[2383], [3059], [3060]. The problem of planar (in)equivalence between these
constructions is not completely resolved at the time of writing. An incredible
new class, which combines Albert’s twisted fields with Dickson’s semifields,
was very recently discovered by Pott and Zhou [2425].

[728] Classifies planar DO polynomials over fields of order p2 and p3. This does not
constitute a classification of planar polynomials over fields of these orders.

[729] Applies Theorem 9.4.22 to commutative presemifields of odd order to restrict
both the form of the DO polynomials and the isotopisms that need to be
considered; see also [1799]. A promising alternative approach (which applies
also to APN functions, see Section 9.2) is outlined in [274], while a third
approach was given recently in [2973].

[1507] For results on possible forms of planar functions not defined over finite fields.
[1799] Gives specific forms for planar DO polynomials corresponding to the Dickson

semifields [847], the Cohen-Ganley semifields [689], the Ganley semifields [1170],
and the Penttila-Williams semifield [2383].

References Cited: [263, 273, 274, 326, 450, 451, 689, 726, 728, 729, 731, 732, 734, 787, 808,
811, 847, 871, 874, 1170, 1286, 1506, 1507, 1611, 1758, 1799, 1818, 2383, 2393, 2425, 2481,
2972, 2973, 3059, 3060]

9.6 Dickson polynomials

Qiang Wang, Carleton University

Joseph L. Yucas, Southern Illinois University

9.6.1 Basics

9.6.1 Definition Let n be a positive integer. For a ∈ Fq, we define the n-th Dickson polynomial
of the first kind Dn(x, a) over Fq by

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i.
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9.6.2 Theorem (Waring’s formula, [1939, Theorem 1.76]) Let σ1, . . . , σk be elementary symmetric
polynomials in the variables x1, . . . , xk over a ringR and sn = sn(x1, . . . , xk) = xn1 + · · ·+ xnk
∈ R[x1, . . . , xk] for n ≥ 1. Then we have

sn =
∑

(−1)i2+i4+i6+··· (i1 + i2 + · · ·+ ik − 1)!n

i1!i2! · · · ik!
σi11 σ

i2
2 · · ·σikk ,

for n ≥ 1, where the summation is extended over all tuples (i1, i2, . . . , in) of nonnegative
integers with i1 + 2i2 + · · ·+ kik = n. The coefficients of the σi11 σ

i2
2 · · ·σikk are integers.

9.6.3 Theorem Dickson polynomials of the first kind are the unique monic polynomials satisfying
the functional equation

Dn

(
y +

a

y
, a

)
= yn +

an

yn
,

where a ∈ Fq and y ∈ Fq2 . Moreover, they satisfy the recurrence relation

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a),

for n ≥ 2 with initial values D0(x, a) = 2 and D1(x, a) = x.

9.6.4 Remark The Dickson polynomial Dn(x, a) of the first kind satisfies a commutative type
of relation under composition. That is, Dmn(x, a) = Dm(Dn(x, a), an). Hence the set of
all Dickson polynomials Dn(x, a) of even degree over Fq are closed under composition if
and only if a = 0 or a = 1. In particular, if a = 0 or 1 then Dm(x, a) ◦ Dn(x, a) =
Dn(x, a) ◦ Dm(x, a). Moreover, the set of all Dickson polynomials Dn(x, a) of odd degree
over Fq is closed under composition if and only if a = 0, a = 1 or a = −1. See [1936, 1939]
for more details.

9.6.5 Definition For a ∈ Fq, we define the n-th Dickson polynomial of the second kind En(x, a)
over Fq by

En(x, a) =

bn/2c∑
i=0

(
n− i
i

)
(−a)ixn−2i.

9.6.6 Theorem Dickson polynomials of the second kind have a functional equation

En(x, a) = En

(
y +

a

y
, a

)
=
yn+1 − an+1/yn+1

y − a/y ,

for y 6= ±√a; for y = ±√a, we have En(2
√
a, a) = (n + 1)(

√
a)n and En(−2

√
a, a) =

(n+ 1)(−√a)n; here a ∈ Fq and y ∈ Fq2 . Moreover, they satisfy the recurrence relation

En(x, a) = xEn−1(x, a)− aEn−2(x, a),

for n ≥ 2 with initial values E0(x, a) = 1 and E1(x, a) = x.

9.6.7 Remark In the case a = 1, denote Dickson polynomials of degree n of the first and the
second kinds by Dn(x) and En(x), respectively. These Dickson polynomials are closely
related over the complex numbers to the Chebychev polynomials through the connections
Dn(2x) = 2Tn(x) and En(2x) = Un(x), where Tn(x) and Un(x) are Chebychev polynomials
of degree n of the first and the second kind, respectively. In recent years these polynomials
have received an extensive examination. The book [1936] is devoted to a survey of the
algebraic and number theoretic properties of Dickson polynomials.



284 Handbook of Finite Fields

9.6.8 Remark Suppose q is odd and a is a nonsquare in Fq. Then

(x+
√
a)n = rn(x) + sn(x)

√
a,

where

rn(x) =

bn/2c∑
i=0

(
n

2i

)
aixn−2i, sn(x) =

bn/2c∑
i=0

(
n

2i+ 1

)
aixn−2i−1.

The Rédei function is the rational function Rn(x) = rn(x)
sn(x) . It is shown in [1116] that

2rn(x) = Dn(2x, x2 − a).

9.6.9 Remark Permutation properties of Dickson polynomials are important; see Section 8.1. The
famous Schur conjecture postulating that every integral polynomial that is a permutation
polynomial for infinitely many primes is a composition of linear polynomials and Dickson
polynomials was proved by Fried [1109]. We refer readers to Section 9.7.

9.6.2 Factorization

9.6.10 Remark The factorization of the Dickson polynomials of the first kind over Fq was given
[626] and simplified in [266].

9.6.11 Theorem [266, 626] If q is even and a ∈ F∗q then Dn(x, a) is the product of squares of
irreducible polynomials over Fq which occur in cliques corresponding to the divisors d of
n, d > 1. Let kd be the least positive integer such that qkd ≡ ±1 (mod d). To each such d
there corresponds φ(d)/(2kd) irreducible factors of degree kd, each of which has the form

kd−1∏
i=0

(x−√a(ζq
i

+ ζ−q
i

))

where ζ is a d-th root of unity and φ is Euler’s totient function.

9.6.12 Theorem [266, 626] If q is odd and a ∈ F∗q then Dn(x, a) is the product of irreducible
polynomials over Fq which occur in cliques corresponding to the divisors d of n for which
n/d is odd. Let md is the least positive integer satisfying qmd ≡ ±1 (mod 4d). To each such
d there corresponds φ(4d)/(2Nd) irreducible factors of degree Nd, each of which has the
form

Nd−1∏
i=0

(x−
√
aqi(ζq

i

+ ζ−q
i

))

where ζ is a 4d-th root of unity and

Nd =

 md/2 if
√
a /∈ Fq,md ≡ 2 (mod 4) and qmd/2 ≡ 2d± 1 (mod 4d),

2md if
√
a /∈ Fq and md is odd,

md otherwise.
.

9.6.13 Example Let (q, n) = (5, 12). Then D12(x, 2) = x12 +x10 +x8 +4x6 +3x2 +3 is the product
of irreducible polynomials over F5 which occur in cliques corresponding to the divisors d = 4
and d = 12 of n = 12. By direct computation, m4 = N4 = 4 and m12 = N12 = 4. For d = 4,
there corresponds one irreducible factor of degree 4, while there are two irreducible factors
of degree 4 for d = 12, each of which has the form

∏Nd−1
i=0 (x −

√
aqi(ζq

i

+ ζ−q
i

)), where ζ
is a 4d-th root of unity.

9.6.14 Remark Similar results hold for Dickson polynomials of the second kind and they can be
found in [266] and [626]. Dickson polynomials of other kinds are defined in [2945] and the
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factorization of the Dickson polynomial of the third kind is obtained similarly in [2945]. We
note that the factors appearing in the above results are over Fq, although their description
uses elements in an extension field of Fq. In [1079] Fitzgerald and Yucas showed that these
factors can be obtained from the factors of certain cyclotomic polynomials. This in turn
gives a relationship between a-self-reciprocal polynomials and these Dickson factors. In the
subsequent subsections we explain how this works. These results come mainly from [1079].

9.6.2.1 a-reciprocals of polynomials

9.6.15 Definition Let q be an odd prime power and fix a ∈ F∗q . For a monic polynomial f over
Fq of degree n, with f(0) 6= 0, define the a-reciprocal of f by

f̂a(x) =
xn

f(0)
f(a/x).

The polynomial f is a-self-reciprocal if f(x) = f̂a(x).

9.6.16 Remark We note that the notion of a 1-self-reciprocal is the usual notion of a self-reciprocal.

9.6.17 Lemma

1. If α is a root of f then a/α is a root of f̂a.

2. The polynomial f is irreducible over Fq if and only if f̂a is irreducible over Fq.

9.6.18 Remark The a-reciprocal of an irreducible polynomial f may not have the same order as f .
For example, consider f(x) = x3 + 3 when q = 7. Then f has order 9 while f̂3(x) = x3 + 2
has order 18.

9.6.19 Theorem [1079] Suppose f is a polynomial of even degree n = 2m over Fq. The following
statements are equivalent:

1. f is a-self-reciprocal;

2. n = 2m and f has the form

f(x) = bmx
m +

m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

for some bj ∈ Fq.

9.6.20 Definition Let n be an even integer. Define

Dn = {r : r divides qn − 1 but r does not divide qs − 1 for s < n}.

For r ∈ Dn and even n, we write r = drtr where dr = (r, qm + 1) and m = n/2.

9.6.21 Theorem [1079] Suppose f is an irreducible polynomial of degree n = 2m over Fq. The
following statements are equivalent:

1. f is a-self-reciprocal for some a ∈ F∗q with ord(a) = t,

2. f has order r ∈ Dn and tr = t.

9.6.22 Theorem [1079] Let r ∈ Dn and suppose tr divides q − 1. Then the cyclotomic polynomial
Q(r, x) factors into all a-self-reciprocal monic irreducible polynomials of degree n and order
r where a ranges over all elements of Fq of order tr.
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9.6.2.2 The maps Φa and Ψa

9.6.23 Definition Define the mapping Φa : Pm → Sn from the polynomials over Fq of degree m
to the a-self-reciprocal polynomials over Fq of degree n = 2m by

Φa(f(x)) = xmf(x+ a/x).

9.6.24 Remark In the case a = 1 this transformation has appeared often in the literature. The
first occurrence is Carlitz [547]. Other authors writing about Φ are Chapman [589], Cohen
[678], Fitzgerald-Yucas [1079], Kyuregyan [1821], Miller [2100], Meyn [2091], and Scheerhorn
[2538].

9.6.25 Definition Define Ψa : Sn → Pm by

Ψa

(
bmx

m +
m−1∑
i=0

b2m−i(x
2m−i + am−ixi)

)
= bm +

m−1∑
i=0

b2m−iDm−i(x, a).

9.6.26 Theorem Maps Φa and Ψa are multiplicative and are inverses of each other.

9.6.2.3 Factors of Dickson polynomials

9.6.27 Theorem [1079] The polynomial Dn(x, a) is mapped to x2n + an by the above defined Φa,
namely, Φa(Dn(x, a)) = x2n + an.

9.6.28 Theorem [1079] The polynomial x2n + an factors over Fq as

x2n + an =
∏

f(x),

where each f is either an irreducible a-self-reciprocal polynomial or a product of an irre-
ducible polynomial and its a-reciprocal over Fq.

9.6.29 Theorem [1079] The polynomial Dn(x, a) factors over Fq as

Dn(x, a) =
∏

Ψa(f(x)),

where x2n + an =
∏
f(x) such that f is either an irreducible a-self-reciprocal polynomial

or a product of an irreducible polynomial and its a-reciprocal.

9.6.30 Theorem The following is an algorithm for factoring Dn(x, a) over Fq.

1. Factor x2n + an.

2. For each factor f of x2n + an which is not a-self-reciprocal, multiply f with f̂a.

3. Apply Ψa.

9.6.31 Example We factor D12(x, 2) = x12 + x10 + x8 + 4x6 + 3x2 + 3 when q = 5.

x24 + 212 = [(x4 + x2 + 2)(x4 + 2x2 + 3)][(x4 + 3)(x4 + 2)][(x4 + 4x2 + 2)(x4 + 3x2 + 3)]

= (x8 + 3x6 + 2x4 + 2x2 + 1)(x8 + 1)(x8 + 2x6 + 2x4 + 3x2 + 1).
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Then apply Ψ2 to obtain

D12(x, 2) = (D4(x, 2) + 3D2(x, 2) + 2)D4(x, 2)(D4(x, 2) + 2D2(x, 2) + 2)

= (x4 + 3)(x4 + 2x2 + 3)(x4 + 4x2 + 2).

9.6.32 Definition For a ∈ F∗q , define η(n, a) by

η(n, a) =

{
n · ord(an) if n is odd and a is a non-square,
4n · ord(an) otherwise.

9.6.33 Theorem [1079] For a monic irreducible polynomial f over Fq and a ∈ F∗q , the following
statements are equivalent:

1. f divides Dn(x, a).

2. There exists a divisor d of n with n/d odd and ord(Φa(f)) = η(d, a), where Φa
is defined in Definition 9.6.23.

9.6.2.4 a-cyclotomic polynomials

9.6.34 Definition For a ∈ F∗q , define the a-cyclotomic polynomial Qa(n, x) over Fq by

Qa(n, x) =
∏
d|n

d even

(xd − ad/2)µ(n/d).

9.6.35 Remark When n ≡ 0 (mod 4), we have Q1(n, x) = Q(n, x), the n-th cyclotomic poly-
nomial over Fq. When n ≡ 2 (mod 4), we have Q1(n, x) = Q(n/2,−x2). Similar to the
factorization of xn − 1 =

∏
d|nQ(d, x) [1939], we can reduce the factorization of x2n ± an

to the factorization of a-cyclotomic polynomials.

9.6.36 Theorem [1079] We have

1. x2n − an =
∏
d|n

Qa(2d, x);

2. x2n + an =
∏
d|n
d odd

Qa(4d, x).

9.6.37 Remark A factorization of these a-cyclotomic polynomials Qa(m,x) is also given in [1079].

9.6.3 Dickson polynomials of the (k + 1)-th kind

9.6.38 Definition [2945] For a ∈ Fq, any integers n ≥ 0 and 0 ≤ k < p, we define the n-th Dickson
polynomial of the (k + 1)-th kind Dn,k(x, a) over Fq by D0,k(x, a) = 2− k and

Dn,k(x, a) =

bn/2c∑
i=0

n− ki
n− i

(
n− i
i

)
(−a)ixn−2i.
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9.6.39 Definition [2945] For a ∈ Fq, any integers n ≥ 0 and 0 ≤ k < p, we define the n-th reversed
Dickson polynomial of the (k+ 1)s-th kind Dn,k(a, x) over Fq by D0,k(a, x) = 2− k and

Dn,k(a, x) =

bn/2c∑
i=0

n− ki
n− i

(
n− i
i

)
(−1)ian−2ixi.

9.6.40 Remark [2945] It is easy to see that Dn,0(x, a) = Dn(x, a) and Dn,1(x, a) = En(x, a).
Moreover, if char(Fq) = 2, then Dn,k(x, a) = Dn(x, a) if k is even and Dn,k(x, a) = En(x, a)
if k is odd.

9.6.41 Theorem [2945] For any integer k ≥ 1, we have

Dn,k(x, a) = kDn,1(x, a)− (k − 1)Dn,0(x, a) = kEn(x, a)− (k − 1)Dn(x, a).

9.6.42 Theorem [2945] The fundamental functional equation for Dn,k is

Dn,k(y + ay−1, a) =
y2n + kay2n−2 + · · ·+ kan−1y2 + an

yn

=
y2n + an

yn
+
ka

yn
y2n − an−1y2

y2 − a , for y 6= 0,±√a.

9.6.43 Theorem [2945] The Dickson polynomial of the (k + 1)-th kind satisfies the following re-
currence relation

Dn,k(x, a) = xDn−1,k(x, a)− aDn−2,k(x, a),

for n ≥ 2 with initial values D0,k(x, a) = 2− k and D1,k(x, a) = x.

9.6.44 Theorem [2945] The generating function of Dn,k(x, a) is

∞∑
n=0

Dn,k(x, a)zn =
2− k + (k − 1)xz

1− xz + az2
.

9.6.45 Remark The Dickson polynomial Dn,k(x, a) of the (k + 1)-th kind satisfies a second order
differential equation; see [2723, 2945] for more details.

9.6.46 Theorem [2945] Suppose ab is a square in F∗q . Then Dn,k(x, a) is a PP of Fq if and only if
Dn,k(x, b) is a PP of Fq. Furthermore,

Dn,k(α, a) = (
√
a/b)nDn,k((

√
b/a)α, b).

9.6.47 Definition Define Sq−1, Sq+1, and Sp by

Sq−1 = {α ∈ Fq : uq−1
α = 1}, Sq+1 = {α ∈ Fq : uq+1

α = 1}, Sp = {±2},

where uα ∈ Fq2 satisfies α = uα + 1
uα
∈ Fq.

9.6.48 Theorem [2945] As functions on Fq, we have

Dn,k(α) =


D(n)2p,k(α) if α ∈ Sp,
D(n)q−1,k(α) if α ∈ Sq−1,
D(n)q+1,k(α) if α ∈ Sq+1,
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where for positive integers n and r we use the notation (n)r to denote n (mod r), the
smallest positive integer congruent to n modulo r.

9.6.49 Theorem [2945] Let α = uα + 1
uα

where uα ∈ Fq2 and α ∈ Fq. Let εα = ucα ∈ {±1} where

c = p(q2−1)
4 . As functions on Fq we have

Dc+n,k(α) = εαDn,k(α).

Moreover, Dn,k(x) is a PP of Fq if and only if Dc+n,k(x) is a PP of Fq.

9.6.50 Theorem [2945] For k 6= 1, let k′ = k
k−1 (mod p) and εα = ucα ∈ {±1} where c = p(q2−1)

4 .
For n < c, as functions on Fq we have

Dc−n,k′(α) =
−εα
k − 1

Dn,k(α).

Moreover, Dn,k(x) is a PP of Fq if and only if Dc−n,k′(x) is a PP of Fq.

9.6.4 Multivariate Dickson polynomials

9.6.51 Definition [1936] The Dickson polynomial of the first kind D
(i)
n (x1, . . . , xt, a), 1 ≤ i ≤ t,

is given by the functional equations

D(i)
n (x1, . . . , xt, a) = si(u

n
1 , . . . , u

n
t+1), 1 ≤ i ≤ t,

where xi = si(u1, . . . , ut+1) are elementary symmetric functions and u1 · · ·ut+1 = a. The

vector D(t, n, a) = (D
(1)
n , . . . , D

(t)
n ) of the t Dickson polynomials is a Dickson polynomial

vector.

9.6.52 Remark Let r(c1, . . . , ct, z) = zt+1 − c1zt + c2z
t−1 + · · · + (−1)tctz + (−1)t+1a be a poly-

nomial over Fq and β1, . . . , βt+1 be the roots (not necessarily distinct) in a suitable ex-
tension of Fq. For any positive integer n, we let rn(c1, . . . , ct, z) = (z − βn1 ) . . . (z − βnt+1).

Then rn(c1, . . . , ct, z) = zt+1 − D
(1)
n (c1, . . . , ct, a)zt + D

(2)
n (c1, . . . , ct, a)zt−1 + · · · +

(−1)tD
(t)
n (c1, . . . , ct, a)z + (−1)t+1at.

9.6.53 Remark For the Dickson polynomial D
(1)
n (x1, . . . , xt, a), an explicit expression, a generating

function, a recurrence relation, and a differential equation satisfied by D
(1)
n (x1, . . . , xt, a) can

be found in [1936]. Here we only give the generating function and recurrence relation.

9.6.54 Theorem The Dickson polynomial of the first kind D
(1)
n (x1, . . . , xt, a) satisfies the generat-

ing function

∞∑
n=0

D(1)
n (x1, . . . , xt, a)zn =

∑t
i=0(t+ 1− i)(−1)ixiz

i∑t+1
i=0(−1)ixizi

, for n ≥ 0,

and the recurrence relation

D
(1)
n+t+1 − x1D

(1)
n+t + · · ·+ (−1)txkD

(1)
n+1 + (−1)t+1aD(1)

n = 0,

with the t+ 1 initial values

D
(1)
0 = t+ 1, D

(1)
j =

j∑
r=1

(−1)r−1xrD
(1)
j−r + (−1)j(t+ 1− j)xj , for 0 < j ≤ t.
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9.6.55 Remark Much less is known for the multivariate Dickson polynomials of the second kind.

The same recurrence relation of D
(1)
n (x1, . . . , xt, a) is used to define the multivariate Dickson

polynomials of the second kind E
(1)
n (x1, . . . , xt, a) with the initial condition E0 = 1, Ej =∑j

r=1(−1)r−1xrEj−r for 1 ≤ j ≤ t. The generating function is
∑∞
n=0Enz

n = 1∑t+1
i=0(−1)ixizi

;

see [1936] for more details.

See Also

§8.1 For permutation polynomials with one variable.
§8.3 For value sets of polynomials over fnite fields.
§9.7 For Schur’s conjecture and exceptional covers.

[1936] For a comprehensive book on Dickson polynomials.

References Cited: [266, 547, 589, 626, 678, 1079, 1109, 1116, 1821, 1936, 1939, 2091, 2100,
2538, 2723, 2945]

9.7 Schur’s conjecture and exceptional covers

.
Michael D. Fried, Irvine campus of the University of California

9.7.1 Rational function definitions

9.7.1 Remark (Extend values) The historical functions of this section are polynomials and ratio-
nal functions: f(x) = Nf (x)/Df (x) with Nf and Df relatively prime (nonzero) polynomials,
denoted f ∈ F (x), F a field (almost always Fq or a number field). The subject takes off
by including functions f – covers – where the domain and range are varieties of the same
dimension. Still, we emphasize functions between projective algebraic curves (nonsingular),
often where the target and domain are projective 1-space.

9.7.2 Definition The degree of f ∈ F (x), deg(f), is the maximum of deg(Nf ) and deg(Df ).
Add a point at ∞ to F , F ∪ {∞} = P1

x(F ), to get the F points of projective 1-space.

9.7.3 Remark (Plug in ∞) Using Definition 9.7.2 requires plugging in and getting out ∞. We
sometimes use the notion of value sets Vf and their cardinality #Vf (Section 8.3).

1. The value of f(x′) for x′ ∈ F is ∞ if x′ is a zero of Df (x).

2. The value of f(∞) is respectively ∞, 0, or the ratio of the Nf and Df leading
coefficients, if the degree of Nf is greater, less than, or equal to the degree of Df .

If z is a variable indicating the range, this gives f as a function from P1
x(F ) to P1

z(F ). We
abbreviate this as f : P1

x → P1
z.
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9.7.4 Definition (Möbius equivalence) Denote the group – under composition – of Möbius trans-
formations x 7→ ax+b

cx+d with ad− bc 6= 0, a, b, c, d ∈ F by PGL(F ). Refer to f1, f2 ∈ F (x)
as Möbius equivalent if f2 = α ◦ f1 ◦ β for α, β ∈ PGL(F ).

9.7.5 Example If f(x) = xn, with gcd(n, q − 1) = 1, then #Vf = qk + 1 on P1
x(Fqk) exactly for

those infinitely many k with gcd(n, qk − 1) = 1.

9.7.6 Remark Initial motivation came from Schur’s Conjecture Theorem 9.7.32, which starts over
a number field K – a finite extension of Q, the rational numbers – with its ring of integers
OK . That asks about Vf over residue class fields, OK/ppp of prime ideals ppp, denoting this
Vf (O/ppp) (Vf (Fp) if O = Z). Assume Nf and Df have coefficients in OK . Avoid ppp – it is a
bad prime – if it contains the leading coefficient of either Nf or Df .

9.7.7 Definition For f ∈ F (x), if f = f1 ◦ f2 with f1, f2 ∈ F (x), deg(fi) > 1, i = 1, 2, we say f
decomposes over F . Then, the fi s are composition factors of f .

9.7.8 Definition (Cofinite) For B a subset of A, we say B is cofinite in A if A \B is finite.

9.7.9 Proposition [2203, p. 390] Consider X ′h = {(x, y) | h(x, y) = 0}, an algebraic curve, defined
by h ∈ K[x, y]. Then, there is a unique nonsingular curve Xh – the normalization of X ′h
– and a morphism µh : X ′h → Xh that is an isomorphism on the complement of a finite
subset of points in Xh. Indeed, every variety X ′h has such a unique normalization, but in
higher dimensions it may be singular, and µh is an isomorphism off a codimension 1 set.

9.7.10 Definition (Components) A definition field for an algebraic set W is a field containing
all coefficients of all polynomials defining W . Components of W over F are algebraic
subsets which are not the union of two closed non-empty proper algebraic subsets over
F [1427, p. 3]. We say W is a variety if it has just one component. It is absolutely
irreducible if it has just one component over F̄ , an algebraic closure of F .

9.7.11 Remark (Points on varieties) [1427, Chapters 1 and 2] and [2203, Section 2] introduce
affine and projective algebraic sets, and their components (Definition 9.7.10), except they
are over an algebraically closed field. For perfect fields F (including finite fields and number
fields) this extends for normal varieties. Since their components do not meet, taking any
disjoint union of distinct varieties under the action of the absolute Galois group of F defines
components in general. Points on an algebraic set X over F refers here to geometric points:
points with coordinates in F̄ . It is an F point if its coordinates are in F .

9.7.12 Definition A general f : X → Z is a cover means it is a finite, flat morphism (see Definition
9.7.25) of quasi-projective varieties [2203, p. 432, Proposition 2].

9.7.13 Lemma Definition 9.7.12 simplifies for curves, because all our varieties will be normal, and
so for curves, nonsingular. Then, any nonconstant morphism is a cover: That includes any
nonconstant rational function f : P1

x → P1
z.

9.7.14 Example If f : X → Z is finite and X and Z are nonsingular, generalizing what happens
for curves, and no matter their dimension, then f is automatically flat [1427, p. 266, 9.3a)].
This does not extend to weakening nonsingular to normal varieties. [2203, p. 434] has a
finite morphism, where X is nonsingular (it is affine 2-space), and Z is normal. But, the
fiber degree is 2 over each z ∈ Z, excluding one point where it is 3.
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9.7.15 Remark (Assuming normality) Starting with Subsection 9.7.2 all results assume that the
algebraic sets are normal. Some constructions (especially Definition 9.7.45) momentarily
produce nonnormal sets, that we immediately replace with their normalizations.

9.7.2 MacCluer’s Theorem and Schur’s Conjecture

9.7.16 Definition An f ∈ Fq(x) is exceptional if it maps one-one on P1(Fqk) for infinitely many
k. Similarly, with K a number field, f ∈ K(x) is exceptional if it is exceptional mod ppp
for infinitely many primes ppp.

9.7.17 Remark We use K, allowing decoration, for a number field. Section 8.3 refers to the split-
ting field, Ωf (respectively Ωf,F̄ ), of f(x) − z over F (z) (respectively over F̄ (z)). The
automorphism group of the extension Ωf/F (z) (respectively Ωf,F̄ /F̄ (z)) is the arithmetic
(respectivelygeometric) monodromy group A (respectively G) of a separable function (Def-
inition 9.7.25) f ∈ F (x). When there are several functions, we denote these Af and Gf .
They act on the zeros, {x1, . . . , xn} (often denoted {1, . . . , n}), of f(x)− z, giving a natural
permutation representation on n symbols.

9.7.18 Definition Every cover f : X → Z over a field F with X irreducible has an associated
extension of function fields that determines the cover up to birational morphisms (see
Lemma 9.7.43).

9.7.19 Remark Essentially all the Galois theory of fields translates to useful statements about a
cover f : X → Z (over F ) of an irreducible variety Z. It does this by corresponding to f the
composite of the function field extensions F (X ′)/F (Z) where X ′ runs over the components
of X [2203, p. 396]. Several papers in our references (say, [1114, Section 0.C]) give oft-used
examples, with Lemma 9.7.20 a simple archetype.

9.7.20 Lemma (See Remark 9.7.21) Any separable cover f : X → Y over F has a Galois closure

cover f̂ : X̂ → Z over F . Then, Af is the group of f̂ with its natural permutation repre-
sentation TAf (of degree the degree of f). Do this over F̄ to get the geometric monodromy
Gf . Then, X is irreducible (resp. absolutely irreducible) if and only if TAf (resp. TGf ) is
transitive. For f a rational function it is automatic that TGf (and so TAf ) is transitive.

9.7.21 Remark [1118, Section 2.1] explains how to form the Galois closure cover of a cover using
fiber products (see Remark 9.7.54). This shows how to form the Galois closure cover of any
collection of covers as in Lemma 9.7.50.

9.7.22 Remark Normalization gives a nearly invertible process to Remark 9.7.19: going from field
extensions of F (Z) to covers of Z. While this does not translate all arithmetic cover prob-
lems to Galois theory, we apply the phrase “monodromy precision” (Remark 9.7.26) to when
it does. Example: It does in the topic of exceptional covers, as in Proposition 9.7.28.

9.7.23 Definition Denote the elements of a group G, under a representation TG, that fix 1 by
G(1). When TG is transitive, refer to TG as primitive (respectively doubly transitive)
if there is no group properly between G(1) and G (respectively G(1) is transitive on
{2, . . . , n}).

9.7.24 Theorem [1112, Theorem 1]: An f ∈ Fq(x) is exceptional if and only if the following holds
for each orbit O of Af (1) on {2, . . . , n}:

O breaks into strictly smaller orbits under Gf (1). (9.7.1)
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Denote the projective normalization of {(x, y) | f(x)−f(y)
x−y = 0} by Xf,f \∆. Also equivalent

to (9.7.1): Each Fq component of Xf,f \∆ has at least 2 components over F̄q.
Similarly, an f ∈ K(x), K a number field, is exceptional if and only if (9.7.1) holds for

f mod ppp for infinitely many primes ppp.

9.7.25 Definition (Covers) Let f ∈ Fq(x) be nonconstant and separable: not g(xp) for some
g ∈ Fq(x). Then, f : P1

x(F̄q)→ P1
z(F̄q) by x 7→ f(x) has these cover properties.

1. Excluding a finite set {z1, . . . , zr} ⊂ P1
z(F̄q), branch points of f , there are exactly

n = deg(f) points over z′.

2. For z′ a branch point, counting zeros, x′ of f(x)− z′ with multiplicity, the sum
at all x′ s over z′ is still n. An x′ ∈ P1

x with multiplicity > 1 is a ramified point.

For K a number field, the same properties hold, without any separable condition.

9.7.26 Remark (MacCluer’s Theorem) Theorem 9.7.24 has a surprise: (9.7.1) implies exceptionality
over Fq. An error term in applying Chebotarev’s density theorem with branch points (as in
Section 8.3, in Section 8.3.3) vanishes. A ramified point with p not dividing its multiplicity
is tame.

Macluer’s thesis [1986] responded to a Davenport-Lewis conjecture [777] by showing The-
orem 9.7.24 for a polynomial tame at every point. We say: MacCluer’s Theorem shows tame
polynomial exceptional covers exhibit monodromy precision [1119, Section 3.2.1]. Proposi-
tion 9.7.28 shows monodromy precision holds for general exceptional covers.

9.7.27 Example A polynomial f over Fq for which p| deg(f) is not tame at ∞.

9.7.28 Proposition [1112] combined with [1118, Principle 3.1]: Let f : X → Z be any cover
(Definition 9.7.12) over Fq with X absolutely irreducible. Then [1118, Corollary 2.5]:

1. the extended meaning of (9.7.1) is that the 2-fold fiber product (Section 9.7.3)
of f minus the diagonal has no absolutely irreducible Fq components; and

2. (9.7.1) is equivalent to f being exceptional: X(Fqk) → Y (Fqk) is one-one (and
onto) for infinitely many k.

9.7.29 Remark As noted in [1118, Comments on Principle 3.1], the proof of [1112] applies without
change to give Proposition 9.7.28 Part 2 when X and Z are non-singular; indeed, it applies
to pr-exceptionality (Definition 9.7.93). Without, however, this nonsingularity assumption,
there are complications considered in [1119, Section A.4.1] (see Example 9.7.14).

9.7.30 Definition Let f in Proposition 9.7.28 over Fq be an exceptional cover. Denote values k
where (9.7.1) holds with Fqk replacing Fq, by Ef,q: the exceptionality set of f .

Similarly, for f satisfying the hypotheses of Proposition 9.7.28 over a number field
K, denote those primes ppp where f mod ppp has Ef,O/ppp infinite, by Ef,K .

9.7.31 Definition The equation Tu(cos(θ)) = cos(uθ) defines the u-th Chebychev polynomial,
Tu. From it define a Chebychev conjugate: α ◦ Tu ◦ α−1 with α(x) = αz′(x) = z′x and
either z′ = 1, or z′ and −z′ are conjugate in a quadratic extension of K.

9.7.32 Theorem (Schur’s Conjecture) [1109, Theorem 2]: With K a number field, the f ∈ O[x]
for which Ef,K is infinite are compositions with maps a 7→ ax + b (affine) over K with
polynomials of the following form for some odd prime u:

xu (cyclic) or, α ◦ Tu ◦ α−1, u > 3, a Chebychev conjugate. (9.7.2)



294 Handbook of Finite Fields

9.7.33 Remark Many still refer to Theorem 9.7.32 as Schur’s Conjecture, though Schur conjectured
it only over Q. Paper [1109] refers to all Chebychev conjugates as Chebychev polynomials,
rather than Dickson as in Remark 9.7.34. Reference [1936] assiduously distinguishes Dickson
polynomials.

Here is a simple branch point Chebychev Conjugate characterization: f has two finite
(6= ∞) branch points, ±z′ ∈ P1

z(Q̄), which identify with the unique unramified points (in
P1
x(Q̄)) over the branch points, as in [1109, Proof of Lemma 9].

1. A corollary of [1124, Theorem 3.5] is that any cover with a unique totally and
tamely ramified point decomposes over F if and only if it decomposes over F̄ .
This applies if f ∈ F [x] has deg(f) prime to the characteristic of F .

2. If f from Part 1 is indecomposable, then Gf is primitive (see Definition 9.7.23)
and it contains an n-cycle.

3. If f ∈ K[x] is exceptional, since (9.7.1) says Gf cannot be doubly transitive, up
to composing with K affine maps, f from Part 2 is in (9.7.2).

9.7.34 Remark (Dickson doppelgangers, see Section 9.6) Each Chebychev conjugate is a constant
times a Dickson polynomial [1118, Proposition 5.3]. The Remark 9.7.33 characterization –
by locating their branch points – avoids using equations. That is the distinction at the last
step between the proof of Theorem 9.7.32 and [1936, Chapter 6].

9.7.35 Remark Use the notation in Theorem 9.7.32. Suppose f ∈ OK [x] is an exceptional polyno-
mial. Define nf,c (resp. nf,C) to be the product of distinct primes s for which f has a degree s
cyclic (resp. Chebychev conjugate) composition factor. One can check that Corollary 9.7.36
follows from 9.7.28 combined with 9.7.32.

9.7.36 Corollary For f ∈ OK [x] an exceptional polynomial, one can determine Ef,K (excluding
bad primes, Remark 9.7.6) from nc,f and nf,C by congruences. WhenOK = Z, then p ∈ Ef,Q
if and only if gcd(p− 1, s) = 1 for each s|nf,c and gcd(p2 − 1, s) = 1 for each s|nf,C .

9.7.37 Example (Infinite Ef,Q) It is necessary that gcd(2, nc) = 1 and gcd(6, nC) = 1 for there
to be infinitely many p that satisfy the conclusion of Corollary 9.7.36. But it is sufficient,
too. Without loss, assume gcd(nc, nC) = 1. If 3 6 |nc, then Dirichlet’s Theorem on primes
in arithmetic progressions gives an infinite set of p ≡ 3 (mod ncnC). They are in Ef,Q. If
3|nc, the Chinese remainder theorem gives an arithmetic progression of p satisfying p ≡ 3
(mod nC) and p ≡ −1 (mod nc). So, Ef,Q is infinite whenever it has a chance to be.

9.7.38 Remark Combine [1113, Lemma 1] with monodromy precision in Proposition 9.7.39. This
shows, the Proposition 9.7.28 fiber product statement is equivalent to f ∈ K(x) being ex-
ceptional, and therefore permutation, mod ppp. If OK/ppp is sufficiently large, the fiber product
statement is also necessary for f to be permutation (well-known, for example [1109, proof
of Theorem 2, last paragraph]).

9.7.39 Proposition (Permutation functions) From Remark 9.7.38, for f ∈ Fq(x), those k where f
permutes P1(Fqk) contains Ef,Fq as a cofinite subset. Similarly, for K a number field, those
ppp where f functionally permutes P1(O/ppp) contains Ef,K as a cofinite subset.

9.7.40 Remark Section 8.1 shows permutation polynomials are abundant. Exceptional polynomials
satisfy a much stronger property, but Corollary 9.7.36 shows they are abundant, too. One
difference: Section 9.7.3 combines them in ways with no analog for permutation polynomials.

9.7.41 Corollary An analog of Theorem 9.7.32 holds over Fq to characterize exceptional poly-
nomials of degree prime to p ([1120, Introduction to Section 5] or [1118, Proposition 5.1]).
There, z′ in αz′ is either 1 or in the unique quadratic extension of Fq. Consider a Chebychev
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conjugate αz′ ◦Tn ◦α−1
z′ as a permutation polynomial on Fqk with gcd(q2k−1, n) = 1. Then,

when n ·m ≡ 1 (mod q2k − 1), αz′ ◦ Tm ◦ α−1
z′ is its functional inverse.

9.7.3 Fiber product of covers

9.7.42 Definition For any field extension F1/F2 containing Fp, there is the notion of being sep-
arable [1121, p. 111]. For f ∈ Fq(x), the extension F̄q(x)/F̄q(f(x)) being separable is
equivalent to f is separable (Definition 9.7.25). Many of our examples inherit separa-
bleness from this special case.

9.7.43 Lemma (Curve covering maps [1427, Chapter I, Section 6]) Any nonsingular projective al-
gebraic curve X over a perfect field F has a field of functions F (X) that uniquely determines
X up to isomorphism over F .

Each non-constant element f ∈ F (X) determines a finite map X → P1
z over F [1427,

Chapter I, Exercise 6.4]. If F (X)/F (f) is separable, then f has the covering properties
of (9.7.25): finite number of branch points, and uniform count of points in a fiber over F̄
(including multiplicity in the fiber) [1427, Chapter IV, Proposition 2.2].

9.7.44 Definition Refer to any f in the conclusion of Lemma 9.7.43 as a nonsingular cover of P1
z.

9.7.45 Definition (Fiber product) Let fi : Xi → P1
z, i = 1, 2, be two nonsingular covers of P1

z.
The set theoretic fiber product consists of the algebraic curve

{(x1, x2) ∈ X1 ×X2|f1(x1) = f2(x2)}.

Denote this X1 ×set
P1
z
X2. Its normalization (Proposition 9.7.9), X1 ×P1

z
X2, is the fiber

product of f1 and f2.

9.7.46 Remark Definition 9.7.45 works equally for any covers Xi → Z, i = 1, 2, with Z a normal
projective variety. Then, X1 ×Z X2 is normal and projective (possibly with several compo-
nents) with natural maps pri : X1 ×Z X2 → Xi, i = 1, 2, given by its projection on each
factor. The functions fi ◦ pri, i = 1, 2 are identical, giving a well-defined map:

(f1, f2) : X1 ×Z X2 → Z. (9.7.3)

9.7.47 Remark (Fiber equations) Consider x′ ∈ X1 ×Z X2 that is simultaneously over x′i ∈ Xi,
i = 1, 2, where both x′i s ramify over pr1(x′1) = pr2(x′2). Then, f1(x1) = f2(x2), with xi in
a neighborhood of x′i, is not a correct local description around x′.

There is another complication when Z is not a curve (dimension 1). The fiber product
might be singular even when the Xi s are not. So (f1, f2) in (9.7.3) may not be a cover
because it is not flat (Remark 9.7.67).

9.7.48 Example Consider two polynomials, f1, f2 ∈ K[x], of the same degree n. They define
fj : P1

xj → P1
z, j = 1, 2. Then, there are n points over z = ∞ on P1

y1
×P1

z
P1
y2

, but only
one point on the set theoretic fiber product over ∞. Proposition 1 of [1111] gives the
generalization of this, showing – when the covers are tame – how to compute the genus of
the fiber product components from the covers fj , j = 1, 2.

9.7.49 Definition The fiber product Xf,f = X ×Z X for a cover f : X → Z of degree exceeding
1 has at least two components. One is the diagonal : the set ∆(X) = {(x, x) | x ∈ X}.
The normal variety X ×Z X \∆(X) generalizes the set in Theorem 9.7.24.
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9.7.50 Lemma (Fiber product monodromy [1118, Section 2.1.3]) Consider the covers in Defini-
tion (9.7.45). To each fj there is an arithmetic (resp. geometric) monodromy group Afj
(resp. Gfj ), j = 1, 2. Similarly, for (f1, f2) in (9.7.3). Then, A(f1,f2) maps naturally, surjec-
tively, to Afj by homomorphisms pr∗j , j = 1, 2. There is a largest simultaneous quotient, H,
of both Afj s given by homomorphisms mi : Afj → H, j = 1, 2, so that

A(f1,f2) = {(σ1, σ2) ∈ Af1
×Af2

| m1(σ1) = m2(σ2)}.

Similarly with geometric replacing arithmetic monodromy.

9.7.51 Corollary (Components) With the hypotheses of Lemma 9.7.50, let {1j , . . . , nj}, be integers
on which Aj acts, j = 1, 2. Then, A(f1,f2) acts on the pairs (i1, i2) and on each of the sets
{1j , . . . , nj} separately. If X1 is absolutely irreducible, then the components of X1 ×Z X2

over F (resp. F̄ ) correspond to the orbits of A(f1,f2)(11) (resp. G(f1,f2)(11); see Definition
9.7.23) on {12, . . . , n2}. We note that the degrees n1 and n2 may be different.

9.7.52 Definition (Absolute components) Given X1 ×Z X2 in Corollary 9.7.51, denote the union
of its absolutely irreducible F components by X1 ×abs

Z X2. Denote the complementary
set, X1 ×Z X2 \X1 ×abs

Z X2, of components by X1 ×cp
Z X2.

9.7.53 Theorem (Explicit Ef,q – see Remark 9.7.54) Let f : X → Z (as in Proposition 9.7.28) be
an exceptional cover over Fq. For X ′i, an Fq component of X ×cp

Z X, denote the number of
components in its breakup over F̄q by si, i = 1, . . . , u.

With sexc = lcm(s1, . . . , su), Ef,q = {k (mod sexc) | gcd(k, si) < si, i = 1, . . . , u}.

The group G(Fqsexc/Fq) is naturally a quotient of Af/Gf . We can interpret all quantities
using Af and Gf .

9.7.54 Remark All but the last sentence of Theorem 9.7.53 is [1118, Corollary 2.8]. The last sen-
tence is from [1118, Lemma 2.6], using that the Galois closure cover of f is a(ny) component
(over Fq) of the deg(f) = n-fold fiber product of f with itself. Project that fiber product
onto the 2-fold fiber product of f over Fq to finish. Corollary 9.7.51 shows the orbit lengths
of Af (1) on {2, . . . , n} divided by the corresponding orbit lengths of Gf (1), give the si s.

9.7.55 Theorem (Explicit Ef,K – see Remark 9.7.56) Now change Fq to K (number field) in the
first sentence of Theorem 9.7.53. For each cyclic subgroup C ≤ Af/Gf denote those σ ∈ Af
that map to C by AC . As previously, denote the stabilizers of 1 in the representation by
AC(1) and GC(1). Consider the set, Cf,K , of cyclic C (as in (9.7.1)):

{C | each orbit of AC(1) on {2, . . . , n} breaks into strictly smaller orbits under GC(1)}.

Then, f is exceptional over K if and only if Cf,K is nonempty. Further, Ef,K consists of
those primes ppp for which the Frobenius attached to ppp is a generator of some C ∈ Cf,K .

9.7.56 Remark Theorem 9.7.55 comes from applying [1113, Section 2] exactly as in Remark 9.7.28.
If Ef,K is infinite, then X ×Z X \ ∆(X) has no absolutely irreducible component. The
converse, however, does not hold.

9.7.4 Combining exceptional covers; the (Fq, Z) exceptional tower

9.7.57 Definition (Category of exceptional covers) For Z absolutely irreducible over Fq, denote
the collection of exceptional covers of Z over Fq by TZ,Fq .
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9.7.58 Theorem [1118, Section 4.1] Given (fi, Xi) ∈ TZ,Fq , i = 1, 2, X1×abs
Z X2 (Definition 9.7.52)

has one component. We conclude that:

(f1 ◦ pr1, X1 ×abs
Z X2) ∈ TZ,Fq .

Also, there is at most one morphism between any two objects in TZ,Fq .
9.7.59 Remark (When f1 = f2 in Theorem 9.7.58) We definitely include the fiber product of

a cover in TZ,Fq with itself. Then, the only absolutely irreducible component of the fiber
product is the diagonal (Definition 9.7.49), which is equivalent to the original cover.

9.7.60 Definition We call X1 ×abs
Z X2 the fiber product of f1 and f2 in TZ,Fq , and continue to

denote its morphism to Z by (f1, f2). This defines TZ,Fq as a category with fiber products.
Theorem 9.7.53 shows Ef1,q ∩ Ef2,q = E(f1,f2),Fq is infinite.

9.7.61 Remark Consider (fi, Xi) ∈ TZ,Fq , i = 1, 2, for which there exists ψ : X1 → X2 over Fq
that factors through f2: f2 ◦ ψ = f1. Then, Theorem 9.7.58 says ψ is unique.

9.7.62 Corollary For (f,X) ∈ TZ,Fq , denote the group of the Galois closure cover of f over X by
Af (1). Then, Af has the representation Tf by acting on cosets of Af (1). If (fi, Xi) ∈ TZ,Fq ,
i = 1, 2, we write (f1, X1) > (f2, X2) if f1 factors through X2. [1118, Proposition 4.3] pro-
duces from these pairs a canonical group AZ,Fq with a profinite permutation representation
TZ,Fq .

9.7.63 Remark (A projective limit) Given (fi, Xi) ∈ TZ,Fq , i = 1, 2, there is a 3rd (f,X) ∈ TZ,Fq ,
given by the fiber product, that factors through both. This is the condition defining a
projective sequence. So, AZ,Fq in Corollary 9.7.62 is a projective limit.

9.7.64 Definition (AZ,Fq , TZ,Fq ) is the (arithmetic) monodromy group, in its natural permutation
representation, of the exceptional tower TZ,Fq .

9.7.65 Theorem Let fi : Xi → Z, i = 1, 2, be exceptional covers over K: Efi,K is infinite, i = 1, 2.
Then, X1 ×Z X2 is exceptional in the sense that

X1 mod ppp×abs
Z mod ppp X2 mod ppp is exceptional for infinitely ppp

if and only if Ef1,K ∩ Ef2,K is infinite.

9.7.66 Remark Theorem 9.7.65 forces considering if there is an infinite intersection of two excep-
tionality sets over K. As Theorem 9.7.53 shows, this is automatic over Fq. Example 9.7.37
shows it is not automatic over a number field. Subsections 9.7.5 and 9.7.6 have examples
along these lines: If both fi s, i = 1, 2, are exceptional rational functions, then their com-
position is again exceptional over K if and only if Ef1,K ∩ Ef2,K is infinite. Beyond cyclic
and Chebychev situations, it is very difficult to decide when this intersection is infinite.

9.7.67 Remark The same definition for exceptional works for any finite, surjective, map of normal
varieties over Fq. Such maps may not be flat (say, when Remark 9.7.14 does not apply),
so they may not be covers. Normalization of any projective variety is projective: Segre’s
Embedding [2203, Theorem 4, p. 400].

For irreducible X, flatness says the multiplicity sum of points in the fiber over z is
constant in z: the function field extension degree, [K(X) : K(Z)] [2203, Proposition 2,
p. 432]. That is, Definition 9.7.25, Part 2, holds. For finite morphisms that characterizes
flatness [2203, Corollary p. 432]. With normality, but not flatness, this may hold only outside
a codimension 2 set in the target. Appendix A.4 of [1119] has a liesurely discussion; see
Example 9.7.14.
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9.7.5 Exceptional rational functions; Serre’s Open Image Theorem

9.7.68 Definition Definition 9.7.31 explains Chebychev conjugates. Consider lz′ : x 7→ x−z′
x+z′ ,

mapping ±z′ to 0,∞, with a = (z′)2 ∈ K, z′ 6∈ K. Then, for n odd, characterize
Rn,a = (lz′)

−1 ◦ (lz′(x))n, a cyclic conjugate, by these conditions:

±z′ are its sole ramified points, Rn,a(±z′) = ±z′ and it maps ∞ 7→ ∞. (9.7.4)

9.7.69 Remark According to [1936, Chapter 2, Section 5]), the function Rn,a in Definition 9.7.68 is
a Redei function. From [1936, Theorem 3.11], under the hypotheses on z′, the exceptionality
set ERn,a,K is

{ppp | (|OK/ppp| − 1, n) = 1} if z′ is a quadratic residue modulo ppp, and
{ppp | (|OK/ppp|+ 1, n) = 1} if not.

9.7.70 Remark (Addendum Remark 9.7.69) Quadratic reciprocity determines nonempty arith-
metic progressions for which z′ is a quadratic residue and those for which it is not. If z′ in
Definition 9.7.68 were in K, then – of course – the exceptional set is the same as for xn.
Whether or not z′ ∈ K, we refer to Rn,a as a cyclic conjugate.

9.7.71 Definition [1118, Section 4.2] Suppose a collection C of covers from an exceptional tower
TY,Fq is closed under the categorical fiber product. We say C is a subtower. We also
speak of the (minimal) subtower any collection generates under fiber product.

9.7.72 Remark Section 4.3 of [1118] uses that the fiber product of two unramified covers is un-
ramified to create cryptographic exceptional subtowers. Section 5.2.3 of [1118] computes the
arithmetic monodromy attached to the Dickson subtower generated by all the exceptional
Chebychev conjugates over Fq. The analog of Remark 9.7.69 over Fq gives a similar – Redei
– subtower of TP1

z,Fq generated by exceptional cyclic conjugates.

9.7.73 Remark Theorem 9.7.65 requires common exceptional intersection (Remark 9.7.66) to form
fiber products in TZ,K , Z absolutely irreducible over a number field K. For fiber products
(or composites) of Chebychev and cyclic conjugates, we easily decide if exceptional sets have
infinite intersection. Exceptional rational functions from Serre’s O(pen) I(mage) T(heorem)
give much harder versions of such problems.

9.7.74 Definition (j-line P1
j ) A special copy of projective 1-space, the j-line, occurs in the study

of modular curves (see Theorem 9.7.76). Each j ∈ P1
j \{∞}(Q̄) = A1

j (Q̄) has an attached
isomorphism class of elliptic curves Ej . For each integer n > 0, consider a special case of
a modular curve, µ0(n) : X0(n)→ P1

j , with its cover of P1
j . Denote the points of X0(n)

not lying over j =∞ by Y0(n).

9.7.75 Definition For E an elliptic curve, denote by E → E/C an isogeny from quotienting E by
a (finite) torsion subgroup C of E. When C is a cyclic, generated by e′ ∈ E (resp. all
torsion points killed by multiplication by n), write C = 〈e′〉 (resp. Cn).

9.7.76 Theorem There are two approaches to giving “meaning” to each algebraic point y ∈ Y0(n),
whose image in P1

j is jy
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1. [2311, p. 108] or [1115, p. 158]: y 7→ [Ejy → Ejy/〈e′y〉] with e′y ∈ Ejy of order n
where brackets, [ ] , indicate an isomorphism class of isogenies.

2. [1115, Lemma 2.1]: y 7→ fy ∈ Q̄(x) (up to Möbius equivalence) of degree n.

9.7.77 Theorem [1115, Theorem 2.1] Suppose f ∈ K(x) is exceptional and of prime degree u.
Then, f is Möbius equivalent over K to either:

1. a cyclic (Remark 9.7.70) or a Chebychev (Remark 9.7.34) conjugate; or

2. to some fy (u = n) in Theorem 9.7.76, Part 2.

9.7.78 Definition For a dense set of j′ ∈ A1
j , the corresponding Ej′ is of CM -type if its ring

of isogenies, tensored by Q, has dimension 2 over Q. Such isogenies form a complex
quadratic extension of Q (containing j′, which is an algebraic integer; [2586, II-28] or
[2614, Chapter 2, Section 5.2]). Otherwise, j′ is of GL2-type.

9.7.79 Theorem [1115, (2.10)] Continue the notation of Theorem 9.7.77. Except for the two cases
where jy is one of the two finite branch points of µ0(u), the geometric monodromy Gfy is
the order 2u dihedral group Du, and fy has four branch points (Definition 9.7.25). For u in
Theorem 9.7.77, Part 2, for which Ej′ has good reduction, the coordinates of e′y generate a
constant extension of K with group Afy/Gfy (explained in Theorem 9.7.85).

9.7.80 Theorem [1115, Section 2.B] For j′ of CM-type, complex multiplication theory gives (an
infinite) Efy,K . Computing this would use [1370, Sections 6.3.1-6.3.2].

9.7.81 Remark (Addendum to Theorem 9.7.80) Using adelic (modular) arithmetic gives analogs
of Corollary 9.7.36; and Corollary 9.7.41 for explicitly finding the functional inverse of a
CM-type reduced modulo a prime in the exceptional set Efy,K . If K = Q(j′), then Efy,K
depends on the congruence defining the Frobenius in the (cyclic of degree u−1 over K)
constant field. Only finitely many j′ in Q have CM-type, corresponding to class number 1
for complex quadratic extensions.

9.7.82 Problem Take one of the CM-type j s in Q. Then, consider two allowed values of u, ui,
i = 1, 2, denoting the corresponding fy s by fi, i = 1, 2. Test for explicitness in Remark
9.7.81 as to whether Ef1,Q ∩ Ef2,Q is infinite.

9.7.83 Definition (Composition factor definition field) For f ∈ F (x) consider a minimal field
Ff (ind) over which f decomposes into composition factors indecomposable over F̄ .
Similarly, denote the minimal field over which Xf,f \∆ in Theorem 9.7.24 breaks into

absolutely irreducible components by F̂f (2).

9.7.84 Proposition [1118, Proposition 6.5] If f :X → Z is a cover over F , then Ff (ind) ⊂ F̂f (2).

9.7.85 Theorem (See Remark 9.7.87) Assume j′ ∈ A1
j is of GL2-type. For K = Q(j′), consider

C = Cu in Definition 9.7.75 with u a prime. The corresponding fy ∈ K(x), y over j′, has
degree u2. Use the monodromy groups of Definition 9.7.17.

There is a constant M1,j′ so that if u > M1,j′ , then the arithmetic/geometric monodromy
quotient Afy/Gfy is GL2(Z/u)/{±1}. Further, fy decomposes into two degree u rational
functions over Kf (ind), but it is indecomposable over K.

9.7.86 Theorem [1118, Proposition 6.6] Continue Theorem 9.7.85 hypotheses. For a second con-
stant M2,j′ , and for any prime ppp of OK with |OK/ppp| > M2,j′ assume Appp ∈ GL2(Z/u)/〈±1〉
represents the conjugacy class of the Frobenius for ppp. Then, fy mod ppp is an exceptional
indecomposable rational function, and it decomposes over the algebraic closure of OK/ppp,
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precisely when 〈Appp〉 acts irreducibly on (Z/u)2 = Vu. This holds for infinitely many primes
ppp. In particular, fy is exceptional over K (Definition 9.7.30).

9.7.87 Remark (Using Serre’s OIT) [2586] lays the groundwork for [2587]. The latter has the
existence of the constant M1,j′ . Appendix A.1 and Section 3.2 of [2586] proves that it exists
when j′ ∈ A1

j (Q̄) is not an algebraic integer. Then, the computation of Mi,j′ , i = 1, 2,
in Theorems 9.7.85 and 9.7.86 is effective. Even after all these years, there is no effective
computation of these constants when j is not CM-type, but is an algebraic integer. Section
2 of [1115] gets Theorem 9.7.85 from the OIT using the relation between Parts 1 and 2 in
Theorem 9.7.76.

9.7.88 Remark (More elementary, but less precise than Theorem 9.7.86) Theorem 2.2 of [1115]
shows, for every K and any prime u > 3, the j′ ∈ K, with fy satisfying the exceptionality
and decomposability conclusions of Theorem 9.7.86, are dense. Applying the [1113, Theorem
3] (or [1121, Theorem 12.7]) version of Hilbert’s Irreducibility Theorem to X0(u) gives the
corresponding M2,j′ explicitly.

9.7.89 Example (M1,j′ effectiveness?) Appendix A.1 and Section 3.3 of [2586] gives Ogg’s example
[2310] with j′ ∈ Q. Section 6.2.2 of [1118] reviews this case, where M2,j′ = 6, to show how
to pick an Appp acting irreducibly on Vu as in Theorem 9.7.86 (for infinitely many ppp), assuring
that Efy,Q is infinite for u > M2,j′ .

Section 6.3.2 of [1118] – still Ogg’s case – aims at finding an automorphic function, a
la Langland’s Program, that would characterize the primes in Efy,Q. This is akin to the
unrelated examples of [2595], but uses results on automorphic functions in [2590, Theorem
22]. Primes of Efy,Q do not lie in arithmetic progressions. So, Problem 9.7.90 is much harder
than Problem 9.7.82.

9.7.90 Problem (Analog of Problem 9.7.82) For the Ogg curve in Example 9.7.89, consider two
allowed values of u, ui, i = 1, 2, denoting the corresponding fy s by fi, i = 1, 2. Test for
explicitness in Remark 9.7.81 as to whether Ef1,Q ∩ Ef2,Q is infinite.

9.7.91 Remark Paper [1123] connects “variables separated factors” ofXf,f and composition factors
of f . Reference [84] used this to effectively test for composition factors (and primitivity) of
covers.

9.7.92 Theorem [1370, Chapter 3] Excluding finitely many degrees, all indecomposable exceptional
f ∈ K(x) (K a number field) are Möbius equivalent to a cyclic or Chebychev conjugate, or
to a CM function from Theorem 9.7.77 of prime degree; or they are from Theorem 9.7.86
and of prime degree squared.

9.7.6 Davenport pairs and Poincaré series

9.7.93 Definition [1118, Definition 2.2] Consider f : X → Z, a cover of normal varieties over Fq,
with Z absolutely irreducible, but X possibly reducible. Then f is pr-exceptional if it
is surjective on Fqk points for infinitely many k. There is a similar definition extending
Definition 9.7.30 over a number field, and for both a notation for exceptional sets.

9.7.94 Definition Use the value set notation of Remark 9.7.3. We say fi ∈ Fq(x), i = 1, 2, is a
Davenport pair over Fq if Vf1

(P1(Fqk)) = Vf2
(P1(Fqk)) for infinitely many k. So, take

f2(x) = x to see Davenport pairs generalize exceptional functions. The notion applies to
any pair of covers fi : Xi → Z, i = 1, 2. For K a number field, this similarly generalizes
Definition 9.7.30: f1, f2 ∈ K(x) are a Davenport pair if they are a Davenport pair for
infinitely many residue class fields.
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9.7.95 Theorem [1118, Corollary 3.6] Monodromy precision (Definition 9.7.26) applies to pr-
exceptional covers and so to Davenport pairs. That is, generalizing Theorems 9.7.53
and 9.7.55, a precise monodromy statement generalizes MacCluer’s Theorem (Proposition
9.7.28) to pr-exceptional covers and to Davenport pairs.

9.7.96 Theorem [1118, Section 3.1.2] With the notation of Definition 9.7.93, a pr-exceptional cover
over Fq is exceptional if and only if X is absolutely irreducible.

9.7.97 Remark The proof of Schur’s Conjecture began the solution of Davenport’s problem for
polynomial pairs (f1, f2) over a number field, the main result of [1110]. Section 3.2 in [1118]
shows the exceptional set characterization for Davenport pairs in general is given by the
intersection of exceptionality sets for pr-exceptionality correspondences. A full description
of many authors’ results that came from the solution of Davenport’s problem – especially
the study of general zeta functions attached to diophantine problems – is in [1119, Section
7.3].

9.7.98 Remark (The Genus 0 Problem) Geometric monodromy groups of rational functions are
severely limited. The mildest statement for f ∈ Q̄(x) is that excluding cyclic and alternating
groups the composition factors of Gf fall among a finite set of simple groups. That is the
original genus 0 problem.

There is a large literature distinguishing between geometric monodromy of f ∈ Q̄(x)
and those in F̄q(x), because of wild (not tame; Remark 9.7.26) ramification. The contrast
starts from the [2191, Section 8.1.2, Guralnick’s Optimistic Conjecture] list of all primitive
monodromy groups of indecomposable f ∈ Q̄[x].

9.7.99 Example (Davenport pairs) A significant part of the exceptional primitive monodromy
groups (Remark 9.7.98), without cyclic or alternating group composition factors, came
from the finitely many possible degrees of Davenport pairs f1, f2 ∈ K[x] (polynomials) over
number fields, with f1 indecomposable and Vf1(OK/ppp) = Vf2(OK/ppp).

Important hints about what to expect for primitive monodromy groups of f ∈ F̄q(x)
came also from Davenport pairs. Section 3.3.3 in [1118] (explicitly in [332]): Over every
Fq, there are infinitely many degrees of Davenport pairs, where (deg(f1), p) = 1, f1 is
indecomposable, and Vf1

(Fqk) = Vf2
(Fqk) for all k.

9.7.100 Example Theorem 14.1 in [696] described the geometric monodromy (PSL2(pa), p = 2, 3, a
odd) of the only possible exceptional polynomials over Fp whose degrees were neither prime
to p or a power of p. Then, [1120] produced these: the first exceptional polynomials over
finite fields with nonsolvable monodromy.

9.7.101 Remark (Zeta functions attached to problems) Chapters 25 and 26 in [1121] details how
Davenport pairs led to attaching Poincaré series – based on the Galois stratification pro-
cedure of [1117] – to counting the values of parameters for any diophantine problem inter-
pretable over all extensions of Fq, or for infinitely many primes ppp of K.

9.7.102 Example Denote w1, . . . , wu by www. Suppose f(www, x), g(www, y) ∈ Fq[www, x, y]. Denote the car-
dinality of www′ ∈ Au(Fqk) with

V (f(www′, x))(P1(Fqk)) = V (g(www′, x))(P1(Fqk)) (9.7.5)

by Nf,g,k. Define Pf,g,Fq (t) to be the Poincaré series
∑∞
i=1Nf,g,kt

k.

9.7.103 Example With notation over Z, as in Example 9.7.102, suppose f(www, x), g(www, y) ∈ Z[www, x, y].
Denote the cardinality of www′ ∈ Au(Fpk) with (9.7.5) holding over Fpk by Nf,g,Z/p,k. Define

Pf,g,Z/p(t) to be
∑∞
i=1Nf,g,Z/p,kt

k.

9.7.104 Theorem [1121, Chapter 25], [1119, Section 7.3.3] For any diophantine problem over Fq ex-
pressed in a first order language, the attached Poincaré series is a rational function. Further,
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there is an effective computation of the coefficients of its numerator and denominator based
on expressing those coefficients in p-adic Dwork cohomology.

9.7.105 Theorem [Theorem 9.7.104 continued] Given a diophantine problem D over Z (or OK)
expressed in a first order language, there is an effective split of the primes of Q (or over K)
into two sets: LD,1 and LD,2, with LD,2 finite. Further, there is a set of varieties V1, . . . , Vs
over Z, from which we produce linear equations in variables Y1, . . . , Ys′ that serve as the
coefficients of the numerator and denominator of a rational function PD(t). To each (p, Yi),
p ∈ LD,1 there is a universal attachment of a p-adic Dwork cohomology group, H(p, Yi),
computed in the category of such Dwork cohomology attached to V1, . . . , Vs.

The corresponding Poincaré series PD,p at p ∈ LD,1 comes by substituting H(p, Yi) for
each Y1, . . . , Ys′ in PD(t). Then apply the Frobenius operator at p to these coefficients.

9.7.106 Remark [814] In Theorem 9.7.105 it is possible to take V1, . . . , Vs to be nonsingular projec-
tive varieties with Yi representing a Chow motive (over Q). Applying the Frobenius operator
at p is meaningful as Chow motives are formed from étale cohomology groups of V1, . . . , Vs.

9.7.107 Remark The effectiveness of Theorem 9.7.104 is based on Dwork cohomology [943], and the
explicit calculations of [341]. Theorem 9.7.105 and Remark 9.7.106 both rest on the Galois
stratification procedure of [1117] or [1121, Chapter 24].

On the plus side, the uniform use of étale cohomology from characteristic 0 produces
wonderful invariants – like, Euler characteristics – attached to diophantine problems. On
the negative, all the effectiveness disappears. In particular, the relation between the sets
denoted LD,1 in the two results is a mystery.

9.7.108 Remark Relating exceptional covers (and Davenport pairs) and other problems about al-
gebraic equations is a running theme in [1118] and [1119]. Detecting these relations comes
from pr-exceptional correspondences [1118, Section 3.2]. We catch the possible appearance
of such correspondences when two Poincaré series have infinitely many identical coefficients.

9.7.109 Example An exceptional cover, X → P1
z, over Q, will be a curve whose Poincaré series is the

same as that of P1
z at infinitely many primes. The systematic use of such characterizations

combines monodromy precision (where it applies) and Theorem 9.7.110.

9.7.110 Theorem ([1119, Proposition 7.17], based on [1021]) The zero support of the difference of
two Poincaré series consists of the union of arithmetic progressions.

See Also

§8.1 Discusses the large literature on permutation polynomials (as in Proposition
9.7.39). This contrasts with the use of a cover given by an exceptional
polynomial, where one fixed polynomial works for infinitely many finite fields.

§8.3 Mentions several explicit Chebotarev density theorem error terms. Such error
terms have improved over time, but, like Proposition 9.7.28, this sections’
results exhibit monodromy precision: the error term vanishes.

§9.6 Discusses Dickson polynomials in detail, including their various combinatorial
formulas. This contrasts with Remark 9.7.34 which provides a formula free
characterization.

References Cited: [84, 332, 341, 696, 777, 814, 943, 1021, 1109, 1110, 1111, 1112, 1113,
1114, 1115, 1117, 1118, 1119, 1120, 1121, 1123, 1124, 1370, 1427, 1936, 1986, 2031, 2191,
2203, 2310, 2311, 2586, 2587, 2590, 2595, 2614]
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10.1 Finite field transforms

Gary McGuire, University College Dublin

10.1.1 Basic definitions and important examples

A finite field contains two important finite abelian groups, the additive group and the
multiplicative group. We shall first define the Fourier transform for an arbitrary finite
abelian group, and then we shall focus on the two groups in a finite field. The definition
involves the characters of a finite abelian group.

10.1.1 Definition Let G be a finite abelian group. A character of G is a group homomorphism
G −→ C×, where C× is the multiplicative group of nonzero complex numbers.

303
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10.1.2 Remark Let Ĝ denote the group of characters of G, which is a group under the operation
(χχ′)(x) = χ(x)χ′(x). Sometimes Ĝ is called the dual group of G. The dual group Ĝ is
isomorphic to G, although this isomorphism is not canonical.

10.1.3 Definition Let G be a finite abelian group. The Fourier transform of any function
f : G −→ C is the function f̂ : Ĝ −→ C defined by

f̂(χ) =
∑
x∈G

f(x)χ(x)

where χ is a character of G.

10.1.4 Remark The Fourier transform can also be defined without the complex conjugation of
χ(x).

10.1.5 Remark It is common to choose an identification of G and Ĝ. If χα denotes the image of
α ∈ G under some isomorphism from G to Ĝ, we write the Fourier transform as

f̂(α) =
∑
x∈G

f(x)χα(x)

and as a result we may consider f̂ to be defined on G.

10.1.6 Example The characters of the additive group of Fq have the form

µα(x) = ζ〈α,x〉p

where ζp is a fixed primitive p-th root of unity, and 〈, 〉 is any Fp-valued inner product on
Fq. If we take 〈α, x〉 to be Tr(αx) (absolute trace) then the Fourier transform of a function
f : Fq −→ C becomes

f̂(α) =
∑
x∈Fq

f(x)ζ−Tr(αx)
p .

10.1.7 Example The characters of F∗q (the multiplicative group of nonzero elements of Fq) have
the form

χj(γ
k) = ζjkq−1

where 0 ≤ j ≤ q − 2, ζq−1 is a fixed primitive complex (q − 1)-th root of unity, and γ is a
fixed generator of F∗q . For example, if q is odd and j = (q − 1)/2 then χj is the quadratic
character. The Fourier transform of a function f : F∗q −→ C can then be written

f̂(j) =

q−2∑
k=0

f(γk)ζ−jkq−1

10.1.8 Example Let n > 1 be a positive integer. If G = Z/nZ, the characters are the functions
χj : Z/nZ→ C, for j ∈ Z/nZ, where

χj(k) = ζjkn

where ζn is a complex primitive n-th root of unity. The Fourier transform of a function
f : Z/nZ −→ C can then be written

f̂(j) =
n−1∑
k=0

f(k)ζ−jkn .

See Subsection 10.1.3 for a discussion of the Discrete Fourier Transform.
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10.1.9 Remark The space CG of all complex-valued functions defined on G is a Hermitian inner
product space via

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

This vector space has dimension |G|.
10.1.10 Theorem The characters form an orthonormal basis of CG.

10.1.11 Remark We note that

f̂(χ) = 〈f, χ〉.
10.1.12 Remark The Fourier transform can be inverted, in the sense that

f(x) =
1

|G|
∑
χ∈Ĝ

〈f, χ〉χ(x)

for all x ∈ G. This expresses f as a linear combination of the basis of characters. Note that
it also expresses each value of f as a linear combination of roots of unity. This expression
explains why the values f̂(χ) are sometimes called the Fourier coefficients of f .

10.1.13 Remark Next we present some of the fundamental theorems in Fourier analysis. Proofs can
be found in [2789].

10.1.14 Theorem Plancherel’s Theorem states that

〈f, g〉 =
1

|G| 〈f̂ , ĝ〉.

10.1.15 Theorem Parseval’s Theorem states that

〈f, f〉 =
1

|G| 〈f̂ , f̂〉.

10.1.16 Theorem The Poisson Summation Formula states that, for any subgroup H of G,

1

|H|
∑
x∈H

f(x) =
1

|G|
∑
χ∈H⊥

f̂(χ)

where H⊥ consists of all the characters of G that are trivial on H.

10.1.17 Remark This is a discrete version of the Poisson Summation Formula. There are many
other versions, and many applications, see [2789] for further details.

10.1.18 Definition The convolution of f and g is defined by

(f ∗ g)(a) =
∑
x∈G

f(a− x)g(x)

for all a ∈ G.

10.1.19 Theorem The convolution theorem of Fourier analysis states that the Fourier transform of
a convolution of two functions is equal to the ordinary product of their Fourier transforms:

f̂ ∗ g = f̂ · ĝ.
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10.1.2 Functions between two groups

10.1.20 Remark We have defined above the Fourier transform of a function G −→ C. The definition
can be extended to functions defined on G taking values in another abelian group, B. The
definition involves characters of B as well as characters of G.

10.1.21 Definition Let f : G −→ B be a function between finite abelian groups. The Fourier
transform of f is the function f̂ : Ĝ× B̂ −→ C defined by

f̂(χ, ψ) =
∑
x∈G

ψ(f(x)) χ(x). (10.1.1)

10.1.22 Remark We observe that if ψ ∈ B̂ is the principal character, the Fourier transform evaluates
to 0 if χ is not principal, and evaluates to |G| if χ is principal.

10.1.23 Remark This Fourier transform of f : G −→ B can also be viewed as the ordinary Fourier
transform (Definition 10.1.3) on the group G × B of the characteristic function of the set
{(x, f(x)) : x ∈ G}.

10.1.24 Remark If we use isomorphisms α 7→ χα from G to Ĝ and β 7→ ψβ from B to B̂, we may

consider f̂ to be defined on G×B and we write the Fourier transform of f at (α, β) ∈ G×B
as

f̂(α, β) =
∑
x∈G

ψβ(f(x)) χα(x). (10.1.2)

10.1.25 Example The Fourier transform of a function f : Fq −→ Fq is

f̂(α, β) =
∑
x∈Fq

ζTr(βf(x)−αx)

because the additive characters (see Example 10.1.6) have the form Tr(αx).

10.1.26 Remark We note that in the important special case where f(x) = xd and gcd(d, q−1) = 1,
we may write any β ∈ Fq as cd, and then

f̂(α, β) =
∑
x∈Fq

ζTr(cdxd−αx) =
∑
x∈Fq

ζTr(xd−αc−1x) = f̂(αc−1, 1).

It follows that, when f(x) = xd and gcd(d, q− 1) = 1, we may often assume without loss of
generality that β = 1.

10.1.27 Example For a Boolean function f : Fn2 −→ F2, the characters of Fn2 have the form

χα(x) = (−1)〈α,x〉

where 〈, 〉 is any inner product on Fn2 . Also, the only nonzero β in F2 is β = 1, so we may
drop the dependence on β and the Fourier transform is written

f̂(α) =
∑
x∈Fn2

(−1)f(x)+〈α,x〉.

This is the Walsh transform of the Boolean function f , or the Hadamard transform of the
±1 valued function (−1)f .
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10.1.28 Remark One often uses the finite field F2n for the vector space Fn2 , and the trace inner
product 〈α, x〉 = Tr(αx). In this case the Walsh transform of a Boolean function f is

f̂(α) =
∑
x∈Fn2

(−1)f(x)+Tr(αx).

See Section 9.1 for further details on Boolean functions.

10.1.29 Example Let n > 1 be a positive integer. If G = B = Z/nZ, the characters are the functions
χj(k) = ζjkn where ζn is a complex primitive n-th root of unity (see Example 10.1.8). For a
function f : Z/nZ −→ Z/nZ it follows that

f̂(α, β) =
∑

x∈Z/nZ

ζβf(x)−αx
n . (10.1.3)

10.1.3 Discrete Fourier Transform

10.1.30 Remark A function f : G −→ B can also be considered as a vector or sequence

(f(g1), . . . , f(gn)) ∈ Bn

when G = {g1, . . . , gn}. Through this correspondence, transforms of functions are sometimes
considered as transforms of vectors and sequences.

10.1.31 Definition If G = {g1, . . . , gn} and Ĝ = {χ1, . . . , χn}, the character table of G is the
matrix with (i, j) entry χi(gj).

10.1.32 Remark If we identify a function f : G −→ C with its vector (f(g1), . . . , f(gn)), the Fourier
Transform of f is the vector obtained by multiplying the vector f by the character table of
G:

f̂ = Xf

where X is the character table of G.

10.1.33 Remark We have already presented a case of the Discrete Fourier Transform in Example
10.1.8, however we shall give the matrix formulation here, which is more common. In fact,
the field K below does not need to be a finite field. Further information can be found in
many places, see [2789] for example.

10.1.34 Definition Let K be a field containing all the n-th roots of unity. Let ζn be a primitive
n-th root of unity in K. Let Fn be the n × n matrix whose (i, j) entry is ζijn , where
0 ≤ i, j ≤ n− 1. The matrix Fn is the n-th Fourier matrix.

10.1.35 Remark When K = C the Fourier matrix Fn is an important example of a Butson-
Hadamard matrix. We note that Fn is also a Vandermonde matrix.

10.1.36 Remark We modify the matrix Fn to the matrix Dn whose (i, j) entry is ζ−ijn (we complex
conjugate each entry of Fn). We remark that it does not matter whether we use Fn or Dn

in the definition of Discrete Fourier Transform, but we shall use Dn to be consistent with
our earlier definitions.
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10.1.37 Definition Let f = (f0, f1, . . . , fn−1) be in Kn. The Discrete Fourier Transform of f is
the vector

f̂ = Dnf = (f̂0, f̂1, . . . , f̂n−1)

where f̂j =
∑n−1
k=0 fkζ

−jk
n .

10.1.38 Remark The Fourier matrix Fn is the character table of G = Z/nZ, and this definition is
a case of Remark 10.1.32.

10.1.39 Remark If K = C the Discrete Fourier Transform (DFT) is the same as Example 10.1.8.
If K = Fq and n is a divisor of q − 1, the DFT is known as the Discrete Fourier Transform
over a finite field.

10.1.40 Remark The inverse of Fn has (i, j) entry 1
nζ
−ij
n , i.e., DnFn = nIn. Therefore the Discrete

Fourier Transform has an inverse, which is almost a Discrete Fourier Transform itself, except
for the factor of 1/n.

Sometimes authors include a factor of 1/
√
n in the definition, which then also appears

in the inverse, so with this definition the inverse DFT is also a DFT.

If K is a field of characteristic p, we assume here that n is relatively prime to p so that
1/n exists in K. If p divides n, a generalized DFT has been defined in [2013] using the
values of the Hasse derivatives.

10.1.41 Remark The DFT as defined here may also be viewed as the DFT on the group ring K[G]
where G is a cyclic group. This definition can be generalized to a DFT on other group rings.
Rings which support Fourier transforms are characterized in [418].

10.1.42 Remark Sometimes we identify the vector f = (f0, f1, . . . , fn−1) with the polynomial
f(x) = f0 + f1x+ · · ·+ fn−1x

n−1, and then

f̂ = (f(1), f(ζn), f(ζ2
n), . . . , f(ζn−1

n )).

Thus the Discrete Fourier Transform of f is the vector of values of the polynomial f at the
n-th roots of unity.

10.1.43 Remark The Fast Fourier Transform is a computationally efficient way of computing the
Discrete Fourier Transform, and has many applications. Traditionally, n is a power of 2 and
one uses polynomial evaluations as in Remark 10.1.42. There is a huge literature on this
topic, see [2789] for example, so we do not go into this here.

10.1.44 Remark Given a vector f = (f0, f1, . . . , fn−1) in Kn, we construct a circulant matrix F

with f as its top row. Similarly we construct a circulant matrix F̂ with f̂ = (f̂0, f̂1, . . . , f̂n−1)
as its top row. There is a result sometimes known as Blahut’s theorem [141] stating that

the weight of f is equal to the rank of this circulant F̂ , and the weight of f̂ is equal to the
rank of F . This is true because if we let D be the diagonal matrix diag(f0, f1, . . . , fn−1), we

observe that FnDFn = F̂ , and because Fn is invertible, the rank of D (which is the weight

of f) is equal to the rank of F̂ . Because the linear complexity of f is equal to the rank of
F , this result can be useful for linear complexities of sequences.

10.1.4 Further topics

10.1.45 Remark In this subsection, as before, G and B denote finite abelian groups.
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10.1.4.1 Fourier spectrum

10.1.46 Remark The Fourier spectrum is the set of values of the Fourier transform. Most authors
take the Fourier spectrum to be the multi-set of values, i.e., the values including their
multiplicities. The Fourier spectrum is an important invariant in many applications.

10.1.47 Example The Fourier spectrum of the function x3 on F2n is {0,±2(n+1)/2} if n is odd, and
{0,±2n/2,±2(n+2)/2} if n is even.

10.1.48 Remark There are many papers calculating the Fourier spectrum of specific functions that
are of particular interest, see [384] or [387] for example. There are also general papers on
the structure of the Fourier spectrum of arbitrary functions. The Weil bound gives an upper
bound on the absolute value of any Fourier coefficient, a result that we state here, and that
has many variations.

10.1.49 Definition The Weil sum associated to an additive character µ of Fq and a polynomial
f ∈ Fq[x] is ∑

x∈Fq

µ(f(x)).

10.1.50 Theorem (Weil bound) If the Weil sum is non-degenerate then∣∣∣∣∣∣
∑
x∈Fq

µ(f(x))

∣∣∣∣∣∣ ≤ (deg(f)− 1)
√
q.

10.1.4.2 Nonlinearity

10.1.51 Definition The linearity of a function f : G −→ B is defined to be the maximum of the
absolute values of the numbers in the Fourier spectrum, i.e., we define the linearity of
f by

L(f) = max
α∈G,β∈B∗

|f̂(α, β)|.

10.1.52 Definition The nonlinearity of f : G −→ B is defined by NL(f) = (|G| − L(f))/|B|.

10.1.53 Remark For a Boolean function f : Fn2 −→ F2, the nonlinearity of f is (2n − L(f))/2. The
nonlinearity of a Boolean function is often a useful measure in cryptography; see Section
9.1.

10.1.4.3 Characteristic functions

10.1.54 Definition If A is a subset of Fq, the characteristic function of A is

χA(x) =

{
1 if x ∈ A
0 if x /∈ A.
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10.1.55 Remark The Fourier Transform of χA can be used to obtain information about A. There
are some general principles, such as: if all the Fourier coefficients of χA are small, relatively
speaking, then A is usually a fairly “random” subset; see [155] for further details. In a
different direction, the paper [865] is an example of utilizing the Fourier Transform of the
characteristic function of the support of a specific function of interest.

10.1.4.4 Gauss sums

10.1.56 Definition The Gauss sum associated to a multiplicative character χ (i.e., a character of
F∗q) and an additive character µ (i.e., a character of Fq) is

S(χ, µ) =
∑
x∈F∗q

χ(x)µ(x). (10.1.4)

See Section 6.1 for further details.

10.1.57 Remark Here is one interpretation of Gauss sums. Working in the space of functions F∗q −→
C we consider µ as a function on F∗q by restriction. Using Fourier inversion on (10.1.4), we
can express an additive character µ in terms of the basis of multiplicative characters; and
the coefficients in this expansion are Gauss sums.

10.1.4.5 Uncertainty principle

10.1.58 Remark If G is any finite abelian group, the uncertainty principle [2789] states that

|supp (f)| · |supp (f̂)| ≥ |G|

for any nonzero complex-valued function f defined on G. In particular, if G = Fq we have

|supp (f)| · |supp (f̂)| ≥ q.

Thus, a function and its Fourier transform cannot both have “small” support. Tao [2780]
recently showed that, in the case q = p, the uncertainty principle can be improved as follows:

|supp (f)|+ |supp (f̂)| ≥ p+ 1.

See Also

§6.2 For discussion of character sums.
§6.3 For applications of character sums.
§9.1 For discussion of Boolean functions.
§9.2 For discussion of PN and APN functions.
§9.3 For a study of bent functions.

References Cited: [141, 155, 384, 387, 418, 865, 2013, 2780, 2789]
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10.2 LFSR sequences and maximal period sequences

Harald Niederreiter, KFUPM

10.2.1 General properties of LFSR sequences

10.2.1 Definition Let k be a positive integer and let a0, a1, . . . , ak−1 be fixed elements of the
finite field Fq. A sequence s0, s1, . . . of elements of Fq satisfying the linear recurrence
relation

sn+k =
k−1∑
i=0

aisn+i for n = 0, 1, . . .

is an LFSR sequence (or a linear feedback shift register sequence, also a linear recurring
sequence) in Fq. The integer k is the order of the LFSR sequence or of the linear
recurrence relation.

10.2.2 Remark We usually abbreviate the sequence s0, s1, . . . by (sn). The sequence (sn) in Def-
inition 10.2.1 is uniquely determined by the linear recurrence relation and by the initial
values s0, s1, . . . , sk−1.

10.2.3 Remark In electrical engineering, LFSR sequences in Fq are generated by special switching
circuits called linear feedback shift registers. A linear feedback shift register consists of
adders and multipliers for arithmetic in Fq as well as delay elements. In the binary case
q = 2, multipliers are not needed.

10.2.4 Theorem Any LFSR sequence (sn) in Fq of order k is ultimately periodic with least period
at most qk − 1. A sufficient condition for (sn) to be (purely) periodic is that the coefficient
a0 in the linear recurrence relation in Definition 10.2.1 is nonzero.

10.2.5 Definition Let (sn) be an LFSR sequence in Fq of order k satisfying the linear recurrence
relation in Definition 10.2.1. Then the polynomial

f(x) = xk −
k−1∑
i=0

aix
i ∈ Fq[x]

is a characteristic polynomial of (sn) and also a characteristic polynomial of the linear
recurrence relation. The reciprocal polynomial f∗(x) = xkf(1/x) of f is a connection
polynomial of (sn) and also a connection polynomial of the linear recurrence relation.

10.2.6 Definition Let (sn) be an LFSR sequence in Fq of order k. Then for n = 0, 1, . . ., the
vector

sn = (sn, sn+1, . . . , sn+k−1) ∈ Fkq
is the n-th state vector of (sn).

10.2.7 Remark Let (sn) be an LFSR sequence in Fq with characteristic polynomial f ∈ Fq[x]
and let A be the companion matrix of f . Then the linear recurrence relation for (sn) in
Definition 10.2.1 can be written as the identity sn+1 = snA, n = 0, 1, . . ., for the state
vectors. Consequently, we get sn = s0A

n for n = 0, 1, . . . . Since An can be calculated
by O(log n) matrix multiplications using the standard square-and-multiply technique, this
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identity leads to an efficient algorithm for computing remote terms of the LFSR sequence
(sn).

10.2.8 Remark Let F∞q be the sequence space over Fq, viewed as a vector space over Fq under
termwise operations for sequences. Let T be the shift operator

Tω = (wn+1) for all ω = (wn) ∈ F∞q .

Then for a characteristic polynomial f ∈ Fq[x] of an LFSR sequence σ = (sn) in Fq we have
f(T )(σ) = (0), where (0) denotes the zero sequence. The set

I(σ) = {g ∈ Fq[x] : g(T )(σ) = (0)}

of annihilating polynomials is a nonzero ideal in Fq[x].

10.2.9 Definition The uniquely determined monic polynomial over Fq generating the ideal I(σ)
in Remark 10.2.8 is the minimal polynomial of the LFSR sequence σ in Fq.

10.2.10 Remark If σ is the zero sequence, then its minimal polynomial is the constant polynomial
1. If σ is a nonzero LFSR sequence, then its minimal polynomial has positive degree and is
the characteristic polynomial of the linear recurrence relation of least possible order satisfied
by σ.

10.2.11 Theorem The minimal polynomial of an LFSR sequence (sn) in Fq divides any characteristic
polynomial of (sn). A characteristic polynomial of (sn) of degree k ≥ 1 is the minimal
polynomial of (sn) if and only if the corresponding state vectors s0, s1, . . . , sk−1 are linearly
independent over Fq.

10.2.12 Example Let (sn) be an LFSR sequence in Fq of order k with initial values s0 = s1 = · · · =
sk−2 = 0, sk−1 = 1 (s0 = 1 if k = 1). Then the linear independence property in the second
part of Theorem 10.2.11 is clearly satisfied, and so the characteristic polynomial of (sn)
of degree k is also the minimal polynomial of (sn). An LFSR sequence with these special
initial values is an impulse response sequence.

10.2.13 Theorem If m ∈ Fq[x] is the minimal polynomial of the LFSR sequence σ in Fq, then the
least period of σ is equal to the order of m and the least preperiod of σ is equal to the
multiplicity of 0 as a root of m.

10.2.14 Corollary An LFSR sequence in Fq is periodic if and only if its minimal polynomial m ∈
Fq[x] satisfies m(0) 6= 0.

10.2.15 Remark The basic theory of LFSR sequences in finite fields, as presented above, has quite
a long history. An important early paper is Zierler [3070]. Other milestones in the history
of LFSR sequences in finite fields are the lecture notes of Selmer [2579] and the book of
Golomb [1300]. A treatment of LFSR sequences in the wider context of general feedback
shift register sequences in finite fields, i.e., those including also nonlinear feedback functions,
is given in the monograph of Ronse [2475]. The proofs of many results in this section can
be found in Chapters 6 and 7 of the book [1938].

10.2.16 Theorem [1063] Let (sn) be an LFSR sequence in Fq with characteristic polynomial
f ∈ Fq[x]. Let e0 be the multiplicity of 0 as a root of f , where we can have e0 = 0, and
let α1, . . . , αh be the distinct nonzero roots of f (in its splitting field F over Fq) with
multiplicities e1, . . . , eh, respectively. Then

sn = tn +
h∑
i=1

ei−1∑
j=0

(
n+ j

j

)
βijα

n
i for n = 0, 1, . . . ,
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where all tn ∈ Fq, tn = 0 for n ≥ e0, and all βij ∈ F .

10.2.17 Corollary If a characteristic polynomial f of (sn) is irreducible over Fq and α is a root of
f in the splitting field F of f over Fq, then there exists a uniquely determined β ∈ F such
that

sn = TrF/Fq (βα
n) for n = 0, 1, . . . .

10.2.2 Operations with LFSR sequences and characterizations

10.2.18 Theorem For each i = 1, . . . , h, let σi be an LFSR sequence in Fq with minimal polynomial
mi ∈ Fq[x] and least period ri. If m1, . . . ,mh are pairwise coprime, then the minimal
polynomial of the (termwise) sum sequence σ1 + · · ·+ σh is equal to the product m1 · · ·mh

and the least period of σ1 + · · ·+ σh is equal to the least common multiple of r1, . . . , rh.

10.2.19 Remark In general, operations with LFSR sequences are treated in terms of the spaces
S(f), where for a monic f ∈ Fq[x] we let S(f) be the kernel of the linear operator f(T )
on F∞q (compare with Remark 10.2.8). Any S(f) is a linear subspace of F∞q of dimension
deg(f). The following result characterizes the spaces S(f).

10.2.20 Theorem A subset E of F∞q is equal to S(f) for some monic f ∈ Fq[x] if and only if E is a
finite-dimensional subspace of F∞q which is closed under the shift operator T .

10.2.21 Theorem For any monic f1, . . . , fh ∈ Fq[x], we have

S(f1) ∩ · · · ∩ S(fh) = S(gcd(f1, . . . , fh)),

S(f1) + · · ·+ S(fh) = S(lcm(f1, . . . , fh)).

10.2.22 Remark The (termwise) product sequence σ1 · · ·σh of LFSR sequences σ1, . . . , σh in Fq is
more difficult to analyze. For monic polynomials f1, . . . , fh ∈ Fq[x], let S(f1) · · ·S(fh) be
the subspace of F∞q spanned by all product sequences σ1 · · ·σh with σi ∈ S(fi) for 1 ≤ i ≤ h.
It follows from Theorem 10.2.20 that

S(f1) · · ·S(fh) = S(g)

for some monic g ∈ Fq[x]. If each fi, 1 ≤ i ≤ h, is nonconstant and has only simple roots,
then g is the monic polynomial whose roots are the distinct elements of the form α1 · · ·αh,
where each αi is a root of fi in the splitting field of f1 · · · fh over Fq. For the general case,
a procedure to determine g can be found in Zierler and Mills [3072].

10.2.23 Definition If σ = (sn) is a sequence of elements of Fq and d is a positive integer, then
the operation of decimation produces the decimated sequence σ(d) = (snd). Thus, σ(d)

is obtained by taking every d-th term of σ, starting from s0.

10.2.24 Theorem [939, 2237] Let σ be an LFSR sequence in Fq. Then so is σ(d) for any positive

integer d. If f is a characteristic polynomial of σ and f(x) =
∏k
j=1(x−βj) is the factorization

of f in its splitting field over Fq, then gd(x) =
∏k
j=1(x−βdj ) is a characteristic polynomial of

σ(d). Furthermore, if f is the minimal polynomial of σ and d is coprime to the least period
of σ, then gd is the minimal polynomial of σ(d).

10.2.25 Definition [1294] An LFSR sequence σ in Fq which has a characteristic polynomial
f ∈ Fq[x] and satisfies σ(q) = σ is a characteristic sequence for f .
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10.2.26 Remark Characteristic sequences play an important role in the Niederreiter algorithm
for factoring polynomials over finite fields [2249, 2260]. Characteristic sequences can be
described explicitly in terms of their generating functions (see Theorem 10.2.35 below).

10.2.27 Remark In the case q = 2, an interesting operation on sequences is that of binary comple-
mentation. If σ is a sequence of elements of F2, then its binary complement σ is obtained
by replacing each term 0 in σ by 1 and each term 1 in σ by 0.

10.2.28 Theorem Let σ be an LFSR sequence in F2 with minimal polynomial m ∈ F2[x]. Write m in
the form m(x) = (x+ 1)hm1(x) with an integer h ≥ 0 and m1 ∈ F2[x] satisfying m1(1) = 1.
Then the minimal polynomial m of the binary complement σ is given by m(x) = (x+1)m(x)
if h = 0, m(x) = m1(x) if h = 1, and m(x) = m(x) if h ≥ 2.

10.2.29 Remark LFSR sequences in Fq can be characterized in terms of Hankel determinants. For
an arbitrary sequence (sn) of elements of Fq and for integers n ≥ 0 and b ≥ 1, define the
Hankel determinant

D(b)
n = det((sn+i+j)0≤i,j≤b−1).

10.2.30 Theorem The sequence (sn) of elements of Fq is an LFSR sequence in Fq if and only if

there exists an integer b ≥ 1 such that D
(b)
n = 0 for all sufficiently large n. Furthermore,

(sn) is an LFSR sequence in Fq with minimal polynomial of degree k if and only if D
(b)
0 = 0

for all b ≥ k + 1 and k + 1 is the least positive integer for which this holds.

10.2.31 Remark If an LFSR sequence in Fq is known to have a minimal polynomial of degree at
most k for some integer k ≥ 1, then the Berlekamp-Massey algorithm produces the minimal
polynomial from the first 2k terms of the sequence [231, 2011].

10.2.32 Remark LFSR sequences in Fq can also be characterized in terms of their generating
functions. There are two different characterizations, depending on whether the generating
function is a formal power series in x or in x−1.

10.2.33 Theorem The sequence (sn) of elements of Fq is an LFSR sequence in Fq of order k with
connection polynomial c ∈ Fq[x] if and only if

∞∑
n=0

snx
n =

g(x)

c(x)

with g ∈ Fq[x] and deg(g) < k.

10.2.34 Theorem The sequence (sn) of elements of Fq is an LFSR sequence in Fq with minimal
polynomial m ∈ Fq[x] if and only if

∞∑
n=0

snx
−n−1 =

g(x)

m(x)

with g ∈ Fq[x] and gcd(g,m) = 1.

10.2.35 Theorem [2260] Let f ∈ Fq[x] be a monic polynomial of positive degree. Then the sequence
(sn) of elements of Fq is a characteristic sequence for f if and only if

∞∑
n=0

snx
−n−1 =

h∑
i=1

bi
p′i(x)

pi(x)
with b1, . . . , bh ∈ Fq,

where p1, . . . , ph ∈ Fq[x] are the distinct monic irreducible factors of f and p′i is the first
derivative of pi.
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10.2.3 Maximal period sequences

10.2.36 Definition An LFSR sequence in Fq whose minimal polynomial is a primitive polynomial
over Fq is a maximal period sequence (or an m-sequence) in Fq.

10.2.37 Theorem Any maximal period sequence σ in Fq is periodic with least period qk − 1, where
k is the degree of the minimal polynomial of σ.

10.2.38 Remark The terminology “maximal period sequence” stems from the fact that, by Theo-
rems 10.2.4 and 10.2.37, qk − 1 is the largest value that can be achieved by the least period
of an LFSR sequence in Fq of order k.

10.2.39 Theorem Let (sn) be a maximal period sequence in Fq with minimal polynomial of degree
k. Then the state vectors s0, s1, . . . , sqk−2 of (sn) run exactly through all nonzero vectors
in Fkq .

10.2.40 Theorem A nonzero periodic sequence σ of elements of Fq is a maximal period sequence in
Fq if and only if all its shifted sequences Thσ, h = 0, 1, . . ., together with the zero sequence
form an Fq-linear subspace of F∞q .

10.2.41 Theorem Let σ be a maximal period sequence in Fq with minimal polynomial of degree k.
Then every LFSR sequence in Fq having an irreducible minimal polynomial g with g(0) 6= 0
and deg(g) dividing k can be obtained from σ by applying a shift and then a decimation.

10.2.42 Remark For maximal period sequences, the autocorrelation function has a simple form.
Let (sn) be a maximal period sequence in Fq with least period r. Then its autocorrelation
function Cr is defined by

Cr(h) =
r−1∑
n=0

χ(sn − sn+h)

for all positive integers h, where χ is a fixed nontrivial additive character of Fq.

10.2.43 Theorem For any maximal period sequence in Fq with least period r, its autocorrelation
function Cr satisfies Cr(h) = r if h ≡ 0 (mod r) and Cr(h) = −1 if h 6≡ 0 (mod r).

10.2.4 Distribution properties of LFSR sequences

10.2.44 Remark For LFSR sequences in Fq for which the least period is sufficiently large compared
to the order, the terms in the full period are almost evenly distributed over Fq. Without
loss of generality, it suffices to consider periodic LFSR sequences in Fq. For such a sequence
σ = (sn) with least period r and for b ∈ Fq, let Z(b;σ) be the number of integers n with
0 ≤ n ≤ r − 1 such that sn = b. In other words, Z(b;σ) is the number of occurrences of b
in a full period of σ.

10.2.45 Theorem Let σ be a periodic LFSR sequence in Fq of order k and with least period r. Then
for any b ∈ Fq we have ∣∣∣∣Z(b;σ)− r

q

∣∣∣∣ ≤ (1− 1

q

)
qk/2.

10.2.46 Remark If σ is a maximal period sequence in Fq with minimal polynomial of degree k, then
it follows from Theorem 10.2.39 that Z(b;σ) = qk−1 for b 6= 0 and Z(0;σ) = qk−1 − 1.

10.2.47 Remark Let the sequence σ = (sn) be as in Remark 10.2.44. For b ∈ Fq and a positive
integer N , let Z(b;N ;σ) be the number of integers n with 0 ≤ n ≤ N − 1 such that sn = b.
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10.2.48 Theorem [2231] Let σ be a periodic LFSR sequence in Fq of order k and with least period
r. Then for any b ∈ Fq and any integer N with 1 ≤ N ≤ r we have∣∣∣∣Z(b;N ;σ)− N

q

∣∣∣∣ ≤ (1− 1

q

)
qk/2

(
2

π
log r +

7

5

)
.

10.2.49 Remark The distribution of blocks of elements in a periodic LFSR sequence σ = (sn) in
Fq has also been investigated. Let r be the least period of σ. For b = (b1, . . . , bt) ∈ Ftq with
a positive integer t, let Z(b;σ) be the number of integers n with 0 ≤ n ≤ r − 1 such that
sn+i−1 = bi for 1 ≤ i ≤ t. The simplest case is that of a maximal period sequence σ in Fq.
If k is the degree of the minimal polynomial of σ and 1 ≤ t ≤ k, then Z(b;σ) = qk−t for
b ∈ Ftq with b 6= 0, whereas Z(0;σ) = qk−t − 1.

10.2.50 Theorem [2233] Let σ be a periodic LFSR sequence in Fq with least period r. Let m ∈ Fq[x]
be the minimal polynomial of σ and put k = deg(m). Suppose that the positive integer t is
less than or equal to the degree of any irreducible factor of m in Fq[x]. Then for any b ∈ Ftq
we have ∣∣∣∣Z(b;σ)− r

qt

∣∣∣∣ ≤ (1− 1

qt

)
qk/2.

10.2.51 Remark More general results on distribution properties of LFSR sequences are available
in [2233]. For instance, there is an analog of Theorem 10.2.48 for the distribution of blocks
of elements in parts of the full period. Furthermore, one can consider not only blocks of
successive terms of an LFSR sequence as in Remark 10.2.49, but also blocks of terms with
arbitrary lags. Refined results for various special cases can be found in [2635, 2662].

10.2.5 Applications of LFSR sequences

10.2.52 Remark LFSR sequences in Fq have numerous applications. In this subsection, we mention
some typical applications. We start with an application to combinatorics.

10.2.53 Definition An (h, k) de Bruijn sequence is a finite sequence d0, d1, . . . , dN−1 with
N = hk terms from a nonempty finite set of h elements such that the k-tuples
(dn, dn+1, . . . , dn+k−1), n = 0, 1, . . . , N − 1, with subscripts considered modulo N are
all different.

10.2.54 Remark Let s0, s1, . . . be an impulse response sequence of order k (see Example 10.2.12)
which is also a maximal period sequence in Fq with minimal polynomial of degree k. Then
0, s0, s1, . . . , sqk−2 is a (q, k) de Bruijn sequence. This follows immediately from Theorem
10.2.39.

10.2.55 Remark Any periodic sequence σ = (sn) of elements of Fq, say with period r, satisfies the
linear recurrence relation sn+r = sn for n = 0, 1, . . . and is thus an LFSR sequence in Fq.
The linear complexity (or the linear span) of σ is defined to be the degree of the minimal
polynomial of σ. The linear complexity is an important complexity measure in the theory
of stream ciphers in cryptology. For details on the linear complexity, the reader is referred
to Section 10.4.

10.2.56 Remark There is a family of cryptosystems which are based on LFSR sequences in Fq and
the operation of decimation (see Definition 10.2.23). These cryptosystems were introduced
in [2241] and are FSR cryptosystems.

10.2.57 Remark LFSR sequences in Fq can be used for the encoding of cyclic codes. We refer to
Section 8.7 in the book of Peterson and Weldon [2390] for an account of this application.
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This connection between LFSR sequences and cyclic codes, when combined with results of
the type stated in Theorem 10.2.45, yields information on the weight distribution of cyclic
codes [2232].

10.2.58 Remark Maximal period sequences in finite prime fields are used in methods for generating
uniform pseudorandom numbers in the interval [0, 1]. Well-known methods of this type are
the digital multistep method and the generalized feedback shift register (GFSR) method.
We refer to Chapter 9 in the book [2248] for a detailed discussion of these methods.

10.2.59 Remark LFSR sequences in Fq have important applications in digital communication sys-
tems. A celebrated example is code division multiple access (CDMA) in wireless communi-
cation. The book of Viterbi [2880] is the standard reference for CDMA.

See Also

§10.3 For applications to correlation of sequences.
§10.4 For connections with linear complexity and cryptology.

References Cited: [231, 939, 1063, 1294, 1300, 1938, 2011, 2231, 2232, 2233, 2237, 2241,
2248, 2249, 2260, 2390, 2475, 2579, 2635, 2662, 2880, 3070, 3072]

10.3 Correlation and autocorrelation of sequences

Tor Helleseth, University of Bergen

10.3.1 Basic definitions

10.3.1 Definition Let {u(t)} and {v(t)} be two complex-valued sequences of period n. The
periodic correlation of {u(t)} and {v(t)} at shift τ is the inner product

θu,v(τ) =
n−1∑
t=0

u(t+ τ)v(t), 0 ≤ τ < n,

where a denotes the complex conjugation of a and t + τ is calculated modulo n. If the
sequences {u(t)} and {v(t)} are the same, the correlation θu,u(τ) is denoted by θu(τ)
and is the autocorrelation. When they are distinct θu,v(τ) is the crosscorrelation.

10.3.2 Remark Sequences with good correlation properties have numerous applications in commu-
nication systems and lead to many challenging problems in finite fields. The main problems
from an application point of view are to find single sequences with low autocorrelation
for all nonzero shifts and families of sequences where the maximum nontrivial auto- and
crosscorrelation values between any two sequences in the family is low. For a more detailed
survey on the design and analysis of sequences with low correlation the reader is referred to
[1475]. Other related references are [1215, 1303, 1476, 2526, 2673] and Chapter V (Section
7) in [706].
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10.3.3 Remark The crosscorrelation between two sequences {a(t)} and {b(t)} that take on values
in Zq = {0, 1, . . . , q − 1} is defined using Definition 10.3.1 where u(t) = ωa(t), v(t) = ωb(t)

and ω is a complex q-th root of unity, i.e.,

θa,b(τ) =
n−1∑
t=0

ωa(t+τ)−b(t), 0 ≤ τ < n.

10.3.2 Autocorrelation of sequences

10.3.4 Definition A sequence {s(t)} has ideal autocorrelation if θs(τ) = 0 for all τ 6≡ 0 (mod n).

10.3.5 Remark Sequences with ideal autocorrelation do not always exist so a sequence has optimal
autocorrelation if the maximal value of its autocorrelation is as small as it can be for a
sequence of the given period and symbol alphabet. Many optimal sequences have constant
autocorrelation of −1 for all out-of-phase shifts, i.e., when τ 6≡ 0 (mod n).

10.3.6 Definition A q-ary maximal-length linear sequence {s(t)} (or m-sequence) is a sequence of
elements with symbols from Fq of period qm − 1 generated from a nonzero initial state
(s(0), s(1), . . . , s(m− 1)) and a linear recursion of degree m given by

m∑
i=0

fis(t+ i) = 0,

where the characteristic polynomial of the recursion, defined by f(x) =
∑m
i=0 fix

i, is a
primitive polynomial in Fq[x] of degree m.

10.3.7 Theorem [1939, Theorem 8.24] An m-sequence, after a suitable cyclic shift, can be described
using the trace function from F = Fqm to K = Fq as

s(t) = TrF/K(αt),

where α is a zero of the primitive characteristic polynomial of the m-sequence.

10.3.8 Remark Maximal-length linear sequences are balanced (with each nonzero element occur-
ring qm−1 times and 0 occurring qm−1−1 times). Furthermore, for any τ 6= 0 (mod qm−1)
there is a δ such that s(t + τ) − s(t) = s(t + δ). In combination with Remark 10.3.3 this
leads to the following well-known theorem.

10.3.9 Theorem Let q be a prime. The autocorrelation of the q-ary m-sequence {s(t)} is two-
valued,

θs(τ) =

{
qm − 1 if τ = 0 (mod qm − 1),
−1 if τ 6= 0 (mod qm − 1).

10.3.10 Construction (GMW sequences) [1324, 2555] Let k,m be integers with k | m, k ≥ 1 and
let q be a prime power. Let also gcd(r, qk − 1) = 1, 1 ≤ r ≤ qk − 2. Let F = Fqm , M = Fqk ,
and K = Fq. Let α be a primitive element of F and c ∈ F . A GMW sequence of period
qm − 1 is defined by

s(t) = TrM/K

((
TrF/M

(
cαt
))r)

.

10.3.11 Theorem [2555] A GMW sequence is balanced and, if q is a prime, has a two-valued
autocorrelation with value -1 for all out-of-phase shifts.
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10.3.12 Remark There is a close connection between a balanced binary sequence {s(t)} of period
2m − 1 with autocorrelation −1 for all shifts τ 6= 0 (mod 2m − 1) and difference sets with
Singer parameters (2m−1, 2m−1−1, 2m−2−1). The connection is that {s(t)} gives a Singer
difference set (mod 2m − 1) defined by D = {t | s(t) = 0} (see Section 14.6).

10.3.13 Theorem [864] Let 1 ≤ k < m
2 and gcd(k,m) = 1 and let α be a primitive element in F2m .

Define the subset of F2m by

Uk =
{

(x+ 1)22k−2k+1 + x22k−2k+1 + 1 | x ∈ F2m

}
.

The binary sequence defined by sk(t) = 1 if αt ∈ F2m \ Uk and sk(t) = 0 otherwise, is
balanced with 2m−1 − 1 zeros and 2m−1 ones, and has two-valued autocorrelation with
out-of-phase correlation value −1.

10.3.14 Construction (Legendre sequence) The Legendre sequence is a binary sequence {s(t)} of a
prime period p, and defined by

s(t) =

{
1 if t = 0 or t is a nonsquare (mod p),
0 otherwise.

10.3.15 Theorem [2388] If p ≡ 3 (mod 4) then the Legendre sequence has a two-valued autocor-
relation with values θs(0) = p and θs(τ) = −1 for τ 6= 0 (mod p). If p ≡ 1 (mod 4) the
autocorrelation is inferior and takes on values 1 and −3 when τ 6= 0 (mod p) in addition to
θs(0) = p.

10.3.16 Construction (Binary Sidelnikov sequences) Let α be a primitive element in Fpm . The
binary Sidelnikov sequence has period pm − 1 and is defined by

s(t) =

{
1 if αt + 1 is a nonsquare in Fpm ,
0 otherwise.

10.3.17 Theorem [2659] Binary Sidelnikov sequences are balanced with three-valued optimal au-
tocorrelation with out-of-phase values 0 or −4 when n ≡ 0 (mod 4) and 2 and −2 when
n ≡ 2 (mod 4).

10.3.18 Theorem [1475] Let h be a function from Zq to Zq. The sequence {h(t)} of period q with
symbols from Zq has ideal autocorrelation if and only if h is a bent function.

10.3.19 Remark Information on bent functions can be found in Section 9.3.

10.3.3 Sequence families with low correlation

10.3.20 Remark In code-division multiple-access (CDMA) systems it is important to find large
families of sequences where the (nontrivial) auto- and crosscorrelation between all pairs of
sequences in the family are low.

10.3.21 Definition Let F = {{si(t)} | i = 1, 2, . . . ,M} be a family of M sequences of period n with
symbols from the alphabet Zq = {0, 1, . . . , q−1}. Let θi,j(τ) denote the crosscorrelation
between the sequences {si(t)} and {sj(t)} at shift τ . The parameters of family F are
(n,M, θmax) where

θmax = max{|θi,j(τ)| : either i 6= j or τ 6= 0}.
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10.3.22 Remark There are three well-known bounds on θmax for a family of sequences with given
period n and family size M . These bounds are due to Welch [2964], and Sidelnikov and
Levenshtein [1475]. The Welch and Sidelnikov bounds are based on bounds on the inner
products between complex vectors. In the Welch (resp. Sidelnikov) bound the sequences are
considered as complex vectors of norm

√
n (resp. complex q-th roots of unity).

10.3.23 Theorem (The Welch bound) Let k ≥ 1 be an integer and F a family of M cyclically
distinct sequences of period n. Then

(θmax)2k ≥ 1

Mn− 1

(
Mn2k+1(
k+n−1
n−1

) − n2k

)
.

10.3.24 Corollary (The Welch bound for k = 1)

θmax ≥ n
√

M − 1

Mn− 1
.

10.3.25 Remark For even moderate values of M this implies that θmax ≥
√
n.

10.3.26 Theorem (The Sidelnikov bound)

1. In the case q = 2, then

(θmax)2 > (2k + 1)(n− k) +
k(k + 1)

2
− 2kn2k+1

M(2k)!
(
n
k

) , 0 ≤ k < 2n

5
.

2. In the case q > 2, then

(θmax)2 >
k + 1

2
(2n− k)− 2kn2k+1

M(k!)2
(

2n
k

) , k ≥ 0.

10.3.27 Remark The crosscorrelation between two m-sequences of the same period and with sym-
bols from K = Fp, p prime, is equivalent to calculating the following exponential sum for
all nonzero c ∈ F = Fpm ,

θa,b(τ) = −1 +
∑
x∈F

ωTrF/K(cx−xd),

where two zeros α and β of the two characteristic polynomials are related by β = αd

where gcd(d, pm − 1) = 1 and c = ατ . General results and open problems can be found in
[1467, 1475].

10.3.28 Remark Many binary families of sequences with excellent correlation properties are con-
structed from m-sequences. The most well-known is the family of Gold sequences.

10.3.29 Construction (Gold sequences) Let m be odd, d = 2k + 1 and gcd(k,m) = 1. Let {s(t)}
be an m-sequence of period n = 2m − 1. The family of Gold sequences is defined by

G = {s(t)} ∪ {s(dt)} ∪ {{s(t+ τ) + s(dt)} | 0 ≤ τ ≤ n− 1}.

10.3.30 Theorem [1295] The parameters of the Gold family are n = 2m − 1, M = 2m + 1, and

θmax = 2
m+1

2 + 1.

10.3.31 Remark [2660] The Gold sequence family is optimal with respect to the Sidelnikov bound
and has the smallest possible θmax for the given period, alphabet, and family size.
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10.3.32 Construction (The small family of Kasami sequences) Let m = 2k, k ≥ 2, and α be a
primitive element of F = F2m . Let also M = F2k , K = F2, and

sa(t) = TrF/K(αt) + TrM/K

(
aα(2k+1)t

)
where a ∈M . The small family of Kasami sequences is

K = {{sa(t)} | a ∈M}.

10.3.33 Theorem [1688] The parameters of the small Kasami family are n = 2m − 1, M = 2k, and
θmax = 2k + 1.

10.3.34 Remark [1475] The small Kasami family is optimal with respect to the Welch bound and
has the smallest possible θmax for the given period, alphabet, and family size.

10.3.35 Construction (No sequences) Let m = 2k, k ≥ 2, and α be a primitive element of F = F2m .
Let also 1 ≤ r ≤ 2k − 1, r 6= 2i for any i and gcd(r, 2k − 1) = 1. Let M = F2k , K = F2, and
define

sa(t) = TrM/K

((
TrF/M

(
αt + aα(2k+1)t

))r)
where a ∈ F . The No sequence family is defined by

N = {{sa(t)} | a ∈ F}.

10.3.36 Theorem [2295] The parameters of the No sequence family are the same as for the small
Kasami family. No sequences have higher linear complexity than the Kasami sequences.

10.3.37 Theorem [2661] (Sidelnikov sequence family) Let p be a prime, 0 < d < p and α be an
element of order pm − 1. Let also F = Fpm and K = Fp. Let {s(t)} be a sequence over Fp
of the form

s(t) = TrF/K

(
d∑
k=1

akα
kt

)
,

where ak ∈ F for 1 ≤ k ≤ d. The parameters of the Sidelnikov sequence family are
n = pm − 1, M ≥ pm(d−1) and θmax ≤ (d− 1)p

m
2 + 1.

10.3.38 Remark The condition on d can be relaxed but leads to a more complicated bound on the
parameters. The main idea is that θmax is bounded by the Carlitz-Uchiyama bound [550]
by the maximal degree of the polynomials involved in the correlation computations.

10.3.4 Quaternary sequences

10.3.39 Remark Families of sequences with symbols from Z4 can have correlation properties that
are superior to binary sequences. Family A in Construction 10.3.42 is an important example.

10.3.40 Definition (Lifting of f(x)) The lifting of a binary polynomial f(x) is the quaternary
polynomial g(x) =

∑m
i=0 gix

i where g(x2) ≡ (−1)mf(x)f(−x) (mod 4).

10.3.41 Example The lifting of the primitive binary polynomial f(x) = x3 + x + 1 is g(x) ≡
x3 + 2x2 + x+ 3 (mod 4) since g(x2) = (−1)3f(x)f(−x) ≡ x6 + 2x4 + x2 + 3 (mod 4).

10.3.42 Construction (Family A) Let g(x) be a lifting of a binary primitive polynomial of degree m.
The recursion

∑m
i=0 gis(t+ i) ≡ 0 (mod 4) generates 4m − 1 quaternary nonzero sequences

corresponding to all nonzero initial states (s(0), s(1), . . . , s(m − 1)). These sequences are
known to have period 2m−1. Family A is constructed by selecting 2m+1 cyclically distinct
sequences from this set.
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10.3.43 Theorem [383, 2692] Family A has parameters n = 2m−1, M = 2m+1 and θmax ≤ 2
m
2 +1.

10.3.44 Remark Compared with the family of binary Gold sequences, family A has the same period
n = 2m − 1 and family size M = 2m + 1 but θmax is a factor of

√
2 lower than for the Gold

sequence family.

10.3.45 Definition Let s = a+ 2b ∈ Z4 where a, b ∈ Z2. The most significant bit map π is defined
by π(s) = b.

10.3.46 Remark Any quaternary sequence {s(t)} of odd period n defines a quaternary sequence
{(−1)ts(t)} of period 2n. Thus a binary sequence {b(t)} of period 2n is obtained by b(t) =
π((−1)ts(t)).

10.3.47 Construction (Family of binary Kerdock sequences) Let g(x) be the lifting of a primitive
binary polynomial of odd degree m and define h(x) = −g(−x). The recursion with char-
acteristic polynomial h(x) is applied to all initial states that are nonzero modulo 2. This
generates 4m − 2m quaternary sequences of period 2(2m − 1). Selecting cyclically distinct
sequences from this set and using the most significant bit map π to these sequences leads
to the Kerdock family K of 2m−1 binary sequences of period 2(2m − 1).

10.3.48 Theorem [1475] The parameters of family K are n = 2(2m − 1),M = 2m−1 and θmax ≤
2
m+1

2 + 2.

10.3.49 Remark The sequence family K is superior to the small Kasami set. The size of family K
can be increased by a factor of 2 without increasing θmax. For further details see [1475].

10.3.5 Other correlation measures

10.3.50 Definition The aperiodic correlation of two complex-valued sequences {u(t)} and {v(t)}
for t = 0, 1, · · · , n− 1 is defined by

ρu,v(τ) =

min{n−1,n−1−τ}∑
t=max{0,−τ}

u(t+ τ)v(t), −(n− 1) ≤ τ ≤ n− 1.

10.3.51 Remark If {s(t)} is a binary {+1,−1} sequence then ρs,s(τ) = ρs.s(−τ) and the aperiodic
autocorrelation is determined by the values

ρs(τ) =
n−1−τ∑
t=0

s(t+ τ)s(t), 0 ≤ τ ≤ n− 1.

10.3.52 Definition A Barker sequence is a binary {−1,+1} sequence of length n if the aperiodic
values ρs(τ) satisfy |ρs(τ)| ≤ 1 for all τ , 1 ≤ τ ≤ n− 1.

10.3.53 Remark Barker sequences are only known for the following lengths n = 2, 3, 4, 5, 7, 11, 13.
For example the sequence (+1 + 1 + 1 + 1 + 1 − 1 − 1 + 1 + 1 − 1 + 1 − 1 + 1) of length
n = 13 is the longest known Barker sequence; see also Section 17.3.

10.3.54 Remark It has been shown by Turyn and Storer [2828] that there are no Barker sequences
of odd length n > 13 and if they exist then n = 0 (mod 4). There is an overwhelming
evidence that no Barker sequence of length n > 13 exists.
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10.3.55 Definition The merit factor of a binary {−1,+1} sequence {s(t)} of length n is defined
by

F =
n2

2
∑n−1
τ=1 ρ

2
s(τ).

10.3.56 Remark The highest known merit factor for a sequence is F = 14.08 coming from a Barker
sequence of length 13. For a long time the largest proven asymptotical value of the merit
factor for a family of arbitrarily long sequences was 6 [1523]. In [352] and [1806] new con-
structions were presented of families of sequences with asymptotic merit factor believed to
be greater than 6.34. Recently, this claim has been proved [1605].

10.3.57 Remark Low correlation zone sequences (LCZ) are designed with small auto- and crosscor-
relation values for small values of their relative time shifts. The parameters of a family of
LCZ sequences are the period n of the sequences, the number M of sequences, the length
L of the low correlation zone, and the upper bound δ on the correlation value in the low
correlation zone. For further details see [1215].

10.3.58 Definition A family of low correlation zone sequences is defined by the parameters
(n,M,L, δ), where

|θi,j(τ)| ≤ δ when 0 ≤ |τ | < L, i 6= j and for 1 ≤ |τ | < L when i = j.

10.3.59 Theorem [2778] For an (n,M,L, δ) LCZ sequence family it holds that

ML− 1 ≤ n− 1

1− δ2

n

.

10.3.60 Definition The periodic Hamming correlation between a pair of binary sequences {s1(t)}
and {s2(t)} of period n is the integer

θ1,2(τ) =

n−1∑
t=0

s1(t+ τ)s2(t), 0 ≤ τ < n.

10.3.61 Remark The periodic Hamming correlation is important in evaluating optical communica-
tion systems where 0s and 1s indicate presence or absence of pulses of transmitted light.

10.3.62 Definition An (n,w, λ) optical orthogonal code (OOC) is a family

F = {{si(t)} | i = 1, 2, . . . ,M}

of M binary sequences of period n and constant Hamming weight w where 1 ≤ w ≤ n−1
and θi,j(τ) ≤ λ when either i 6= j or τ 6= 0.

10.3.63 Remark The close relations between (n,w, λ) OOCs and constant weight codes provides
good bounds on OOC from known bounds on constant weight codes. For further information
see [1475].

10.3.64 Remark Other correlation measures include the partial-period correlation between two very
long sequences where the correlation is calculated over a partial period. In practice, there
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is also some interest in the mean-square correlation of a sequence family rather than in
θmax. For the evaluation of these correlation measures coding theory sometimes plays an
important role. For more information the reader is referred to [1475].

See Also
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10.4 Linear complexity of sequences and multisequences

Wilfried Meidl, Sabanci University

Arne Winterhof, Austrian Academy of Sciences

10.4.1 Linear complexity measures

10.4.1 Definition A sequence S = s0, s1, . . . over the finite field Fq is called a (homogeneous)
linear recurring sequence over Fq with characteristic polynomial

f(x) =
l∑
i=0

cix
i ∈ Fq[x]

of degree l, if S satisfies the linear recurrence relation

l∑
i=0

cisn+i = 0 for n = 0, 1, . . . . (10.4.1)
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10.4.2 Definition The minimal polynomial of a linear recurring sequence S is the uniquely defined
monic polynomial M ∈ Fq[x] of smallest degree for which S is a linear recurring sequence
with characteristic polynomial M . The linear complexity L(S) of S is the degree of the
minimal polynomial M .

10.4.3 Remark Without loss of generality one can assume that f is monic, i.e., cl = 1. A sequence
S over Fq is a linear recurring sequence if and only if S is ultimately periodic, if c0 in (10.4.1)
is nonzero then S is purely periodic, see [1939, Chapter 8]. Consequently Definition 10.4.1
is only meaningful for (ultimately) periodic sequences. Using the notation of [1134, 2064],

we let M(1)
q (f) be the set of sequences over Fq with characteristic polynomial f . The set

of sequences with a fixed period N is then M(1)
q (f) with f(x) = xN − 1. The minimal

polynomial M of a sequence S ∈ M(1)
q (f) is always a divisor of f . For an N -periodic

sequence S we have L(S) ≤ N ; see Section 10.2.

10.4.4 Remark The linear complexity of a sequence S can alternatively be defined as the length
of the shortest linear recurrence relation satisfied by S. In engineering terms, L(S) is 0 if
S is the zero sequence and otherwise it is the length of the shortest linear feedback shift
register (Section 10.2) that can generate S [1631, 1939, 2502, 2503].

10.4.5 Definition For n ≥ 1 the n-th linear complexity L(S, n) of a sequence S over Fq is the
length L of a shortest linear recurrence relation

sj+L = cL−1sj+L−1 + · · ·+ c0sj , 0 ≤ j ≤ n− L− 1,

over Fq satisfied by the first n terms of the sequence. The polynomial
∑L
i=0 cix

i ∈ Fq[x]
is an n-th minimal polynomial of S. The linear complexity L(S) of a periodic sequence
can then be defined by

L(S) := sup
n≥1

L(S, n).

10.4.6 Remark Again one may assume that the n-th minimal polynomial is monic. Then it is
unique whenever L ≤ n/2. Definition 10.4.5 is also applicable for finite sequences, i.e.,
strings of elements of Fq of length n.

10.4.7 Definition For an infinite sequence S, the non-decreasing integer sequence
L(S, 1), L(S, 2), . . . is the linear complexity profile of S.

10.4.8 Remark Linear complexity and linear complexity profile of a given sequence (as well as the
linear recurrence defining it) can be determined by using the Berlekamp-Massey algorithm;
see Section 15.1 or [1631, Section 6.7], and [2011]. The algorithm is efficient for sequences
with low linear complexity and hence such sequences can easily be predicted.

10.4.9 Remark A sequence used as a keystream in stream ciphers must consequently have a large
linear complexity, but also altering a few terms of the sequence should not cause a significant
decrease of the linear complexity. An introduction to the stability theory of stream ciphers
is the monograph [873]. For a general comprehensive survey on the theory of stream ciphers
we refer to [2502, 2503].
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10.4.10 Definition The k-error linear complexity Lk(S, n) of a sequence S of length n is defined
by

Lk(S, n) = min
T
L(T, n),

where the minimum is taken over all sequences T of length n with Hamming distance
d(T, S) from S at most k. For an N -periodic sequence S over Fq the k-error linear
complexity is defined by [2700]

Lk(S) = min
T
L(T ),

where the minimum is taken over all N -periodic sequences T over Fq for which the first
N terms differ in at most k positions from the corresponding terms of S.

10.4.11 Remark The concept of the k-error linear complexity is based on the sphere complexity
introduced in [873].

10.4.12 Remark Recent developments in stream ciphers point toward an increasing interest in word-
based or vectorized stream ciphers (see for example [784, 1445]), which requires the study
of multisequences.

10.4.13 Definition For an arbitrary positive integer m, an m-fold multisequence S = (S1, . . . , Sm)
over Fq (of finite or infinite length) is a string of m parallel sequences S1, . . . , Sm over
Fq (of finite or infinite length, respectively).

Let f1, . . . , fm ∈ Fq[x] be arbitrary monic polynomials with deg(fi) ≥ 1, 1 ≤ i ≤ m.
The set Mq(f1, . . . , fm) is defined to be the set of m-fold multisequences (S1, . . . , Sm)
over Fq such that for each 1 ≤ i ≤ m, Si is a linear recurring sequence with characteristic
polynomial fi.

10.4.14 Definition The joint minimal polynomial of an m-fold multisequence S ∈Mq(f1, . . . , fm)
is the (uniquely determined) monic polynomial M ∈ Fq[x] of smallest degree which is a
characteristic polynomial of Si for all 1 ≤ i ≤ m. The joint linear complexity of S is the
degree of the joint minimal polynomial M .

10.4.15 Remark The set of N -periodic m-fold multisequences is Mq(f1, . . . , fm) with f1 = · · · =

fm = xN − 1, alternatively denoted by M(m)
q (f) with f(x) = xN − 1. The joint linear

complexity of an m-fold multisequence can also be defined as the length of the shortest
linear recurrence relation the m parallel sequences satisfy simultaneously. The joint minimal
polynomial M of S ∈Mq(f1, . . . , fm) is always a divisor of lcm(f1, . . . , fm).

10.4.16 Definition For an integer n ≥ 1 the n-th joint linear complexity L(S, n) of an m-fold
multisequence S = (S1, . . . , Sm) is the length of the shortest linear recurrence relation
the first n terms of the m parallel sequences S1, . . . , Sm satisfy simultaneously. The joint
linear complexity profile of S is the non-decreasing integer sequence L(S, 1), L(S, 2), . . ..

10.4.17 Remark As the Fq-linear spaces Fmq and Fqm are isomorphic, an m-fold multisequence S
can also be identified with a single sequence S having its terms in the extension field Fqm . If

s
(i)
j denotes the j-th term of the i-th sequence Si, 1 ≤ i ≤ m, and {β1, . . . , βm} is a basis of

Fqm over Fq, then the j-th term of S is σj =
∑m
i=1 βis

(i)
j . The (n-th) joint linear complexity

of S coincides then with the Fq-linear complexity of S, which is the length of the shortest
linear recurrence relation with coefficients exclusively in Fq (the first n terms of) S satisfies
(see [759, pp. 83–85]).
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10.4.18 Definition We identify an m-fold multisequence S of length n (or period n) with an
m × n matrix and write S ∈ Fm×nq (S ∈ (Fm×nq )∞). For two m-fold multisequences
S = (S1, . . . , Sm),T = (T1, . . . , Tm) ∈ Fm×nq the term distance dT (S,T) between S and
T is the number of terms in the matrix for S that are different from the corresponding
terms in the matrix for T.

The column distance dC(S,T) between S and T is the number of columns in which
the matrices of S and T differ.

The individual distances vector for S,T is defined by dV (S,T) =
(dH(S1, T1), . . . , dH(Sm, Tm)), where dH denotes the Hamming distance.

10.4.19 Example For q = 2, m = 2, n = 5, and

S =

(
1 1 0 0 1
0 1 0 1 1

)
, T =

(
1 1 0 1 1
1 1 0 0 1

)
,

we have dT (S,T) = 3, dC(S,T) = 2 and dV (S,T) = (1, 2).

10.4.20 Definition For an integer k with 0 ≤ k ≤ mn, the (n-th) k-error joint linear complexity
Lk(S, n) of an m-fold multisequence S over Fq is defined by

Lk(S, n) = min
T∈Fm×nq ,dT (S,T)≤k

L(T, n).

For an integer 0 ≤ k ≤ n the (n-th) k-error Fq-linear complexity Lqk(S, n) of S is defined
by

Lqk(S, n) = min
T∈Fm×nq ,dC(S,T)≤k

L(T, n).

We define a partial order on Zm by k = (k1, . . . , km) ≤ k′ = (k′1, . . . , k
′
m) if ki ≤ k′i,

1 ≤ i ≤ m. For k = (k1, . . . , km) ∈ Zm such that 0 ≤ ki ≤ n for 1 ≤ i ≤ m, the (n-th)
k-error joint linear complexity Lk(S, n) of S is

Lk(S, n) = min
T∈Fm×nq ,dV (S,T)≤k

L(T, n),

i.e., the minimum is taken over all m-fold length n multisequences T = (T1, . . . , Tm)
over Fq with Hamming distances dH(Si, Ti) ≤ ki, 1 ≤ i ≤ m.
The definitions for periodic multisequences are analogous.

10.4.2 Analysis of the linear complexity

10.4.21 Proposition Let f ∈ Fq[x] be a nonconstant monic polynomial.

1. [1631, Theorem 6.1.2], [1939, Chapter 8] For a sequence S = s0, s1, . . . over Fq
consider the element

∑∞
i=0 six

i in the ring Fq[[x]] of formal power series over Fq.
Then S is a linear recurring sequence with characteristic polynomial f if and
only if

∑∞
i=0 six

i = g(x)/f∗(x) with g ∈ Fq[x], deg(g) < deg(f) and f∗(x) =
xdeg(f)f(1/x) is the reciprocal polynomial of f(x).

2. [2240, Lemma 1] For a sequence S = s1, s2, . . . over Fq consider the element∑∞
i=1 six

−i in the field Fq((x−1)) of formal Laurent series in x−1 over Fq. Then
S is a linear recurring sequence with characteristic polynomial f if and only if∑∞
i=1 six

−i = g(x)/f(x) with g ∈ Fq[x] and deg(g) < deg(f).
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10.4.22 Remark For more information and discussion of linear recurring sequences, we refer to
Section 10.2.

10.4.23 Remark The reciprocal of a characteristic polynomial of a sequence S is also called a
feedback polynomial of S.

10.4.24 Remark Proposition 10.4.21 implies a one-to-one correspondence between sequences in

M(1)
q (f) and rational functions g/f with deg(g) < deg(f) (when the approach via Laurent

series is used), and more generally between m-fold multisequences in Mq(f1, . . . , fm) and
m-tuples of rational functions (g1/f1, . . . , gm/fm) with deg(gi) < deg(fi), 1 ≤ i ≤ m. We
note that in Proposition 10.4.21 Part 2 it is more convenient to start the indices for the
sequence elements si with i = 1.

10.4.25 Proposition [1135] Let (g1/f1, . . . , gm/fm) be the m-tuple of rational functions corre-
sponding to S ∈ Mq(f1, . . . , fm). The joint minimal polynomial of S is the unique monic
polynomial M ∈ Fq[x] such that g1

f1
= h1

M , . . . , gmfm = hm
M for some (unique) polynomials

h1, . . . , hm ∈ Fq[x] with gcd(M,h1, . . . , hm) = 1.

10.4.26 Remark For an N -periodic sequence S = s0, s1, . . ., let SN (x) be the polynomial SN (x) =
s0 + s1x + · · · + sN−1x

N−1 of degree at most N − 1. Then
∑∞
i=0 six

i = SN (x)/(1 − xN ),
which gives rise to the following theorem.

10.4.27 Theorem [759, Lemma 8.2.1], [2061] The joint linear complexity of an N -periodic m-fold
multisequence S = (S1, . . . , Sm) is given by

L(S) = N − deg(gcd(xN − 1, SN1 (x), . . . , SNm(x))).

10.4.28 Remark Theorem 10.4.27 implies the famous Blahut theorem [303, 2503], [1631, Theorem
6.8.2] for the linear complexity of N -periodic sequences over Fq, gcd(N, q) = 1, which we
state in 3 commonly used different versions.

10.4.29 Theorem (Blahut’s Theorem) Let S be an N -periodic sequence over Fq, let gcd(N, q) = 1,
and let α be a primitive N -th root of unity in an extension field of Fq. Then

L(S) = N − |{j : SN (αj) = 0, 0 ≤ j ≤ N − 1}|.

10.4.30 Theorem (Blahut’s Theorem) Let gcd(N, q) = 1, α be a primitive N -th root of unity in an
extension field of Fq and let A = (aij) be the N ×N Vandermonde matrix with aij = αij ,
0 ≤ i, j ≤ N − 1. Let s = (s0, s1, . . . , sN−1) be the vector corresponding to one period of an
N -periodic sequence S over Fq. The linear complexity L(S) of S is the Hamming weight of
the vector AsT .

10.4.31 Remark The vector a = AsT is called the discrete Fourier transform of s. Several gener-
alizations of the discrete Fourier transform have been suggested in the literature that can
be used to determine the linear complexity of periodic sequences and multisequences with
period not relatively prime to the characteristic of the field. We refer to [297, 2013, 2061].

10.4.32 Theorem (Blahut’s Theorem) Let S = s0, s1, . . . be a sequence over Fq with period N
dividing q−1, and let g ∈ Fq[x] be the unique polynomial of degree at most N−1 satisfying
g(αj) = sj , j = 0, 1, . . ., where α is a fixed element of Fq of order N . Then L(S) = w(g),
where w(g) denotes the weight of g, i.e., the number of nonzero coefficients of g.

10.4.33 Theorem [298, Theorem 8] Let f be a polynomial over a prime field Fp with degree of f at
most p− 1 and let S = s0, s1, . . . be the p-periodic sequence over Fp defined by sj = f(j),
j = 0, 1, . . .. Then L(S) = deg(f) + 1.
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10.4.34 Remark Theorem 8 in [298] more generally describes the linear complexity of pr-periodic
sequences over Fp. A generalization of Theorem 10.4.33 to arbitrary finite fields is given in
Theorem 1 of [2066].

10.4.35 Remark The linear complexity of an N -periodic sequence over Fq can be determined by the
Berlekamp-Massey algorithm in O(N2) elementary operations. For some classes of period
lengths, faster algorithms (of complexity O(N)) are known, the earliest being the Games-
Chan algorithm [1169] for binary sequences with period N = 2v. A collection of algorithms
for several period lengths can be found in [3013] (see also [2958, 2959, 2960, 3014]). Some
techniques to establish fast algorithms for arbitrary periods are presented in [85, 599, 600,
2057]. Stamp and Martin [2700] established a fast algorithm for the k-error linear complexity
for binary sequences with periodN = 2v. Generalizations are presented in [1642, 1864, 2520],
and for odd characteristic in [2056, 3013].

10.4.36 Remark In contrast to the faster algorithms introduced in the literature for certain period
lengths, the Berlekamp-Massey algorithm also can determine the linear complexity profile
of a (single) sequence. As an application, the general behavior of linear complexity profiles
can be analyzed.

10.4.37 Theorem [1631, Theorem 6.7.4],[2502] Let S = s1, s2, . . . be a sequence over Fq. If
L(S, n) > n/2 then L(S, n + 1) = L(S, n). If L(S, n) ≤ n/2, then L(S, n + 1) = L(S, n)
for exactly one choice of sn+1 ∈ Fq and L(S, n+1) = n+1−L(S, n) for the remaining q−1
choices of sn+1 ∈ Fq.

10.4.38 Remark The linear complexity profile is uniquely described by the increment sequence
of S, i.e., by the sequence of the positive integers among L(S, 1), L(S, 2) − L(S, 1),
L(S, 3)− L(S, 2), . . . [2246, 2935, 2937]. Another tool for the analysis of the linear com-
plexity profile arises from a connection to the continued fraction expansion of Laurent
series [2239, 2240].

10.4.39 Theorem [2240] Let S = s1, s2, . . . be a sequence over Fq, let S(x) =
∑∞
i=1 six

−i ∈
Fq((x−1)) be the corresponding formal Laurent series, and let A1, A2, . . . be the polyno-
mials in the continued fraction expansion of S(x), i.e., S(x) = 1/(A1 + 1/(A2 + · · · )) where
Aj ∈ Fq[x], deg(Aj) ≥ 1, j ≥ 1. Let Q−1 = 0, Q0 = 1 and Qj = AjQj−1 +Qj−2 for j ≥ 1.
Then L(S, n) = deg(Qj) where j is determined by

deg(Qj−1) + deg(Qj) ≤ n < deg(Qj) + deg(Qj+1).

The n-th minimal polynomials are all (monic) polynomials of the form M = aQj + gQj−1,
a ∈ F∗q , g ∈ Fq[x] with deg(g) ≤ 2 deg(Qj)− n− 1. In particular, the increment sequence of
S is deg(A1),deg(A2), . . ..

10.4.40 Remark Generalizations of the Berlekamp-Massey algorithm and of continued fraction anal-
ysis for the linear complexity of multisequences can be found in [127, 763, 764, 765, 766,
873, 1053, 1671, 2516, 2517, 2944].

10.4.3 Average behavior of the linear complexity

10.4.41 Remark We use the notation N
(m)
n (L) and E

(m)
n for the number of m-fold multisequences

over Fq with length n and joint linear complexity L and the expected value for the joint
linear complexity of a random m-fold multisequence over Fq of length n.

10.4.42 Theorem [1378, 2502, 2685] For 1 ≤ L ≤ n

N (1)
n (L) = (q − 1)qmin(2L−1,2n−2L).
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The expected value for L(S, n) for a random sequence S over Fq is

E(1)
n =

1

qn

∑
S∈Fnq

L(S, n) =

{
n
2 + q

(q+1)2 − q−n n(q+1)+q
(q+1)2 for even n,

n
2 + q2+1

2(q+1)2 − q−n n(q+1)+q
(q+1)2 for odd n.

10.4.43 Remark Theorem 10.4.42 was obtained by an analysis of the Berlekamp-Massey algorithm.
Rueppel and Smeets [2502, 2685] provide closed formulas for the variance, showing that the
variance is small. A detailed analysis of the linear complexity profile of sequences over Fq is
given by Niederreiter in the series of papers [2235, 2239, 2240, 2243, 2246]. As a main tool,
the continued fraction expansion of formal Laurent series is used. For a more elementary
combinatorial approach, see [2242].

10.4.44 Theorem [2239] The linear complexity profile of a random sequence follows closely but
irregularly the n/2-line, deviations from n/2 of the order of magnitude log n must appear
for infinitely many n.

10.4.45 Remark The asymptotic behavior of the joint linear complexity is investigated by Niederre-
iter and Wang in the series of papers [2275, 2276, 2933] using a sophisticated multisequence
linear feedback shift-register synthesis algorithm based on a lattice basis reduction algorithm
in function fields [2549, 2928, 2934].

10.4.46 Theorem [2253, 2275, 2276]

N (m)
n (L) = (qm − 1)q(m+1)L−m, 1 ≤ L ≤ n/2,

N (m)
n (L) ≤ C(q,m)Lmq2mn−(m+1)L, 1 ≤ L ≤ n,

where C(q,m) is a constant only depending on q and m. We have N
(m)
n (L) ≤ q(m+1)L.

10.4.47 Remark In [2933] a method to determine N
(m)
n (L) is presented and a closed formula for

N
(2)
n (L) is given. A closed formula for N

(3)
n (L) is presented in [2276]. In [2275, 2276] it is

shown that the joint linear complexity profile of a random m-fold multisequence follows
closely the mn/(m+ 1)-line, generalizing Theorem 10.4.44 for m = 1.

10.4.48 Theorem [2275, 2276]

E(m)
n =

mn

m+ 1
+ o(n) as n→∞.

For m = 2, 3 [1059, 2276, 2933]

E(m)
n =

mn

m+ 1
+O(1), as n→∞.

10.4.49 Remark Feng and Dai [1059] obtained their result with different methods, namely with
multi-dimensional continued fractions.

10.4.50 Conjecture [2276]

E(m)
n =

mn

m+ 1
+O(1) as n→∞.

10.4.51 Remark For a detailed survey on recent developments in the theory of the n-th joint linear
complexity of m-fold multisequences we refer to [2257].

10.4.52 Theorem [1134, 1136] For a monic polynomial f ∈ Fq[x] with deg(f) ≥ 1, let

f = re11 r
e2
2 · · · rekk
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be the canonical factorization of f into monic irreducible polynomials over Fq. For 1 ≤ i ≤ k,
let αi = qm deg(ri). Then for an arbitrary positive integer m the expected value E(m)(f) of

the joint linear complexity of a random m-fold multisequence from M(m)
q (f) is

E(m)(f) = deg(f)−
k∑
i=1

1− α−eii

αi − 1
deg(ri).

10.4.53 Remark In [1134, 1136] an explicit formula for the variance Var(m)(f) of the joint linear

complexity of random multisequences of M(m)
q (f) is given. In [1135, 1136] it is shown

how to obtain from Theorem 10.4.52 closed formulas for the more general case of m-fold
multisequences in Mq(f1, . . . , fm).

10.4.54 Remark Since for f(x) = xN − 1 the set M(m)(f) is the set of N -periodic sequences,
earlier formulas on expectation (and variance) of the (joint) linear complexity of periodic
(multi)sequences can be obtained as a corollary of Theorem 10.4.52: [2059, Theorem 3.2],
[2060, Theorem 1], [3025, Theorem 1] on E(1)(xN − 1), and [1137, Theorem 1], [2061,
Theorem 1] on E(m)(xN − 1) for arbitrary m.

10.4.55 Remark In [1137, 2061] lower bounds on the expected joint linear complexity for periodic
multisequences are presented, estimating the magnitude of the formula for E(m)(xN − 1)

in Theorem 10.4.52. In [1137] it is also noted that the variance Var(m)(xN − 1) is small,
showing that for random N -periodic multisequences over Fq the joint linear complexity is
close to N (the trivial upper bound), with a small variance.

10.4.56 Remark Lower bounds for the expected n-th k-error joint linear complexity, the expected n-
th k-error Fq-linear complexity and the expected n-th k-error joint linear complexity for an
integer vector k = (k1, . . . , km) for a random m-fold multisequence over Fq are established
in [2063]. These results generalize earlier bounds for the case m = 1 presented in [2058].

10.4.57 Remark For periodic sequences, lower bounds on the expected k-error linear complexity
have been established in [2059, 2060]. For periodic multisequences (with prime period N
different from the characteristic), lower bounds for the expected error linear complexity are
presented in [2063] for all 3 multisequence error linear complexity measures.

10.4.58 Remark In the papers [2062, 2254, 2273, 2274, 2866] the question is addressed if linear
complexity and k-error linear complexity can be large simultaneously. Among others, the
existence of N -periodic sequences attaining the upper bounds N and N − 1 for linear and
k-error linear complexity is shown for infinitely many period lengths (and a certain range
for k depending on the period length), and it is shown that for several classes of period
length a large number of N -periodic (multi)sequences with (joint) linear complexity N also
exhibits a large k-error linear complexity.

10.4.59 Remark In [3016] methods from function fields are used to construct periodic multise-
quences with large linear complexity and k-error linear complexity simultaneously for vari-
ous period lengths.

10.4.4 Some sequences with large n-th linear complexity

10.4.4.1 Explicit sequences

10.4.60 Definition For a, b ∈ Fp with a 6= 0 the explicit inversive congruential sequence
Z = z0, z1, . . . is

zj = (aj + b)p−2, j ≥ 0. (10.4.2)
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10.4.61 Theorem [2067] We have

L(Z, n) ≥

 (n− 1)/3 for 1 ≤ n ≤ (3p− 7)/2,
n− p+ 2 for (3p− 5)/2 ≤ n ≤ 2p− 3,
p− 1 for n ≥ 2p− 2.

10.4.62 Remark We note that jp−2 = j−1 for j ∈ F∗p. Since inversion is a fast operation this
sequence is, despite its high n-th linear complexity, still highly predictable.

10.4.63 Remark Analogous sequences of (10.4.2) over arbitrary finite fields Fq are studied in [2067].
Multisequences of this form are investigated in [2070]. Explicit inversive sequences and
multisequences can also be defined using the multiplicative structure of Fq.

10.4.64 Definition For m ≥ 1, αi, βi ∈ F∗q , 1 ≤ i ≤ m, and an element γ ∈ Fq of order N ,
the explicit inversive congruential sequence of period N , Z = (Z1, . . . , Zm), with Zi =

σ
(i)
0 , σ

(i)
1 , . . . is

σ
(i)
j = (αiγ

j + βi)
q−2, j ≥ 0. (10.4.3)

10.4.65 Remark Sequences of the form (10.4.3) are analyzed in [2069, 2070]. With an appropriate
choice of the parameters one can obtain (multi)sequences with perfect linear complexity
profile, i.e., L(Z, n) ≥ mn/(m+ 1).

10.4.66 Theorem [2070] Let m < (q− 1)/N and let C1, . . . , Cm be different cosets of the group 〈γ〉
generated by γ, such that none of them contains the element −1. For 1 ≤ i ≤ m choose
αi, βi such that αiβ

−1
i ∈ Ci, then

L(Z, n) ≥ min

{
mn

m+ 1
, N

}
, n ≥ 1.

10.4.67 Definition Given an element ϑ ∈ F∗q , the quadratic exponential sequence Q = q0, q1, . . . is

qj = ϑj
2

, j ≥ 0.

10.4.68 Theorem [1382] We have

L(Q,n) ≥ min {n,N}
2

, n ≥ 1.

10.4.69 Remark The period N of Q is at least half of the multiplicative order of ϑ.

10.4.4.2 Recursive nonlinear sequences

10.4.70 Definition Given a polynomial f ∈ Fp[x] of degree d ≥ 2, the nonlinear congruential
sequence U = u0, u1, . . . is defined by the recurrence relation

uj+1 = f(uj), j ≥ 0, (10.4.4)

with some initial value u0 ∈ Fp such that U is purely periodic with some period N ≤ p.
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10.4.71 Theorem [1382] Let U be as in (10.4.4), where f ∈ Fp[x] is of degree d ≥ 2, then

L(U, n) ≥ min {logd(n− blogd nc), logdN} , n ≥ 1.

10.4.72 Remark For some special classes of polynomials much better results are available, see [1359,
1382, 2642]. For instance, in case of the largest possible period N = p we have

L(U, n) ≥ min{n− p+ 1, p/d}, n ≥ 1.

10.4.73 Theorem [1382] The inversive (congruential) sequence Y = y0, y1, . . . defined by

yj+1 = ayp−2
j + b, j ≥ 0,

with a, b, y0 ∈ Fp, a 6= 0, has linear complexity profile

L(Y, n) ≥ min

{
n− 1

3
,
N − 1

2

}
, n ≥ 1.

10.4.74 Theorem [1359, 2642] The power sequence P = p0, p1, . . ., defined as

pj+1 = pej , j ≥ 0,

with some integer e ≥ 2 and initial value 0 6= p0 ∈ Fp satisfies

L(P, n) ≥ min

{
n2

4(p− 1)
,
N2

p− 1

}
, n ≥ 1.

10.4.75 Remark Two more classes of nonlinear sequences provide much better results than in the
general case, nonlinear sequences with Dickson polynomials [87] and Rédei functions [2072].
See Section 9.6 and [1936] for the definitions.

10.4.4.3 Legendre sequence and related bit sequences

10.4.76 Definition Let p > 2 be a prime. The Legendre sequence Λ = l0, l1, . . ., for j ≥ 0, is

lj =

{
1 if

(
j
p

)
= −1,

0 otherwise,

where
(
·
p

)
is the Legendre symbol.

10.4.77 Theorem [759, 2829] The linear complexity of the Legendre sequence is

L(Λ) =


(p− 1)/2 if p ≡ 1 (mod 8),
p if p ≡ 3 (mod 8),
p− 1 if p ≡ 5 (mod 8),
(p+ 1)/2 if p ≡ 7 (mod 8).

10.4.78 Theorem [2644, Theorem 9.2] The linear complexity profile of the Legendre sequence sat-
isfies

L(Λ, n) >
min{n, p}

1 + p1/2(1 + log p)
− 1, n ≥ 1.

10.4.79 Remark For similar sequences, that are defined by the use of the quadratic character of
arbitrary finite fields and the study of their linear complexity profiles, see [1786, 2065, 2994].
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10.4.80 Definition Let γ be a primitive element and η be the quadratic character of the finite field
Fq of odd characteristic. The Sidelnikov sequence σ = σ0, σ1, . . . for j ≥ 0, is

σj =

{
1 if η(γj + 1) = −1,
0 otherwise.

10.4.81 Remark In many cases one is able to determine the linear complexity L(σ) over F2 exactly,
see Meidl and Winterhof [2071]. For example, if (q − 1)/2 is an odd prime such that 2 is
a primitive root modulo (q − 1)/2, then σ attains the largest possible linear complexity
L(σ) = q − 1. Moreover we have the lower bound [2071]

L(σ, n)� min{n, q}
q1/2 log q

, n ≥ 1.

The k-error linear complexity of the Sidelnikov sequence seen as a sequence over Fp has
been estimated in [86, 641, 1198]. For results on similar sequences with composite modulus
see [392] and [759, Chapter 8.2].

10.4.4.4 Elliptic curve sequences

10.4.82 Definition Let p > 3 be a prime and E be an elliptic curve over Fp of the form

Y 2 = X3 + aX + b

with coefficients a, b ∈ Fp such that 4a3 +27b2 6= 0. For a given initial point W0 ∈ E(Fp),
a fixed point G ∈ E(Fp) of order N and a rational function f ∈ Fp(E) the elliptic curve
congruential sequence W = w0, w1, . . . (with respect to f) is

wj = f(Wj), j ≥ 0, where Wj = G⊕Wj−1 = jG⊕W0, j ≥ 1.

10.4.83 Remark Obviously, W is N -periodic.

10.4.84 Remark For example, choosing the function f(x, y) = x, the work of Hess and Shparlin-
ski [1493] gives the lower bound

L(W,n) ≥ min{n/3, N/2}, n ≥ 2.

10.4.5 Related measures

10.4.5.1 Kolmogorov complexity

10.4.85 Remark The Kolmogorov complexity is a central topic in algorithmic information theory.
The Kolmogorov complexity of a binary sequence is, roughly speaking, the length of the
shortest computer program that generates the sequence. The relationship between linear
complexity and Kolmogorov complexity was studied in [257, 2946]. The Kolmogorov com-
plexity is twice the linear complexity for almost all sequences over F2 of sufficiently (but only
moderately) large length. In contrast to the linear complexity the Kolmogorov complexity
is in general not computable and so of no practical significance.
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10.4.5.2 Lattice test

10.4.86 Definition Let S = s0, s1, . . . be a sequence over Fq, and for s ≥ 1 let V (S, s) be the
subspace of Fsq spanned by the vectors sj − s0, j = 1, 2, . . ., where

sj = (sj , sj+1, . . . , sj+s−1), j ≥ 0.

The sequence S passes the s-dimensional lattice test for some s ≥ 1, if V (S, s) = Fsq.
For given s ≥ 1 and n ≥ 2 we say that S passes the s-dimensional n-lattice test if
the subspace spanned by the vectors sj − s0, 1 ≤ j ≤ n − s, is Fsq. The largest s for
which S passes the s-dimensional n-lattice test is the lattice profile at n and is denoted
by S(S, n).

10.4.87 Theorem [914] We have either

S(S, n) = min{L(S, n), n+ 1− L(S, n)} or

S(S, n) = min{L(S, n), n+ 1− L(S, n)} − 1.

10.4.88 Remark The results of [913] on the expected value of the lattice profile show that a “ran-
dom” sequence should have S(S, n) close to min{n/2, N}.

10.4.5.3 Correlation measure of order k

10.4.89 Definition The correlation measure of order k of a binary sequence S is

Ck(S) = max
M,D

∣∣∣∣∣
M−1∑
n=0

(−1)sn+d1 · · · (−1)sn+dk

∣∣∣∣∣ , k ≥ 1,

where the maximum is taken over all D = (d1, d2, . . . , dk) with non-negative integers
d1 < d2 < · · · < dk and M such that M − 1 + dk ≤ T − 1. Obviously, C2(S) is bounded
by the maximal absolute value of the aperiodic autocorrelation of S.

10.4.90 Remark The correlation measure of order k was introduced by Mauduit and Sárközy in
[2037]. The linear complexity profile of a given N -periodic sequence can be estimated in
terms of its correlation measure and a lower bound on L(S, n) can be obtained whenever
an appropriate bound on maxCk(S) is known.

10.4.91 Theorem [393] We have

L(S, n) ≥ n− max
1≤k≤L(S,n)+1

Ck(S), 1 ≤ n ≤ N − 1.

10.4.5.4 FCSR and p-adic span

10.4.92 Remark In [1748] an alternative feedback shift register architecture was presented, feedback
with carry shift registers (FCSR). For binary sequences the procedure is as follows: Differ-
ently to linear recurring sequences the bits are added as integers (again following a linear
recurrence relation). The result is added to the content of a memory, which is a nonnegative
integer m, to obtain an integer σ. The parity bit σ (mod 2), of σ is then the next term of
the sequence, and the higher order bits bσ/2c are the new content of the memory.

FCSR-sequences share many properties with linear recurring sequences, but for their
analysis instead of arithmetics in finite fields, arithmetics in the 2-adic numbers is used - or
in the more general case of sequences modulo p in the p-adic numbers.
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An FCSR-equivalent to the linear complexity is the 2-adic span, respectively the p-
adic span of a sequence, which measures the size of the smallest FCSR that generates the
sequence.

Since their introduction, FCSR-sequences attracted a lot of attention. We refer to [129,
1330, 1331, 1749, 2774] and the references therein.

10.4.5.5 Discrepancy

10.4.93 Definition Let X = x0, x1, . . . be a sequence in the unit interval [0, 1). For 0 ≤ d1 < · · · <
dk < n we put

xj = xj(d1, . . . , dk) = (xj+d1 , . . . , xj+dk), 1 ≤ j ≤ n− dk.

The discrepancy of the vectors x1(d1, . . . , dk), . . . ,xn−dk(d1, . . . , dk) is

sup
I

∣∣∣∣A(I,x1, . . . ,xn−dk)

n− dk
− V (I)

∣∣∣∣ ,
where the supremum is taken over all subintervals of [0, 1)k, V (I) is the volume of I
and A(I,x1, . . . ,xn−dk) is the number of points xj , j = 1, . . . , n− dk, in the interval I.

10.4.94 Remark We can derive a binary sequence B = e0, e1, . . . from X by ej = 1 if 0 ≤ xj < 1/2
and ej = 0 otherwise.

10.4.95 Remark In [2036, Theorem 1] the correlation measure of order k of B is estimated in terms
of the above discrepancy of vectors derived from the sequence X. Hence, using the relation
between linear complexity profile and correlation measure of B we can obtain (weak) linear
complexity profile lower bounds for B from discrepancy upper bounds for X.

See Also

§6.3, §10.2, §17.3 For related measures.
§9.1, §9.3 For Boolean functions and nonlinearity.
§10.2 For LFSR.
§10.5, §17.1 For nonlinear recurrence sequences.
§12.2, §12.3, §16.4 For elliptic curves.
§15.1 For basics on coding theory and the Berlekamp-Massey algorithm.
§16.2 For stream ciphers.
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10.5 Algebraic dynamical systems over finite fields

Igor Shparlinski, Macquarie University

10.5.1 Introduction

10.5.1 Definition Let F1, . . . , Fm ∈ Fq(X1, . . . , Xm) be m rational functions in m variables over
the finite field Fq of q elements. The algebraic dynamical system (ADS) generated by
F = {F1, . . . , Fm} is the dynamical system formed by the iterations

F
(k)
i = Fi(F

(k−1)
1 , . . . , F (k−1)

m ), k = 1, 2, . . . , i = 1, . . . ,m,

where F
(0)
i = Xi.

10.5.2 Remark ADSs have proved to be exciting and challenging mathematical objects. They have
very interesting algebraic and number theoretic properties and also exhibit a very complex
behavior; see [91, 964, 1020, 1087, 1313, 1618, 1619, 2421, 2547, 2668] for the foundations of
the theory. This makes them an invaluable building block for various applications including
pseudorandom number generators (PRNGs), which are of crucial value in quasi-Monte Carlo
methods and cryptography; see [2271, 2648, 2814]. Recently very surprisingly links with
other natural sciences such as biology [1596, 1860, 2717] and physics [106, 154, 216, 222,
1348, 1498, 2464, 2870, 2871] have emerged.

10.5.2 Background and main definitions

10.5.3 Definition Given an initial vector u0 = (u0,1, . . . , u0,m) ∈ Fmq , the trajectory of an
ADS (see Definition 10.5.1) originating at this vector, is the sequence of vectors
un = (un,1, . . . , un,m) ∈ Fmp defined by the recurrence relation

un+1,i = Fi(un,1, . . . , un,m), n = 0, 1, . . . , i = 1, . . . ,m.

10.5.4 Remark Using the following vector notation

F(X1, . . . , Xm) = (F1(X1, . . . , Xm), . . . , Fm(X1, . . . , Xm)),

we have the recurrence relation

un+1 = F(un), n = 0, 1, . . . . (10.5.1)

In particular, for any n, k ≥ 0 and i = 1, . . . ,m we have

un+k,i = F
(k)
i (un) = F

(k)
i (un,1, . . . , un,m)

or

un+k = F(k)(un).

10.5.5 Remark If F1, . . . , Fm are rational functions, then one has to decide what to do if un is a
pole of some of them. A canonical way to resolve this is to define these functions on the
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set of their poles separately (for example, define 0−1 = 0). Certainly this problem does not
occur if all functions F1, . . . , Fm are polynomials.

10.5.6 Remark Recently, new applications have emerged to cryptography and quasi-Monte Carlo
methods, where ADSs have been shown to provide a very attractive alternative to the
classical linear congruential PRNG.

10.5.7 Definition An attack on a PRNG is an algorithm that observes several outputs of a PRNG
and then is able to continue to generate the same sequence with a nontrivial probability.

10.5.8 Remark The interest in nonlinear dynamical systems as sources of pseudorandom numbers
[2271, 2814] has been driven by a series of devastating attacks on traditional linear con-
structions which have made them useless for cryptographic purposes; see [716, 1831] and
references therein.

10.5.9 Remark Although nonlinear PRNGs are believed to be cryptographically stronger; see,
however [210, 299, 300, 301, 1309, 1380] for some attacks. Yet, obtaining concrete efficient
constructions with good rigorously proven estimates on their statistical and other properties,
has also been a challenging task [1358, 1379, 2329].

10.5.3 Degree growth

10.5.10 Definition The algebraic entropy of the ADS generated by F = {F1, . . . , Fm} is

δ(F) = lim
n→∞

logDn(F)

n
,

where Dk(F) is the degree of F(k), defined as the largest degree of the components

F
(k)
1 , . . . , F

(k)
m .

10.5.11 Remark The existence of the limit follows immediately from the inequality Dk+m(F) ≤
Dk(F)Dm(F).

10.5.12 Remark Studying how the iterates of an ADS grow is a classical research direction with
a rich history and a variety of results. In the case of ADSs over the complex and p-adic
numbers there is a well-studied measure of “size” called the height , [91, 964, 1020, 2668].
Unfortunately this measure does not apply to ADSs over finite fields. However, in this case
the degree Dk(F) provides a very natural and adequate substitute for the notion of height.
Thus, the algebraic entropy plays a very essential role in the theory of ADSs over finite
fields [215, 216, 222, 1498, 2817, 2870, 2871].

10.5.13 Remark The degree growth is important for many applications of ADSs. In the univariate
case, it is obvious that the n-th iterate of a polynomial of degree d is a polynomial of degree
dn. This however is not true anymore in the multidimensional case. Yet, the exponential
growth is expected for a “typical” ADS. For example in [1358, 1379] the exponential growth
is shown for some very special classes of polynomial systems, corresponding to nonlinear
recurrence sequences of order m, that is, sequences satisfying a recurrence relation of the
form

wn+m = F (wn+m−1, . . . , wn), n = 0, 1, . . . ,

with F ∈ Fq(X1, . . . , Xm). An alternative approach with a combinatorial flavor to studying
such sequences has been suggested in [2329].
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10.5.14 Remark Recently, a family of multivariate ADSs with polynomial degree growth of their
iterates has been constructed in [1312, 2328, 2330, 2332, 2334]. These ADSs are formed by
systems of rational functions of the form:

F1(X1, . . . , Xm) = Xe1
1 G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

... (10.5.2)

Fm−1(X1, . . . , Xm) = X
em−1

m−1 Gm−1(Xm) +Hm−1(Xm),

Fm(X1, . . . , Xm) = gmX
em
m + hm,

where ei ∈ {−1, 1}, i = 1, . . . ,m,

gm, hm ∈ Fq, gm 6= 0,

and Gi has a unique leading monomial :

Gi(Xi+1, . . . , Xm) = giX
si,i+1

i+1 · · ·Xsi,m
m + G̃i(Xi+1, . . . , Xm),

which “dominates” all other terms:

gi 6= 0, degXj G̃i < si,j , degXj Hi ≤ si,j ,

for 1 ≤ i < j ≤ m.

10.5.15 Remark The structure and the degree of iterates of ADSs in 10.5.14 is given by Theo-
rem 10.5.16 which is essentially [2332, Lemma 1].

10.5.16 Theorem [2332, Lemma 1] In the case of ei = 1, i = 1, . . . ,m, for any ADS of the
form (10.5.2), we have

F
(k)
i = XiGi,k(Xi+1, . . . , Xm) +Hi,k(Xi+1, . . . , Xm), i = 1, . . . ,m, k = 0, 1, . . . ,

where
Gi,k, Hi,k ∈ Fq[Xi+1, . . . , Xm], i = 1, . . . ,m− 1

and

degGi,k =
1

(m− i)!k
m−isi,i+1 . . . sm−1,m + ψi(k),

with ψi(T ) ∈ Q[T ], degψi < m− i, i = 1, . . . ,m− 1, and Gm,k = gkm ∈ F∗q .

10.5.17 Remark In [2328, 2334] a more general (but also more technically involved) form of Theo-
rem 10.5.16 is given which applies to exponents ei = ±1, i = 1, . . . ,m.

10.5.18 Problem Find new constructions of ADSs with polynomial degree grows of the iterates.

10.5.19 Remark In [2335] yet another new class of ADSs is given that also leads to good pseudo-
random number generators, namely, given ADSs that are formed by systems of multivariate
polynomials F1, . . . , Fm ∈ Fp[X1, . . . , Xm] of the form:

F1 = (X1 − h1)
e1 G1 + h1,

... (10.5.3)

Fm−1 = (Xm−1 − hm−1)
em−1 Gm−1 + hm−1,

Fm = gm (Xm − hm)
em + hm,
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where Gi ∈ Fp[Xi+1, . . . , Xm], i = 1, . . . ,m − 1, ej are positive integers and gm, hj ∈ Fp,
j = 1, . . . ,m. The corresponding pseudorandom number generator generalizes the classical
power generator (see Section 10.4) but is free of some of its undesirable features such as
homogeneity. Although the degree of the iterates of (10.5.3) grows exponentially, under
some additional condition using a recent result of Cochrane and Pinner [657], one can get
a reasonably good estimate of the discrepancy of the corresponding sequence; see [2335,
Theorem 8] for details. This direction has been further developed in [1312].

10.5.20 Problem Find new constructions of ADSs with sparse iterates (that is, having a constant
or slowly growing with the number of iterations number of monomials).

10.5.4 Linear independence and other algebraic properties of iterates

10.5.21 Remark Surprisingly enough, investigating the distribution and other number theoretic
properties of PRNGs ultimately requires to study additive character sums with their ele-
ments. In turn, this leads to investigation of their algebraic properties such as the degree
growth or absolute irreducibility of certain linear combinations of the iterates. Deeper alge-
braic properties such as the dimension of the singularity locus of certain associated algebraic
varieties are also of interest. Below we explain how these properties become ultimately re-
lated to the rather analytic question of the uniformity of distribution.

10.5.22 Remark An application of the celebrated Koksma–Szüsz inequality (see the original
works [1780, 2759] and also Section 6.3) reduces the question of studying the distribu-
tion of the vectors (10.5.1) to the question of estimating the following additive character
sums

Sa(N) =

N−1∑
n=0

ψ

(
m∑
i=1

aiun,i

)
,

where ψ is a fixed additive character of Fq and a = (a1, . . . , am) ∈ Fmq . The standard
methodology, suggested in [2269, 2270] and recently improved in [2279], after a certain chain
of standard transformations used in estimating character sums, leads to additive character
sums with

La,k,l(X) =

m∑
i=1

ai

(
F

(k)
i (X)− F (l)

i (X)
)
,

where X = (X1, . . . , Xm). So a natural next step is to use the Weil bound, see Section 6.3.
However, for this the rational function La,k,l(X) has to be “exponential sums friendly,” that
is,

1. nontrivial (that is, with a nontrivial trace);

2. of small degree (so that the Weil bound is nontrivial for this function);

3, if possible, linear in some of the variables (thus to avoid using the Weil bound at
all);

4. if possible, have a low dimensional locus of singularity (to apply the Deligne
bound, see Section 6.3 or Deligne-like bounds by Katz [1704]).

10.5.23 Problem Find general (necessary and sufficient) conditions under which, the linear forms
La,k,l(X) are not constant for any non-zero vector a ∈ Fmq and k 6= l.

10.5.24 Remark Over Fq, for a special class of iterations, some sufficient conditions are given
in [1358, 1379]. In [2329], in some special case, the above condition of on La,k,l(X) has been
replaced by some combinatorial argument, which, however, does not seem to generalize any
further.
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10.5.25 Remark For ADSs of the shape (10.5.2) the degree of the iterates grows polynomially.
Furthermore the iterates are linear in one of the variables. Both properties together, have led
to rather strong results about the distribution of the vectors (10.5.1); see [2330, 2332]. This
idea and construction has been further developed in [2326, 2327, 2336, 2337]. Furthermore,
in [2332] a new construction of hash functions is suggested that is based on the above ADSs.

10.5.26 Remark It is clear that the systems of the shape (10.5.2) with ei = 1, i = 1, . . . ,m (or for
arbitrary ei = ±1, if one defines 0−1 = 0) define a permutation of Fmq if and only if the
“coefficients” Gi, i = 1, . . . ,m − 1, have no zeros over Fq. For such permutation systems,
Ostafe [2326] has established rather strong results about the distribution of elements in
trajectories on average over all initial values; see also [2334, 2653].

10.5.27 Remark At the same time it has become clear that in order to improve the results
of [2330, 2332] one needs to obtain more detailed information about the algebraic structure
of polynomial iterates, in particular about the number of absolutely irreducible components
of the polynomials Gi,k1

−Gi,k2
where 0 ≤ k2 < k1 and Gi,k is as in Theorem 10.5.16.

10.5.28 Remark Sums of multiplicative characters along trajectories of ADSs have also been con-
sidered in the literature [2272, 2277, 2337]. Such sums can be estimated within the same
lines that have been used for additive character sums, however instead of linear combi-
nations La,k,l(X) one has to study some other algebraic expressions including the iter-
ates. For instance, the argument of [2337] is based on studying the bilinear combinations
Gi,kHi,l − Gi,lHi,k (in the notation of Theorem 10.5.16) and showing that they are not
constant.

10.5.5 Multiplicative independence of iterates

10.5.29 Theorem [1173, Theorem 1.4] Suppose that a polynomial f ∈ Fq[X] is not a monomial or

a binomial of the form axp
`

+ b where p is the characteristic of Fq. Then for any integer
N ≥ 1, the polynomials f, f (1), . . . , f (N) are multiplicative independent.

10.5.30 Remark Theorem 10.5.29 is used in an construction of elements of large multiplicative order
over finite fields; see [1173, Theorem 1.1].

10.5.31 Remark There are several possible interpretations of what a multivariate analogue of The-
orem 10.5.29 may look like. All of them are interesting, however no results in this direction
have been obtained so far.

10.5.6 Trajectory length

10.5.32 Remark Clearly the sequence of vectors {un}, given by (10.5.1) is eventually periodic with
some period τ . That is, for some integer s ≥ 0 we have un+τ = un for n ≥ s.

10.5.33 Definition If s is the smallest integer with this above property of Remark 10.5.32, then
T = s+ τ is the trajectory length.

10.5.34 Remark If we work in a finite field of q elements, then the trajectory length T satisfies
T ≤ qm, where m is the number of variables.

10.5.35 Remark No general lower bounds on the trajectory length of sequences generated by ADSs
are known. Furthermore, assuming that the map generated by F behaves as a random map
(and for a generic polynomial system this seems to be a natural and well tested assumption),
one should expect that in fact T is of order qm/2. On the other hand, most of the results
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about the distribution of the sequence (10.5.1) are nontrivial only if the trajectory length
T is close to its largest possible value [2326, 2327, 2330, 2332, 2336, 2337]. Hence we see
that “generic” ADSs are not likely to satisfy this property. Thus one needs constructions of
special ADSs tailored for these applications.

10.5.36 Remark Very little is known about constructing ADSs with guaranteed large trajectory
length. The only known rigorous results are those of Ostafe [2328] and their generalizations
in [2334], that gives a complete characterization (which in turn leads to explicit construc-
tions) of ADSs of the type (10.5.2) which achieve the largest possible value of the trajectory
length T = qm.

10.5.37 Remark A result of [2669] gives a nontrivial (albeit very weak) lower bound on the length
of a reduction of a trajectory of an ADS over the rationals modulo a prime p that holds for
almost all p (in fact the result applies to more general settings).

10.5.7 Irreducibility of iterates

10.5.38 Remark As we have seen in Section 10.5.4, the algebraic structure of iterates becomes very
important for studying the distribution of trajectories. Questions of this type are also of
great intrinsic interest for the theory of ADSs. Unfortunately, they are notoriously hard, and
most of the few known results apply only to iterates of univariate quadratic polynomials;
see [76, 152, 153, 1310, 1313, 1618, 1619, 1620, 2331] and references therein.

10.5.39 Definition A polynomial f over a field K is stable if all its iterations f (n) are irreducible
over K.

10.5.40 Definition For a quadratic polynomial f(X) = aX2 + bX + c ∈ K[X], over a field K of
characteristic p 6= 2, we define the critical orbit of f as the set of consecutive iterations

Orb(f) = {f (n)(γ) : n = 2, 3, . . .},

where γ = −b/2a.

10.5.41 Remark Clearly γ in Definition 10.5.40 is the unique critical point of f (that is, the zero
of the derivative f ′).

10.5.42 Remark It is shown in [1618, 1619, 1620] that critical orbits play a very important role in
the dynamics of polynomial iterations.

10.5.43 Remark Capelli’s Lemma, describing the conditions on the irreducibility of polynomial
compositions, plays a prominent role in this area.

10.5.44 Theorem [1620, Proposition 3] A quadratic polynomial f ∈ K[X] is stable if the set
{−f(γ)} ∪ Orb(f) contains no squares. If K = Fq is a finite field of odd characteristic,
this property is also necessary.

10.5.45 Remark If K = Fq is a finite field, there is some integer t such that f (t)(γ) = f (s)(γ) for
some positive integer s < t. Then f (n+t)(γ) = f (n+s)(γ) for any n ≥ 0. Accordingly, for the
smallest value of t with the above condition denoted by tf , we have

Orb(f) = {f (n)(γ) : n = 2, . . . , tf}

and #Orb(f) = tf − 1 or #Orb(f) = tf − 2 (depending whether s = 1 or s ≥ 2 in the
above).
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10.5.46 Remark Remark 10.5.45 immediately implies that a quadratic polynomial f ∈ Fq[X] can
be tested for stability in q1+o(1) arithmetic operations over Fq. Using bounds of character
sums, it has been shown in [2331] that this can be improved.

10.5.47 Theorem [2331] A quadratic polynomial over Fq can be tested for stability in q3/4+o(1)

arithmetic operations over Fq.

10.5.48 Remark In [50], a generalization of Theorem 10.5.47 is given to polynomials g(f) where f
is quadratic and g is an arbitrary polynomial over Fq.

10.5.49 Remark Since a random polynomial of degree d is irreducible over Fq with probability
about 1/d and the degree of the iterations f (n) grows exponentially with n, it is natural to
expect that there are only very few stable polynomials over Fq. For quadratic polynomials
this has been confirmed in a quantitative form by Gomez and Nicolás [1310]. With several
ingenious extensions of the method of [1310], Gomez, Nicolás, Ostafe, and Sadornil [1311]
have shown this for polynomials of arbitrary degree d ≥ 2.

10.5.50 Theorem [1310] For any odd prime power q, there are at most q5/2+o(1) stable quadratic
polynomials over Fq.

10.5.51 Remark The number of irreducible divisors and other arithmetic properties of iterations of
polynomials over large finite fields have been studied in [1313].

10.5.52 Problem Give explicit constructions of polynomial systems, over some “interesting” fields

such as Q and Fq, such that all polynomials F
(k)
i , i = 1, . . . ,m, k = 1, 2, . . ., are

1. irreducible over Fq;
2. absolutely irreducible over Fq.

10.5.53 Remark Over the field of rational numbers Q we define the class Ep,m (where p is an
arbitrary prime) of m-variate analogues of the Eisenstein polynomials: We say that F ∈
Z[X1, . . . , Xm] belongs to Ep,m if

F (X1, . . . , Xm) = A0X
d1
1 · · ·Xdm

m + pf(X1, . . . , Xm)

for some f ∈ Z[X1, . . . , Xm], where A0 6≡ 0 (mod p), d1 + · · · + dm > deg f and such that
F (0) 6≡ 0 (mod p2), where 0 = (0, . . . , 0). Clearly if F = GH, where G,H ∈ Z[X1, . . . , Xm],
is reducible then F ≡ GH (mod p). Since if F is a monomial modulo p then so are G and H.
As degF = d1 + · · ·+dm, we conclude that G and H are nonconstant monomials modulo p.
Therefore G(0) ≡ H(0) ≡ 0 (mod p) which implies that F (0) = G(0)H(0) ≡ 0 (mod p2),
contradicting F ∈ Em,p. If F,G1, . . . , Gm ∈ Ep,m then because

F (G1(0), . . . , Gm(0)) ≡ F (0) 6≡ 0 (mod p2),

we also have F (G1, . . . , Gm) ∈ Ep,m. Therefore if F1, . . . , Fm ∈ Em,p for some prime p then

their iterations F
(k)
1 , . . . , F

(k)
m , k = 1, 2, . . . are all irreducible over Q. This however does

not lead to a construction of absolutely irreducible iterates. There is no obvious finite field
analogue of this construction.

10.5.8 Diameter of partial trajectories

10.5.54 Definition The diameter DF,u0
(N) of the sequence of the first N vectors (10.5.1) over Fp

is defined as
DF,u0(N) = max

0≤k,n≤N−1
‖uk − un‖,

where ‖u‖ is the Euclidean norm of a vector u and we assume that the elements of Fp
are represented by the set {0, . . . , p− 1}.
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10.5.55 Remark Certainly results about the asymptotically uniform distribution of the first N
vectors (10.5.1) (mentioned in Section 10.5.4) immediately imply that DF,u0

(N) is close to
the largest possible value n1/2p in this case. However such results are known only for very
long segments of the trajectories.

10.5.56 Remark The notion of the diameter (under a slightly different name) is introduced in [1381]
and then has also been studied in [585, 586, 644] where a wide variety of methods has been
used. However, the only known results about the diameter are in the univariate case, that
is, when F = {f} ⊆ Fp[X] and u0 = u0 ∈ Fp.

10.5.57 Theorem [1381, Theorem 6] For any fixed ε > 0 and Tf,u0 ≥ N ≥ p1/2+ε where Tf,u0 is the
trajectory length corresponding to iterations of f ∈ Fp[X] originating at u0, we have

Df,u0
(N) = p1+o(1)

as p→∞.

10.5.58 Remark Theorem 10.5.57, when it applies, provides the asymptotically best possible bound.
For smaller values of N , one can use a variety of the results from [585, 586, 644] that are
nontrivial in essentially the best possible range Tf,u0

≥ N ≥ pε for any fixed ε > 0.

10.5.59 Problem Let Fqs be an extension of degree s ≥ 2 of Fq. Obtain a lower bound on the smallest
dimension of an affine space over Fq containing the first N elements of the trajectory of
iterations of f ∈ Fqs [X] originating at u0 ∈ Fqs .

10.5.60 Problem In the multidimensional case, besides estimating DF,u0
(N), one can also study

other geometric characteristics, such as

1. the volume and the number of vertices of the convex hull of the set
{u0, . . . ,uN−1};

2. the number of directions and the number of distances defined by pairs of vectors
(uk,un), 0 ≤ k, n ≤ N − 1;

3. the number of directions and the number of distances defined by pairs of consec-
utive vectors (un,un+1), 0 ≤ n ≤ N − 1.

References Cited: [50, 76, 91, 106, 152, 153, 154, 210, 215, 216, 222, 299, 300, 301, 585,
586, 644, 657, 716, 964, 1020, 1087, 1309, 1310, 1311, 1312, 1313, 1348, 1358, 1379, 1380,
1381, 1498, 1596, 1618, 1619, 1620, 1704, 1780, 1831, 1860, 2269, 2270, 2271, 2272, 2277,
2279, 2326, 2327, 2328, 2329, 2330, 2331, 2332, 2334, 2335, 2336, 2337, 2421, 2464, 2547,
2648, 2653, 2668, 2669, 2717, 2759, 2814, 2817, 2870, 2871]
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Finite fields play a central role in many areas, such as cryptography, coding theory, and ran-
dom number generation, where the speed of the computations is paramount. Therefore we
discuss algorithms with a particular attention to efficiency and we address implementation
techniques and complexity aspects as often as possible. In many instances, the complexity
of the algorithms that we describe depends on the field multiplication method that is imple-
mented. In the following, M(log p) denotes the complexity to multiply two positive integers
less than p. Similarly, Mq(n) represents the complexity to multiply two polynomials in Fq[x]
of degree less than n. We note that many software tools or libraries implement some of the al-
gorithms that are presented next. A non-exhaustive list includes Magma [2798], Pari [209],
Sage [2709], Mathematica [3004], Maple [2002], NTL [2633], GMP [1102], MPFQ [1255],
FLINT [1426], and ZEN [576]. Detailed algorithms and complexity analyses can be found
in [660, 661, 751, 1227, 1413, 1768, 2080, 2632].

11.1.1 Preliminaries

11.1.1.1 Prime field generation

11.1.1 Remark For many applications, a random prime field of a given size is needed. This implies
finding a prime number of a given bit length that is random in the following sense: the
probability for any particular prime of that size to be selected is sufficiently small so that
it is impossible for anyone to take advantage of this event. There are two different ways
to find such a random prime number. The first technique is to identify a prime number
among integers of a prescribed size successively picked at random. The second technique is
to construct integers with special properties so that it is easy to prove that they are prime
and whose distribution over the set of all the primes of the desired size is close to uniform.

11.1.2 Algorithm (Prime number random search)

Input: An integer ` ≥ 2.
Output: An `-bit prime number.

1. repeat
2. Pick an `-bit random integer n
3. until n is not composite
4. return n

11.1.3 Remark The prime number theorem [2080, Section 4.1] ensures that it takes O(`) random
draws among `-bit integers before picking an integer that is actually prime.

11.1.4 Remark The approach used at Line 3 of Algorithm 11.1.2 to test if n is composite or not
determines the quality of the prime number that is returned. In practice, Algorithm 11.1.2
relies on trial division, to quickly eliminate most composite numbers, and on the Miller–
Rabin compositeness test, properly set up depending on the size of the desired prime. See Re-
mark 11.1.5 and [2080, Section 4.4] for implementation details. In the end, Algorithm 11.1.2
returns a probable prime, i.e., not certified but prime with very high probability.

11.1.5 Remark The first compositeness test of real practical significance is due to Solovay and
Strassen [2694]. It was superseded by the Miller–Rabin test [2099, 2435], which is faster and
easier to implement. The error probability in the Miller–Rabin test can be adjusted using
a security parameter t that also drives the complexity of the algorithm. The Miller–Rabin
test is always correct when it declares that an integer n is composite, but it may be wrong
with probability at most 4−t when it declares that n is prime. Taking into account the
distribution of prime numbers and using advanced probabilistic analysis techniques, it can
be shown that Algorithm 11.1.2 coupled with the Miller–Rabin test requires a very small t
in order to return a high quality probable prime. For instance, t = 5 is enough to produce
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a 500-bit integer that is prime with probability greater than 1− 2−85; see [2080, Note 4.47
and Fact 4.48] and [2632, Section 10.3] for more examples.

11.1.6 Remark Given the parameter t and the factorization of n−1 as 2sm with m odd, the Miller–
Rabin test computes at most t modular exponentiations to determine if n is composite.
Each exponentiation is of the form ak, where a is a O(n) random value and k = 2rm
for some r < s. Its complexity is therefore O(t log3 n). As noted in [660], the algorithm is
significantly faster when single precision integers a are used instead of random values in
[0, n− 1]. Although the error bound may no longer hold in that case.

11.1.7 Remark An interesting variant of Algorithm 11.1.2 consists in testing integers in an arith-
metic progression. For instance, considering the odd numbers in some interval may reduce
the complexity of the process, see [2080, Section 4.4].

11.1.8 Remark When a provable prime is required, we can run a more expensive primality test
on the integer n returned by Algorithm 11.1.2. There are mainly two primality tests used
in practice. APRCL [660, 662], named after its inventors, relies on Jacobi sums and is a
simplified version of the test presented in [19]. Its complexity is O(logc log log logn n), for some
effective constant c. The Elliptic Curve Primality Proving test (ECPP) [143] uses elliptic
curves and its complexity is Õ(log5 n). The fast version of ECPP, called fastECPP runs
in Õ(log4 n), see [2141] for implementation details. Both ECPP and fastECPP offer the
advantage of producing a certificate that can be used to prove that n is prime much quicker
than running the test again. In 2002, Agrawal, Kayal, and Saxena [43] announced the first
deterministic polynomial time primality testing algorithm. For an input n, the complexity
of the so-called AKS algorithm is O(log10.5 n). One variant of AKS [610] runs in time
Õ(log4 n). Although this algorithm has the same complexity as fastECPP, the constants are
much larger and as a result fastECPP is still the method of choice to prove the primality of
general integers.

11.1.9 Remark As hinted in Remark 11.1.1, a radically different approach to find a prime number
is to construct it from scratch. There are two popular provable prime generation methods in
the literature, respectively due to Mihăilescu [2095] and Maurer [2038, 2080]. They both use
Pocklington’s lemma recursively, but Maurer’s method generates random provable primes
whose distribution is close to uniform over the set of all primes of a given size, whereas
Mihăilescu’s approach is more efficient but slightly reduces the set of primes that may be
produced.

11.1.1.2 Extension field generation

11.1.10 Remark To define Fqn , it is enough to construct a basis of the vector space Fqn over
Fq. A normal basis offers several advantages, such as a cheap evaluation of the Frobenius
automorphism, see Section 5.2. Alternatively, any irreducible polynomial of degree n with
coefficients in Fq can be used to represent Fqn . This gives rise to a polynomial basis; see
Definition 2.1.96.

11.1.11 Remark Quite similarly to the prime field case, there are two different ways to find an
irreducible polynomial of a given degree. We can identify an irreducible polynomial among
many polynomials generated at random. We may also construct an irreducible polynomial
directly. This is well illustrated in [1187].

11.1.12 Remark It follows from Theorem 2.1.24 that a random monic polynomial of degree n with
coefficients in Fq is irreducible with probability close to 1

n · So it takes an expected O(n)
attempts to find an irreducible polynomial of degree n at random; see Subsection 11.3.2,
for a description of some irreducibility testing algorithms.
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11.1.13 Remark It is well known that different irreducible polynomials of degree n generate iso-
morphic finite fields. The isomorphism can even be computed explicitly [77, 1895]. So it
may seem that the choice of the irreducible polynomial used to generate Fqn is irrelevant.
However, certain polynomials are more suitable than others when it comes to the efficiency
of the operations in Fqn . In particular, polynomials with a low number of nonzero terms
have a clear advantage, as they provide a faster modular reduction, see Subsection 11.1.3.2.

11.1.14 Definition Let f ∈ Fq[x]. The polynomial f is s-sparse, if f has s nonzero terms. The
terms binomial , trinomial , quadrinomial , and pentanomial are frequently used to refer
to 2-sparse, 3-sparse, 4-sparse, and 5-sparse polynomials, respectively. Furthermore, f
is t-sedimentary if f = xn + h where deg h = t.

11.1.15 Remark According to Definition 11.1.14, any polynomial is s-sparse. Similarly any poly-
nomial is t-sedimentary. However only those with sufficiently small parameters s or t are
considered in practice. The relevance of s-sparse polynomials is known for a long time,
whereas the interest for t-sedimentary polynomials is more recent [717, 2306].

11.1.16 Definition We denote by σq(n) the minimal s such that there exists an irreducible s-sparse
polynomial of degree n in Fq[x]. Similarly, τq(n) denotes the minimal t such that there
exists an irreducible polynomial of degree n in Fq[x] of the form xn + h with deg h = t.

11.1.17 Conjecture Let n be a positive integer and let q be a power of a prime greater than 2, then
we have σq(n) ≤ 4. If q = 2, then σq(n) ≤ 5 [1233].

11.1.18 Remark Conjecture 11.1.17 states that except for certain extensions of degree n of F2 where
a pentanomial is required because there is no irreducible trinomial of degree n, it is always
possible to find an irreducible binomial, trinomial, or quadrinomial to define Fqn over Fq.
A similar conjecture exists for primitive polynomials, see Section 4.1.

11.1.19 Example We have σ2(8) = 5. An exhaustive search shows that there is no irreducible
trinomial of degree 8 over F2 but it is easy to see that x8 + x4 + x3 + x + 1 is irreducible
over F2. The field F28 is the smallest extension of F2 that requires a pentanomial. Similarly,
σ3(49) = 4. Again, an exhaustive search shows that there is no irreducible binomial or
trinomial of degree 49 over F3 but x49 + 2x3 + x2 + 1 is irreducible over F3. The field F349

is the smallest extension of F3 that requires a quadrinomial.

11.1.20 Conjecture Let n be a positive integer and let q ≥ 2 be a prime power, then we have
τq(n) ≤ 3 + logq n [1233].

11.1.21 Remark Conjectures 11.1.17 and 11.1.20 are supported by extensive computations [1181,
1187, 1233, 1327].

11.1.22 Remark We refer to [2582] for a table of irreducible trinomials and pentanomials in F2[x]
of degree ranging from 2 to 10, 000; see also Section 2.2.

11.1.23 Remark See [403] for a dedicated algorithm with reduced space complexity designed to test
the irreducibility of trinomials of large degree in F2[x]. See [1223] for additional algorithms
specifically designed for trinomials.

11.1.24 Remark Finally, we refer to Subsection 11.3.2 for methods to construct an irreducible
polynomial of degree n over Fq. We note that there exist infinite families of irreducible
polynomials. For instance, the polynomials x2.3k + x3k + 1 with k ≥ 0 are all irreducible in
F2[x] [1187].
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11.1.1.3 Primitive elements

11.1.25 Remark Finding a primitive element of a finite field is an interesting problem both from a
theoretical and a practical point of view [439, 927, 2627, 2628, 2640]. Given the complete
factorization of q − 1, Algorithm 11.1.26 returns a generator of F∗q in polynomial time in
log q. No efficient method is available when the factorization of q − 1 is not known.

11.1.26 Algorithm (Primitive element random search)

Input: A prime power q and the complete factorization of q − 1 as pd1
1 · · · pdkk .

Output: A generator γ of F∗q .
1. for i = 1 to k do
2. repeat
3. Choose α ∈ F∗q at random and compute β = α(q−1)/pi

4. until β 6= 1

5. γi = α(q−1)/p
di
i

6. end for
7. return γ =

∏k
i=1 γi

11.1.27 Remark Algorithm 11.1.26 is more efficient than the näıve approach, which consists in
searching for an element γ such that γ(q−1)/pi 6= 1, for all i. This is especially true as
the number of prime factors of q − 1 grows. The complexity of finding a generator of the
multiplicative group of a prime field F∗p with Algorithm 11.1.26 is O(log4 p) [2632].

11.1.28 Remark To generate a random prime field Fp together with a primitive element, simply
modify Algorithm 11.1.2 so that the random integer n produced at Line 2 is of the form
n = m+ 1, where all the prime factors of m are known. An algorithm to generate a random
factored number is given in [2632, Section 9.6]. Then use Algorithm 11.1.26 to return a
generator of F∗p.

11.1.1.4 Order of an irreducible polynomial and primitive polynomials

11.1.29 Remark The order of a polynomial is introduced in Definition 2.1.51. The order of an
irreducible polynomial f is equal to the order of any of its roots. It can be found with
Algorithm 11.1.30 [2473].

11.1.30 Algorithm (Order of an irreducible polynomial)

Input: An irreducible polynomial f of degree n with coefficients in Fq and the complete
factorization of qn − 1 as qe11 · · · qe`` .

Output: The order of f .
1. for i = 1 to ` do
2. Find the smallest nonnegative integer fi such that f |

(
xq1

e1 ···qifi ···q`e` − 1
)

3. end for
4. return q1

f1 · · · q`f`

11.1.31 Remark If f is monic of order qn − 1 such that f(0) 6= 0 then f is a primitive polynomial.
In fact, the conditions are equivalent [1939, Theorem 3.16]; see also Section 4.1 for more
details on primitive polynomials. Algorithm 11.1.32 [1416] is specifically designed to quickly
test if a random polynomial is primitive or not.

11.1.32 Algorithm (Primitive polynomial testing)

Input: An irreducible polynomial f of degree n with coefficients in Fq and the list of
all the prime factors of qn − 1.

Output: true if f is primitive and false otherwise.
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1. if (−1)nf(0) is not a primitive element of Fq then
2. return false
3. end if
4. if x(qn−1)/(q−1) 6≡ (−1)nf(0) (mod f) then
5. return false
6. end if
7. for each prime factor ri of qn−1

q−1 that does not divide q − 1 do
8. if x(qn−1)/((q−1)ri) (mod f) ∈ Fq then
9. return false

10. end if
11. end for
12. return true

11.1.33 Remark The prime factors of q− 1 are needed at Line 1 to test if (−1)nf(0) is a primitive
element or not. If q is small enough, it is worth evaluating f(α) for all α ∈ F∗q in order to
detect linear factors. Another useful test, if n is not too large, is to form the Berlekamp
matrix Q (see Subsection 11.3.2) and compute the rank of Q − I. If the rank is strictly
less than n − 1 then the polynomial is not irreducible and hence not primitive. Those two
optional tests should be implemented after the initial one that ends at Line 3.

11.1.34 Remark Given a single primitive polynomial f of degree n over Fq, it is quite easy to find
them all. Simply consider γ, the primitive element whose minimal polynomial is f and form
the minimal polynomial of γk, for each k coprime with q − 1. A more efficient algorithm is
presented in [2420].

11.1.35 Remark If n = 2k − 1 is a Mersenne prime, then an irreducible polynomial of degree k is
necessarily primitive in F2[x]. We refer to [403, 404, 406, 408] for a search of binary primitive
trinomials by Brent and Zimmermann.

11.1.1.5 Minimal polynomial of an element

11.1.36 Remark The simplest approach to find the minimal polynomial of α ∈ Fqn is to compute
the different conjugates αq

i

of α until we have αq
k

= α. The minimal polynomial of α is
then equal to the product (x− α)(x− αq) · · · (x− αqk−1

). The worst case complexity of this
algorithm is O(Mq(n)n log q) in time and O(n) elements in space. This technique is refined
in [1328] for the special case Fq = F2.

11.1.37 Remark In [2631], Shoup proposes a more general algorithm with a better time complexity
but also with an increased space complexity. Indeed, given the ring Fq[α][β] of dimension
n over Fq, Shoup’s algorithm finds the minimal polynomial of an element in that ring
with complexity O(Mq(n)n1/2 + n2) in time and O(n3/2) elements in space. It relies on
several subroutines, including Wiedemann’s projection method [2976], a polynomial evalu-
ation technique by Brent–Kung [401], and finally, the Berlekamp/Massey algorithm [2011]
applied to recover the minimal polynomial from a sequence of projected points. Kedlaya and
Umans [1721] give an algorithm for constructing a minimal polynomial in n1+o(1) log1+o(1) q
bit operations. It relies on a fast modular composition method via multivariate multipoint
evaluation, see Remark 11.1.86.

11.1.2 Representation of finite fields

11.1.38 Remark There are essentially three different ways to represent the elements of a finite
field. Small finite fields can be represented with Jacobi logarithms, also known as Zech’s
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logarithms, see Subsection 2.1.7.5. Extension fields Fqn can always be represented with a
normal basis over Fq, see Section 5.2. Finally, prime fields and extension fields can be seen
as a quotient set, respectively modulo a prime number and an irreducible polynomial.

11.1.39 Remark Elements in Fp are usually represented as integers in [0, p−1] or in [−bp/2c, bp/2c].
We can also use alternative systems, such as the Montgomery representation, see Re-
mark 11.1.46, redundant systems [3030], or even floating point numbers [933].

11.1.40 Remark When Fqn is defined as Fq[x]/(f), where f is an irreducible polynomial of degree
n in Fq[x], elements are usually represented as polynomials in Fq[x] of degree strictly less
than n. However, a generalization of Montgomery representation, see Remark 11.1.57, and
various redundant systems [405, 909, 3009] exist for extension fields as well.

11.1.41 Remark The Kronecker substitution [2111] allows to represent a polynomial in Fq[x] as an
integer by formally replacing x by a suitable integer, usually a sufficiently large power of 2.
Polynomial multiplication can be done faster with this system [930, 1430]. This technique
is implemented in the FLINT library [1426].

11.1.3 Modular reduction

11.1.42 Remark The reduction of an integer u modulo a prime number p and the reduction of a
polynomial g modulo an irreducible polynomial f are denoted by u (mod p) and g (mod f),
respectively. In any case, an efficient reduction method is crucial for fast finite field arith-
metic. Indeed, a reduction is usually performed after each operation to ensure that the size
of the operands, i.e., the bit length or the degree, remains under control. Assuming that the
operands are always reduced, an addition requires at worst one straightforward reduction.
On the contrary, reducing the result of a multiplication is more involved even if we know
that the size of the product is at most twice the size of the modulus.

11.1.3.1 Prime fields

11.1.43 Remark We assume that integers are represented using radix b. For most architectures, we
have b = 2w, for a fixed w ≥ 2. A word then corresponds to w bits and we assume that
multiplications and divisions by b, which correspond respectively to word left shift and word
right shift instructions, are free. The following is presented in [2080, Algorithm 14.42].

11.1.44 Algorithm (Barrett reduction)

Input: A 2n-word integer u, the n-word integer p, and the value µ =
⌊
b2n/p

⌋
.

Output: The n-word integer r such that u ≡ r (mod p).
1. q̂ ←

⌊
b(u/bn−1)cµ/bn+1

⌋
2. r1 ← u (mod bn+1)
3. r2 ← (q̂p) (mod bn+1)
4. r ← r1 − r2

5. if r < 0 then
6. r ← r + bn+1

7. end if
8. while r ≥ p do
9. r ← r − p

10. end while
11. return r
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11.1.45 Remark The quantity q̂ computed at Line 1 of Algorithm 11.1.44 is an approximation of
q = bu/pc. It satisfies q − 2 ≤ q̂ ≤ q but it is obtained with reduced efforts thanks to the
precomputed value µ. When b is large enough with respect to k, it is possible to implement
Algorithm 11.1.44 so that it requires at most n(n+ 4) + 1 single-precision multiplications;
see [2080, Note 14.45] for a precise analysis.

11.1.46 Remark Given R some fixed power of the radix b larger than p, Montgomery developed
in [2132] a very interesting arithmetic system modulo p where an integer x ∈ [0, p − 1] is
represented by xR (mod p). The Montgomery representation of x is denoted by [x]. The
advantage of this system lies in a notion of reduction that can be evaluated very efficiently.
Namely, the Montgomery reduction of u ∈ [0, Rp−1] denoted by Redc(u) is defined as uR−1

(mod p). Assuming that p′ = −p−1 (mod R) has been precomputed, simply determine
k ≡ up′ (mod R) with k ∈ [0, p− 1] and let t be the result of the exact division of (u+ kp)
by R. Then it is easy to see that t = Redc(u) or t = Redc(u) + p. Also, since only the
bottom half of up′ and the upper half of (u+kp) are relevant, the overall complexity of Redc
is close to one multiprecision multiplication of size n. Algorithm 11.1.47 is a multiprecision
variant with a reduction at each step [2080, Subsection 14.3.2].

11.1.47 Algorithm (Montgomery reduction)

Input: An n-word integer p, R = bn, p′ = −p−1 (mod b) and a 2n-word integer
u = (u2n−1 . . . u0)b < Rp.

Output: The n-word integer t = uR−1 (mod p).
1. (t2n−1 . . . t0)b ← (u2n−1 . . . u0)b
2. for i = 0 to n− 1 do
3. ki ← tip

′ (mod b)
4. t← t+ kipb

i

5. end for
6. t← t/R
7. if t > p then
8. t← t− p
9. end if

10. return t

11.1.48 Remark The computation of Redc(u) does not require any division, only n word right shifts
at Line 6. A precise analysis shows that Algorithm 11.1.47 needs n(n + 1) single-precision
multiplications [2080, Note 14.34]. A classical reduction modulo p of a 2n-word integer rely-
ing on a Euclidean division also requires approximately n2 single-precision multiplications
but it also needs n single-precision divisions on top.

11.1.49 Remark The conversion to the Montgomery representation is not particularly cheap. How-
ever, once the conversion is done, it is possible to efficiently add, multiply, and even invert
values within this system, see Remarks 11.1.67 and 11.1.101. At the end of the whole com-
putation, for instance a modular exponentiation, the result is then converted back to its
normal representation using the relation Redc([z]) = z.

11.1.50 Remark Other representation systems, such as the residue number system [163, 2754],
the modular number system [166], and the polynomial modular number system [165] offer
interesting features for prime field arithmetic. All the computations can easily be parallelized
for increased performance.

11.1.51 Remark If working with a random prime is not crucial, choosing a modulus of a special
form can lead to substantial savings. An extreme example is illustrated by a Mersenne prime
p = 2k − 1, for which a reduction modulo p is extremely cheap. Indeed, since a shift by
a full word is free, reducing x < p2 modulo p only requires to shift x by exactly r = k
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(mod w) bits, i.e., less than w bits. Unfortunately, Mersenne primes are too scarce to be of
any use for practical applications. This explains the introduction of generalizations of the
form p = 2k+c with c small [750] and later p = 2nkw±2nk−1w±· · ·±2n1w±1 where w = 16,
32, or 64 [2693]. For instance, p = 2192−264−1 and p = 2256−2224 +2192 +296−1 are prime
and their low Hamming weight allows a fast reduction. Those integers are part of a list of
recommended primes of various sizes known as NIST primes [1066]. A further generalization
is to consider prime numbers of the form p = g(t), where g is a sparse polynomial and t is
an integer not necessarily equal to 2 [640].

11.1.3.2 Extension fields

11.1.52 Remark The remainder g (mod f) can always be computed with the Euclidean division
algorithm, but if f is a sparse polynomial, the following algorithm [1233] is particularly well
suited and more efficient.

11.1.53 Algorithm (Polynomial modular reduction)

Input: Two polynomials f and g with coefficients in Fq, where f = xn +
∑s−1
i=1 aix

bi

with 0 = b1 < b2 < · · · < bs−1 < n.
Output: The polynomial r such that g ≡ r (mod f) with deg r < n.

1. r ← g
2. while deg(r) ≥ n do
3. k ← max{n,deg r − n+ bs−1 + 1}
4. Write r as r1x

k + r2 with deg r2 < k
5. r ← r2 − r1

(
f − xn

)
xk−n

6. end while
7. return r

11.1.54 Remark For an s-sparse polynomial f of degree n, the reduction of g modulo f requires at
most 2(s − 1)(deg g − n + 1) operations in Fq. The impact of s on the overall complexity
is obvious in this complexity analysis and justifies the interest for low weight irreducible
polynomials; see Subsection 11.1.1.2.

11.1.55 Remark The concept of an almost irreducible trinomial, i.e., a trinomial f defined over F2

and having an irreducible factor of degree n, is introduced in [405] and [909]. The arithmetic
is then performed in the ring F2[x]/(f) containing the field F2n , using a redundant set of
representatives. In [2573], Scott observes that for a given architecture, some well chosen
irreducible pentanomials over F2 may provide a faster arithmetic than trinomials, including
irreducible trinomials.

11.1.56 Remark Dedicated reduction methods have been developed for specific polynomials. For
instance, [1413, Algorithms 2.41 and 2.42] gives highly optimized reduction methods modulo
x163 + x7 + x6 + x3 + 1 and x233 + x74 + 1.

11.1.57 Remark A generalization of the Montgomery representation for polynomials over finite
fields of characteristic 2 is described in [1775].

11.1.58 Remark For cryptographic applications, especially for applications running on embedded
devices, a new type of finite field, called an optimal extension field, has been recently intro-
duced [161, 2096].

11.1.59 Definition An optimal extension field is one of the form Fpn where p is a generalized
Mersenne prime of the form 2k + c that fits in a word and such that the irreducible
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polynomial f used to define Fpn is the binomial xn − w, where w ∈ Fp. The field is of
Type I if c = ±1 and it is of Type II when w = 2.

11.1.60 Remark Considering finite fields of similar cardinality, optimal extension fields compare
favorably against prime fields thanks to an inversion that is usually faster. Also, due to
the lack of dedicated instructions in some old processors to multiply polynomials in F2[x],
a multiplication in an optimal extension field is usually faster than in characteristic 2 on
those platforms.

11.1.4 Addition

11.1.61 Remark Adding, or subtracting, elements in a finite field is in general pretty straightfor-
ward; see for instance [1413, Algorithms 2.7 and 2.32]. This is not the case when nonzero
elements are expressed as a power of a generator of the multiplicative group. The notion of
Jacobi logarithm, see Subsection 2.1.7.5, gives a way to add elements easily. However, Ja-
cobi logarithms must be precomputed and stored for each nonzero element [661, Subsection
2.3.3] and this explains why they are only used for relatively small fields.

11.1.62 Remark For prime fields represented as Z/pZ, a reduction is sometimes needed after adding
two integers modulo a prime number p and this might lead to branch mispredictions [1428].
In [3078], Zimmermann discuss specifically designed algorithms, which do not need any
adjustment step to perform additions, subtractions, and multiplications under certain con-
ditions.

11.1.5 Multiplication

11.1.63 Remark Multiplying two elements is a task significantly more complicated than adding
them. There is a wide range of multiplication methods whose efficiency and level of sophis-
tication increase with the size of the operands.

11.1.5.1 Prime fields

11.1.64 Remark One approach to perform a modular multiplication is to compute the product first
and then reduce it independently. This is especially effective for large values where it is worth
using advanced multiplication techniques, such as Karatsuba [1684], Toom-Cook [1768], or
fast Fourier transform [751]. For smaller values, Algorithm 11.1.65, which is based on the
schoolbook method, reduces the result while it is computed for increased performance.

11.1.65 Algorithm (Interleaved multiplication-reduction)

Input: The n-word prime p and two n-word integers u = (un−1 . . . u0)b and v.
Output: An integer r such that r ≡ uv (mod p).

1. r ← 0
2. for i = 0 to n− 1 do
3. r ← rb+ un−i−1v
4. Approximate q = br/pc by q̂
5. r ← r − q̂p
6. end for
7. while r ≥ p do
8. r ← r − p
9. end while

10. return r
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11.1.66 Remark Although r is relatively small, different techniques, some of them quite involved,
exist to determine q̂ at Line 4 of Algorithm 11.1.65; see [829, Section 2.2] and [661, Subsec-
tion 11.1.2].

11.1.67 Remark Remark 11.1.46 gives a presentation of the notions of Montgomery representation
and of Montgomery reduction. Montgomery multiplication consists in multiplying elements
in Montgomery representation, before applying Montgomery reduction in order to have the
result of the product, again, in Montgomery representation. Formally, we have the relation
Redc([x][y]) = [xy].

11.1.68 Remark Karatsuba’s method relies on a clever use of the divide and conquer strategy. While
the schoolbook multiplication has complexity O(n2) to compute the product of two n-word
integers, Karatsuba multiplication [1683, 1684] has asymptotic complexity O(nlog2 3) =
O(n1.585). Karatsuba multiplication is thus faster than the näıve approach, but due to a
certain overhead this occurs only for integers of size larger than some threshold n0, which
depends on the platform. It is reported in [409] that this threshold can vary from 10 up to
more than 100 words. Note that GMP [1102] uses specifically optimized values for a wide
range of architectures.

11.1.69 Algorithm (Karatsuba multiplication)

Input: Two n-word integers u = (un−1 . . . u0)b, v = (vn−1 . . . v0)b, and n0 ≥ 2.
Output: The 2n-word integer uv.

1. if n ≤ n0 then
2. return uv computed with the schoolbook method
3. else
4. k ← dn/2e
5. Split u and v in two parts:
6. U1 ← (un−1 . . . uk)b and U0 ← (uk−1 . . . u0)b
7. V1 ← (vn−1 . . . vk)b and V0 ← (vk−1 . . . v0)b
8. Us ← U0 + U1 and Vs ← V0 + V1

9. Compute recursively U0V0, U1V1, and UsVs
10. return U1V1b

2k + (UsVs − U1V1 − U0V0)bk + U0V0

11. end if

11.1.70 Remark Since multiplications by bq are free, multiplying two n-word integers with Algo-
rithm 11.1.69 requires only three multiplications of size n/2 and a few additions of size
n. This observation applied recursively justifies the complexity O(nlog2 3) of Karatsuba’s
method.

11.1.71 Remark Using polynomial evaluation and interpolation techniques, Toom 3-ways reduces
one multiplication of size n to five multiplications of size n/3 and thus runs in O(nlog3 5) =
O(n1.465) [1768, Subsection 4.3.3.A]. Generalizing this idea, Schönhage–Strassen multiplica-
tion [2559] using the fast Fourier transform runs in O(n log n log log n) [751, Section 9.5]. The
overhead is such that this method is only worth using for integers having several thousand
digits [1102].

11.1.5.2 Extension fields

11.1.72 Remark For finite fields Fqn defined via an irreducible polynomial f ∈ Fq[x] of degree n, all
the techniques presented for prime fields apply in this context as well. In particular, there
is a generalization of Algorithm 11.1.65 where polynomial multiplications and reductions
modulo f are interleaved. Also, more advanced multiplication methods, such as Karatsuba
or based on the fast Fourier transform are available as well, with similar complexities as in
the integer case.
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11.1.73 Remark Many practical applications use finite fields of characteristic two and specific mul-
tiplication methods, such as the right-to-left comb, left-to-right comb, or even window meth-
ods involving some precomputations, have been developed in this context; see [1413] for some
explicit algorithms and [400] for a discussion focused on the implementation of Karatsuba,
Toom-Cook, Schönhage, and Cantor methods.

11.1.74 Remark We refer to Section 5.3 for multiplication in a normal basis, where the complexity
is thoroughly discussed and the concept of optimal normal basis is introduced.

11.1.6 Squaring

11.1.6.1 Finite fields of odd characteristic

11.1.75 Remark The formula (
n−1∑
i=0

uib
i

)2

=
n−1∑
i=0

u2
i b

2i + 2
∑
i<j

uiujb
i+j

suggests that it takes less effort to compute u2 than to compute uv, where u and v are
distinct integers of the same size. In practice, a dedicated modular squaring algorithm can
be up to 20% faster than its general counterpart [661].

11.1.76 Remark For each multiplication algorithm, there exists a specific variant exclusively de-
signed to square elements; see [661, Subsection 10.3.3] for a description of the schoolbook
and Karatsuba squaring methods.

11.1.6.2 Finite fields of characteristic two

11.1.77 Remark For the binary field F2n defined over F2 with a normal basis, a squaring corresponds
to a circular shift of the coordinates. With a polynomial basis modulo f , the squaring of an
element requires slightly more work, as we have(

n−1∑
i=0

aix
i

)2

=

n−1∑
i=0

aix
2i.

Thus, only a reduction modulo f is necessary to find the result.

11.1.7 Exponentiation

11.1.78 Remark The exponentiation operation consists in computing αm, for a nonnegative integer
m and α ∈ Fq. It should be optimized as much as possible as it is a crucial subroutine in
many algorithms. For instance, exponentiation is key for finding a generator of the multi-
plicative group or a primitive polynomial, for computing an inverse or the square root of
an element, or for factoring a polynomial; see [1232] for a very complete survey dedicated
to exponentiation methods in finite fields.

11.1.7.1 Prime fields

11.1.79 Remark When the exponent m is fixed, it may be worth searching for an addition chain
with low complexity computing m; see [661, Section 9.2]. If the element α ∈ Fp is fixed while
the exponent varies, precomputing some powers of α can lead to considerable speedups. See



Algorithms 357

in particular Yao’s method [1767, 3032] also known as BGMW [414] and fixed-base comb
algorithm [242, 2396] presented in [1941] as well. More details are available in [661, Section
9.3]. In the general case, where both the element and the exponent vary, Algorithm 11.1.80
is the most efficient exponentiation method that is known.

11.1.80 Algorithm (Sliding window exponentiation)

Input: An element α ∈ Fp, a nonnegative exponent m =
∑`−1
i=0 mi2

i, a parameter
k ≥ 1, and the stored values α, α3, . . . , α2k−1.

Output: The element αm ∈ Fp.
1. β ← 1 and i← `− 1
2. while i ≥ 0 do
3. if mi = 0 then
4. β ← β2 (mod p) and i← i− 1
5. else
6. s← max{i− k + 1, 0}
7. while ms = 0 do
8. s← s+ 1
9. end while

10. for j = 1 to i− s+ 1 do
11. β ← β2 (mod p)
12. end for
13. Form t = (mi . . .ms)2

14. β ← β × αt (mod p)
15. i← s− 1
16. end if
17. end while
18. return β

11.1.81 Remark The parameter k controls the size of the window used to scan the bits of n. For
k = 1, Algorithm 11.1.80 coincides with the well-known square and multiply method. For
k > 1, Algorithm 11.1.80 relies on 2k−1 − 1 precomputed values obtained at a cost of 2k−1

multiplications. Given an `-bit exponent m, it requires `/(k+ 1) extra field multiplications,
on average [2305]. The size of the window k should therefore be selected to minimize the
quantity 2k−1 + `/(k+ 1). The number of squarings is independent of k and is equal to ` in
any case. Algorithm 11.1.80 is implemented in NTL [2633].

11.1.7.2 Extension fields

11.1.82 Remark The main difference with the prime field case is the existence of the Frobenius
automorphism that can be used in an extension field to speed up the computation of an
exponentiation.

11.1.83 Algorithm (Fast exponentiation in polynomial basis)

Input: Two polynomials f and g with coefficients in Fq such that deg f = n and
deg g < n, an exponent 0 < m < qn, and a positive integer r.

Output: The polynomial gm (mod f).
1. Write m in base qr as m = (m`−1 . . .m0)qr
2. for i = 0 to `− 1 do
3. Compute and store gmi (mod f)
4. end for
5. h← xq

r

(mod f) and t← 1
6. for i = `− 1 down to 0 do
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7. t← t(h) (mod f)
8. t← tgmi (mod f)
9. end for

10. return t

11.1.84 Remark Algorithm 11.1.83 relies on a generalization of the square and multiply method in
base qr. It is discussed in [1180] where r is set to be dn/ logq ne and where the computation of
the residues gmi (mod f) at Line 3 is done with the BGMW method [414]. The computation
t(h) (mod f) at Line 7 is a modular composition; see Remarks 11.1.85 and 11.1.86.

11.1.85 Remark The first nontrivial method to compute t(h) (mod f) is due to Brent and
Kung [401]. Assuming that deg h, deg t < deg f = n and that square matrices of di-
mension n can be multiplied with O(nw) field multiplications, the Brent–Kung approach
takes O(Mq(n)n1/2 + n(w+1)/2) field operations. With Mq(n) = O(nlog3 2) correspond-
ing to Karatsuba’s multiplication (Subsection 11.1.5), the overall complexity becomes
O(nlog3 2+1/2) = O(n2.085). If instead fast integer multiplication methods à la Schönhage–
Strassen [2559] are used, the complexity is O(n(w+1)/2). The natural bound w = 3 was
improved by Strassen who introduced a method with w = log2 7 < 2.8074 [2731]. The best
known upper bound is w < 2.3727 [2984, 2985].

11.1.86 Remark Umans proposed a completely different approach to perform a modular composi-
tion, based on multivariate multipoint evaluation [2836]. Initially, this work only addressed
characteristic at most no(1) but was later generalized to any characteristic by Umans and
Kedlaya [1721, 1722]. In any case, the asymptotic complexity is n1+o(1) log1+o(1) q bit oper-
ations, which is optimal up to lower order terms.

11.1.87 Remark For the particular case Fq = F2n and for r = dn/ log2 ne, the complexity of
Algorithm 11.1.83 becomes O(M2(n)n/ log n). This complexity does not depend on the
method, either [401] or [1722], used to perform the modular composition.

11.1.88 Remark To compute αm ∈ Fqn , where Fqn is represented using a normal basis over Fq, the
exponent m is again expressed in base qk, for some fixed k, in order to take advantage of
the Frobenius automorphism that allows one to compute αq with just a cyclic shift of the
coordinates of α. In this case, only Line 7 of Algorithm 11.1.83 needs to be modified and
replaced by t← tq

k

; see also Subsection 5.3.5.

11.1.89 Remark When Fq is an optimal extension field (Definition 11.1.59), the action of the Frobe-
nius automorphism can also be computed extremely efficiently, leading to very fast expo-
nentiation techniques; see [2097] and [661, Subsection 11.3.3].

11.1.8 Inversion

11.1.90 Remark There are two ways to compute the inverse of a field element α ∈ Fqn . If the
field is defined as a quotient set, we can use the extended Euclidean algorithm, see Algo-
rithm 11.1.92. Alternatively, Lagrange’s theorem implies that we have αq

n−2 = 1/α. This
last method is totally general but it is particularly adapted to finite fields defined with a
normal basis or when the action of the Frobenius automorphism α 7→ αq can be computed
efficiently.

11.1.91 Remark Let R be a Euclidean ring with Euclidean function ϕ. For elements a, b ∈ R, we
can always write a = bq + r with ϕ(r) < ϕ(b). In practice, R = Z with natural order < or
R = Fq[x] with the degree function. Assuming that b is a prime number or an irreducible
polynomial and a is an element such that ϕ(a) < ϕ(b), we then have gcd(a, b) = 1. The
Bézout identity au+ bv = 1, whose coefficients u and v are returned by Algorithm 11.1.92,
implies that au ≡ 1 (mod b), i.e., u is the inverse of a modulo b.
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11.1.92 Algorithm (Extended Euclidean Algorithm)

Input: Two elements a, b in a Euclidean ring R such that ϕ(a) < ϕ(b).
Output: Elements (u, v, d) in R such that au+ bv = d with d = gcd(a, b).

1. t← 0, u← 1, c← b, and d← a
2. while c 6= 0 do
3. Write d = cq + r with ϕ(r) < ϕ(c)
4. s← u− tq, u← t, t← s, d← c, and c← r
5. end while
6. v ← (d− au)/b
7. return (u, v, d)

11.1.93 Remark The division at Line 6 of Algorithm 11.1.92 is exact. Dedicated methods to compute
the quotient of an exact division are given in [1601, 1805].

11.1.94 Remark In a finite field, an inversion is in general considerably more expensive than a multi-
plication. When k elements a1, . . . , ak need to be inverted, a trick due to Montgomery [2133]
allows one to replace k inversions by one inversion and 3k−3 field multiplications. The prin-
ciple is to compute the inverse (a1 · · · ak)−1 and then multiply it by suitable precomputed
terms in order to recover successively each inverse individually. It was introduced initially
to speed up the elliptic curve factorization method and is therefore described for integers
defined modulo a composite number. However, this trick can be applied to any structure
where the notion of inverse exists. It is also presented in [660] and [661].

11.1.95 Remark In order to compute the division e/a, where e, a ∈ Fqn , one could invert a and
multiply the result by e. However, e/a can be obtained directly with Algorithm 11.1.92.
Simply replace u← 1 by u← e at Line 1.

11.1.8.1 Prime fields

11.1.96 Remark Algorithm 11.1.92 is usually preferred over Lagrange’s method to compute the
inverse of α modulo p. There are at least two reasons for that. Computing the exponentia-
tion αp−2 (mod p) requires on average twice as many arithmetic operations as the extended
Euclidean method [709]. Also, there are a number of improvements and variants of Algo-
rithm 11.1.92 that can be implemented to speed up its execution on different platforms.

11.1.97 Remark Algorithm 11.1.92 returns the inverse modulo p after O(log p) steps. When suitably
implemented, in particular if the precision of the Euclidean division is adjusted and decreases
with the size of its arguments d and c, then the overall time complexity is O(log2 p) [660,
Section 1.3]. In [1888], Lehmer suggests to replace the exact computation of the quotient q at
Line 3 of Algorithm 11.1.92 by an approximation obtained by dividing the most significant
digits of d and c. This remark has been explored further by many authors [710, 1602, 1903].

11.1.98 Remark In a variant introduced by Brent and Kung [402, 661], divisions are eliminated and
replaced by shifts, additions, and subtractions. This approach, known as the binary method
or the plus-minus method , is well-suited for architectures where a division is expensive. Not
surprisingly, the number of steps needed is still O(log p). Indeed, the quotient q at each step
of Algorithm 11.1.92 is small most of the time. The probability that q = 1 is close to 0.415
and q ≤ 5 in more than 77% of the cases [660].

11.1.99 Remark Schönhage [2557], improving on Knuth’s work [1766], showed how the ex-
tended Euclidean algorithm, and hence inversion, can be done asymptotically in time
O(M(log p) log log p); see also [3033] and [56] for a description of the method. Stehlé and
Zimmermann [2705] developed a binary recursive gcd method. Although it does not im-
prove on the O(M(log p) log log p) asymptotic complexity, its description, implementation,
and proof of correctness are simpler than Schönhage’s method.
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11.1.100 Remark A very simple approach presented in [2803] allows one to find an inverse modulo
p. Interestingly, it is not related to the extended Euclidean gcd method nor Lagrange’s
method. It is particularly efficient for certain types of primes, such as Mersenne primes.
The method is recalled in [661, Subsection 11.1.3].

11.1.101 Remark There is a notion of Montgomery inverse [2132], which completes the other op-
erations already existing in Montgomery representation; see Remarks 11.1.46 and 11.1.67,
and [1644, 2536] for additional improvements regarding the Montgomery inverse.

11.1.8.2 Extension fields

11.1.102 Remark As in the integer case, there is a binary version of Algorithm 11.1.92 that does
not require any division; see [436] for an efficient version in even characteristic.

11.1.103 Remark A notion of reduction in a finite field defined by a normal basis is discussed
in [2748]. It is then possible to compute the inverse of an element with a variant of Al-
gorithm 11.1.92. However, since the Frobenius automorphism can be evaluated for free
in a normal basis, Lagrange’s method, which computes α−1 as αq

n−2 is preferred. Algo-
rithm 11.1.104 follows this idea with an additional improvement, i.e., the use of addition
chains computing q − 2 and n− 1 [1576]. See [661, Section 9.2] for a definition of addition
chains and related techniques to find short chains.

11.1.104 Algorithm (Inversion using Lagrange’s theorem)

Input: An element α ∈ F∗qn , two addition chains, namely (a0, a1, . . . , as1) computing
q − 2 and (b0, b1, . . . , bs2) computing n− 1.

Output: The inverse of α, i.e., α−1 = αq
n−2.

1. Compute β ← αq−2 using the addition chain (a0, a1, . . . , as1)
2. T [0]← α× β
3. for i = 1 to s2 do
4. γ ← T [k]q

bj
where bi = bk + bj

5. T [i]← γ × T [j]
6. end for
7. γ ← T [s2]
8. return β × γq

11.1.105 Remark Algorithm 11.1.104 needs s1 + s2 + 2 multiplications in Fqn and 1 + b1 + · · ·+ bs2
applications of the Frobenius automorphism to compute α−1.

11.1.106 Remark Algorithm 11.1.104 is particularly well suited for q = 2. For q > 2, set r =
(qn−1)/(q−1) and decompose α−1 as α−rαr−1. Since r = qn−1+· · ·+q+1, it follows that αr

is the norm of α. Thus, it is in Fq and can be easily inverted. Also, αr−1 can be obtained with
at most n−1 evaluations of the Frobenius automorphism and at most n−2 multiplications
in Fq. This is the standard way to compute an inversion in an optimal extension field.
Further optimizations exist for specific extension degrees; see [661, Subsections 11.3.4 and
11.3.6] for more details and concrete examples.

11.1.9 Squares and square roots

11.1.107 Remark Computing square roots in Fpn efficiently is important in many applications and
is the subject of active research; see for instance [204, 1410, 1781, 2194]. In a finite field
of characteristic 2, every element is a square and it is straightforward to compute a square
root. In odd characteristic, not every element is a square. When it exists, a square root can
be computed in most cases with a closed formula. If that is not the case, and in fact in any
case, there are algorithms returning the result fairly efficiently.
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11.1.9.1 Finite fields of odd characteristic

11.1.108 Remark Let us assume that p is an odd prime number and that q is some power of p. We
know that F∗q is a cyclic group, generated by, say, γ. Because the cardinality of F∗q is even,
all the square elements in F∗q must be even powers of γ and all the nonsquare elements
correspond to the odd powers of γ. Thus, there are (q − 1)/2 squares and just as many
nonsquare elements in F∗q .

11.1.109 Remark To check if a nonzero element α is a square or not, it is enough to perform an
exponentiation. Indeed, α is a square if and only if α(q−1)/2 = 1. The outcome is −1 when
α is not a square.

11.1.110 Remark For the prime number p, we introduce the Legendre symbol denoted by
(
α
p

)
such

that
(

0
p

)
= 0 and

(
α
p

)
= α(p−1)/2 (mod p) otherwise; see Algorithm 11.1.111 for an efficient

way to compute
(
α
p

)
and thus decide if α is a square or not in Fp.

11.1.111 Algorithm (Legendre symbol)

Input: An integer α and an odd prime number p.
Output: The Legendre symbol

(
α
p

)
·

1. k ← 1
2. while p 6= 1 do
3. if α = 0 then
4. return 0
5. end if
6. v ← 0
7. while α ≡ 0 (mod 2) do
8. v ← v + 1 and α← α/2
9. end while

10. if v ≡ 1 (mod 2) and p ≡ ±3 (mod 8) then
11. k ← −k
12. end if
13. if α ≡ 3 (mod 4) and p ≡ 3 (mod 4) then
14. k ← −k
15. end if
16. r ← α, α← p (mod r), and p← r
17. end while
18. return k

11.1.112 Remark Algorithm 11.1.111 relies on a quadratic reciprocity law that allows one to reduce
the size of the operands in a way that is similar to the computation of the gcd with Euclid’s
algorithm.

11.1.113 Remark The evaluation of
(
α
p

)
via the exponentiation α(p−1)/2 (mod p) has complexity

O(log3 p) with the square and multiply method. By contrast, Algorithm 11.1.111 has com-
plexity O(log2 p). In [407], Brent and Zimmermann describe a new algorithm to compute(
α
p

)
with complexity O(M(log p) log log p).

11.1.114 Remark There is a generalization of the Legendre symbol for the elements of Fpn . Let
f ∈ Fp[x] be an irreducible polynomial of degree n and let g ∈ Fp[x]. The Legendre symbol
for polynomials, again denoted by

(
g
f

)
satisfies

(
0
f

)
= 0 and

(
g
f

)
= g(q−1)/2 (mod f) for

nonzero g. Algorithm 11.1.115 relies also on a quadratic reciprocity law, quite similarly to
Algorithm 11.1.111, and allows to efficiently determine if g is a square or not modulo f .
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11.1.115 Algorithm (Legendre symbol for polynomials)

Input: A polynomial g ∈ Fp[x] and an irreducible polynomial f ∈ Fp[x].
Output: The Legendre symbol for polynomials

(
g
f

)
·

1. k ← 1
2. repeat
3. if g = 0 then
4. return 0
5. end if
6. a← the leading coefficient of g
7. g ← g/a
8. if deg f ≡ 1 (mod 2) then
9. k ←

(
a
p

)
k

10. end if
11. if pdeg f ≡ 3 (mod 4) and deg f deg g ≡ 1 (mod 2) then
12. k ← −k
13. end if
14. r ← g, g ← f (mod r), and f ← r
15. until deg f = 0
16. return k

11.1.116 Remark Once we know that a nonzero element α ∈ Fp is a square, it may be necessary to
compute a square root of α, i.e., an element ρ ∈ Fp, satisfying ρ2 = α. If ρ is one square root,
then −ρ is the other one and there exist closed formulas to compute ρ in most cases [660,
Section 1.5]. Indeed, we have

1. ρ = ±α(q+1)/4, if q ≡ 3 (mod 4);

2. ρ = ±α(q+3)/8, if q ≡ 5 (mod 8) and α(q−1)/4 = 1;

3. ρ = ±2α(4α)(q−5)/8 (mod p), if q ≡ 5 (mod 8), α(q−1)/4 = −1, and q is an odd
power of p.

11.1.117 Remark For the other cases, i.e., when q ≡ 1 (mod 8) or when q ≡ 5 (mod 8), α(q−1)/4 =
−1, and q is an even power of p, there exist several polynomial time methods to compute
a square root. The most efficient factorization methods, applied to the polynomial x2 − α,
return a square root of α in Fq using O(log q) field operations; see Remark 11.4.3. There
are also dedicated methods, such as Tonelli and Shanks algorithm [660], which returns a
square root in the prime field Fp in time O(log4 p). Another example is Algorithm 11.1.118,
which is a generalization of Cipolla’s method [751, Subsection 2.3.9]. Algorithm 11.1.118 is
remarkably simple and easy to implement. It works in the quadratic extension Fq2 and also
requires O(log q) field operations.

11.1.118 Algorithm (Square root computation)

Input: A square α in Fq.
Output: A square root ρ ∈ Fq of α.

1. repeat
2. Choose β ∈ Fq at random
3. until β2 − 4α is not a square in Fq
4. T ← x2 − βx+ α
5. ρ← x(q+1)/2 (mod T )
6. return ρ
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11.1.9.2 Finite fields of even characteristic

11.1.119 Remark Every element α ∈ F2n is a square and the square root ρ of α can be easily
obtained thanks to the multiplicative structure of F∗2n , which implies that ρ = α2n−1

. With
a normal basis, the computation is immediate. Using a polynomial representation, modulo
an irreducible polynomial f , there is a different approach. If α is represented by

∑n−1
i=0 gix

i,
then observe that √

α =
∑
i even

gix
i/2 +

√
x
∑
i odd

gix
i−1

2

where
√
x has been precomputed modulo f . We note that

√
x can be obtained very easily

when f is a trinomial of odd degree; see [661, Subsection 11.2.6].

11.1.120 Remark Unlike for finite fields of odd characteristic, solving a quadratic equation in F2n is
more involved than just extracting square roots. Considering the polynomial x2 + x+ β in
F2n [x], we can show that it has a root in F2n if and only if the trace of β is zero. In that
case, a solution τ is given by

τ =

(n−3)/2∑
i=0

β22i+1

when n is odd. When n is even, τ satisfies

τ =

n−1∑
i=0

(
i∑

j=0

β2j

)
ω2i

where ω ∈ F2n is any element of trace 1. In any case, the other solution is τ + 1. Reference
[1088] gives techniques to speed up the computation of a square root in characteristic two
at the expense of extra storage.

See Also

§3.4 For discussion on the weights of irreducible polynomials.
§5.3 For discussion on optimal and low complexity normal bases.
§11.6 For discussion on discrete logarithms.
§16.4 For discussion on elliptic cryptographic systems.
§16.5 For discussion on hyperelliptic cryptographic systems.
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11.2 Univariate polynomial counting and algorithms

Daniel Panario, Carleton University

We∗ give basic counting estimates for univariate polynomials over finite fields. First, we
provide some classical counting results. Then we focus on a methodology based on analytic
combinatorics that allows the derivation of many nontrivial counting results. A series of
counting results for univariate polynomials over finite fields, some of them linked to the
analysis of algorithms, is then provided.

11.2.1 Classical counting results

11.2.1 Remark The most classical counting estimate is for the number In of monic irreducible
polynomials of degree n over Fq; see Theorem 2.1.24. (We observe that in the results of
this section there is only one finite field involved, and so we drop the notation Iq(n) for the
simpler one In. Sometimes, however, we let q go to infinity.)

11.2.2 Theorem For all n ≥ 1 and any prime power q, we have

In =
1

n

∑
d|n

µ(d)qn/d =
qn

n
+O

(
qn/2

n

)
.

11.2.3 Remark Since In > 0 for any prime power q and integer n > 1 and the number of monic
polynomials of degree n over Fq is qn, then the probability of a polynomial being irreducible
is close to 1/n. This probability tends to zero with n→∞.

11.2.4 Remark A polynomial is squarefree if it has no repeated factors. The number of squarefree
polynomials over Fq was first given by Carlitz [537].

11.2.5 Theorem [537] Let Qn be the number of squarefree polynomials of degree n over Fq. Then,

Qn =

{
qn − qn−1 for n ≥ 2,

qn for n = 0, 1.

11.2.6 Remark Theorem 11.2.5 implies, for n ≥ 2, that the proportion of squarefree polynomials
is 1− 1/q. As a consequence, for large finite fields Fq most polynomials are squarefree.

11.2.7 Remark Let us consider the number of irreducible factors of fixed degree d in a random
polynomial of degree n over Fq. Zsigmondy [3083] concentrates on the prime field case Fp
and gives results for the number of monic polynomials having no irreducible factors of degree

∗Originally, this section was to be written by Philippe Flajolet and the author, but sadly, Philippe passed
away before we started working on it. This section is dedicated to the memory of my friend Philippe
Flajolet, for all his many lessons and guidance.
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d, 1 ≤ d ≤ n, and for the number of monic polynomials having a given number of distinct
roots. We will return to this problem in Subsection 11.2.3.2.

11.2.8 Remark The notes at the end of Chapter 4 of Lidl and Niederreiter’s book [1939] point to
several classical counting references published before 1983.

11.2.9 Remark Other classical results related to polynomials with prescribed trace or norm and
to self-reciprocal polynomials are given in Sections 3.1 and 3.5, respectively.

11.2.10 Remark As a final classical estimate we consider the probability that two polynomials are
coprime. It has been known since at least the 1960s (see Berlekamp [231] and Knuth [1765])
but most likely for a long time before then, that with probability 1 − 1/q, the greatest
common divisor of two polynomials over a finite field is 1, independently of the degrees of the
polynomials. This result has been reinvented a large number of times. In Subsection 11.2.3.4,
a much more precise refinement of this classical result is given.

11.2.2 Analytic combinatorics approach

11.2.11 Remark Flajolet has made major methodological contributions to the research area known
as analytic combinatorics. Among other things, analytic combinatorics provides a general
methodology that can be successfully applied to the analysis of algorithms from many di-
verse areas. Its main and classical reference is the book by Flajolet and Sedgewick [1083]. In
this section this general framework is presented only in relation to polynomials over a finite
field Fq although it can be used in much more general settings. For a longer introduction to
this methodology and its application to the analysis of polynomial factorization algorithms
see Flajolet, Gourdon, and Panario [1080].

11.2.12 Remark This framework has two basic components: generating functions to express, com-
binatorially, properties of interest, and asymptotic analysis for the derivation of estimates
when exact extraction of coefficients is not possible. The studied properties could be for pure
mathematical interest or for their application to the analysis of algorithms for polynomials
over finite fields [1080, 2347].

11.2.13 Remark Generating functions for counting some properties of polynomials over finite fields
have been previously used in some specific cases by Berlekamp [231, Chapter 3], Knuth
[1765, Subsection 4.6.2], and Odlyzko [2306]. The global usage of this technique to count
many interesting expressions, and its usage in the analysis of polynomial over finite fields
algorithms, only became possible after the establishment of analytic combinatorics [1083].

11.2.14 Definition Let In be the number of monic irreducible polynomials of degree n in Fq.
The generating functions of monic irreducible polynomials and monic polynomials are,
respectively,

I(z) =
∑
j≥1

Ijz
j , and P (z) =

∑
j≥0

Pjz
j .

We denote by [zn]T (z) the coefficient of zn in the generating function T (z).
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11.2.15 Proposition We have

P (z) =
∏
k≥1

(1 + zk + z2k + · · · )Ik =
∏
k≥1

(1− zk)−Ik .

11.2.16 Remark Since [zn]P (z) is qn, it follows that P (z) = (1 − qz)−1. This expression and the
one in Proposition 11.2.15 implicitly determine that In satisfies

In =
1

n

∑
k|n

µ(k)qn/k.

11.2.17 Remark Carlitz’s result [537] for squarefree polynomials (Theorem 11.2.5) can be easily
recovered under this framework. Indeed, the generating function for squarefree polynomials
is

Q(z) =
∏
k≥1

(
1 + zk

)Ik
.

Moreover, considering the multiplicity of its irreducible factors, each polynomial f factors
as f = st2, where s is squarefree and t is an arbitrary polynomial. We thus have P (z) =
Q(z)P (z2), and therefore,

Q(z) =
P (z)

P (z2)
=

1− qz2

1− qz .

Carlitz’s estimate, given in Theorem 11.2.5, can be recovered after extracting coefficients
from Q(z).

11.2.18 Remark Generating functions encode exact counting information in their coefficients. How-
ever, their extraction from a given generating function is in general a difficult task. Neverthe-
less, when considering generating functions as analytic functions, their behavior near their
dominant singularities (those with smallest modulus) is an important source of information
to extract coefficient asymptotics as their index tends to infinity.

11.2.19 Remark Most of the generating functions f(z) of interest in this section are singular at
z = 1/q with an isolated singularity of the algebraic-logarithmic type. In that case, we can
apply the following important result due to Flajolet and Odlyzko [1081].

11.2.20 Theorem [1081] Let f(z) be a function analytic in a domain

D = {z : |z| ≤ z1, |Arg(z − 1/q)| > π/2− ε},

where z1 > 1/q and ε are positive real numbers. Let k ≥ 0 be any integer, and α a real
number with α 6= 0,−1,−2, . . .. If in a neighborhood of z = 1/q, f(z) has an expansion of
the form

f(z) =
1

(1− qz)α
(

log
1

1− qz

)k
(1 + o(1)),

then the coefficients satisfy, asymptotically as n→∞,

[zn]f(z) = qn
nα−1

Γ(α)
(log n)k (1 + o(1)).
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11.2.21 Remark This theorem requires analytic continuation of f(z) outside its circle of conver-
gence. However, there are some situations in which generating functions do not satisfy this
hypothesis. For instance in some of the generating functions related to smooth polynomials
(Subsection 11.2.3.3) analytic continuation is not possible. Saddle point methods are used
in these cases. All asymptotic enumeration methods required in this section are explained in
detail in the excellent presentations by Flajolet and Sedgewick [1083] and Odlyzko [2307].

11.2.3 Some illustrations of polynomial counting

11.2.22 Remark We list several results that are mostly derived in the framework of analytic com-
binatorics.

11.2.23 Remark Bivariate generating functions are used to study important parameters of inter-
est. The exact counting problem is now refined with two parameters, namely, the degree
of the polynomial and an additional property to be studied (for example, the number of
its irreducible factors). With an appropriate normalization, successive differentiation of the
bivariate generating function with respect to the additional parameter (evaluated at 1)
gives the factorial moments of interest. The classical book by Flajolet and Sedgewick [1083]
presents a comprehensive explanation of this methodology. The complete study of the num-
ber of irreducible factors of a random polynomial is presented below as an example.

11.2.3.1 Number of irreducible factors of a polynomial

11.2.24 Remark Let us consider the bivariate generating function

P (u, z) =
∏
j≥1

(1 + uzj + u2z2j + · · · )Ij =
∏
j≥1

(1− uzj)−Ij ,

where [ukzn]P (u, z) is the number of polynomials of degree n with k irreducible factors.
Successive differentiation of P (u, z) with respect to u (evaluated at u = 1) give univariate
generating functions for the factorial moments of this parameter. Asymptotic analysis of
these univariate generating functions gives an expectation of logn and standard deviation√

log n. More can be said for this problem as the next theorem states. Flajolet and So-
ria [1084] prove that the number of irreducible factors in a random polynomial over a finite
field satisfies a central limit theorem with mean and variance asymptotic to logn. We note
that this result is equivalent to the Erdös-Kac theorem stating that the number of prime
factors in a random integer at most n satisfies a central limit theorem with mean and vari-
ance asymptotic to log log n. We refer to Subsection 11.2.3.5 for analogies among irreducible
decompositions of polynomials over finite fields, prime decompositions of integers, and cycle
decompositions of permutations.

11.2.25 Theorem Let Ωn be a random variable counting the number of irreducible factors of a
random polynomial of degree n over Fq, where each factor is counted with its order of
multiplicity.

1. The mean value of Ωn is asymptotic to log n [231, 1765].

2. The variance of Ωn is asymptotic to log n [1084, 1765].
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3. For any two real constants λ < µ, we have [1084]

Pr
{

log n+ λ
√

log n < Ωn < log n+ µ
√

log n
}
→ 1√

2π

∫ µ

λ

e−t
2/2dt.

4. The distribution of Ωn admits exponential tails [1085].

5. A local limit theorem holds [1190].

6. The behavior of Pr{Ωn = m} for all m is known [509, 665, 1564].

11.2.3.2 Factorization patterns

11.2.26 Remark As a first example of a factorization pattern, let us consider the number of irre-
ducible factors in a random polynomial of a given fixed degree. As it is indicated in Remark
11.2.7, the number of roots was studied by Zsigmondy [3083] for prime fields. Knopfmacher
and Knopfmacher [1760] present a detailed analysis, for any finite field, including variance.

11.2.27 Remark The case of polynomials with no roots is interesting when studying the distinct
values that a polynomial can take. This is related to permutation polynomials (Section 8.1)
and was studied by Uchiyama [2833]; see also [670].

11.2.28 Remark The generating function of polynomials with no linear factors is

∏
k≥2

(
1

1− zk
)Ik

=
1

1− qz (1− z)I1 =
1

1− qz (1− z)q.

As a consequence, the number of polynomials of degree n with no irreducible factors of
degree 1 is asymptotic, as n→∞, to qn(1− 1/q)q. That is, the probability of a polynomial
with no linear factor tends to 1/e = 0.3678 . . . when q grows. This implies that “most”
polynomials are reducible and have at least one irreducible linear factor.

11.2.29 Remark The number of irreducible factors of a given degree d in a polynomial of degree n
was studied by Williams [2983]. In [1761] can be found a detailed analysis of this problem
as well as a determination of the variance, in both the cases where repetitions are allowed,
and where they are not allowed.

11.2.30 Remark Knopfmacher, Knopfmacher, and Warlimont [1762] provide the mean and variance
of what they call the “length” of a general factorization pattern by studying the number of
polynomial factorizations into exactly k factors.

11.2.31 Remark When factoring univariate polynomials (Section 11.4) using the method based on
the squarefree, distinct-degree, and equal-degree factorizations, it is relevant to determine if
a polynomial has all its irreducible factors of different degrees. In this case, the third stage,
the “equal-degree factorization,” is not required.

11.2.32 Theorem [1080, 1763] The probability that all irreducible factors of a random polynomial
of degree n over Fq have different degrees (but with single factors possibly repeated) is
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asymptotic to

cq =
∏
k≥1

(
1 +

Ik
qk − 1

)
(1− q−k)Ik ,

where c2 = 0.6656 . . . , c257 = 0.5618 . . . , c∞ = e−γ = 0.5614 . . ., where γ is Euler’s
constant.

11.2.33 Remark Several related results used in the analysis of polynomial factorization algorithms
can be found in [1080]. Recent fast factorization algorithms like [1226, 1239, 1667] require
a study of the distribution of irreducible factors in parts of interval partitions of [1, n]. See
von zur Gathen, Panario, and Richmond [1235] for first steps towards an understanding of
these advanced algorithms.

11.2.3.3 Largest and smallest degree irreducibles

11.2.34 Remark Information on the degrees of the largest irreducible factors is crucial to measure
stopping rules for factorization algorithms [1080]. Information on the degrees of the smallest
irreducible factors helps in the analysis of irreducible test algorithms [2349, 2350].

11.2.35 Remark A random polynomial of degree n has with high probability several irreducible

factors whose degrees sum to near n; see Theorem 11.2.37 and Remark 11.2.38. Let D
[j]
n be

the j-th largest degree of the factors of a random polynomial of degree n in Fq. Car [510] ob-

tained an asymptotic expression for the cumulative distribution function of D
[1]
n in terms of

the Dickman function. This number-theoretic function was originally introduced to describe
the distribution of the largest prime divisor of a random integer [2788].

11.2.36 Definition The Dickman function is defined as the unique continuous solution of the
difference-differential equation

ρ(u) = 1 (0 ≤ u ≤ 1), uρ
′
(u) = −ρ(u− 1) (u > 1).

11.2.37 Theorem The distribution of the largest degree D
[1]
n satisfies for all x ∈ (0, 1):

lim
n→∞

Pr{D[1]
n ≤ x} = F1(x),

where F1(x) = ρ(1/x) and ρ denotes the Dickman function. In particular, one has E(D
[1]
n ) ∼

gn, where g = 0.62432 . . . is known as the Golomb-Dickman constant.

11.2.38 Remark The most complete results about D
[j]
n , for any fixed positive integer j, are due

to Gourdon [1341]; see also [1080]. For instance, we also have E(D
[2]
n ) ∼ 0.20958 . . . n, and

E(D
[3]
n ) ∼ 0.08831 . . . n.

11.2.39 Remark Information on the relation between the first and second largest degree irreducible
factors is used to compute the average-case analysis of the classical factorization method
based on squarefree, distinct-degree, and equal-degree factorization under the “early-abort”
stopping strategy [1080]. This also requires information on the joint distribution of the first
two largest degree irreducible factors.
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11.2.40 Remark Estimates for the largest degree of the irreducible factors are related to the study
of smooth polynomials that play an important role in the discrete logarithm problem in
finite fields, especially in the index calculus method; see Section 11.6.

11.2.41 Definition A polynomial of degree n over Fq is m-smooth if all its irreducible factors have
degree at most m.

11.2.42 Remark In the index calculus method a search is repeated until an m-smooth polynomial is
found. Hence, the analysis of the index calculus method requires information on the number
of polynomials that are m-smooth. The generating function for the number Nq(m;n) of
monic polynomials over Fq of degree n which are m-smooth is

Sm(z) =
∑
n≥0

Nq(m;n) zn =
m∏
k=1

(
1

1− zk
)Ik

.

For the cryptographic applications, m tends to infinity with n. More precisely, we have
m =

√
n log n/

√
2 log 2; see [2306]. Hence, singularity analysis does not apply since analytic

continuation is not possible. Odlyzko [2306] uses the saddle point method for deriving an
asymptotic estimate for the numbers Nq(m;n) as n → ∞, uniformly for m in the range
n1/100 ≤ m ≤ n99/100. (Actually, his results hold for nδ ≤ m ≤ n1−δ, where δ > 0.)

11.2.43 Remark A variant of the index calculus method over F2n (the Waterloo algorithm) was
introduced in [306]; see also [2306]. It improves the running time of the method but it does
not improve its asymptotic order. The running time was proven rigorously by Drmota and
Panario [921] using a bivariate saddle point analysis that follows closely Odlyzko’s estimates
in [2306].

11.2.44 Remark For related estimates for the index calculus method without using smooth poly-
nomials see [1212, 1213]. The fastest variant of the index calculus method for F2n is still
due to Coppersmith [717]; see Section 11.6 for more details and references.

11.2.45 Remark We focus now on the smallest degrees of the irreducible factors of a polynomial.
These estimates are useful, for example, to analyze Ben-Or’s irreducible test; see Section
11.3. This analysis requires the study of the probability that a random polynomial of degree
n contains no irreducible factors of degree up to a certain value m (such polynomials are
sometimes called m-rough) and are related to the Buchstab function.

11.2.46 Definition The Buchstab function is the unique continuous solution of the difference-
differential equation

uω(u) = 1 1 ≤ u ≤ 2, (uω(u))
′

= ω(u− 1) u > 2.

11.2.47 Remark This function was introduced by Buchstab [442] when studying the analogous
problem for integer numbers, that is, numbers with no small prime factors. This function
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has been largely studied [2788]. It is known that it tends quickly to e−γ = 0.56416 . . ., where
γ is Euler’s constant.

11.2.48 Remark Car [510] gives estimates for m-roughness that depend on the Buchstab function
for m large with respect to n, say m > c1 n log logn/ log n. Gao and Panario [1187] show
that for m small with respect to n, say m < c2 log n, the estimate e−γ/m holds; see also
[2351].

11.2.49 Remark The study of the probability that a random polynomial ism-rough for the complete
range 1 ≤ m ≤ n, is given by Panario and Richmond [2352]. The estimates are in terms
of the Buchstab function when m→∞. When m is fixed Flajolet and Odlyzko singularity
analysis is applied.

11.2.50 Theorem [2352] The smallest degree Sn among the irreducible factors of a random poly-
nomial of degree n over Fq satisfies

Pr(Sn ≥ m) =
1

m
ω
( n
m

)
+O

(
max

{
1

m2
,

log n

mn

})
,

when m tends to infinity with n.

11.2.51 Remark Using Theorem 11.2.50 it is not difficult to prove that the expected smallest
degree among the irreducible factors of a random polynomial is asymptotic to e−γ log n
[2352]. More generally, the expected r-th smallest degree among the irreducible factors of a
random polynomial is asymptotic to e−γ logr n/r!.

11.2.3.4 Greatest common divisor of polynomials

11.2.52 Remark As it is pointed out in Remark 11.2.10 two polynomials over Fq are coprime with
probability 1 − 1/q. Much more can be said about the distribution of the degrees of the
irreducible factors in the gcd of several polynomials. Indeed, the limiting distribution of a
random variable counting the total degree of the greatest common divisor of two or more
random univariate polynomials over the finite field Fq is geometric, and the distributions of
random variables counting the number of common factors (with and without repetitions)
are very close to Poisson distributions when q is large. The main reference for these results,
from where we extract a couple of main theorems, is [1189]. For simplicity we state the
results for two polynomials but they immediately generalize to several polynomials.

11.2.53 Theorem [1189] Let us consider two polynomials over Fq of degrees n1 and n2, respectively,
and the random variables Zd(n1, n2) for the number of distinct irreducible factors in the
gcd, Zr(n1, n2) for the number of irreducible factors in the gcd counting repetitions, and
Zt(n1, n2) for the total degree of the gcd of the two polynomials. Then, as n1 → ∞ and
n2 →∞ and for I(z) the generating function of irreducible polynomials, we have

1. the probability generating function for Zd is

PD(u) = exp

−∑
m≥1

(1− u)m

m
I
(
q−2m

) ;
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2. the probability generating function for Zr is

PR(u) = exp

∑
m≥1

um − 1

m
I(q−2m)

 ;

3. the probability generating function for Zt is

PT (u) =
q − 1

q − u.

11.2.54 Remark As a corollary we obtain, for example, the probability that the gcd has zero
(coprime polynomials), one or two irreducible factors:

P (Zr = 0) = 1− 1/q,

P (Zr = 1) = (1− 1/q)I(1/q2), and

P (Zr = 2) = (1/2)(1− 1/q)
(
I2(1/q2) + I(1/q4)

)
.

We also obtain, from the total degree results, that the probability that the gcd has degree
k is asymptotic to q−k(1− q−1) as the degrees grow.

11.2.55 Remark Exact values of these probabilities can be computed for small values of the degrees
n1 and n2 and of field size q. For tables of probabilities for a few common irreducible factors
(counted with, or without repetitions), and for the mean and variance of Zd and Zr for small
values of q, see [1189].

11.2.3.5 Relations to permutations and integers

11.2.56 Remark There are several analogies among the irreducible decomposition of polynomi-
als over finite fields, the prime decomposition of integers, and the cycle decomposition of
permutations. We exemplify below with several specific results and then give a heuristic
argument to justify these analogies.

11.2.57 Remark We focus first on the splitting degree of a random polynomial of degree n over Fq.
Let λ be a partition of n (denoted λ ` n) and write λ in the form

[
1k12k2 · · ·nkn

]
where λ

has ks parts of size s. We say that a polynomial is of shape λ if it has ks irreducible factors
of degree s for each s, 1 ≤ s ≤ n. Let w(λ, q) be the proportion of polynomials of degree
n over Fq which have shape λ. Let m(λ) be the least common multiple of the sizes of the
parts of λ. Then the degree of the splitting field over Fq of a polynomial of shape λ is m(λ).
The average degree of a splitting field is then given by

En(q) :=
∑
λ`n

w(λ, q)m(λ).

11.2.58 Remark [901] Consider the following classes of polynomials:

1. M1(q): the class of all monic polynomials over Fq. In this class the number of
polynomials of degree n is qn.

2. M2(q): the class of all monic square-free polynomials over Fq. In this class the
number of polynomials of degree n is (1− q−1)qn.
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3. M3(q): the class of all monic square-free polynomials over Fq whose irreducible
factors have distinct degrees. In this class the number of polynomials of degree
n is a(n, q)qn where, a(n, q)→ a(q) :=

∏
k≥1(1 + Ikq

−k) exp(−1/k) as n→∞.

Let us define, for x > 0,

Φn(x) :=

{
λ ` n :

∣∣∣∣logm(λ)− 1

2
(log n)2

∣∣∣∣ > x√
3

(log n)3/2

}
.

11.2.59 Theorem [901] Fix one of the classes Mi(q) described above. For each λ ` n, let w(λ, q)
denote the proportion of polynomials in this class whose factorizations have shape λ. Then
there exists a constant c0 > 0 (independent of the class) such that for each x ≥ 1 there
exists n0(x) such that∑

λ∈Φn(x)

wi(λ, q) ≤ c0e−x/4 for all q and all n ≥ n0(x).

In particular, almost all polynomials of degree n over Fq in Mi(q) have splitting fields of
degree exp(( 1

2 + o(1))(log n)2), as n→∞.

11.2.60 Theorem [901] In each of the classes described above the average degree En(q) of a splitting
field of a polynomial of degree n in that class satisfies

logEn(q) = C

√
n

log n
+ O

(√
n log log n

log n

)
,

uniformly in q, and for C = 2.99047... an explicitly defined constant.

11.2.61 Remark The constant C in the above theorem was obtained by Goh and Schmutz [1290]
and Stong [2724] in their study of the analogous problem in the symmetric group Sn. A
permutation in Sn is of type λ =

[
1k12k2 · · ·nkn

]
if it has exactly ks cycles of length s for

each s, and its order is then equal to m(λ). If w(λ) denotes the proportion of permutations
in Sn which are of type λ, then the average order of a permutation in Sn is equal to
En :=

∑
λ`n w(λ)m(λ). We can think of m(λ) as a random variable where λ ranges over

the partitions of n and the probability of λ is w(λ). Properties of the random variable m(λ)
(and related random variables) under the distribution w(λ) have been studied by Erdös and
Turán [983, 984, 985, 986]. In particular, the distribution of logm(λ) is approximated by a
normal distribution with mean 1

2 (log n)2 and variance 1
3 (log n)3 in a precise sense [985].

11.2.62 Remark There is a general heuristic that Flajolet, Gourdon, and Panario [1080] call the
permutation model. Probabilistic properties of the decomposition of polynomials into irre-
ducible factors are expected to have a shape resembling (as q →∞) that of the correspond-
ing properties of the cycle decomposition of permutations. As the cardinality q of the finite
field Fq goes to infinity (with n staying fixed!), the joint distribution of the degrees of the
irreducible factors in a random polynomial of degree n converges to the joint distribution
of the lengths of cycles in a random permutation of size n. As stated in [1080]: This prop-
erty is visible at the generating functions level when any generating function of polynomials
taken at z/q converges (as q →∞) to the corresponding exponential generating function of
permutations. For example, the generating function of monic polynomials, when normalized
with the change of variable z 7→ z/q, is the exponential generating function of permutations:

P

(
z

q

)
=

1

1− z =
∞∑
n=1

n!
zn

n!
.
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Similarly, we have

I

(
z

q

)
→

(q→∞)
log

1

1− z =
∞∑
n=1

(n− 1)!
zn

n!
,

the exponential generating function for the number of cycles in permutations.

11.2.63 Remark Several of the results for polynomials and permutations have been generalized to
problems in the exp-log combinatorial class; see for instance [1084, 1085, 1341, 1342, 2351].
The exp-log class includes problems such as 2-regular graphs, several types of permutations,
random mappings (functional digraphs), polynomials over finite fields, random mappings
patterns for unlabelled objects, and arithmetical semigroups.

11.2.64 Remark Relations between the irreducible decomposition of polynomials over finite fields
and the prime decomposition of integers are discussed in detail in Section 13.1.

See Also

§3.1 For formulas for self-reciprocal polynomials.
§3.5 For formulas for irreducible polynomials with prescribed coefficients.
§11.3 For irreducible test algorithms.
§11.4 For polynomial factorization algorithms.
§11.6 For the index calculus method for discrete logarithms.
§13.1 For relations between polynomials over finite fields and integers.
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2352, 2724, 2788, 2833, 2983, 3083]

11.3 Algorithms for irreducibility testing and for construct-
ing irreducible polynomials

Mark Giesbrecht, University of Waterloo

11.3.1 Introduction

We consider the problem of testing polynomials for irreducibility and constructing irre-
ducible polynomials of prescribed degree. Such constructions are essential in many compu-
tations with finite fields, including cryptosystems, error-correcting codes, random number
generators, combinatorial designs, complexity theory, and many other mathematical com-
putations. In particular, they allow us to construct finite fields of specified order. We confine
ourselves to univariate polynomials in this section. Factorization algorithms and irreducibil-
ity tests for multivariate polynomials are discussed in Section 11.5.
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11.3.1 Definition The following notation will be used in the analyses of algorithms.

M(n) : N→ N is defined such that two polynomials over a field F of degree at most n
can be multiplied with O(M(n)) operations in F. M(n) = n2 using the “school”
method, while M(n) = n log n log log n for FFT-based methods [498].

MM(n) : N → N is defined such that two n × n matrices over a field F can be
multiplied with O(MM(n)) operations in F. Using the standard algorithm,
MM(n) = n3 and MM(n) = n2.3727 for the best currently known algorithm
[2985].

For f, g : R→ R, f = O (̃g) if f = O(g(log |g|)c) for some absolute constant c ≥ 0.

11.3.2 Early irreducibility tests of univariate polynomials

11.3.2 Remark An essential early construction for certifying irreducibility, as well as for factoring,
was established by Petr in 1937 [2391], though it was not presented in algorithmic terms.

11.3.3 Definition Let f ∈ Fq[x] be a squarefree polynomial of degree n over a finite field Fq. The
Petr/Berklekamp matrix Q ∈ Fn×nq of f is defined such that

xiq ≡
∑

0≤j<n

Qijx
j (mod f).

This is the matrix representation of the Frobenius map (a 7→ aq (mod f)) on the basis
〈1, x, x2, . . . , xn−1〉 for Fq[x]/(f).

11.3.4 Theorem [2391, 2567, 2570] Let f = fe11 · · · fekk ∈ Fq[x], for irreducible f1, . . . , fk ∈ Fq[x],
have Petr/Berlekamp matrix Q ∈ Fn×nq . The characteristic polynomial det(Q− λI) ∈ Fq[x]
of Q satisfies

det(Q− λI) = (−1)n

 ∏
1≤i≤k

(λei − 1)

 · λ(e1−1)···(ek−1).

11.3.5 Remark Theorem 11.3.4 could, in principle, have been cast as an algorithm for testing irre-
ducibility with the technology of the day, using the method for computing the characteristic
polynomial of a matrix by Danilevsky [768] from 1937. The characteristic polynomial of Q
has the form xn − 1 for an irreducible polynomial.

11.3.6 Remark In 1954 Butler [468] presented an explicit method for determining the number of
irreducible factors of a polynomial based on the following theorem.

11.3.7 Theorem [468] Let f ∈ Fq[x] have degree n, with Petr/Berlekamp matrix Q ∈ Fn×nq . Then
rank(Q− I) = n−k, where k is the number of distinct irreducible factors of f . A squarefree
f is irreducible if and only if rank(Q− I) = n− 1.

11.3.8 Remark The Petr/Butler approach is developed into a complete algorithm for polynomial
factorization by Berlekamp [230] in 1967. While the cost of Butler’s method was not analyzed
in the modern sense, it is straightforward that constructing Q and taking the rank of Q− I
would cost O(M(n)(n+ log q) + MM(n)) or O (̃n log q + MM(n)) operations in Fq.
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11.3.3 Rabin’s irreducibility test

11.3.9 Remark In 1980, Rabin [2434] based a more efficient test around the following theorem. It
was originally presented for polynomials over prime fields, but works for polynomials over
any finite field Fq.

11.3.10 Theorem A polynomial f ∈ Fq[x] of degree n ≥ 1 is irreducible if and only if

1. f |xqn − x, and

2. gcd(xq
m − x, f) = 1 for all divisors m of n.

11.3.11 Algorithm: Rabin’s Irreducibility Test [2434]

Input: f ∈ Fq[x] of degree n

Output: “Irreducible” if f is irreducible in Fq[x]; “Reducible” otherwise

1. If (xq
n

rem f) 6= x then return “Reducible”

2. For all prime factors d of n do

3. h← xq
n/d

rem f

4. If gcd(h− x, f) 6= 1 return “Reducible”

5. Return “Irreducible”

11.3.12 Remark For h ∈ Fq[x], h rem f is defined as the unique polynomial of degree less than that
of f which is equivalent to h modulo f .

11.3.13 Remark Using repeated squaring to compute powers (see Section 11.1), and the fact
that n has at most log2 n prime factors, Rabin [2434] provides a cost estimate of
O(n2 log2(n) log log(n) log(q)) operations in Fq to test irreducibility of a polynomial. A
similar, alternative algorithm based on the Petr/Berlekamp matrix is presented by Calmet
and Loos [482].

11.3.14 Remark Panario and Gao [1187] show that a slight variant of Rabin’s algorithm requires
O(nM(n) log q + M(n) log2 n) operations in Fq, deterministically.

11.3.15 Remark The fast modular composition algorithm of von zur Gathen and Shoup [1239]
allows us to compute xq

m

from xq using O((MM(n1/2)n1/2 + n1/2M(n)) logm) operations
in Fq. Employing this in Rabin’s algorithm gives an algorithm for testing irreducibility which
requires O(M(n) log q+ (MM(n1/2)n1/2 + n1/2M(n) log2 n)) or O (̃MM(n1/2)n1/2 + n log q)
operations in Fq.

11.3.16 Remark The algorithm for modular composition of Kedlaya and Umans [1722] requires
n1+o(1) · (log q)1+o(1) bit operations, for prime q. This yields an algorithm for testing irre-
ducibility which requires n1+o(1) · (log q)1+o(1) bit operations. Note that this algorithm is
not in the algebraic model of all operations in Fq, and counts bit operations instead.

11.3.17 Remark A more precise average-case analysis of the cost of Rabin’s algorithm is given by
Panario et al. [2357, 2349]. This involves the study of the probability that a polynomial
has an irreducible factor of degree dividing a maximal divisor of n. They give an exact
expression for this probability when n is prime or a product of two primes, as well as an
asymptotic analysis. They also present analyses of variants of Rabin’s algorithm suggested
in [1187, 1227].

11.3.18 Remark Any modern factoring algorithm can be used to test irreducibility, possibly at the
cost of randomization. Asymptotically, the fastest currently known algorithms are those of
von zur Gathen and Shoup [1239] and Kaltofen and Shoup [1667], with improvements in
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the bit complexity model by Kedlaya and Umans [1722]. These are slower than the above
irreducibility tests; see Section 11.4.

11.3.4 Constructing irreducible polynomials: randomized algorithms

11.3.19 Remark Density estimates for irreducible polynomials easily reduce the problem of finding
irreducible polynomials to that of certifying a polynomial is irreducible, assuming we have
a way to generate random field elements. Such an approach was even suggested by Galois
in 1830 [1168]. However, one can do considerably better than the most näıve reduction,
and both the asymptotic complexity of this problem and more practical concerns hold
considerable interest.

11.3.20 Remark Gauss gives an explicit formula for the number Iq(n) of irreducible polynomials of
degree n, from which it is easily derived that qn/(2n) < I(n, q) < qn/n (see [1939], Exercises
3.26 and 3.27). Thus, given a way to randomly generate elements of Fq, any algorithm for
testing irreducibility also yields a probabilistic algorithm for finding irreducible polynomials
of any specified degree. The expected number of operations is n times the cost of the chosen
irreducibility test.

11.3.5 Ben-Or’s algorithm for construction of irreducible polynomials

11.3.21 Remark In 1981, Ben-Or [223] described a simple probabilistic algorithm for constructing
an irreducible polynomial with a better expected cost than the straightforward approach
suggested in Remark 11.3.20.

11.3.22 Algorithm: Ben-Or’s irreducible polynomial constructor

Input: n ∈ Z>0

Output: A uniformly random monic irreducible polynomial of degree n in Fq[x]

1. Randomly choose a monic f ∈ Fq[x] of degree n

2. For i from 1 to bn/2c do

3. If gcd(xq
i − x, f) 6= 1 goto Step 1.

4. Return f

11.3.23 Theorem [223]. The expected value of the degree of the smallest factor of a randomly and
uniformly chosen polynomial of degree n in Fq[x] is O(log n).

11.3.24 Theorem [223]. Using Ben-Or’s algorithm we can construct an irreducible polynomial of
degree n over Fq with an expected number of O(nM(n) logn log(nq)) or O (̃n2 log q) oper-
ations in Fq.

11.3.25 Remark A more precise analysis is provided by Panario and Gao [1187], who consider the
probability that a polynomial is rough, i.e., has all irreducible factors of degree greater than
some bound. Reducible polynomials with no small degree factors cause Ben-Or’s algorithm
to perform more operations.

11.3.26 Theorem [1187] Let P Iq (n,m) be the probability that a polynomial in Fq[x] of degree n is

irreducible if it has no factors less than or equal to m = O(log n). Then P Iq (n,m) ∼ eγm/n
as n, m, and q approach infinity, where γ is Euler’s constant.

11.3.27 Remark Panario and Richmond [2350] give a much more precise average-case analysis of
Ben-Or’s algorithm. They study the probability that the smallest degree irreducible factor
of a degree n polynomial is greater than some m. As well, they study the expectation and
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variance of the smallest degree among the irreducible factors of a random polynomial of
degree n. Results are stated in terms of the Buchstab function, a classical number-theoretic
function used in the study of numbers with no prime factors smaller than some bound;
see [2350] for definitions and details. They also show that the expected average-case cost
of an irreducibility test in Ben-Or’s algorithm is O(M(n) log(n)(log n + log q)) operations
in Fq, and provide an asymptotic analysis with explicit constants for this complexity. The
expected cost of actually finding an irreducible polynomial is n times this cost.

11.3.28 Remark Von zur Gathen and Gerhard [1227], Section 14.9 suggest that a reasonable ap-
proach to finding irreducible polynomials might be a hybrid of Ben-Or’s algorithm, with
a switch to the irreducibility test of Rabin when testing for factors of degrees over some
prescribed bound such as log2 n.

11.3.6 Shoup’s algorithm for construction of irreducible polynomials

11.3.29 Remark Shoup [2629] gives an asymptotically faster probabilistic algorithm for constructing
an irreducible polynomial of degree n, which requires O((n2 log n + n log q) log n log logn)
operations in Fq. It also has the benefit of reducing use of randomness to O(n) random
elements from Fq (the algorithms described above all require an expected O(n2) random
elements). Shoup’s algorithm is very different from the Rabin’s and Ben-Or’s, and more
closely resembles the deterministic constructions discussed in Section 11.3.7 below. The
algorithm proceeds by looking at each prime power re dividing n (where r is prime). There
are a number of special cases. In particular, if r is the characteristic of Fq, then Artin-
Schreier type polynomials can be employed (see Remark 11.3.33 below), and when r = 2 a
simple construction suffices. In the remaining cases, for each prime-power-factor re of n, it
first factors the r-th cyclotomic polynomial Φr ∈ Fq[x]. This can be done quickly. It then
finds an r-th power non-residue in ξ ∈ Fq[θ], where θ is an adjoined root of Φr; x

re − ξ
is irreducible of degree re in Fq[θ][x], from which an irreducible polynomial of degree re

over Fq[x] is constructed via traces. The good asymptotic cost is maintained through a
fast algorithm for finding minimal polynomials in algebraic extensions, employing a very
elegant use of the “Transposition Principle” (also known as Tellegen’s theorem). Despite
the intricate construction, the polynomial produced is uniformly selected from the set of all
irreducible polynomials of degree n in Fq[x].

11.3.30 Remark An algorithm for finding irreducible polynomials of degree n, along the lines of
Shoup’s algorithm above, is exhibited by Couveignes and Lercier [747] and has an expected
cost of n1+o(1)(log q)5+o(1). The key innovation is the fast construction of irreducible polyno-
mials (for all but some exceptional degrees) using isogenies of a random elliptic curve. This
is combined with the recent fast modular composition algorithm of Kedlaya and Umans
[1722], along with the fast algorithm of Bostan et al. [363] to compute “composed sums” of
polynomials.

11.3.7 Constructing irreducible polynomials: deterministic algorithms

11.3.31 Remark Deterministic algorithms for constructing univariate polynomials of specified de-
gree over a finite field of characteristic p are considerably more difficult. The goal is al-
gorithms which require time polynomial in n and log p. Given such an algorithm it is
straightforward to construct an irreducible polynomial over an extension field Fq of Fp,
at least up to polynomial time in n and log q. We thus concern ourselves with constructing
irreducible polynomials over prime fields Fp. A more efficient algorithm for non-prime fields
is established by Shoup [2625].
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11.3.32 Remark The algorithms of Chistov from 1984 [621] and Semaev [2580] are the first to
require time (np)O(1), and hence are effective over small finite fields; see also [2856].

11.3.33 Remark In 1986 Adleman and Lenstra [14] exhibited an algorithm for constructing irre-
ducible polynomials which runs in polynomial time in n and log p, assuming that the Ex-
tended Riemann Hypothesis is true. Their algorithm proceeds by first factoring n = pen0,
where gcd(n0, p) = 1. An extension of degree n0 of Fp is built, and then an extension of
degree pe is constructed on top of that. A minimal polynomial of a generating element is
irreducible of degree n. The degree n0 extension requires finding a prime r ≡ 1 (mod n0)
such that p is inert in the unique subfield K of the r-th cyclotomic field such that [K : Q] = n.
From this an extension of Fp of degree n0 is constructed via Gauss periods; see Section 5.3.
To find the inert primes, they simply test numbers of the form n0k + 1 for k = 1, 2, . . . in
sequence for primality and inertness. The Extended Riemann Hypothesis guarantees that a
k = O(n4

0(log np)2) exists, but without this assumption (or randomization) there is no way
known to find such a p. To find an extension of degree pe, Artin-Schreier polynomials of
the form xp − x− α ∈ Fq[x] are employed, which are irreducible when α 6= βp − β for some
β ∈ K, where K is any extension of Fp. A tower of fields is constructed, starting with Fpn0 ,
and ending with Fpn = Fpn0p

e .

11.3.34 Remark Evdokimov [1017], in 1986, independently presented a similar result to Adelman
and Lenstra’s. In this construction n is factored as a product re11 · · · re`` for distinct primes
ri, and an irreducible polynomial of each degree reii is constructed. When ri = p the Artin-
Schreier polynomials are again employed. When ri 6= p he employs a reducibility theorem
for the polynomial xr

ei
i − a (where a lies in a small cyclotomic extension) which requires

finding ri-th non-residues, small examples of which are ensured by the Extended Riemann
Hypothesis. Irreducible polynomials of different prime power degrees are combined by com-
puting the minimal polynomial of the sum of the roots of the two polynomials. This is easily
accomplished with basic linear algebra, though the “composed sum” algorithm of [363] can
now accomplish this in quasi-linear time; see Remark 11.3.30 above.

11.3.35 Remark In 1989 Shoup [2624, 2625] gave the currently fastest completely unconditional
deterministic algorithm for finding irreducible polynomials, along similar lines to [1017].
He demonstrates a polynomial-time (in n and log p) reduction from the problem of finding
irreducible polynomials of degree n to the problem of factoring polynomials in Fp[x]. Shoup
shows that if, for every prime r |n, we are given a representation of a splitting field K of
xr − 1 (i.e., a non-trivial irreducible factor of xr − 1), and an r-th nonresidue in K, then
we can construct an irreducible polynomial of degree n. Both finding the factor of xr − 1
and the non-residue (by repeatedly taking r-th roots in K) can be accomplished through
factorization. Shoup [2624, 2625] also provides the fastest (unconditional) deterministic
algorithm for factoring polynomials over Fp[x]. Employing this in his irreducible polynomial
construction method yields a deterministic algorithm requiring O(p1/2(log p)3n3(log n)c +
(log p)2n4(log n)c) or O (̃p1/2n3 + n4) operations in Fp, for some absolute constant c > 0.

11.3.8 Construction of irreducible polynomials of approximate degree

11.3.36 Remark If the requirement that the degree of the constructed polynomial in Fp[x] be exactly
n is relaxed, and only an approximation of this degree is required, some unconditional
algorithms are known.

11.3.37 Remark In 1986, von zur Gathen [1219] gave a polynomial-time algorithm (in n and log p)
which finds an irreducible polynomial of degree at least n, assuming we can do preprocessing
only with respect to p (and requiring time polynomial in p).
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11.3.38 Remark Adleman and Lenstra [14] present an algorithm which outputs an irreducible
polynomial f ∈ Fp[x] with n/(c log p) < deg f ≤ n, for some absolute constant c, and
requires time polynomial in n and log p.

11.3.39 Remark For a fixed prime p and ñ ∈ N, Shparlinski [2639, Theorem 1], gives a deter-
ministic, unconditional algorithm that finds an irreducible polynomial of degree ñ · (1 +
exp(−(log log ñ)1/2−o(1))), and requires time polynomial in p and log ñ.

11.3.40 Remark For a sufficiently large q̃, Shparlinski [2639, Theorem 2], provides a deterministic,
unconditional algorithm that constructs a prime p, an integer n ≥ 0, and an irreducible
polynomial f ∈ Fp[x] of degree n, such that pn = q̃ + o(q̃). The algorithm requires time
polynomial in log q̃; see also [2636, Section 2].

See Also

[1227, Section 14.9] For an exposition of Rabin’s algorithm for testing irreducible
polynomials, and Ben-Or’s algorithm for generating irreducible
polynomials, and their complexity analyses.

[2636, Section 2] For early deterministic algorithms for constructing irreducible
polynomials; see also the introduction of [2625].

References Cited: [14, 223, 230, 363, 468, 482, 498, 621, 747, 768, 1017, 1168, 1187, 1219,
1227, 1239, 1667, 1722, 1939, 2349, 2350, 2357, 2391, 2434, 2567, 2570, 2580, 2624, 2625,
2629, 2636, 2639, 2856, 2985]

11.4 Factorization of univariate polynomials

Joachim von zur Gathen, Universität Bonn

11.4.1 Remark The pioneering algorithms for the factorization of univariate polynomials over a
finite field are due to Berlekamp [230, 232]. Subsequent improvements of the asymptotic
running time were presented by Cantor and Zassenhaus [499], von zur Gathen and Shoup
[1239], Huang and Pan [1554], and Kaltofen and Shoup [1667]. The currently fastest method
yields the following main result of this section.

11.4.2 Theorem [1722] The factorization of a univariate polynomial of degree n over Fq can be
computed with an expected number (n log q)1+o(1) · (n1/2 + log q) of bit operations.

11.4.3 Remark Ignoring asymptotically small factors, this running time corresponds to n3/2 +
n log q field operations. These methods rely on a long line of algorithmic developments. The
most basic nontrivial task is that of multiplying polynomials. At degree n, its cost M(n)
is discussed in Definition 11.3.1. The current record of Fürer [1148] for integer multiplica-
tion stands at n log n 2O(log∗ n) bit operations, where log∗ n is the smallest k for which the
k-fold iterated logarithm log log · · · log n is less than 1. Fürer’s algorithm can be adapted to
multiplication of polynomials. For a k-bit prime p and two polynomials in Fp[x] of degree
at most n it takes O(M(n(k + log n))) bit operations. Next come division with remainder
at O(M(n)) (Sieveking [2664], Brent and Kung [401]), and univariate gcd, multipoint eval-
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uation, and interpolation at O(M(n) log n) field operations (Strassen [2734]). Further tasks
include squarefree factorization, with O(M(n) log n) operations (Yun [3051]). Furthermore,
the matrix multiplication exponent ω is such that MM(n) ≤ nω; see Definition 11.3.1. It
appears in an algorithm of Brent and Kung [401] for modular composition, which computes
f ◦ g (mod h) from f , g, and h with O(n1.687) operations.

Multivariate multipoint evaluation asks for the evaluation of a multivariate polynomial,
of degree at most d in each of its r variables, at n points in Frq. One can achieve this with

O(d(ω+1)(r−1)+1) field operations (Nüsken and Ziegler [2301]). A major advance of Kedlaya
and Umans [1722], at the heart of their subsequent results, was a modular approach to
this problem. They consider it as a problem over the integers, say for a prime field Fq,
and solve it in a standard modular fashion, modulo various small primes. This leads to a
method using r(dr + qr + n)(log q)o(1) bit operations. It also yields a univariate modular
composition method with (n log q)1+o(1) bit operations, roughly corresponding to only O(n)
field operations. The more efficient methods use a “polynomial representation of the Frobe-
nius automorphism,” suggested by Erich Kaltofen, fast algorithms for it, and an interval
blocking strategy. This appeared first in von zur Gathen and Shoup [1239].

11.4.4 Remark Many other works have contributed to the factoring problem. We only mention
Serret [2600], Arwin [137], Petr [2391], Kempfert [1726], Niederreiter [2249, 2250], Kaltofen
and Lobo [1663], Gao and von zur Gathen [1178], Kaltofen and Shoup [1667], von zur
Gathen and Gerhard [1226].

11.4.5 Remark Berlekamp [230] presented a deterministic algorithm to factor in Fp[x] with O(nω+
pn2+o(1)) field operations; see [1220] for this estimate. It was improved by Shoup [2624] to
O(p1/2 log2 p+ log p ·n2+o(1)) operations. Berlekamp [232] introduced the fundamental idea
of probabilistic algorithms, although it became widely accepted in computer science only
after the polynomial-time primality test of Solovay and Strassen [2694]. The factorization
algorithms mentioned are all probabilistic, in the Las Vegas sense where the output can be
verified and thus guaranteed to be correct, but the running time is a random variable (with
exponentially decaying tails). Removing randomness while conserving polynomial time is
still an open question, of great theoretical interest but presumably no practical import.
Already Berlekamp [232] observed that it boils down to the following.

11.4.6 Open Question Given the coefficients of a polynomial which is a product of linear factors
over a prime field Fp, can one find a nontrivial factor deterministically in polynomial time?

11.4.7 Remark Several papers provide steps in this direction, often assuming the Extended Rie-
mann Hypothesis: Moenck [2112], Adleman, Manders, and Miller [15], Huang [1552, 1553],
von zur Gathen [1220], Rónyai [2476, 2477, 2478, 2479], Mignotte and Schnorr [2094], Ev-
dokimov [1019, 1018], Bach, von zur Gathen, H. Lenstra [158], Rónyai and Szántó [2480],
Gao [1176], Ivanyos, Karpinski, and Saxena [1579], Ivanyos, Karpinski, Rónyai, and Saxena
[1578], Arora, Ivanyos, Karpinski, and Saxena [132].

11.4.8 Remark Computations just using field operations can be modeled by arithmetic circuits
(Strassen [2732]). All algorithms discussed here, except those of Kedlaya and Umans [1722]
and Fürer’s multiplication, are of this type. Their running time is Ω(n log q) field operations.

11.4.9 Open Question Do all arithmetic circuits over Fq that factor univariate polynomials of
degree n require Ω(n log q) arithmetic operations?

11.4.10 Remark A positive answer is known only for n = 2 (von zur Gathen and Seroussi [1237]).

11.4.11 Remark The survey articles of Kaltofen [1646, 1655], von zur Gathen and Panario [1234]
and the textbooks by Shparlinski [2637, 2641] and von zur Gathen and Gerhard [1227]
present the details of most of these algorithms, more references, and historical information.
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It is intriguing that the basics of most modern algorithms go back to Legendre, Gauß, and
Galois.

11.4.12 Remark The average cost of factoring algorithms, for polynomials picked uniformly at
random from those of a fixed degree, is analyzed in Flajolet, Gourdon, and Panario [1080]
and von zur Gathen, Panario, and Richmond [1235].

See Also

§11.3 For univariate irreducibility testing.
§11.5 For multivariate factorization methods.

References Cited: [15, 132, 137, 158, 230, 232, 401, 498, 499, 723, 1018, 1019, 1080, 1148,
1176, 1178, 1220, 1225, 1226, 1227, 1234, 1235, 1237, 1239, 1552, 1553, 1554, 1578, 1579,
1646, 1655, 1663, 1667, 1684, 1722, 1726, 2094, 2112, 2249, 2250, 2301, 2391, 2476, 2477,
2478, 2479, 2480, 2558, 2559, 2600, 2624, 2637, 2641, 2664, 2694, 2732, 2734, 2984, 3051]

11.5 Factorization of multivariate polynomials

Erich Kaltofen, North Carolina State University

Grégoire Lecerf, CNRS & École polytechnique

We extend the univariate factorization techniques of the previous section to several variables.
Two major ingredients are the reduction from the bivariate case to the univariate one, and
the reduction from any number to two variables. We present most of the known techniques
according to the representation of the input polynomial.

11.5.1 Factoring dense multivariate polynomials

11.5.1 Remark In this subsection we are concerned with different kinds of factorizations of a
multivariate polynomial f ∈ Fq[x1, . . . , xn] stored in dense representation.

11.5.2 Definition Let R be any ring. A dense representation of a polynomial f ∈ R[x1, . . . , xn]
is the data of the vector (d1, . . . , dn) of the partial degrees of f , and the vector of the
coefficients of the monomials xe11 · · ·xenn for all 0 ≤ e1 ≤ d1,. . . , 0 ≤ en ≤ dn, sorted
in reverse lexicographical ordering on the exponents (e1, . . . , en), which means that
(e1, . . . , en) < (e′1, . . . , e

′
n) if, and only if, there exists j such that (en = e′n, . . . , ej+1 =

e′j+1, and ej < e′j).

11.5.3 Remark The representation of multivariate polynomials is an important issue, which has
been discussed from the early ages of computer algebra [761, 778, 1519, 1616, 2129, 2130,
2131, 2730, 3021].

11.5.1.1 Separable factorization

11.5.4 Remark Separable factorization can be seen as a preprocess to the other factorizations
(squarefree, irreducible, and absolutely irreducible, as defined below), which allows to reduce
to considering separable polynomials.
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11.5.5 Definition Let R be an integral domain. A polynomial f ∈ R[x] is primitive if the common
divisors in R of all the coefficients of f are invertible in R.

11.5.6 Definition Let R be a unique factorization domain of characteristic p, and let Ep represent
{1} if p = 0 and {1, p, p2, p3, . . .} otherwise. If f is a primitive polynomial in R[y] of
degree d ≥ 1, then the separable decomposition of f , written Sep(f), is defined to be
the set Sep(f) := {(f1, q1,m1), . . . , (fs, qs,ms)} ⊆ (R[y] \ R) × Ep × N, satisfying the
following properties:

1. f(y) =
∏s
i=1 fi(y

qi)mi ,

2. for all i 6= j in {1, . . . , s}, fi(yqi) and fj(y
qj ) are coprime,

3. for all i ∈ {1, . . . , s}, mi (mod p) 6= 0,

4. for all i ∈ {1, . . . , s}, fi is separable and primitive,

5. for all i 6= j in {1, . . . , s}, (qi,mi) 6= (qj ,mj).

The process of computing the separable decomposition is the separable factorization.

11.5.7 Example With R := F3 and f := y2(y + 1)3(y + 2)4 = y9 + 2y8 + 2y3 + y2, we have that
Sep(f) = {(y, 1, 2), (y + 1, 3, 1), (y + 2, 1, 4)}.

11.5.8 Example With R := F3[x] and f := (y + 2x)7(y3 + 2x)3(y6 + x), we have that Sep(f) =
{(y + 2x, 1, 7), (y + 2x3, 9, 1), (y2 + x, 3, 1)}.

11.5.9 Theorem [2108, Chap. VI, Theorem 6.3] Any primitive polynomial f ∈ R[y] admits a
unique (up to permutations and units in R) separable decomposition, which only depends
on the coefficients of f .

11.5.10 Remark Roughly speaking, the separable decomposition corresponds to sorting the roots of
the given polynomial according to their multiplicity. A constructive proof of Theorem 11.5.9
can be found in [2108, Chap. VI, Theorem 6.3], and another proof using the irreducible
factorization in [1882, Proposition 4].

11.5.11 Remark Since the separable decomposition only depends on the coefficients of f it can be
computed in any extension of R.

11.5.12 Theorem [1882, Proposition 5] If F is a field then the separable decomposition of a poly-
nomial f ∈ F [y] of degree d can be computed with O(M(d) log d) arithmetic operations in
F . Let us recall that M(d) represents a bound for the complexity of multiplying two poly-
nomials of degree at most d with coefficients in a commutative ring with unity, in terms of
the number of arithmetic operations in the latter ring.

11.5.13 Theorem [1882, Propositions 8 and 9] Let R = F [x], where F is a field, and let f ∈ F [x][y]
be a primitive polynomial of degree dx in x and dy in y.

1. If F has cardinality at least dx(2dy +1) +1 then Sep(f) can be computed (deter-

ministically) with O(dy(dyM(dx) log dx + dxM(dy) log dy)) or Õ(dxd
2
y) operations

in F .

2. If F has cardinality at least 4dxdy then Sep(f) can be computed with an expected

number of O(dyM(dx) log dx + dxM(dy) log dy)) or Õ(dxdy) operations in F .

Let us recall that f(d) ∈ Õ(g(d)) means that f(d) ∈ g(d)(log2(3 + g(d)))O(1). With the
second randomized algorithm, the ouput is always correct, and the cost estimate is the
average of the number of operations in F taken over all the possible executions.
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11.5.1.2 Squarefree factorization

11.5.14 Definition If R is a unique factorization domain then the squarefree decomposition of
a ∈ R, written Sqr(a), is the set of pairs (am,m), where am represents the product of all
the irreducible factors of a of multiplicity m. The process of computing the squarefree
decomposition is the squarefree factorization.

11.5.15 Definition For convenience, we say that a polynomial f ∈ R[x1, . . . , xn] is primitive (resp.
separable) in xi if it is so when seen in R[x1, . . . , xi−1, xi+1, . . . , xn][xi].

11.5.16 Algorithm (Sketch of the algorithm squarefree factorization)

Input: a polynomial f ∈ Fq[x1, . . . , xn], primitive in x1, . . . , xn.

Output: the squarefree decomposition Sqr(f) of f .

1. First compute the separable decomposition of f seen in Fq[x1, . . . , xn−1][xn].
Then for each separable factor g of Sep(f) compute the separable de-
composition of g seen in Fq[x1, . . . , xn−2, xn][xn−1]. Then for each separa-
ble factor h of Sep(g) compute the separable decomposition of h seen in
Fq[x1, . . . , xn−3, xn−1, xn][xn−2], etc. At the end rewrite f as the product of poly-
nomials of the form fi(x

qi,1
1 , . . . , x

qi,n
n )mi , where the fi are separable in x1, . . . , xn,

and where the qi,j are powers of p.

2. The squarefree factorization of each fi(x
qi,1
1 , . . . , x

qi,n
n )mi is simply obtained by

extracting the minj∈{1,...,n} qi,j-th root of fi(x
qi,1
1 , . . . , x

qi,n
n ).

11.5.17 Theorem [1882, Proposition 12] Let f ∈ Fq[x, y] be a polynomial of degree dx in x and
dy in y. If q ≥ 4(3dy + 1)dx then Sqr(f) can be computed with an expected number of

O(dyM(dx) log dx + dxM(dy) log dy)) or Õ(dxdy) operations in Fq.

11.5.18 Remark Practical multivariate squarefree factorization algorithms have been designed in
[237] to be specifically efficient in small and medium sizes, when M does not behave as softly
linear. Algorithms for deducing the squarefree decomposition from the separable one were
proposed in [1271] and then improved in [1882] in particular cases.

11.5.1.3 Bivariate irreducible factorization

11.5.19 Definition If R is a unique factorization domain then the irreducible decomposition of
a ∈ R, written Irr(a), is the set of pairs (ai,mi), where ai is an irreducible factor of
a of multiplicity mi. The process of computing the irreducible decomposition is the
irreducible factorization.

11.5.20 Definition If F is a field then the absolutely irreducible decomposition of f ∈ F [x1, . . . , xn]
is the irreducible decomposition of f in F̄ [x1, . . . , xn], where F̄ represents the algebraic
closure of F . The process of computing the absolutely irreducible decomposition is the
absolutely irreducible factorization, or absolute factorization.

11.5.21 Remark We do not discuss specific algorithms for computing the absolute factoriza-
tion. In fact, whenever F is a finite field, the absolutely irreducible decomposition of
f ∈ F [x1, . . . , xn] can be obtained from the irreducible decomposition over the algebraic
extension of F of degree deg f . For more details and advanced algorithms we refer the reader
to [617].
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11.5.22 Theorem [1883, Theorem 2] Let q = pk, and let f ∈ Fq[x, y] be a polynomial of degree
dx in x and dy in y. If q ≥ 10dxdy then Irr(f) can be computed with factoring several
polynomials in Fq[y] whose degree sum does not exceed dx + dy, plus an expected number

of Õ(k(dxdy)1.5) operations in Fp.

11.5.23 Remark If q is not sufficiently large to apply Theorem 11.5.22 then one can compute
the irreducible factorization of f over a slightly larger finite field, and then recover the
factorization over Fq by computing the norm of the factors.

The algorithm underlying Theorem 11.5.22 is summarized in the following.

11.5.24 Algorithm (Sketch of the lifting and recombination technique)

Input: a primitive and separable polynomial f ∈ Fq[x][y], of partial degrees dx in x
and dy in y.

Output: the irreducible decomposition Irr(f) of f .

1. Normalization. If the cardinality of Fq is sufficiently large then a suitable shift of
the variable x reduces the problem to the normalized case defined as follows:

deg f(0, y) = dy and Res

(
f(0, y),

∂f

∂y
(0, y)

)
6= 0.

2. Univariate factorization. Compute Irr(f(0, y)) in Fq[y].

3. Lifting. Use the classical Hensel lifting from the previously computed irreducible
factors f1(0, y), . . . , fs(0, y) of f(0, y) in order to deduce the irreducible analytic
decomposition f1, . . . , fs of f in Fq[[x]][y] to a certain finite precision σ in x.

4. Recombination. Discover how the latter analytic factors f1, . . . , fs recombine into
the irreducible factors.

11.5.25 Remark Since any proper factor g of f is the product of a subset of the analytic factors,
the precision σ = dx is sufficient in Algorithm 11.5.24 to discover Irr(f) by means of
exhaustive search. To be precise, it suffices to run over all the subsets S of {1, . . . , s} of
cardinality at most s/2 and test whether the truncated polynomial of

∏
i∈S fi to precision dx

in Fq[x][y] divides f or not. This approach was originally popularized in computer algebra
by Zassenhaus in [3052] in the context of factoring in Q[y] via the p-adic completion of
Q. The adaptation to two and several variables was first pioneered in [2209, 2938, 2939].
In particular, [2209] introduced coefficient field abstractions that marked the beginning of
generic programming. Von zur Gathen adopted Musser’s approach to valuation rings [1217].
The cost of this approach is, of course, exponential in s. However, as proved in [1183] the
cost of the recombination process behaves in softly linear time in average over finite fields,
which explains the practical efficiency of this approach.

11.5.26 Remark For details concerning Hensel lifting, we refer the reader to [1227, Chap. 15],
that contains a variant of the multifactor Hensel lifting first designed by Shoup for his
C++ library NTL (http://www.shoup.net). An improvement obtained thanks to the
transposition principle is proposed in [365]. Parallelization has been studied in [238].

11.5.27 Remark The first attempt to reduce the recombination stage to linear algebra seems to be
due to Sasaki et al. [2528, 2529, 2530], with a method called the trace recombination. But the
first successes in the design and proofs of complete algorithms are due to van Hoeij [1518] for
the factorization in Z[x], and then to Belabas et al. [219] for F (x)[y], with the logarithmic
derivative recombination method, where the precision σ = deg f(deg f − 1) + 1 is shown to
be sufficient in general. Then a precision linear in deg f in characteristic 0 or large enough
characteristic has been shown to suffice in [365, 1880].
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11.5.28 Remark In [1177], Gao designed the first softly quadratic time probabilistic reduction
of the factorization problem from two to one variable whenever the characteristic of the
coefficient field is zero or sufficiently large. His algorithm makes use of the first algebraic de
Rham cohomology group of F [x, y, 1/f(x, y)], as previously used by Ruppert [2504, 2505]
for testing the absolute irreducibility. In fact, if f factors into f1 · · · fr over the algebraic
closure of F then (

f̂i
∂fi
∂x

f
dx+

f̂i
∂fi
∂y

f
dy

)
i∈{1,...,r}

is a basis of the latter group, where f̂i := f/fi [2504, Satz 2]. In consequence, this group can
be obtained by searching for closed differential 1-forms with denominators f and numerators
of degrees at most deg f − 1, which can be easily done by solving a linear system. A nice
presentation of Ruppert’s results is made in Schinzel’s book [2542, Chapter 3]. The algorithm
underlying Theorem 11.5.22 makes use of these ideas in order to show that a precision
σ = dx + 1 of the series in the Hensel lifting suffices.

11.5.1.4 Reduction from any number to two variables

11.5.29 Remark Let f ∈ F [x1, . . . , xn] continue to denote a polynomial in n variables over a field
F of total degree d. For any points (α1, . . . , αn), (β1, . . . , βn) and (γ1, . . . , γn) in Fn, we
define the bivariate polynomial fα,β,γ in the variables x and y by fα,β,γ := f(α1x+ β1y +
γ1, . . . , αnx+ βny + γn).

11.5.30 Theorem (Bertini’s theorem) [2602, Chapter II, Section 6.1] If f is irreducible, then there
exists a proper Zariski open subset of (Fn)3 such that fα,β,γ is irreducible for any triple
(α1, . . . , αn), (β1, . . . , βn), (γ1, . . . , γn) in this subset.

11.5.31 Definition For any irreducible factor g of f , a triple (α1, . . . , αn), (β1, . . . , βn), (γ1, . . . , γn)
in (Fn)3 is a Bertinian good point for g if g(α1x + β1y + γ1, . . . , αnx + βny + γn) is
irreducible with the same total degree as g. In other words, the irreducible factors of
f are in one-to-one correspondence with those of fα,β,γ . The complementary set of
Bertinian good points is written B(f) and is the set of Bertinian bad points.

11.5.32 Remark For algorithmic purposes, the entries of (α1, . . . , αn), (β1, . . . , βn) and (γ1, . . . , γn)
must be taken in a finite subset S of F , so that we are naturally interested in upper bounding
the number of Bertinian bad points in (Sn)3. We refer to such a bound as a quantitative
Bertini theorem. The density of Bertinian bad points with entries in a non-empty finite
subset S of F is

B(f, S) :=
|B(f) ∩ (Sn)3|

|S|3n ,

where |S| represents the cardinality of S.

11.5.33 Theorem (Quantitative Bertini theorem) [1658, Corollary 2] and [1881, Corollary 8] If F
is a perfect field of characteristic p, and according to the above notation, we have that:

1. B(f, S) ≤ (3d(d− 1) + 1)/|S| if p ≥ d(d− 1) + 1;

2. B(f, S) ≤ 2d4/|S| otherwise.

11.5.34 Remark What we call “Bertini’s theorem” here is a particular but central case of more gen-
eral theorems such as in [2602, Chapter II, Section 6.1]. As pointed out by Kaltofen [1658],
the special application of Bertini’s theorem to reduce the factorization problem from several
to two variables was already known by Hilbert [1499, p. 117]. This is why Kaltofen and some
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authors say “(effective) Hilbert Irreducibility Theorem” instead of “Bertini’s theorem.” For
more historical details about Bertini’s work, we refer the reader to [1623, 1750].

11.5.35 Remark Bertini’s theorem was introduced in complexity theory by Heintz and Sievek-
ing [1462], and Kaltofen [1645]. It quickly became a cornerstone of many randomized fac-
torization or reduction techniques including [1218, 1229, 1647, 1648, 1649]. Over the field of
complex numbers, Bajaj et al. [162] obtained the bound B(f, S) ≤ (d4−2d3 +d2 +d+1)/|S|
by following Mumford’s proof [2202, Theorem 4.17] of Bertini’s theorem. Gao [1177] proved
the bound B(f, S) ≤ 2d3/|S| whenever F has characteristic 0 or larger than 2d2. Then Chèze
pointed out [616, Chapter 1] that the latter bound can be refined to B(f, S) ≤ d(d2−1)/|S|
by using directly [2504, Satz C]. The paper [1218] contains a version for non-perfect fields
with a bound that is exponential in d. If the cardinality |F | is too small, one can switch to
an extension (see Remark 11.5.67 below).

11.5.36 Corollary Let S(n, d) represent a cost function for the product of two power series over
a field F in n variables truncated to precision d. Let f ∈ Fq[x1, . . . , xn] be a polynomial
of total degree d. If q ≥ 4d4 then Irr(F ) can be computed with an expected number of
O(1) factorizations of polynomials in Fq[x, y] of total degree d, plus an expected number of

Õ(dS(n− 1, d)) operations in Fq.

11.5.37 Remark Softly optimal series products exist in particular cases [1519], for which the fac-
torization thus reduces to the univariate case in expected softly linear time as soon as
n ≥ 3.

11.5.38 Remark The first deterministic polynomial time multivariate factorization algorithms are
due to Kaltofen [1645, 1646]. Kaltofen constructed polynomial-time reductions to bi- (in
1981) and univariate (in 1982) factorization over an abstract field, which were discov-
ered independently of the 1982 univariate factorization algorithm over the rationals by
A. K. Lenstra, H. W. Lenstra, and Lovász [1893]. Kaltofen’s reduction to univariate factor-
ization, however, was inspired by Zassenhaus’s algorithm [3053]. For more references to work
by others (Chistov, von zur Gathen, Grigoriev, A. K. Lenstra) that immediately followed,
we refer the reader to Kaltofen’s surveys [1654, 1655, 1659], and to [1227].

11.5.39 Remark Polynomial factorization over finite fields has been implemented in Maple by
Bernardin and Monagan [239]. Other practical techniques have been reported in [2299]. At
the present time, the most general algorithm is due to Steel [2703]: it handles all coefficient
fields being explicitly finitely generated over their prime field, and it has been implemented
within the Magma computer algebra system [360]. Steel’s algorithm actually completes and
improves a previous approach investigated by Davenport and Trager [779].

11.5.40 Remark It is possible, via the rank of the Petr matrix or the distinct degree factorization
algorithm, to count the number of irreducible factors of a univariate polynomial over a field
Fq of characteristic p in deterministic polynomial time in log p. The same remains true for
multivariate polynomials [1182, 1651], but the algorithms are not straightforward. In [1182] a
multivariate deterministic distinct degree factorization is presented. There “distinct degree”
is with respect to any degree order.

11.5.2 Factoring sparse multivariate polynomials

11.5.41 Remark Let F be a field. A polynomial f in F [x1, . . . , xn] is made of a sum of terms,
with each term composed of a coefficient and an exponent seen as a vector in Nn. For any
e = (e1, . . . , en) ∈ Nn, we let fe denote the coefficient of the monomial xe11 · · ·xenn in f . If a
polynomial has only a few of nonzero terms in its dense representation, one prefers to use
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the following representation.

11.5.42 Definition A sparse representation of a multivariate polynomial stores the sequence of
the nonzero terms as pairs of monomials and coefficients, sorted for instance in reverse
lexicographical order.

11.5.43 Definition The support of f is Supp(f) := {e ∈ Nn | fe 6= 0}.

11.5.2.1 Ostrowski’s theorem

11.5.44 Definition The Minkowski sum of two subsets Q and R of Rn, written Q+R, is Q+R :=
{e+ f | (e, f) ∈ Q×R}.

11.5.45 Definition A polytope in Rn is integral if all of its vertices are in Zn. An integral polytope
P is integrally decomposable if there exists two integral polytopes Q and R such that
P = Q + R, where both Q and R have at least two points. Otherwise, P is integrally
indecomposable.

11.5.46 Definition The Newton polytope of f , written N(f), is the convex hull in Rn of Supp(f).
The integral convex hull of f is the subset of points in Zn lying in N(f).

11.5.47 Theorem (Ostrowski’s theorem) [2338], translated in [2339] If f factors into gh then we
have N(f) = N(g) +N(h).

11.5.2.2 Irreducibility tests based on indecomposability of polytopes

11.5.48 Remark The previous theorem leads to the following irreducibility test.

11.5.49 Corollary (Irreducibility criterion) [1175, p. 507] If f ∈ F [x1, . . . , xn] is a nonzero polyno-
mial not divisible by any xi, and if N(f) is integrally indecomposable, then f is irreducible
over any algebraic extension of F .

11.5.50 Theorem [1175, Theorem 4.2] Let P be an integral polytope in Rn contained in a hyperplane
H and let e ∈ Zn be a point lying outside of H. If e1, . . . , ek are all the vertices of P , then
the convex hull of P and e is integrally indecomposable if, and only if, all the entries of
e− e1, e− e2, . . . , e− ek are coprime.

11.5.51 Theorem [1175, Theorem 4.11] Let P be an indecomposable integral polytope in Rn with
at least two points, that is contained in a hyperplane H, and let e ∈ Rn be a point outside
of H. Let S be any subset of points in Zn contained in the convex hull of e and P . Then
the convex hull of S and Q is integrally indecomposable.

11.5.2.3 Sparse bivariate Hensel lifting driven by polytopes

11.5.52 Remark Let f ∈ Fp[x, y] be a polynomial with t nonzero terms and of total degree d such
that t < d. Let r be a vector in R2, and let Γ be a subset of edges of N(f) satisfying the
following properties:

1. N(f) ⊆ Γ + rR≥0,

2. each of the two infinite edges of Γ + rR≥0 contains exactly one point of N(f),
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3. no proper subset of Γ satisfies the previous two conditions.

Assume furthermore that:

1. f factorizes into f = gh for two proper factors g and h in Fp[x, y] with tg and
th terms respectively, such that max(tg, th) ≤ tλ for some constant λ satisfying
1/2 ≤ λ < 1.

2. For each edge γ ∈ Γ we are given polynomials gγ and hγ supported by γg and γh
respectively, where γg and γh are the unique vertices or edges of N(g) and N(h)
respectively such that γ = γg + γh.

3. For each edge γ ∈ Γ the given polynomials gγ and hγ are coprime up to monomial
factors.

11.5.53 Theorem [11, Theorem 28] Under the above assumptions, there exists an integral de-
composition N(f) = N(g) + N(h) such that N(g) is not a single point or a line seg-
ment parallel to rR≥0. There exists at most one full factorization of f which extends the
boundary factorization defined by the given (gγ)γ∈Γ and (hγ)γ∈Γ. Assuming that d and
p fit a machine word, this factorization can be computed, or shown not to exist, using
O(tλd2 + t2λd log d log log d+ t4λd) bit-operations, and O(tλd) bits of memory.

11.5.54 Remark Theorem 11.5.53 extends previous results from [10]. Although it does not provide
a complete factoring algorithm, it proves to be very efficient in practice for large particular
problems.

11.5.2.4 Convex-dense bivariate factorization

11.5.55 Remark In the worst case, the size of the irreducible factorization is exponential in the
sparse size of the polynomial f to be factored. However Theorem 11.5.47 ensures that the
size of the output is upper bounded by the number π, called the convex size, of points in
Zn lying inside of N(f). The next theorem to be presented reduces the bivariate sparse
factorization to the usual dense case.

11.5.56 Definition The affine group over Z2, written Aff(Z2), is the set of the maps U

U : (i, j) 7→
(
α β
α′ β′

)(
i
j

)
+

(
γ
γ′

)
, (11.5.1)

with α, β, γ, α′, β′, and γ′ in Z, such that αβ′ − α′β = ±1.

11.5.57 Definition Let S be a finite subset of Z2. The set S is normalized if it belongs to N2 and
if it contains at least one point in {0} × N, and also at least one point in N× {0}.

11.5.58 Theorem [256, Theorem 1.2] For any normalized finite subset S of Z2, of cardinality σ,
convex size π, and included in [0, dx]× [0, dy], one can compute an affine map U ∈ Aff(Z2)
as in (11.5.1), together with U(S), with O(σ log2((dx+1)(dy+1))) bit-operations, such that
U(S) is normalized and contained in a block [0, d′x]× [0, d′y] satisfying (d′x+1)(d′y +1) ≤ 9π.

11.5.59 Lemma For any field F , for any f ∈ F [x, y] not divisible by x and y, for any U as in
Equation (11.5.1), the polynomial

U(f) :=
∑

(ex,ey)∈Supp(f)

f(ex,ey)x
αex+βey+γyα

′ex+β′ey+γ′

is irreducible in F [x, y, x−1, y−1] if and only if f is irreducible.
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11.5.60 Remark In order to compute the irreducible factorization of F , we can compute a reduction
map U as in Theorem 11.5.58 for Supp(f), then compute the irreducible factorization of
U(f), and finally apply U−1 to each factor. In this way we benefit from complexity bounds
that only depend on the convex size π of f instead of its dense size (dx + 1)(dy + 1).

11.5.3 Factoring straight-line programs and black boxes

11.5.61 Remark The sparse representation (see Definition 11.5.42) of a polynomial allows for space

efficient storage of polynomials of very high degree, since the degree of the term x2500

can
be represented by a 501 bit integer. Polynomials f whose sparse representation occupies
(log(deg f))O(1) bit space are supersparse (lacunary) [1661, 1897]. While computing small
degree factors of such polynomials over the rational numbers can be accomplished in bit
time that is polynomial in the input size, over finite fields such tasks are NP- or co-NP-
hard [1739]. Here we have a situation where factoring over the rational numbers is provably
easier than factoring over a sufficiently large finite field.

11.5.62 Remark In [1660] it is shown, by transferring the construction in [2400], that several other
operations on univariate and bivariate supersparse polynomials over a sufficiently large finite
field are NP- or co-NP-hard. For instance, in [1660] the following is proven.

11.5.63 Theorem Suppose we have a Monte Carlo polynomial-time irreducibility test for super-
sparse polynomials in F2m [X,Y ] for sufficiently large m. Then large integers can be factored
in Las Vegas polynomial-time.

11.5.64 Remark A polynomial in n variables of (total) degree d can have
(
n+d
n

)
terms, i.e., ex-

ponentially many terms in the number of variables. Sparse polynomials are those that
have (n + d)O(1) non-zero terms. Note that, as in all asymptotic analysis, one considers
not a single polynomial but an infinite set of sparse input polynomials that a given al-
gorithm processes, now in polynomial time in the sparse size. By using the factorization
xd − 1 = (x − 1)(xd−1 + · · · + 1) one can easily generate examples where the sparse size
of one irreducible factor is super-polynomially larger than the input size [1230, Example
5.1]. Motivated by algebraic computation models, straight-line programs were adopted as
an alternate polynomial representation, first only for inputs [1218], but ultimately and im-
portantly as a representation of the irreducible factors themselves [1650, 1653]. Here is an
example of a division-free straight-line program (single assignment program), where F is the
field generated by those operands c1, c2, . . . which are constants, while x1, x2, . . . are input
variables:

υ1 ← c1 × x1;

υ2 ← x2 − c2;

υ3 ← υ2 × υ2;

υ4 ← υ3 + υ1;

υ5 ← υ4 × x3;

...

υ101 ← υ100 + υ51;

The variable υ101 represents a polynomial in F[x1, x2, . . .], which can be evaluated by use of
the straight-line program. For instance, the determinant of an n × n matrix whose entries
are n2 variables can be represented, via Gaussian elimination, by a straight-line program
with divisions of length O(n3). Because those divisions can cause divisions by zero on
evaluation at certain points, it is desirable to remove them from such programs [2733]:
the shortest division-free straight-line program for the determinant that is known today
has length O(n2.7) and uses no constants other than 1 and −1 in F [1670]. In any case,
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divisions can be removed by increasing the length by a factor O((deg f)1+ε) for any ε > 0.
The 1986 algorithm in [1650, 1653] produces from a straight-line program of length l for
a polynomial of degree d in Monte Carlo random polynomial-time straight-line programs
for the irreducible factors (and their multiplicities). The factor programs themselves have
length O(d2l + d3+ε). Over finite fields of characteristic p, for an irreducible factor g of
multiplicity pmm′, where gcd(p,m′) = 1, a straight-line program for gp

m

is returned; see
Remark 11.5.68 below. The algorithm is implemented in the Dagwood system [1100] and can
factor matrix determinants. A shortcoming of the straight-line representations, which later
were adopted by the TERA project, was exposed by the Dagwood program: the lengths,
while polynomial in the input lengths, become quite large (over a million assignments). The
construction, however, plays a key role in complexity theory [1640].

11.5.65 Remark Since polynomials represented by straight-line programs can be converted to sparse
polynomials in polynomial-time in their sparse size by the algorithm in [3080], the straight-
line factorization algorithm brought to a successful conclusion the search for polynomial-
time sparse factorizers. Previous attempts based on sparse Hensel lifting [1216, 1230, 1649,
3080, 3081], retained an exponential substep for many factors, namely the computation
of the so-called right-side Hensel correction coefficients. The problem of computing the
coefficient of a given term in a sparse product is in general #P-hard. Nonetheless, if a
polynomial has only a few sparse factors, such sparse lifting can be quite efficient, in practice.

11.5.66 Remark Instead of straight-line programs, one can use a full-fledged programmed procedure
that evaluates the input polynomial. The irreducible factors are then evaluated at values
for the variables by another procedure that makes (“oracle”) calls to the input evaluation
procedure. Thus is the genesis of algorithms for black box polynomials [1668, 1669].

The idea is the following: Suppose one can call a black evaluation box for the polynomial
f(x1, . . . , xn) ∈ F[x1, . . . , xn]. First, uniformly randomly select from a sufficiently large finite
set field elements ai, ci (2 ≤ i ≤ n) and bj (1 ≤ j ≤ n) and interpolate and factor the
bivariate image

f̂(X,Y ) = f(X + b1, c2Y + a2X + b2, . . . , cnY + anX + bn) =
r∏

k=1

ĝk(X,Y )ek .

By the effective Hilbert Irreducibility Theorem 11.5.33 above, the irreducible polynomials
ĝk are with high probability bivariate images of the irreducible factors hk(x1, . . . , xn) of f .
For small coefficient fields we shall assume that the black box can evaluate f at elements
in a finite algebraic extension E of F. Already the bivariate interpolation algorithm may
require such an extension in order to have sufficiently many distinct points.

11.5.67 Remark If one selects an extension E of degree [E : F] > deg(f) that is a prime number,
all hk remain irreducible over that extension. Indeed, the Frobenius norm NormE/F(h̃) ∈
F[x1, . . . , xn] of a possible non-trivial irreducible factor h̃ ∈ E[x1, . . . , xn] of an hk must
be a power of an irreducible polynomial over F, hence a power of hk itself. For otherwise
gcd(hk,NormE/F(h̃)) would constitute a non-trivial factor of hk over F. But then deg(h̃ )·[E :
F] = deg(hk) ·m, where m is the exponent of that power, and because [E : F] is a prime
> deg(f) ≥ deg(hk), we obtain the contradiction deg(h̃ ) = deg(hk) · (m/[E : F]) ≥ deg(hk).

Remark 11.5.66 continued. Now the black box for evaluating all hk(ξ1, . . . , ξn) at field
elements ξi ∈ F stores (“hard-wires”) the ai, bj and the factors gk(X) = ĝk(X, 0) in its
constant pool. We note that the gk are not necessarily irreducible, but with high probability
they are pairwise relatively prime [1669, Section 2, Step 3], and their leading terms only
depend on the variable X. The black box first interpolates

f̄(X,Y ) = f(X + b1, Y (ξ2 − a2(ξ1 − b1)− b2) + a2X + b2,

. . ., Y (ξn − an(ξ1 − b1)− bn) + anX + bn) (11.5.2)
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and then factors f̄ such that

f̄(X,Y ) =
r∏

k=1

h̄k(X,Y )ek with h̄k(X, 0) = gk(X). (11.5.3)

We note that again the h̄k are not necessarily irreducible. One may Hensel-lift the factor-
ization

f(X + b1, a2X + b2, . . . , anX + bn) =
r∏

k=1

gk(X)ek (11.5.4)

provided none of the multiplicities ek is divisible by p. Otherwise, one can fully factor
f̄(X,Y ) and lump (multiply) those irreducible factors h̄κ(X,Y ) together where h̄κ(X, 0)
divide one and the same gk(X). Alternatively, if pm divides ek one could lift the pm-th
power of gk and take a pm-th root of the lifted factor. We have f̄(ξ1− b1, 1) = f(ξ1, . . . , ξn),
and for all k we obtain h̄k(ξ1 − b1, 1) = hk(ξ1, . . . , ξn). We observe that the scalar multiple
of hk is fixed in all evaluations by the choice of gk.

11.5.68 Remark Over finite coefficient fields, there is no restriction on the multiplicities ek. One
does not obtain a pure straight-line program for the polynomial hk because a bivariate
factorization of f̄ or a pm-th root of the lifted factor, which depend on the evaluation
points ξi, are performed on each evaluation. One can obtain straight-line polynomials that
equal the irreducible factors modulo (xq1 − x1, . . . , x

q
n − xn) by powering by q/pm, where

q <∞ is the cardinality of the coefficient field. Those straight-line programs produce correct
evaluations of the irreducible factors.

11.5.69 Remark The blackbox factorization algorithm is implemented in the FoxBox system [830].
The size blowup experienced in the straight-line factorization algorithm does not occur. In
fact, the factor evaluation black box makes O(deg(f)2) calls to the black box for f and
factors a bivariate polynomial, either by lifting (11.5.4) or, if multiplicities are divisible by
the characteristic, by factoring f̄ . The program is fixed except for the constants ai, bj and
the polynomials gk.

11.5.70 Remark We conclude that the sparse representations of the factors can be recovered by
sparse interpolation over a finite field; see [1662] and the literature cited there. Dense factors
can be identified to have more than a given number of terms and skipped.

See Also

§3.6 For irreducible multivariate polynomials.
§8.1 Where absolute factorization intervenes for testing if a univariate rational func-

tion generates a permutation of a finite field as in the algorithms of [1716, 1983].

References Cited: [10, 11, 162, 219, 237, 238, 239, 256, 360, 365, 616, 617, 761, 778, 779,
830, 1100, 1175, 1177, 1182, 1183, 1216, 1217, 1218, 1227, 1229, 1230, 1271, 1462, 1499,
1518, 1519, 1616, 1623, 1640, 1645, 1646, 1647, 1648, 1649, 1650, 1651, 1653, 1654, 1655,
1658, 1659, 1660, 1661, 1662, 1668, 1669, 1670, 1716, 1739, 1750, 1880, 1881, 1882, 1883,
1893, 1897, 1983, 2108, 2129, 2130, 2131, 2202, 2209, 2299, 2338, 2339, 2400, 2504, 2505,
2528, 2529, 2530, 2542, 2602, 2703, 2730, 2733, 2938, 2939, 3021, 3052, 3053, 3080, 3081]
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11.6 Discrete logarithms over finite fields

Andrew Odlyzko, University of Minnesota

Surveys and detailed expositions with proofs can be found in [661, 1939, 1938, 2080,
2308, 2306, 2720].

11.6.1 Basic definitions

11.6.1 Remark Discrete exponentiation in a finite field is a direct analog of ordinary exponentia-
tion. The exponent can only be an integer, say n, but for w in a field F , wn is defined except
when w = 0 and n ≤ 0, and satisfies the usual properties, in particular wm+n = wmwn

and (for u and v in F ) (uv)m = umvm. The discrete logarithm is the inverse function, in
analogy with the ordinary logarithm for real numbers. If F is a finite field, then it has at
least one primitive element g; i.e., all nonzero elements of F are expressible as powers of g,
see Chapter 2.

11.6.2 Definition Given a finite field F , a primitive element g of F , and a nonzero element w of
F , the discrete logarithm of w to base g, written as logg(w), is the least non-negative
integer n such that w = gn.

11.6.3 Remark The value logg(w) is unique modulo q − 1, and 0 ≤ logg(w) ≤ q − 2. It is often
convenient to allow it to be represented by any integer n such that w = gn.

11.6.4 Remark The discrete logarithm of w to base g is often called the index of w with respect to
the base g. More generally, we can define discrete logarithms in groups. They are commonly
called generic discrete logarithms.

11.6.5 Definition If G is a group (with multiplication as group operation), and g is an element
of G of finite order m, then for any element h of 〈g〉, the cyclic subgroup of G generated
by g, the discrete logarithm of h to base g, written as logg(h), is the least non-negative
integer n such that h = gn (and therefore 0 ≤ logg(h) ≤ m− 1).

11.6.6 Remark The definition of a group discrete logarithm allows for consideration of discrete
logarithms in finite fields when the base g is not primitive, provided the argument is in
the group 〈g〉. This situation arises in some important applications, in particular in the
U.S. government standard for the Digital Signature Algorithm (DSA). DSA operations are
performed in a field Fp with p a prime (nowadays recommended to be at least 2048 bits).
This prime p is selected so that p − 1 is divisible by a much smaller prime r (specified
in the standard to be of 160, 224, or 256 bits), and an element h of Fp is chosen to have
multiplicative order r (say by finding a primitive element g of Fp and setting h = g(p−1)/r).
The main element of the signature is of the form hs for an integer s, and ability to compute
s would break DSA. DSA can be attacked either by using generic finite group discrete
logarithm algorithms in the group 〈h〉 or finite field algorithms in the field Fp (which can
then easily yield a solution in 〈h〉).

11.6.7 Remark The basic properties of discrete logarithms given below, such as the change of base
formula, apply universally. On the other hand, many of the discrete logarithm algorithms
described later are valid only in finite fields. Generally speaking, discrete logarithms are
comparatively easy to compute in finite fields, since they have a rich algebraic structure that
can be exploited for cryptanalytic purposes. Much of the research on discrete logarithms



394 Handbook of Finite Fields

in other settings has been devoted to embedding the relevant groups inside finite fields in
order to apply finite field discrete logarithm algorithms.

11.6.8 Remark This section is devoted to finite field discrete logarithms, and only gives a few ref-
erences to other ones. For elliptic curve discrete logarithms, the most prominent collection,
see Section 16.4. However, other groups have also been used, for example class groups of
number fields [2044].

11.6.2 Modern computer implementations

11.6.9 Remark Most popular symbolic algebra systems contain some implementations of discrete
logarithm algorithms. For example, Maple has the mlog function, while Mathematica has
FieldInd. More specialized systems for number theoretic and algebraic computations, such
as Magma, PARI, and Sage, also have implementations, and typically can handle larger
problems. Thus for all but the largest problems that are at the edge of computability with
modern methods, widely available and easy to use programs are sufficient. Tables of finite
fields, such as those in [1939], are now seldomly printed in books.

11.6.3 Historical remarks

11.6.10 Remark Until the mid-1970s, the main applications for discrete logarithms were similar to
those of ordinary logarithms, namely in routine computations, but this time in finite fields.
They allowed replacement of relatively hard multiplications by easier additions. What was
frequently used was Zech’s logarithm (also called Jacobi’s logarithm, cf. [1939]), which is a
modification of the ordinary discrete logarithm. In a finite field F with primitive element g,
Zech’s logarithm of an integer n is defined as the integer Z(n) mod (q − 1) which satisfies
gZ(n) = 1 + gn. This provides a quick way to add elements given in terms of their discrete
logarithms: aside from boundary cases, gm + gn = gm(1 + gn−m) = gm+Z(n−m).

11.6.11 Remark As with ordinary logarithms, where slide rules and logarithm tables have been re-
placed by calculators, such routine applications of discrete logarithms in small or moderately
large fields now rely on computer algebra systems.

11.6.12 Remark Interest in discrete logarithms jumped dramatically in the mid-1970s with the
invention of public key cryptography, see Chapter 16. While discrete exponentiation is easy,
the discrete logarithm, its inverse, appeared hard, and this motivated the invention of the
Diffie–Hellman key exchange protocol, the first practical public key cryptosystem. Efficient
algorithms for discrete logarithms in the field over which this protocol is implemented would
make it insecure.

11.6.13 Remark The Diffie–Hellman problem is to compute gxy, the key that the two parties to
the Diffie–Hellman protocol obtain, from the gx and gy that are visible to the eavesdropper.
Although this problem has attracted extensive attention, it has not been solved, and for the
most important cases of finite field and elliptic curve discrete logarithms, it is still unknown
whether the Diffie–Hellman problem is as hard as the discrete logarithm one; see [410] for
recent results and references.

11.6.14 Remark It is known that single bits of discrete logarithms are about as hard to compute
as the entire discrete logarithms [1444].

11.6.15 Remark There are some rigorous lower bounds on discrete log problems, but only for groups
given in ways that restrict what can be done in them [2219, 2630].
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11.6.16 Remark Various cryptosystems other than the Diffie-Hellman one have been proposed
whose security similarly depends on the intractability of the discrete logarithm problem;
see Section 16.1. Many of them can be used in settings other than finite fields.

11.6.17 Remark There are close analogies between integer factorization and discrete logarithms
in finite fields, and most (but not all) of the algorithms in one area have similar ones in
the other. This will be seen from some of the references later. In general, considerably less
attention has been devoted to discrete logarithms than to integer factorization. Hence the
smaller sizes of discrete logarithm problems that have been solved result both from the
greater technical difficulty of this problem as compared to integer factorization and from
less effort being devoted to it.

11.6.18 Remark Shor’s 1994 result [2623] shows that if quantum computers become practical,
discrete logarithms will become easy to compute. Therefore cryptosystems based on discrete
logarithms may all become suddenly insecure.

11.6.4 Basic properties of discrete logarithms

11.6.19 Remark Suppose that G is a group, and g an element of finite order m in G. If u and v are
two elements of 〈g〉, then

logg(uv) ≡ logg(u) + logg(v) (mod m),

logg(u
−1) ≡ − logg(u) (mod m).

11.6.20 Remark (Change of base formula) Suppose that G is a group, and that g and h are two
elements of G that generate the same cyclic subgroup 〈g〉 = 〈h〉 of order m. If u is an
element of 〈g〉, then

logg(u) ≡ logh(u) ∗ logg(h) (mod m),

and therefore

logg(h) ≡ 1/ logh(g) (mod m).

These formulas mean that one can choose the most convenient primitive element to work
with in many applications. For example, in finite fields F2k , elements are usually represented
as polynomials with binary coefficients, and one can find (as verified by experiment and
inspired by heuristics, but not proved rigorously) primitive elements that are represented as
polynomials of very low degree. This can offer substantial efficiencies in implementations.
However, it does not affect the security of the system. If discrete logarithms are easy to
compute in one base, they are easy to compute in other bases. Similarly, the change of the
irreducible polynomial that defines the field has little effect on the difficulty of the discrete
logarithm problem.

11.6.5 Chinese Remainder Theorem reduction:
The Silver–Pohlig–Hellman algorithm

11.6.21 Remark If the order of the element g can be factored even partially, the discrete logarithm
problem reduces to easier ones. This is the Silver–Pohlig–Hellman technique [2406]. Suppose
that g is an element of finite order m in a group G, and m is written as m = m1m2 with
gcd(m1, m2) = 1. Then the cyclic group 〈g〉 is the direct product of the cyclic groups
〈gm2〉 and 〈gm1〉 of orders m1 and m2, respectively. If we determine a = loggm2 (wm2) and
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b = loggm1 (wm1), the Chinese Remainder Theorem tells us that logg(w) is determined
completely, and in fact we obtain

logg(w) ≡ b ∗ x ∗m1 + a ∗ y ∗m2 (mod m),

where x and y come from the Euclidean algorithm computation of gcd(m1, m2), namely
1 = xm1 + ym2. This procedure extends easily to more than two relatively prime factors.

11.6.22 Remark When m, the order of g, is a prime power, say m = pk, the computation of logg(w)
reduces to k discrete logarithm computations in a cyclic group of p elements. For example,
if r = pk−1 and h = gr, u = wr, then h has order p, and computing logh(u) yields the
reduction of logg(w) (mod p). This process can then be iterated to obtain the reduction
modulo p2, and so on.

11.6.23 Remark The above remarks, combined with results of the next section, show that when
the complete factorization of the order of g can be obtained, discrete logarithms can be
computed in not much more than r1/2 operations in the group, where r is the largest prime
in the factorization.

11.6.24 Remark In a finite field, any function can be represented by a polynomial. For the discrete
logarithm, such polynomials do turn out to have some aesthetically pleasing properties, see
[2189, 2244, 2922, 2968]. However, so far they have turned out to be of no practical use
whatsoever.

11.6.6 Baby steps–giant steps algorithm

11.6.25 Remark We next consider some algorithms for discrete logarithms that work in very general
groups. The basic one is the baby steps–giant steps method that combines time and space,
due to Shanks [2607].

11.6.26 Algorithm Baby steps–giant steps algorithm: Suppose that G is a group and g is an element
ofG of finite orderm. If h ∈ 〈g〉, h = gk, and w = dm1/2e, then k can be written as k = aw+b
for some (often non-unique) a, b with 0 ≤ a, b < w. To find such a representation, compute
the set A = {gjw : 0 ≤ j < w} and sort it. This takes m1/2 + O(log(m)) group operations
and O(m1/2 log(m)) sorting steps, which are usually very easy, since they can be performed
on bit strings, or even initial segments of bit strings. Next, for 0 ≤ i < w, compute hg−i and
check whether it is present in A. When it is, we obtain the desired representation k = jw+i.

11.6.27 Remark The baby steps–giant steps technique has the advantage of being fully determin-
istic. Its principal disadvantage is that it requires storage of approximately m1/2 group
elements. A space-time tradeoff is available, in that one can store a smaller list (the set
A in the notation above, with fewer but larger “giant steps”) but then have to do more
computing (more “baby steps”).

11.6.28 Remark The baby steps–giant steps algorithm extends easily to many cases where the
discrete logarithm is restricted in some way. For example, if it is known that logg(w) lies
in an interval of length n, the basic approach sketched above can be modified to find it in
O(n1/2) group operations (plus the usual sorting steps). Similarly, if the discrete logarithm
k is allowed to have only small digits when represented in some base (say binary digits in
base 10), then the running time will be about the square root of the number of possibilities
for k. For some other recent results, see [2708].
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11.6.7 Pollard rho and kangaroo methods for discrete logarithms

11.6.29 Remark In 1978, Pollard invented two randomized methods for computing discrete log-
arithms in any group, the rho method, and the kangaroo (or lambda) technique [2413].
Just like Pollard’s earlier rho method for integer factorization, they depend on the birthday
paradox, which says that if one takes a (pseudo) random walk on a completely connected
graph of n vertices, one is very likely to revisit the same vertex in about n1/2 steps. These
discrete logarithm algorithms also depend, just as the original rho method does, on the
Floyd algorithm (Section 3.1 of [1765]) for detecting cycles with little memory at some cost
in running time, in that they compare x2i to xi, where xi is the position of the random
walk at time i.

11.6.30 Remark Since the rho and kangaroo methods for discrete logarithms are probabilistic, they
cannot guarantee a solution, but heuristics suggest, and experiments confirm, that both run
in expected time O(m1/2), where m is the order of the group. This is the same computational
effort as for the baby steps–giant steps algorithm. However, the rho and kangaroo methods
have two advantages. One is that they use very little memory. Another one is that, as was
first shown by van Oorschot and Wiener [2852], they can be parallelized, with essentially
linear speedup, so that k processors find a solution about k times faster than a single one.
We sketch just the standard version of the rho method, and only briefly.

11.6.31 Algorithm Rho algorithm for discrete logarithms: Partition the group 〈g〉 of order m into
three roughly equal sets S1, S2, and S3, using some property that is easy to test, such as
the first few bits of a canonical representation of the elements of G. To compute logg(h),
define a sequence w0, w1, . . . by w0 = g and for i > 0, wi+1 = wi

2, wig, or wih, depending
on whether wi ∈ S1, S2, or S3. Then each wi is of the form

wi = gaihbi

for some integers ai, bi. If the procedure of moving from wi to wi+1 behaves like a random
walk (as is expected), then in O(m1/2) steps we will find i such that wi = w2i, and this will
give a congruence

ai + bi logg(h) ≡ a2i + b2i logg(h) (mod m).

Depending on the greatest common divisor of m and bi − b2i this congruence will typically
either yield logg(h) completely, or give some stringent congruence conditions, which with
the help of additional runs of the algorithm will provide a complete solution.

11.6.32 Remark The low memory requirements and parallelizability of the rho and kangaroo al-
gorithms have made them the methods of choice for solving general discrete logarithm
problems. There is a substantial literature on various modifications, although they do not
improve too much on the original parallelization observations of [2852]. Some references are
[613, 1734, 2414, 2790].

11.6.33 Remark The rho method, as outlined above, requires knowledge of the exact order m of the
group. The kangaroo method only requires an approximation to m. The kangaroo algorithm
can also be applied effectively when the discrete logarithm is known to lie in a restricted
range.

11.6.8 Index calculus algorithms for discrete logarithms in finite fields

11.6.34 Remark The rest of this section is devoted to a brief overview of index calculus algo-
rithms for discrete logarithms. Unlike the Shanks and Pollard methods of the previous two
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subsections, which take exponential time, about m1/2 for a group of order m, the index
calculus techniques are subexponential, with running times closer to exp((log(m))1/2) and
even exp((log(m))1/3). However, they apply directly only to finite fields. That is why much
of the research on discrete logarithms in other groups of cryptographic interest, such as on
elliptic curves, is devoted to finding ways to reduce those problems to ones in finite fields.

11.6.35 Remark In the case of DSA mentioned at the beginning of this section, the recommended
size of the modulus p has increased very substantially, from 512 to 1024 bits when DSA was
first adopted, to the range of 2048 to 3072 bits more recently. The FIPS 186-3 standard
specifies bit lengths for the two primes p and r of (1024, 160), (2048, 224), (2048, 256), and
(3072, 256). The relative sizes of p and r were selected to offer approximately equal levels
of security against index calculus algorithms (p) and generic discrete logarithm attacks (r).
The reason for the much faster growth in the size of p is that with the subexponential
running time estimates, the effect of growing computing power is far more pronounced on
the p side than on the r side. In addition, while there has been no substantial theoretical
advance in index calculus algorithms in the last two decades, there have been numerous
small incremental improvements, several cited later in more detailed discussions. On the
other hand, there has been practically no progress in generic discrete logarithm algorithms,
except for parallelization.

11.6.36 Remark The basic idea of index calculus algorithms dates back to Kraitchik, and is also
key to all fast integer factorization algorithms. In a finite field Fq with primitive element g,
if we find some elements xi, yj ∈ Fq such that

r∏
i=1

xi =

s∏
j=1

yj ,

then
r∑
i=1

logg xi ≡
s∑
j=1

logg yj (mod q − 1).

If enough equations are collected, this linear system can be solved for the logg xi and logg yj .
Singular systems are not a problem in practice, since typically computations generate con-
siderably more equations than unknowns, and one can arrange for g itself to appear in the
multiplicative relations.

11.6.37 Remark To compute logg w for some particular w ∈ F with index calculus algorithms,
it is often necessary to run a second stage that produces a relation involving w and the
previously computed discrete logarithms. In some algorithms the second stage is far easier
than the initial computation, in others it is of comparable difficulty.

11.6.38 Remark For a long time (see [2306] for references), the best index calculus algorithms for
both integer factorization and discrete logarithms had running times of the form

exp((c+ o(1))(log q)1/2(log log q)1/2) as p→∞

for various constants c > 0, where q denotes the integer being factored or the size of the
finite field. The first practical method that broke through this running time barrier was
Coppersmith’s algorithm [717] for discrete logarithms in fields of size q = 2k (and more
generally, of size q = pk where p is a small prime and k is large). It had running time of
approximately

exp(C(log q)1/3(log log q)2/3),

where the C varied slightly, depending on the distance from k to the nearest power of p, and
in the limit as k → ∞ it oscillated between two bounds [2306]. The function field sieve of
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Adleman [16], which also applies to fields with q = pk where p is relatively small, improves
on the Coppersmith method, but has similar asymptotic running time estimate. For the
latest results on its developments, see [1626, 1628, 2543].

11.6.39 Remark The running time of Coppersmith’s algorithm turned out to also apply to the
number field sieve. This method, which uses algebraic integers, was developed for integer
factorization by Pollard and H. Lenstra, with subsequent contributions by many others. It
was adopted for discrete log computations in prime fields by Gordon [1325], with substantial
improvements by other reseachers. For the latest estimates and references, see [711, 1627,
2544, 2545].

11.6.9 Smooth integers and smooth polynomials

11.6.40 Remark The index calculus algorithms depend on a multiplicative splitting of some ele-
ments, such as integers or polynomials, into such elements drawn from a smaller collection.
This smaller collection usually is made up of elements that by some measure (norm) are
small. The essence of index calculus algorithms is to select general elements from the large
set at random, but as intelligently as possible in order to maximize the chances they will
have the desired type of splitting. Usually elements that do have such splittings are called
“smooth.”

11.6.41 Remark There are rigorous analyses that provide estimates of how often elements in various
domains are “smooth.” For ordinary integers, there are the estimates of [1501]. For algebraic
integers, we can use [441, 2574]. For polynomials over finite fields, recent results are [2348].

11.6.10 Sparse linear systems of equations

11.6.42 Remark Index calculus algorithms for discrete logarithms require the solution of linear
equations modulo q − 1, where q is the size of the field. As in the Silver–Pohlig–Hellman
method, the Chinese Remainder Theorem (and an easy reduction of the case of a power
of a prime to that of the prime itself) reduces the problem to that of solving the system
modulo primes r that divide q − 1. (For more extensive discussion of linear algebra over
finite fields, see Section 13.4.)

11.6.43 Remark The linear algebra problems that arise in index calculus algorithms for integer
factorization are very similar, but simpler, in that they are all just modulo 2. For discrete
logarithm problems to be hard, they have to be resistant to the Silver–Pohlig–Hellman at-
tack. Hence q − 1 has to have at least one large prime factor r, and so the linear system
has to be solved modulo a large prime. That increases the complexity of the linear solution
computation, and thus provides slightly higher security for discrete logarithm cryptosys-
tems.

11.6.44 Remark A key factor that enables the solution of the very large linear systems that arise in
index calculus algorithms is that these systems are very sparse. (Those “smooth” elements
do not involve too many of the “small” elements in the multiplicative relations.) Usually
the structured Gaussian elimination method (proposed in [2306] and called there intelligent
gaussian elimination, afterwards renamed in the first practical demonstration of it [1839],
now sometimes called filtering) is applied first. It combines the relations in ways that re-
duce the system to be solved and do not destroy the sparsity too far. Then the conjugate
gradient, the Lanczos, or the Wiedemann methods (developed in [721, 2976], the first two
demonstrated in practice in [1839]) that exploit sparsity are used to obtain the final solution.
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11.6.45 Remark For the extremely large linear systems that are involved in record-setting com-
putations, distributed computation is required. The methods of choice, once structured
Gaussian elimination is applied, are the block Lanczos and block Wiedemann methods
[718, 719, 2134].

11.6.46 Remark Some symbolic algebra systems incorporate implementations of the sparse linear
system solvers mentioned above.

11.6.47 Remark As a demonstration of the effectiveness of the sparse methods, the record factor-
ization of RSA768 [1753], mentioned below, produced 64 billion linear relations. These were
reduced, using structured gaussian elimination, to a system of almost 200 million equations
in about that many unknowns. This system was still sparse, with the average equation
involving about 150 unknowns. The block Wiedemann method was then used to solve the
resulting system.

11.6.11 Current discrete logarithm records

11.6.48 Remark Extreme caution should be exercised when drawing any inferences about relative
performance of various integer factorization and discrete logarithm algorithms from the
record results listed here. The computing resources, as well as effort involved in program-
ming, varied widely among the various projects.

11.6.49 Remark As of the time of writing (early 2012), the largest cryptographically hard integer
(i.e., one that was chosen specifically to resist all known factoring attacks, and is a product
of two roughly equal primes) that has been factored is RSA768, a 768-bit (232 decimal digit)
integer from the RSA challenge list [1753]. This was the result of a large collaboration across
the globe stretching over more than two years, and used the general number field sieve.

11.6.50 Remark The largest discrete logarithm case for a prime field Fp (with p chosen to resist
simple attacks) that has been solved is for a 530-bit (160 decimal digit) prime p. This was
accomplished by Kleinjung in 2007 [1752]. The number field sieve was used.

11.6.51 Remark In fields of characteristic two, the largest case that has been solved is that of Fq
with q = 2613, using the function field sieve. (An earlier record was for q = 2607 using the
Coppersmith algorithm.) This computation took several weeks on a handful of processors,
and was carried out by Joux and Lercier in 2005 [1625].

11.6.52 Remark The largest generic discrete logarithm problem that has been solved in a hard
case is that of discrete logarithms over an elliptic curve modulo a 112-bit prime, thus a
group of size about 2112. This is due to Bos and Kaihara [353], and was done in 2009. Right
now, a large multi-year collaborative effort is under way to break the Certicom ECC2K-130
challenge, which involves computing discrete logarithms on an elliptic curve over a field
with 2131 elements [160]. All these efforts rely on parallelized versions of the Pollard rho
method.

See Also

Chapter 2 For basic properties of finite fields.
§11.1 For basic computational techniques in finite fields.
§13.4 For linear algebra over finite fields.
Chapter 16 For public key cryptographic systems.
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11.7 Standard models for finite fields

Bart de Smit, Universiteit Leiden

Hendrik Lenstra, Universiteit Leiden

11.7.1 Definition Let p be a prime number and let n be a positive integer. An explicit model for a
finite field of size pn is a field whose underlying additive group is Fnp = Fp×Fp×· · ·×Fp.

11.7.2 Remark Let e0, . . . , en−1 be the standard Fp-basis of Fnp . Then a field structure on Fnp is
uniquely determined by the n3 elements aijk ∈ Fp such that

ei · ej =
n−1∑
k=0

aijkek.

Thus, one can specify an explicit model using O(n3 log p) bits. When we say that for an
algorithm an explicit model is input or output we assume that the explicit data consisting of
p and (aijk) are given as input or output. There is a deterministic polynomial time algorithm
that given such data first decides whether p is prime [43], and then decides whether it defines
an explicit model for a finite field [1895, Section 2].

11.7.3 Remark Let A be a field of characteristic p > 0 and size pn and let b0, . . . , bn−1 be a basis
of A as a vector space over Fp. We then obtain an explicit model as follows. Write ψ for
the unique Fp-vector space isomorphism Fnp → A sending ei to bi for 0 ≤ i < n. Define a
multiplication map on Fnp by v ·w = ψ−1(ψ(v) · ψ(w)), for v, w ∈ Fnp . Together with vector
addition, this multiplication makes Fnp into a field.

11.7.4 Remark An alternative space-efficient way to give explicit models is to give an irreducible
polynomial f ∈ Fp[x] of degree n over Fp, which we can encode with O(n log p) bits. Using
the Fp-basis 1, x, . . . , xn−1 of the field Fp[x]/(f) we then obtain an explicit model of a
field of size pn as in Remark 11.7.3. One can convert between this representation and
the representation with n3 elements by deterministic polynomial time algorithms [1895,
Theorem 1.1]. Since our concern in this section is only about whether an algorithm runs in
polynomial time or not, and not about the degree of the polynomial if it does, we use the
more flexible setup of the explicit data consisting of the n3 elements aijk in Fp.

11.7.5 Theorem [789] There is a deterministic polynomial time algorithm such that

1. on input two explicit models for finite fields A, B of the same cardinality, it
produces a field isomorphism φA,B : A→ B;

2. for any three explicit models A,B,C for finite fields of the same size we have
φB,C ◦ φA,B = φA,C .

11.7.6 Remark The isomorphism that the algorithm produces is given as explicit output by listing
the entries of the square matrix associated to the underlying linear map over the prime
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field; see [1895, Section 2] for a proof of this theorem without Property 2. By Property 2
this algorithm can be used for “coercion” in computer algebra [361].

11.7.7 Definition An algorithmic model for finite fields is a sequence (Aq)q, where q runs over all
prime powers and Aq is an explicit model for a finite field of size q, such that there is
an algorithm that on input q produces Aq.

11.7.8 Example For each prime p and n ≥ 1 one can take the explicit model Apn to be given as
in Remark 11.7.4 by the first irreducible polynomial of degree n over Fp with respect to a
lexicographic ordering of polynomials of degree n over Fp.

11.7.9 Example Conway polynomials [1452, 1966] provide an algorithmic model for finite fields
that has some additional properties. However computing Conway polynomials is laborious
and there is only a rather limited table of known Conway polynomials.

11.7.10 Theorem [789] There is an algorithmic model (Sq)q such that there is a deterministic
polynomial time algorithm that on input an explicit model A for a field of size q

1. computes the model Sq;

2. computes an isomorphism of fields A→ Sq.

11.7.11 Remark The theorem in fact determines (Sq)q uniquely up to “polynomial time base
change.” More precisely, suppose that for every prime power q = pn we have an invert-
ible n × n-matrix Mq over Fp and suppose that there is a deterministic polynomial time
algorithm that on input an explicit model for a field of size q produces Mq. Given (Sq)q as
in the theorem we let (S′q)q be the algorithmic model that one gets in the manner of Remark
11.7.3 by considering the columns of Mq as an Fp-basis of Sq for every q. Then Theorem
11.7.10 also holds for (S′q)q. Moreover, every algorithmic model (S′q)q with the Properties 1
and 2 of the theorem arises in this way from (Sq)q.

11.7.12 Remark Theorem 11.7.10 implies Theorem 11.7.5. To prove Theorem 11.7.10 one can show
[789] that it holds for the algorithmic model of finite fields (Sq)q, where Sq is the standard
model for a finite field of size q defined below.

11.7.13 Definition (Construction of the standard model) [790]

Step 1: cyclotomic rings. Let r be a prime number
and write r = r · gcd(r, 2). We write Zr for the ring
of r-adic integers, Z∗r for its group of units, and ∆r

for the torsion subgroup of Z∗r ; the group ∆r is cyclic
of order ϕ(r), where ϕ denotes the Euler ϕ-function.

The ring Ar is the polynomial ring
Z[x0, x1, x2, . . .] modulo the ideal generated by

{∑r−1
j=0 x

jr/r
0 , xrk+1 − xk : k ≥ 0}. For k ∈ Z≥0, we

write ζrrk for the residue class of xk in Ar, which is
a unit of multiplicative order rrk. For each u ∈ Z∗r
there is a unique ring automorphism of Ar that
maps each ζrrk to ζ ūrrk , where ū = (u mod rrk); we
denote this ring automorphism by σu.

The ring Br is defined by Br = {a ∈ Ar :
σu(a) = a for all u ∈ ∆r}. For k ∈ Z>0, i ∈
{0, 1, . . . , r − 1} the element ηr,k,i ∈ Br is defined

by ηr,k,i =
∑
u∈∆r

σu(ζ1+irrk−1

rrk
).

Z

Z[ζr]

•
Z[ζrr]

•
•

Br

Ar

∆r

∆r
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Step 2: prime ideals. Let p, r be prime numbers with p 6= r, and let l be the number
of factors r in the integer (pϕ(r) − 1)/(r2/r). Denote by Sp,r the set of prime ideals p of
Br that satisfy p ∈ p. This set is finite of cardinality rl, and for each p ∈ Sp,r there exists
a unique system (ap,j)0≤j<lr of integers ap,j ∈ {0, 1, . . . , p− 1} such that p is generated
by p together with {ηr,k+1,i− ap,i+kr : 0 ≤ k < l, 0 ≤ i < r}. We define a total ordering
on Sp,r by putting p < q if there exists h ∈ {0, 1, . . . , lr− 1} such that ap,j = aq,j for all
j < h and ap,h < aq,h. The smallest element of Sp,r in this ordering is denoted by pp,r.

We define Fp,r to be the ring Br/pp,r, and for k ∈ Z>0 we define αp,r,k ∈ Fp,r to be
the residue class of ηr,k+l,0 modulo pp,r.

Step 3: equal characteristic. Let p be a prime number and put Fp = Z/pZ. Let the

element f = f(x, y) of the polynomial ring Fp[x, y] be defined by f = xp−1−y ·∑p−1
i=1 x

i.
We define Fp,p to be the polynomial ring Fp[x1, x2, x3, . . .] modulo the ideal generated
by {f(x1, 1), f(xk+1, xk) : k > 0}. For k ∈ Z>0 we denote the image of xk in Fp,p by
αp,p,k.

Step 4: an algebraic closure. Let p be a prime number. Then for any prime number r it
is true that the ring Fp,r is a field containing Fp; that for each k ∈ Z>0, the element αp,r,k
of Fp,r is algebraic of degree rk over Fp; and that one has Fp,r = Fp(αp,r,1, αp,r,2, . . .).

We write F̄p for the tensor product, over Fp, of the rings Fp,r, with r ranging over
the set of all prime numbers. For any prime number r and k ∈ Z>0, the image of αp,r,k
under the natural ring homomorphism Fp,r → F̄p is again denoted by αp,r,k.

The ring F̄p is a field containing Fp, and it is an algebraic closure of Fp. We have
F̄p = Fp(αp,r,k : r prime, k ∈ Z>0), each αp,r,k being algebraic of degree rk over Fp.

Step 5: a vector space basis. Let p be a prime number. For each s ∈ Q/Z, the element
εs ∈ F̄p is defined as follows. There exists a unique system of integers (cr,k)r,k, with r
ranging over the set of prime numbers and k over Z>0, such that each cr,k belongs to
{0, 1, . . . , r− 1} and s equals the residue class of

∑
r,k cr,k/r

k modulo Z, the sum being
finite in the sense that cr,k = 0 for all but finitely many pairs r, k. With that notation,
εs is defined to be the finite product

∏
r,k α

cr,k
p,r,k.

The system (εs)s∈Q/Z is a vector space basis of F̄p over Fp. In addition, for each
s ∈ Q/Z the degree of εs over Fp equals the order of s in the additive group Q/Z.

For n ≥ 1 the standard model Spn for a field of size pn is the explicit model
that one obtains in the manner of Remark 11.7.3 by considering the Fp-basis
ε0, ε1/n, ε2/n, . . . , ε(n−1)/n of the unique subfield Fpn of F̄p of size pn.

11.7.14 Example Suppose that p is an odd prime number. The standard models for fields of size pn

where n is a power of 2 can be computed as follows. Put l = ord2((p2 − 1)/8) and for each
k ≥ −l consider the image αp,2,k of η2,k+l,0 = ζ2k+l+2 + ζ−1

2k+l+2 in the field Fp,2 = B2/pp,2.
We have αp,2,−l = 0, and for each k ≥ −l the element αp,2,k+1 is a root of the quadratic
polynomial fk = x2 − 2− αp,2,k ∈ Fp(αp,2,k)[x].

If k < 0 then fk has two roots in Fp and by the choice of the prime pp,2 in Definition
11.7.13, the element αp,2,k+1 is the smallest of the two roots if we order Fp as 0, 1, . . . , p−1.
Starting from αp,2,−l = 0, this enables us to find αp,2,−l+1, . . . , αp,2,0 ∈ Fp.

One can show that fk is irreducible in Fp(αp,2,k)[x] for all k ≥ 0. In particular, the
polynomial f0 = x2 − 2 − αp,2,0 ∈ Fp[x] gives the standard model for a field of size p2.
Moreover, for every k ≥ 1 the irreducible polynomial over Fp of the generator αp,2,k of Fp2k

over Fp is (x2− 2)◦k −αp,2,0, where for a polynomial f ∈ Fp[x] we let f◦k denote the k-fold
composition f(f(· · · f(x) · · · )).

11.7.15 Remark Note that the definition above also provides a standard embedding Sq → Sqd for
every prime power q and every integer d ≥ 1, which is induced by the inclusion Fq ⊂ Fqd .
A composition of standard embeddings is again a standard embedding.
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11.7.16 Theorem [789] There is a probabilistic algorithm that on input a prime p and n ≥ 1
computes Spn in expected time bounded by a polynomial in log p and n.

11.7.17 Remark This theorem is an easy consequence of the fact that explicit models can be made
in probabilistic polynomial time [1892], and Theorem 11.7.10 above. Under the assump-
tion of the generalized Riemann hypothesis, this can also be achieved with a deterministic
polynomial time algorithm [14].

11.7.18 Remark An algorithm as in Theorem 11.7.16 is semi-deterministic: it is a probabilistic
algorithm that gives the same output when it runs twice on the same input. Thus, the
output does not depend on the random numbers drawn by the algorithm.

11.7.19 Example One way to find a non-square in Fp for a given odd prime p in semi-deterministic
polynomial time is as follows. Start with the value −1. If it is a square, find the two square
roots with the probabilistic method of Tonelli-Shanks [660, 1.5.1] and select the root that
has the smallest representative in the set {1, . . . , p − 1}. If this is a square in Fp, repeat.
Within O(log p) iterations we find a non-square up in Fp. By considering the Fp-basis 1,

√
up

of the field Fp(
√
up) we find a semi-deterministic algorithm that given p produces an explicit

model for a field of size p2 in polynomial time. This proves a special case of Theorem 11.7.16.
The models produced in this way are not the standard models, which as we saw in

Example 11.7.14 are obtained by taking inverse images of 0 under iterates of the map
x 7→ x2 − 2 rather than inverse images of −1 under iterates of the map x 7→ x2. In both
cases the algorithm produces quadratic polynomials until it encounters an irreducible one,
but only the method of Example 11.7.14 has the advantage that for all p all subsequent
quadratic polynomials are also irreducible.

11.7.20 Remark In a similar way, one can prove that there is a semi-deterministic algorithm that
given a prime power q, and a prime l and r ≥ 1 with lr | q − 1, computes a root of unity of
order lr in Sq in expected time polynomial in l and log q.

See Also

Chapter 2 For basic properties of finite fields.
§11.1 For basic computational techniques in finite fields.
§11.3 For constructing irreducible polynomials.
§13.4 For linear algebra over finite fields.

References Cited: [14, 43, 361, 660, 789, 790, 1452, 1892, 1895, 1966]
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12.1 Introduction to function fields and curves

Arnaldo Garcia, IMPA

Henning Stichtenoth, Sabanci University

The theory of algebraic curves is essentially equivalent to the theory of algebraic function
fields. The latter requires less background and is closer to the theory of finite fields; therefore
we present here the theory of function fields. At the end of the section, we give a brief
introduction to the language of algebraic curves. Our exposition follows mainly the book
[2714]∗, other references are [1147, 1296, 1511, 2280, 2281, 2872].

Throughout this section, K denotes a finite field. However, almost all results of this
section hold for arbitrary perfect fields.

12.1.1 Valuations and places

12.1.1 Definition An algebraic function field over K is an extension field F/K with the following
properties:

1. There is an element x ∈ F such that x is transcendental over K and the exten-
sion F/K(x) has finite degree.

2. No element z ∈ F \K is algebraic over K.

The field K is the constant field of F .

12.1.2 Remark

1. We often use the term function field rather than algebraic function field.

2. Property 2 in Definition 12.1.1 is often referred to as: K is algebraically closed in
F , or K is the full constant field of F .

3. If F/K is a function field, then the degree [F : K(z)] is finite for every z ∈ F \K.

4. Every function field F/K can be generated by two elements, F = K(x, y), where
the extension F/K(x) is finite and separable.

Throughout this section, F/K always means a function field over K.

12.1.3 Example (Rational function fields) The simplest example of a function field over K is the
rational function field F = K(x), with x being transcendental over K. The elements of
K(x) are the rational functions z = f(x)/g(x) where f, g are polynomials over K and g is
not the zero polynomial.

12.1.4 Example (Elliptic and hyperelliptic function fields) Let F be an extension of the rational
function field K(x) of degree [F : K(x)] = 2. For simplicity we assume that charK 6= 2.
Then there exists an element y ∈ F such that F = K(x, y), and y satisfies an equation over
K(x) of the form

y2 = f(x), with f ∈ K[x] square-free

(i.e., f is not divisible by the square of a polynomial h ∈ K[x] of degree ≥ 1). One shows
that F is rational if deg(f) = 1 or 2. F is an elliptic function field if deg(f) = 3 or 4, and

∗The authors thank Springer Science+Business Media for their permission to use in Section 12.1 parts
from H. Stichtenoth’s book Algebraic Function Fields and Codes, GTM 254, 2009.
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it is a hyperelliptic function field if deg(f) ≥ 5. See also Definition 12.1.108 and Example
12.1.109. A detailed exposition of elliptic and hyperelliptic function fields is given in Sections
12.2 and 12.4.

12.1.5 Remark In case of charK = 2, the definition of elliptic and hyperelliptic function fields
requires some modification, see [2714, Chapters 6.1, 6.2].

12.1.6 Definition A valuation of F/K is a map ν : F → Z∪{∞} with the following properties:

1. ν(x) =∞ if and only if x = 0.

2. ν(xy) = ν(x) + ν(y) for all x, y ∈ F .

3. ν(x+ y) ≥ min{ν(x), ν(y)} for all x, y ∈ F .

4. There exists an element z ∈ F such that ν(z) = 1.

5. ν(a) = 0 for all a ∈ K \ {0}.

12.1.7 Remark The symbol∞ denotes an element not in Z such that∞+∞ =∞+n = n+∞ =∞
and ∞ > m for all m,n ∈ Z. It follows that ν(x−1) = −ν(x) for every nonzero element
x ∈ F . Property 3 above is the Triangle Inequality. The following proposition is often useful.

12.1.8 Proposition (Strict triangle inequality) Let ν be a valuation of the function field F/K and
let x, y ∈ F such that ν(x) 6= ν(y). Then ν(x+ y) = min{ν(x), ν(y)}.

12.1.9 Remark For a valuation ν of F/K, consider the following subsets O,O∗, P of F :

O := {z ∈ F | ν(z) ≥ 0}, O∗ := {z ∈ F | ν(z) = 0}, P := {z ∈ F | ν(z) > 0}.

Then O is a ring, O∗ is the group of invertible elements (units) of O, and P is a maximal
ideal of O. In fact, P is the unique maximal ideal of O, which means that O is a local ring.
The ideal P is a principal ideal, which is generated by every element t ∈ F with ν(t) = 1.

For distinct valuations ν1, ν2, the corresponding ideals P1 = {z ∈ F | ν1(z) > 0} and
P2 = {z ∈ F | ν2(z) > 0} are distinct.

12.1.10 Definition

1. A subset P ⊆ F is a place of F/K if there exists a valuation ν of F/K such that
P = {z ∈ F | ν(z) > 0}. The valuation ν is uniquely determined by the place
P . Therefore we write ν =: νP and say that νP is the valuation corresponding
to the place P .

2. If P is a place of F/K and νP is the corresponding valuation, then the ring
OP := {z ∈ F | νP (z) ≥ 0} is the valuation ring of F corresponding to P .

3. An element t ∈ F with νP (t) = 1 is a prime element at the place P .

4. Let PF := {P | P is a place of F}.

12.1.11 Remark Since P is a maximal ideal of its valuation ring OP , the residue class ring OP /P
is a field. The constant field K is contained in OP , and P ∩ K = {0}. Hence one has a
canonical embedding K ↪→ OP /P . We always consider K as a subfield of OP /P via this
embedding.

12.1.12 Definition Let P be a place of F/K.

1. The field FP := OP /P is the residue class field of P .
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2. The degree of the field extension FP /K is finite and is the degree of the place
P . We write degP := [FP : K].

3. A place P ∈ PF is rational if degP = 1. This means that FP = K.

4. For z ∈ OP , denote by z(P ) ∈ FP the residue class of z in FP . For z ∈ F \OP ,
set z(P ) :=∞. The map from F to FP ∪{∞} given by z 7→ z(P ) is the residue
class map at P .

12.1.13 Remark For a rational place P ∈ PF and an element z ∈ OP , the residue class z(P ) is the
(unique) element a ∈ K such that νP (z − a) > 0. In this case, one calls the map z 7→ z(P )
from OP to K the evaluation map at the place P . We note that the evaluation map is
K-linear. This map plays an important role in the theory of algebraic–geometry codes, see
Section 15.2.

12.1.14 Example We want to describe all places of the rational function field K(x)/K.

1. Let h ∈ K[x] be an irreducible monic polynomial. Every nonzero element z ∈
K(x) can be written as

z = h(x)r · f(x)

g(x)

with polynomials f, g ∈ K[x] which are relatively prime to h, and r ∈ Z. Then
the map νP : K(x) → Z ∪ {∞} with νP (z) := r (and νP (0) := ∞) defines a
valuation of K(x)/K. The corresponding place P is

P =

{
u(x)

v(x)

∣∣ u, v ∈ K[x], h divides u but not v

}
.

The residue class field of this place is isomorphic to K[x]/(h) and therefore we
have degP = deg(h).

2. Another valuation of K(x)/K is defined by ν(z) = deg(g) − deg(f) for z =
f(x)/g(x) 6= 0. The corresponding place is called the place at infinity and is
denoted by P∞ or (x =∞). It follows from the definition that

P∞ =

{
f(x)

g(x)

∣∣ deg(f) < deg(g)

}
.

The place P∞ has degree one, that is, it is a rational place.

3. There are no places of K(x)/K other than those described in Parts 1 and 2.

4. For a ∈ K, the polynomial x− a is irreducible of degree 1 and defines a place P
of degree one. We sometimes denote this place as P = (x = a). The set K ∪{∞}
is therefore in 1–1 correspondence with the set of rational places of K(x)/K via
a←→ (x = a).

5. The residue class map corresponding to a place P = (x = a) with a ∈ K is given
as follows: If z = f(x)/g(x) ∈ OP then g(a) 6= 0 and

z(P ) =: z(a) = f(a)/g(a) ∈ K.

In order to determine z(∞) := z(P ) at the infinite place P = P∞, we write
f(x) = anx

n + · · · + a0 and g(x) = bmx
m + · · · + b0 with anbm 6= 0. Then

z(∞) = 0 if n < m, z(∞) =∞ if n > m, and z(∞) = an/bn if n = m.
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12.1.2 Divisors and Riemann–Roch theorem

12.1.15 Remark [2714, Corollary 1.3.2] Every function field F/K has infinitely many places.

12.1.16 Remark The following theorem states that distinct valuations of F/K are independent of
each other.

12.1.17 Theorem (Approximation theorem) [2714, Theorem 1.3.1] Let P1, . . . , Pn ∈ PF be pairwise
distinct places of F . Let x1, . . . , xn ∈ F and r1, . . . , rn ∈ Z. Then there exists an element
z ∈ F such that

νPi(z − xi) = ri for i = 1, . . . , n.

12.1.18 Definition Let F/K be a function field, x ∈ F and P ∈ PF .

1. P is a zero of x if νP (x) > 0, and the integer νP (x) is the zero order of x at P .

2. P is a pole of x if νP (x) < 0. The integer −νP (x) is the pole order of x at P .

12.1.19 Remark

1. A nonzero element a ∈ K has neither zeros nor poles.

2. For all x 6= 0 and P ∈ PF , P is a pole of x if and only if P is a zero of x−1.

12.1.20 Theorem [2714, Theorem 1.4.11] For x ∈ F \K the following hold:

1. x has at least one zero and one pole.

2. The number of zeros and poles of x is finite.

3. Let P1, . . . , Pr and Q1, . . . , Qs be all zeros and poles of x, respectively. Then

r∑
i=1

νPi(x) degPi =
s∑
j=1

−νQj (x) degQj = [F : K(x)].

12.1.21 Definition

1. The divisor group of F/K is the free abelian group generated by the set of
places of F/K. It is denoted by Div(F ). The elements of Div(F ) are divisors of
F . That means, a divisor of F is a formal sum

D =
∑
P∈PF

nPP with nP ∈ Z and nP 6= 0 for at most finitely many P.

The set of places with nP 6= 0 is the support of D and denoted as supp D. If
supp D ⊆ {P1, . . . , Pk} then D is also written as

D = n1P1 + · · ·+ nkPk where ni = nPi .

Two divisors D =
∑
P nPP and E =

∑
P mPP are added coefficientwise, that

is D+E =
∑
P (nP +mP )P . The zero divisor is the divisor 0 =

∑
P rPP where

all rP = 0.

2. A divisor of the form D = P with P ∈ PF is a prime divisor.

3. The degree of the divisor D =
∑
P nPP is

degD :=
∑
P∈PF

nP · degP.

We note that this is a finite sum since nP 6= 0 only for finitely many P .
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4. A partial order on Div(F ) is defined as follows: if D =
∑
P nPP and E =∑

P mPP , then

D ≤ E if and only if nP ≤ mP for all P ∈ PF .

A divisor D ≥ 0 is positive (or effective).

12.1.22 Remark Since every nonzero element x ∈ F has only finitely many zeros and poles, the
following definitions are meaningful.

12.1.23 Definition For a nonzero element x ∈ F , let Z and N denote the set of zeros and poles of
x, respectively.

1. The divisor (x)0 :=
∑
P∈Z νP (x)P is the zero divisor of x.

2. The divisor (x)∞ := −∑P∈N νP (x)P is the divisor of poles of x.

3. The divisor div(x) :=
∑
P∈PF νP (x)P = (x)0 − (x)∞ is the principal divisor of

x.

12.1.24 Remark

1. We note that both divisors (x)0 and (x)∞ are positive divisors. By Theorem
12.1.20, deg(x)0 = deg(x)∞ and hence deg(div(x)) = 0.

2. For x ∈ F \K we have deg(x)0 = deg(x)∞ = [F : K(x)]. The principal divisor
of a nonzero element a ∈ K is the zero divisor. We observe that for the element
0 ∈ K, no principal divisor is defined.

3. The sum of two principal divisors and the negative of a principal divisor are
principal, since div(xy) = div(x)+div(y) and div(x−1) = −div(x). Therefore the
principal divisors form a subgroup of the divisor group of F .

12.1.25 Example We consider again the rational function field F = K(x). Let f ∈ K[x] be a
nonzero polynomial and write f as a product of irreducible polynomials,

f(x) = a · p1(x)r1 · · · pn(x)rn ,

where 0 6= a ∈ K and p1, . . . , pn are pairwise distinct, monic, irreducible polynomials. Let
Pi be the place of K(x) corresponding to the polynomial pi (see Example 12.1.14), and P∞
be the place at infinity. Then the principal divisor of f in Div(K(x)) is

div(f) = r1P1 + · · ·+ rnPn − dP∞ where d = deg(f).

As every element of K(x) is a quotient of two polynomials, we thus obtain the principal
divisor for any nonzero element z ∈ K(x) in this way.

12.1.26 Definition

1. Two divisors D,E ∈ Div(F ) are equivalent if E = D + div(x) for some x ∈ F .
This is an equivalence relation on the divisor group of F/K. We write

D ∼ E if D and E are equivalent.

2. Princ(F ) := {A ∈ Div(F ) |A is principal} is the group of principal divisors of
F .
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3. The factor group Cl(F ) := Div(F )/Princ(F ) is the divisor class group of F .

4. For a divisor D ∈ Div(F ) we denote by [D] ∈ Cl(F ) its class in the divisor class
group.

12.1.27 Remark The equivalence relation ∼ as defined in Definition 12.1.26 is often denoted as
linear equivalence of divisors.

12.1.28 Remark

1. It follows from the definitions that D ∼ E if and only if [D] = [E].

2. D ∼ E implies degD = degE.

3. In a rational function field K(x), the converse of Part 2 also holds. If F/K is
non-rational, then there exist, in general, divisors of the same degree which are
not equivalent.

12.1.29 Definition Let F/K be a function field and let A ∈ Div(F ) be a divisor of F . Then the
set

L(A) := {x ∈ F | div(x) ≥ −A } ∪ {0}
is the Riemann–Roch space associated to the divisor A.

12.1.30 Proposition L(A) is a finite-dimensional vector space over K.

12.1.31 Definition For a divisor A, the integer

`(A) := dimL(A)

is the dimension of A. We point out that dimL(A) denotes here the dimension as a
vector space over K.

12.1.32 Remark

1. If A ∼ B then the spaces L(A) and L(B) are isomorphic (as K-vector spaces).
Hence A ∼ B implies `(A) = `(B).

2. A ≤ B implies L(A) ⊆ L(B) and hence `(A) ≤ `(B).

3. degA < 0 implies `(A) = 0.

4. L(0) = K and hence `(0) = 1.

12.1.33 Remark The following theorem is one of the main results of the theory of function fields.

12.1.34 Theorem (Riemann–Roch theorem) [2714, Theorem 1.5.15] Let F/K be a funcion field.
Then there exist an integer g ≥ 0 and a divisor W ∈ Div(F ) with the following property:
for all divisors A ∈ Div(F ),

`(A) = degA+ 1− g + `(W −A).

12.1.35 Definition The integer g =: g(F ) is the genus of F , and the divisor W is a canonical
divisor of F .

12.1.36 Remark [2714, Proposition 1.6.1]

1. If W ′ ∼W , then the equation above also holds when W is replaced by W ′.
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2. Suppose that g1, g2 ∈ Z and W1,W2 ∈ Div(F ) satisfy the equations `(A) =
degA + 1 − g1 + `(W1 − A) = degA + 1 − g2 + `(W2 − A) for all divisors A.
Then g1 = g2 and W1 ∼W2.

3. As a consequence of 1 and 2, the canonical divisors of F/K form a uniquely
determined divisor class [W ] ∈ Cl(F ), the canonical class of F .

12.1.37 Corollary [2714, Corollary 1.5.16] Let W be a canonical divisor and g = g(F ) the genus of
F . Then

degW = 2g − 2 and `(W ) = g.

Conversely, every divisor C with degC = 2g − 2 and `(C) = g is canonical.

12.1.38 Remark A slightly weaker version of the Riemann–Roch theorem is often sufficient.

12.1.39 Theorem (Riemann’s theorem) [2714, Theorem 1.4.17] Let F/K be a function field of genus
g. Then for all divisors A ∈ Div(F ),

`(A) ≥ degA+ 1− g.
Equality holds for all divisors A with degA > 2g − 2.

12.1.40 Example Consider the rational function field F = K(x). The following hold:

1. The genus of K(x) is 0.

2. Let P∞ be the infinite place of K(x), see Example 12.1.14. For every k ≥ 0 we
obtain

L(kP∞) = {f ∈ K[x] | deg(f) ≤ k}.
This shows that Riemann–Roch spaces are natural generalizations of spaces of
polynomials.

3. The divisor W = −2P∞ is canonical.

12.1.41 Remark Conversely, if F/K is a function field of genus g(F ) = 0, then there exists an
element x ∈ F such that F = K(x). (This does not hold in general if K is not a finite field.)

12.1.42 Remark For divisors of degree degA > 2g− 2, Riemann’s Theorem gives a precise formula
for `(A). On the other hand, `(A) = 0 if degA < 0. For the interval 0 ≤ degA ≤ 2g − 2,
there is no exact formula for `(A) in terms of degA.

12.1.43 Theorem (Clifford’s theorem) [2714, Theorem 1.6.13] For all divisors A ∈ Div(F ) with
0 ≤ degA ≤ 2g − 2,

`(A) ≤ 1 +
1

2
· degA.

12.1.44 Remark The genus g(F ) of a function field F is its most important numerical invariant. In
general it is a difficult task to determine g(F ). Some methods are discussed in Subsection
12.1.3. Here we give upper bounds for g(F ) in some special cases.

12.1.45 Remark Assume that F = K(x, y) is a function field over K, where x, y satisfy an equation
ϕ(x, y) = 0 with an irreducible polynomial ϕ(X,Y ) ∈ K[X,Y ] of degree d. Then

g(F ) ≤ (d− 1)(d− 2)

2
.

Equality holds if and only if the plane projective curve which is defined by the affine equation
ϕ(X,Y ) = 0, is nonsingular. (These terms are explained in Subsection 12.1.5.)

12.1.46 Remark (Riemann’s inequality) [2714, Corollary 3.11.4] Suppose that F = K(x, y). Then

g(F ) ≤ ([F : K(x)]− 1)([F : K(y)]− 1).
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12.1.3 Extensions of function fields

12.1.47 Remark In this subsection we consider the following situation: F/K and F ′/K ′ are function
fields with F ⊆ F ′ and K ⊆ K ′. We always assume that K (respectively K ′) is algebraically
closed in F (respectively in F ′) and that the degree [F : F ′] is finite. As before, K is a finite
field.

12.1.48 Remark The extension degree [K ′ : K] divides [F ′ : F ].

12.1.49 Definition Let P ∈ PF and P ′ ∈ PF ′ . The place P ′ is an extension of P (equivalently, P ′

lies over P , or P lies under P ′) if one of the following equivalent conditions holds:

1. P ⊆ P ′,
2. OP ⊆ OP ′ ,
3. P ′ ∩ F = P ,

4. OP ′ ∩ F = OP .

We write P ′|P to indicate that P ′ is an extension of P .

12.1.50 Remark If P ′ lies over P then the inclusion OP ↪→ OP ′ induces a natural embedding of
the residue class fields FP ↪→ F ′P ′ . We therefore consider FP as a subfield of F ′P ′ via this
embedding.

12.1.51 Definition Let P ′ be a place of F ′ lying above P .

1. There exists an integer e ≥ 1 such that νP ′(z) = e · νP (z) for all z ∈ F . This
integer e =: e(P ′|P ) is the ramification index of P ′|P .

2. The degree f(P ′|P ) := [F ′P ′ : FP ] is finite and is the relative degree of P ′|P .

12.1.52 Remark Suppose that F ′′/K ′′ is another finite extension of F ′/K ′. Let P, P ′, P ′′ be places
of F, F ′, F ′′ such that P ′|P and P ′′|P ′. Then

e(P ′′|P ) = e(P ′′|P ′) · e(P ′|P ) and f(P ′′|P ) = f(P ′′|P ′) · f(P ′|P ).

12.1.53 Theorem (Fundamental equality) [2714, Theorem 3.1.11] Let P be a place of F/K. Then
there exists at least one but only finitely many places of F ′ lying above P . If P1, . . . , Pm
are all extensions of P in F ′ then

m∑
i=1

e(Pi|P )f(Pi|P ) = [F ′ : F ].

12.1.54 Corollary Let F ′/F be an extension of degree [F ′ : F ] = n, and let P ∈ PF . Then

1. For every place P ′ ∈ PF ′ lying over P , e(P ′|P ) ≤ n and f(P ′|P ) ≤ n.

2. There are at most n distinct places of F ′ lying over P .

12.1.55 Definition Let F ′/F be an extension of degree [F ′ : F ] = n, and let P ∈ PF .

1. A place P ′ ∈ PF ′ over P is ramified if e(P ′|P ) > 1, and it is unramified if
e(P ′|P ) = 1.

2. P is ramified in F ′/F if there exists an extension of P in F ′ that is ramified.
Otherwise, P is unramified in F ′.

3. P is totally ramified in F ′/F if there is a place P ′ of F ′ lying over P with
e(P ′|P ) = n. It is clear that P ′ is then the only extension of P in F ′.

4. P splits completely in F ′/F if P has n distinct extensions P1, . . . , Pn in F ′. It
is clear that P is then unramified in F ′.
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12.1.56 Theorem [2714, Corollary 3.5.5] If F ′/F is a finite separable extension of function fields,
then at most finitely many places of F are ramified in F ′/F .

12.1.57 Remark More precise information about the ramified places in F ′/F is given in Theorem
12.1.72.

12.1.58 Definition For P ∈ PF one defines the conorm of P in F ′/F as

ConF ′/F (P ) :=
∑
P ′|P

e(P ′|P ) · P ′.

For an arbitrary divisor of F we define its conorm as

ConF ′/F

(∑
P

nPP

)
:=
∑
P

nP · ConF ′/F (P ).

12.1.59 Remark ConF ′/F is a homomorphism from the divisor group of F to the divisor group of
F ′, which sends principal divisors of F to principal divisors of F ′.

12.1.60 Remark For every divisor A ∈ Div(F ), one has

deg ConF ′/F (A) =
[F ′ : F ]

[K ′ : K]
· degA.

In particular, if K ′ = K then deg ConF ′/F (A) = [F ′ : F ] · degA.

12.1.61 Definition Let F ′/K ′ be a finite extension of F/K, let P ∈ PF and OP its valuation
ring.

1. An element z ∈ F ′ is integral over OP if there exist elements u0, . . . , um−1 ∈ OP
such that zm + um−1z

m−1 + · · ·+ u1z+ u0 = 0. Such an equation is an integral
equation for z over OP .

2. The set O′P := {z ∈ F ′ | z is integral over OP } is a subring of F ′. It is the
integral closure of OP in F ′.

12.1.62 Proposition [2714, Chapter 3.2, 3.3] With notation as in Definition 12.1.61, the following
hold:

1. z ∈ F ′ is integral over OP if and only if the coefficients of the minimal polynomial
of z over F are in OP .

2. O′P =
⋂
P ′|P OP ′ .

3. There exists a basis (z1, . . . , zn) of F ′/F such that O′P =
∑n
i=1 ziOP , that is,

every element z ∈ F ′ which is integral over OP , has a unique representation
z =

∑
xizi with xi ∈ OP . Such a basis (z1, . . . , zn) is an integral basis at the

place P .

4. Every basis (y1, . . . , yn) of F ′/F is an integral basis for almost all places P ∈ PF
(that is, for all P with only finitely many exceptions). In particular, if F ′ = F (y)
then (1, y, . . . , yn−1) is an integral basis for almost all P .
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12.1.63 Remark Using integral bases one can often determine all extensions of a place P ∈ PF in
F ′. In the following theorem, denote by ū := u(P ) ∈ FP the residue class of an element
u ∈ OP in the residue class field FP = OP /P . For a polynomial ψ(T ) =

∑
uiT

i ∈ OP [T ]
we set ψ̄(T ) :=

∑
ūiT

i ∈ FP [T ].

12.1.64 Theorem (Kummer’s theorem) [2714, Theorem 3.3.7] Suppose that F ′ = F (y) with y
integral over OP . Let ϕ ∈ OP [T ] be the minimal polynomial of y over F and decompose ϕ̄
into irreducible factors over FP

ϕ̄(T ) = γ1(T )ε1 · · · γr(T )εr

with distinct irreducible monic polynomials γi ∈ FP [T ] and εi ≥ 1. Choose monic polyno-
mials ϕi ∈ OP [T ] such that ϕ̄i = γi. Then the following hold:

1. For each i ∈ {1, . . . , r} there exists a place Pi|P such that ϕi(y) ∈ Pi. The relative
degree of Pi|P satisfies f(Pi|P ) ≥ deg(γi).

2. If (1, y, . . . , yn−1) is an integral basis at P , then there exists for each i ∈ {1, . . . , r}
a unique place Pi|P with ϕi(y) ∈ Pi, and we have e(Pi|P ) = εi and f(Pi|P ) =
deg(γi).

3. If ϕ̄(T ) =
∏n
i=1(T − ai) with distinct elements a1, . . . , an ∈ K, then P splits

completely in F ′/F .

12.1.65 Example Consider a field K with charK 6= 2 and a function field F = K(x, y), where
y satisfies an equation y2 = f(x) with a polynomial f(x) ∈ K[x] of odd degree. Then
[F : K(x)] = 2, and ϕ(T ) = T 2 − f(x) is the minimal polynomial of y over K(x). Let
a ∈ K.

1. If f(a) is a nonzero square in K (that is, f(a) = c2 with 0 6= c ∈ K), then the
place (x = a) of K(x) (see Example 12.1.14) splits into two rational places of F .

2. If f(a) is a non-square in K, then the place (x = a) has exactly one extension Q
in F , and degQ = 2.

3. If a ∈ K is a simple root of the equation f(x) = 0, then the place (x = a) of
K(x) is totally ramified in F/K(x), and its unique extension P ∈ PF is rational.

For more examples see Section 12.5.

12.1.66 Remark In what follows, we assume that F ′/F is a separable extension of function fields of
degree [F ′ : F ] = n. As before, P denotes a place of F and O′P is the integral closure of OP
in F ′. By TrF ′/F : F ′ → F we denote the trace mapping. For information about separable
extensions and the trace map, see any standard textbook on algebra, e.g., [1846].

12.1.67 Definition

1. For P ∈ PF , the set

CP := {z ∈ F ′ | TrF ′/F (zO′P ) ⊆ OP }
is the complementary module of P in F ′.

2. There is an element tP ∈ F ′ such that CP = tPO′P , and we define for P ′ ∈ PF ′
with P ′|P the different exponent of P ′ over P as

d(P ′|P ) := −νP ′(tP ).

We observe that the element tP is not unique, but the different exponent is
well-defined (independent of the choice of tP ).
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12.1.68 Lemma [2714, Definition 3.4.3]

1. For all P ′|P , d(P ′|P ) ≥ 0.

2. For almost all P ∈ PF , d(P ′|P ) = 0 holds for all extensions P ′|P in F ′.

12.1.69 Definition The different of a finite separable extension of function fields F ′/F is the divisor
of the function field F ′ defined as

Diff(F ′/F ) :=
∑
P∈PF

∑
P ′|P

d(P ′|P )P ′.

12.1.70 Theorem [2714, Theorems 3.4.6, 3.4.13] Let F ′/K ′ be a finite separable extension of F/K.

1. If W is a canonical divisor of F/K, then the divisor

W ′ := ConF ′/F (W ) + Diff(F ′/F )

is a canonical divisor of F ′/K ′.

2. (Hurwitz genus formula) The genera of F ′ and F satisfy the equation

2g(F ′)− 2 =
[F ′ : F ]

[K ′ : K]
(2g(F )− 2) + deg Diff(F ′/F ).

12.1.71 Remark We note that Part 2 is an immediate consequence of Part 1 since the degree of
a canonical divisor of F is 2g(F ) − 2. Next we give some results that help to compute the
different exponents d(P ′|P ).

12.1.72 Theorem (Dedekind’s different theorem) [2714, Theorem 3.5.1] Let F ′/F be a finite sepa-
rable extension of function fields, let P ∈ PF and P ′ ∈ PF ′ with P ′|P . Then

1. d(P ′|P ) ≥ e(P ′|P )− 1 ≥ 0.

2. d(P ′|P ) = e(P ′|P ) − 1 if and only if the characteristic of F does not divide
e(P ′|P ).

12.1.73 Remark In other words, the different of F ′/F contains exactly the places of F ′ which are
ramified in F ′/F . In particular it follows that only finitely many places are ramified. The
following definition is motivated by Dedekind’s Different Theorem.

12.1.74 Definition Assume that P ′|P is ramified.

1. P ′|P is tame if the characteristic of F does not divide e(P ′|P ).

2. P ′|P is wild if the characteristic of F divides e(P ′|P ).

12.1.75 Lemma In a tower of separable extensions F ′′ ⊇ F ′ ⊇ F , the different is transitive, that is:

d(P ′′|P ) = d(P ′′|P ′) + e(P ′′|P ′) · d(P ′|P ) for P ′′ ⊇ P ′ ⊇ P, and hence
Diff(F ′′/F ) = Diff(F ′′/F ′) + ConF ′′/F ′(Diff(F ′/F )).

12.1.76 Proposition [2714, Theorem 3.5.10] Let F ′ = F (y) be a separable extension of degree
[F ′ : F ] = n. Let P ∈ PF and assume that the minimal polynomial ϕ of y has all of its
coefficients in OP . Let P1, . . . , Pr be all extensions of P in F ′. Then one has:
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1. 0 ≤ d(Pi|P ) ≤ νPi(ϕ′(y)) for i = 1, . . . , r.

2. {1, y, . . . , yn−1} is an integral basis at P if and only if d(Pi|P ) = νPi(ϕ
′(y)) for

i = 1, . . . , r.

Here ϕ′ denotes the derivative of ϕ in the polynomial ring F [T ].

12.1.77 Remark Recall that a finite field extension F ′/F is Galois if the automorphism group
G := {σ : F ′ → F ′ | σ is an automorphism of F ′ which is the identity on F} has order
ord G = [F ′ : F ]. In this case, Gal(F ′/F ) := G is the Galois group of F ′/F .

12.1.78 Remark If F ′/F is Galois and P is a place of F , the Galois group Gal(F ′/F ) acts on the
set of extensions of P via σ(P ′) = {σ(z) | z ∈ P ′}.

12.1.79 Proposition [2714, Theorem 3.7.1] Suppose that F ′/F is a Galois extension, and let
P ∈ PF .

1. The Galois group acts transitively on the set of extensions of P in F ′. That is, for
any two extensions P1, P2 of P in F ′, there is an automorphism σ ∈ Gal(F ′/F )
such that P2 = σ(P1).

2. If P1, . . . , Pr are all extensions of P in F ′, then

e(Pi|P ) = e(Pj |P ), f(Pi|P ) = f(Pj |P ), and d(Pi|P ) = d(Pj |P )

holds for all i, j = 1, . . . , r.

3. Setting e(P ) := e(Pi|P ) and f(P ) := f(Pi|P ), we have the equality

e(P ) · f(P ) · r = [F ′ : F ].

12.1.80 Proposition (Kummer extensions) [2714, Proposition 3.7.3] Let F ′ = F (y) be an extension
of function fields of degree [F ′ : F ] = n, where the constant field of F is the finite field Fq.
Assume that

yn = u ∈ F and n divides (q − 1).

Then F ′/F is Galois, and the Galois group Gal(F ′/F ) is cyclic of order n.

1. For P ∈ PF define rP := gcd(n, νP (u)), the greatest common divisor of n and
νP (u). Then

e(P ′|P ) =
n

rP
and d(P ′|P ) =

n

rP
− 1 for all P ′|P.

2. Denote by K (K ′, respectively) the constant field of F (F ′, respectively). Then

g(F ′) = 1 +
n

[K ′ : K]

(
g(F )− 1 +

1

2

∑
P∈PF

(
1− rP

n

)
degP

)
.

3. If K = K ′ and F = K(x) is a rational function field, then

g(F ′) = −n+ 1 +
1

2

∑
P∈PF

(n− gcd(n, νP (u))) degP.

12.1.81 Remark Let F ′/F be a Galois extension of function fields of degree [F ′ : F ] = n whose
Galois group is cyclic. Suppose that n divides q − 1 (where the constant field of F is Fq).
Then F ′ = F (y) with some element y satisfying yn ∈ F . So Proposition 12.1.80 applies.
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12.1.82 Example Assume that the characteristic of K is odd. Let F = K(x, y) with y2 = f(x),
where f ∈ K[x] is a square-free polynomial of degree deg(f) = 2m + 1. This means that
f = f1 · · · fs with pairwise distinct irreducible polynomials fi ∈ K[x]. Let Pi ∈ PK(x)

be the place corresponding to fi, i = 1, . . . , s, and P∞ be the pole of x in K(x). For
P ∈ {P1, . . . , Ps, P∞} we have gcd(2, νP (f)) = 1, and for all other places Q ∈ PK(x) we
have νQ(f) = 0. Then Part 3 of the Proposition above yields g(F ) = (deg(f) − 1)/2 = m.
Hence for every integer m ≥ 0 there exist function fields F/K of genus g(F ) = m.

12.1.83 Proposition (Artin–Schreier extensions) [2714, Proposition 3.7.8] Let F/K be a function
field, where K is a finite field of characteristic p. Let F ′ = F (y) with yp − y = u ∈ F . We
assume that for all poles P of u in F , p does not divide νP (u), and that u 6∈ K. Then the
following hold:

1. F ′/F is Galois of degree [F ′ : F ] = p, and F, F ′ have the same constant field.

2. Exactly the poles of u are ramified in F ′/F (in fact, they are totally ramified);
all other places of F are unramified.

3. Let P be a pole of u in F and let P ′ be the unique place of F ′ lying over P . Then
the different exponent of P ′|P is d(P ′|P ) = (p− 1)(−νP (u) + 1).

4. The genus of F ′ is given by the formula

g(F ′) = p · g(F ) +
p− 1

2

−2 +
∑

P : νP (u)<0

(−νP (u) + 1) · degP

 .

12.1.84 Remark Every Galois extension F ′/F of degree [F ′ : F ] = p = charK can be written as
F ′ = F (y), where y satisfies an equation of the form yp− y = u ∈ F . If moreover F = K(x)
is a rational function field, one can choose u in such a way that for all poles P of u in K(x),
p does not divide νP (u).

12.1.85 Example Suppose that charK = p and F = K(x, y), where yp − y = f(x) ∈ K[x],
deg(f) = m and m is not divisible by p. Then F/K(x) is Galois of degree p and K is alge-
braically closed in F . The pole of x is the only place of K(x) that is ramified in F/K(x),
and the genus of F is g(F ) = (p− 1)(m− 1)/2.

12.1.86 Definition The function field F ′/K ′ is a constant field extension of F/K, if F ′ = FK ′

(that is, if K ′ = K(α) then F ′ = F (α)).

12.1.87 Remark If E/K ′ is a finite extension of F/K (meaning that E/F is a finite extension and
K ′ is the constant field of E), we consider the intermediate field F ⊆ F ′ := FK ′ ⊆ E. Then
F ′/K ′ is a constant field extension of F/K, and E/F ′ is an extension of function fields
having the same constant field K ′.

12.1.88 Theorem [2714, Chapter 3.6] Let F ′ = FK ′ be a constant field extension of F . Then the
following hold:

1. [F ′ : F ] = [K ′ : K], and K ′ is algebraically closed in F ′.

2. F ′/F is unramified, that is, all P ∈ PF are unramified in F ′/F .

3. g(F ′) = g(F ).

4. For every divisor A ∈ Div(F ), deg ConF ′/F (A) = degA and `(ConF ′/F (A)) =
`(A).
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12.1.4 Differentials

12.1.89 Remark In this subsection we consider a function field F/K where K = Fq is a finite field
of characteristic p. The aim is to give an interpretation of the canonical divisors of F .

12.1.90 Remark The set F p := {zp | z ∈ F} is a subfield of F which contains K. The extension
F/F p has degree [F : F p] = p and is purely inseparable. An element z ∈ F \ F p is called a
separating element for F/K. For every separating element z, the extension F/K(z) is finite
and separable.

12.1.91 Remark Recall that a module over a field L is just a vector space over L.

12.1.92 Definition Let M be a module over F . A derivation of F into M is a map δ : F → M ,
which is K-linear and satisfies the product rule

δ(u · v) = u · δ(v) + v · δ(u) for all u, v ∈ F.

12.1.93 Remark Let δ : F →M be a derivation of F , z ∈ F and n ≥ 0. Then δ(zn) = nzn−1 · δ(z).
In particular, δ(zp) = 0 for all z ∈ F .

12.1.94 Proposition [2714, Proposition 4.1.4] Let x be a separating element for F/K. Then there
exists a unique derivation δx : F → F with the property δx(x) = 1. We call δx the derivation
of F with respect to x.

12.1.95 Proposition [2714, Chapter 4.1] There is a one–dimensional F -module ΩF and a derivation
d : F → ΩF (written as z 7→ dz) with the following properties:

1. dz 6= 0 for every separating element z ∈ F .

2. dz = δx(z) · dx for every z ∈ F and x ∈ F \ F p.
The pair (ΩF , d) is the differential module of F/K, the elements of ΩF are differentials of
F/K.

12.1.96 Remark

1. If z ∈ F is not separating then dz = 0.

2. Given a separating element x ∈ F , every differential ω ∈ ΩF has a unique
representation ω = udx with u ∈ F , since ΩF is a one-dimensional F -module.

3. Suppose that ω, η ∈ ΩF and ω 6= 0. Then there is a unique element u ∈ F such
that η = uω. We write then u = η/ω.

4. Item 2 in Proposition 12.1.95 indicates that, for a separating element x ∈ F ,

δx(z) =
dz

dx
for all z ∈ F.

12.1.97 Remark One can attach a divisor to every nonzero differential ω ∈ ΩF as follows.

12.1.98 Definition [2714, Theorem 4.3.2(e)] Let ω ∈ ΩF , ω 6= 0.

1. Let P ∈ PF and let t be a P -prime element (that is, νP (t) = 1). Then t is a
separating element of F/K, and we can write ω = u · dt with u ∈ F . We define

νP (ω) := νP (u).

This definition is independent of the choice of the prime element t, and one can
show that νP (ω) = 0 for almost all P ∈ PF .
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2. The divisor of ω is

div(ω) :=
∑
P∈PF

νP (ω)P.

12.1.99 Remark Divisors have the property div(uω) = div(u) + div(ω) for u ∈ F \ {0} and
ω ∈ ΩF \ {0}. Therefore div(ω) ∼ div(η) for any two nonzero differentials ω, η ∈ ΩF .

12.1.100 Remark Recall that the divisor of poles of an element 0 6= x ∈ F is denoted by (x)∞.

12.1.101 Proposition [2714, Chapter 4.3] Let x ∈ F be a separating element for F/K. Then

div(dx) = −2(x)∞ + Diff(F/K(x)).

12.1.102 Theorem [2714, Chapter 4.3] Let ω ∈ ΩF be a nonzero differential of F/K. Then the divisor
W := div(ω) is a canonical divisor of F . In particular,

2g(F )− 2 = deg(div(ω)).

12.1.103 Definition For every divisor A ∈ Div(F ), we define the set

ΩF (A) := {ω ∈ ΩF | div(ω) ≥ A}.

12.1.104 Remark ΩF (A) is a finite-dimensional K-vector space.

12.1.105 Theorem (Riemann–Roch theorem, 2nd version) For every divisor A ∈ Div(F ),

`(A) = degA+ 1− g(F ) + dim ΩF (A),

where dim ΩF (A) means the dimension as a K-vector space.

12.1.106 Corollary We have dim ΩF (0) = g(F ).

12.1.107 Remark We finish this subsection with examples of function fields that will be discussed
in detail in Sections 12.2 and 12.4.

12.1.108 Definition

1. A function field F/K of genus g(F ) = 1 is an elliptic function field.

2. A function field F/K is hyperelliptic if g(F ) ≥ 2, and there exists an element
x ∈ F such that [F : K(x)] = 2.

12.1.109 Example [2714, Chapters 6.1, 6.2] Let K be a finite field of characteristic 6= 2, and let
F/K be an elliptic or hyperelliptic function field of genus g. Assume that F has at least
one rational place P . Then there exist x, y ∈ F such that F = K(x, y) and y2 = f(x) with
a square-free polynomial f ∈ K[x] of degree 2g + 1. The differentials

ωi :=
xi

y
dx , i = 0, . . . , g − 1

form a basis of ΩF (0).
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12.1.5 Function fields and curves

12.1.110 Remark There is an alternative geometric approach to function fields via algebraic curves.
We give here only a very brief (and incomplete) introduction. For more information we refer
to [1147, 1427, 2281].

12.1.111 Remark Let K be a finite field, and denote by K̄ the algebraic closure of K. Let
K[X1, . . . , Xn] be the ring of polynomials in n variables over K.

12.1.112 Definition

1. The n-dimensional affine space An = An(K̄) over K̄ is the set of all n-tuples
of elements of K̄. An element P = (a1, . . . , an) ∈ An is a point, and a1, . . . , an
are its coordinates.

2. Let f1, . . . , fm ∈ K[X1, . . . , Xn] be polynomials. Then the set V := {P ∈
An | f1(P ) = · · · = fm(P ) = 0} is the affine algebraic set defined by f1 =
· · · = fm = 0. We say that V is defined over K since the polynomials f1, . . . , fm
have coefficients in K.

3. Let V be as in 2. The set I(V ) := {f ∈ K̄[X1, . . . , Xn] | f(P ) = 0 for all P ∈ V }
is an ideal of K̄[X1, . . . , Xn], which is the ideal of V .

4. The algebraic set V is absolutely irreducible if I(V ) is a prime ideal of
K̄[X1, . . . , Xn]. Then the residue class ring Γ(V ) := K̄[X1, . . . , Xn]/I(V ) is an
integral domain, and its quotient field K̄(V ) := Quot(Γ(V )) is the field of ratio-
nal functions on V . The residue class of Xi in K̄(V ) is the i-th coordinate func-
tion on V and is denoted by xi. The subfield K(V ) := K(x1, . . . , xn) ⊆ K̄(V )
is the field of K-rational functions on V .

5. An absolutely irreducible affine algebraic set V is an absolutely irreducible affine
algebraic curve over K (briefly, an affine curve over K), if the field K(V ) as
defined in Part 4 has transcendence degree one over K. This means that K(V )
is an algebraic function field over K, as in Definition 12.1.1. The curve V is a
plane affine curve if V ⊆ A2.

6. Let V be an affine curve over K. A point P ∈ V is K-rational if all its coordi-
nates are in K. We set V (K) := {P ∈ V | P is K-rational}.

7. Two affine curves V1 and V2 are birationally equivalent if their function fields
K(V1) and K(V2) are isomorphic.

12.1.113 Example Let F/K be an algebraic function field. Then there exist elements x, y ∈ F such
that F = K(x, y), and there is an irreducible polynomial f ∈ K[X,Y ] such that f(x, y) = 0.
Let V ⊆ A2 be the plane affine curve defined by f = 0. Then K(V ) = F .

12.1.114 Definition

1. Let V be an affine curve as in Definition 12.1.112, and let P ∈ V . A rational
function ϕ ∈ K̄(V ) is defined at P if ϕ = g(x1, . . . , xn)/h(x1, . . . , xn) with
g, h ∈ K̄[x1, . . . , xn] and h(P ) 6= 0. The set OP (V ) of all rational functions on
V which are defined at P , is a ring and it is the local ring of V at P .

2. The point P is non-singular if its local ring is integrally closed. This means, by
definition, that every z ∈ K̄(V ) which satisfies an integral equation over OP (V ),
is in OP (V ); see Definition 12.1.61.

3. The curve V is non-singular if all of its points are non-singular.
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12.1.115 Remark Let f ∈ K[X,Y ] be an absolutely irreducible polynomial (that is, f is irreducible
in K̄[X,Y ]). Then the equation f = 0 defines a plane affine curve C ⊆ A2(K̄). A point
P ∈ C is non-singular if and only fX(P ) 6= 0 or fY (P ) 6= 0, where fX(X,Y ) and fY (X,Y )
denote the partial derivatives with respect to X and Y , respectively.

12.1.116 Example Let n > 0 be relatively prime to the characteristic of K. Then the Fermat curve
C which is defined by the equation f(X,Y ) = Xn + Y n − 1 = 0, is non-singular.

12.1.117 Remark In a sense, affine curves are not “complete,” one has to add a finite number of
points “at infinity.” To be precise, one introduces the projective space Pn over K̄ and the
“projective closure” of an affine curve in Pn. This leads to the concept of projective curves.
We do not give details here and refer to textbooks on algebraic geometry, for example
[1147, 1427, 2281].

12.1.118 Remark

1. Two projective curves are birationally equivalent if their function fields are iso-
morphic.

2. For every projective curve C there exists a non-singular projective curve X which
is birationally equivalent to C. The curve X is uniquely determined up to isomor-
phism and it is the non-singular model of C.

12.1.119 Remark There is a 1–1 correspondence between {algebraic function fields F/K, up to iso-
morhism} and {absolutely irreducible, non-singular, projective curves X defined over K, up
to isomorphism}. Under this correspondence, extensions F ′/F of function fields correspond
to coverings X ′ → X of curves, composites of function fields E = F1F2 correspond to fibre
products of curves, etc. What corresponds to a place P of a function field F/K? If P is
rational, then it corresponds to a K-rational point of the associated projective curve. Now
let K = Fq and let P be a place of F with degP = n. Then P corresponds to exactly n
points on the associated projective curve, with coordinates in the field Fqn . These points
form an orbit under the Frobenius map, which is the map that raises the coordinates of
points to the q-th power. For details, see [2281].

See Also

§12.2 For more material on function fields of genus 1 (elliptic curves).
§12.4 For more material on hyperelliptic function fields.
§12.5 For rational places of function fields (rational points on curves).
§12.6 For towers of function fields.
§15.2 For applications of function fields to coding theory.

References Cited: [1147, 1296, 1427, 1511, 1846, 2280, 2281, 2714, 2872]

12.2 Elliptic curves

Joseph Silverman, Brown University

12.2.1 Remark Most of the background material for this section may be found in [2670, Chap-
ters III, V, XI]. Other standard references for the theory of elliptic curves include the
books [557, 1563, 1756, 1773, 1843, 1845, 2054, 2107, 2667, 2672, 2950] and survey arti-
cles [556, 2784].
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12.2.1 Weierstrass equations

12.2.2 Definition A Weierstrass equation over a field K is an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with a1, a2, a3, a4, a6 ∈ K. (12.2.1)

Associated to a Weierstrass equation are the following quantities:

b2 = a2
1 + 4a4, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, j = c34/∆.

The quantity ∆ is the discriminant and the quantity j is the j-invariant.

12.2.3 Remark The quantities in Definition 12.2.2 satisfy the relations

4b8 = b2b6 − b24 and 1728∆ = c34 − c26.

12.2.4 Remark The discriminant vanishes if and only if the curve defined by the Weierstrass
equation has a singular point, i.e, a point (x0, y0) on the curve where both partial derivatives
vanish:

2y0 + a1x0 + a3 = 0 and 3x2
0 + 2a2x0 + a4 − a1y0 = 0.

12.2.5 Remark If char(K) 6= 2, then the substitution y 7−→ 1
2 (y − a1x − a3) transforms the

Weierstrass equation into the simpler form

y2 = 4x3 + b2x
2 + 2b4x+ b6.

If also char(K) 6= 3, then the substitution (x, y) 7−→
(
x−3b2

36 , y
108

)
yields the further simpli-

fication
y2 = x3 − 27c4x− 54c6.

12.2.6 Definition An elliptic curve E defined over a field K is a Weierstrass equation over K that
is nonsingular, i.e., ∆ 6= 0, together with an extra point “at infinity” which is denoted O.
For any extension field L of K, the set of points of E defined over L is the set

E(L) =

{
solutions (x0, y0) ∈ L2 to the Weier-
strass equation (12.2.1) defining E

}
∪ {O}.

12.2.7 Remark A fancier definition of an elliptic curve over K is a nonsingular projective curve
of genus one defined over K with a marked point whose coordinates are in K. Using the
Riemann–Roch theorem, one can show that every such curve is given by a Weierstrass
equation, with the marked point being the point O, which is the unique point at infinity;
see [2670, III.3.1].

12.2.8 Example The real points on an elliptic curve defined over R may have one or two compo-
nents, as illustrated in Figure 12.2.8∗.

∗The author thanks Springer Science+Business Media for their permission to include Figures 3.1 and 3.3
from his book The Arithmetic of Elliptic Curves, GTM 106, 2009.
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y2 = x3 − 3x+ 3 y2 = x3 + x y2 = x3 − x

Figure 12.2.1 Three elliptic curves.

12.2.9 Proposition

The substitution
x −→ u2x+ r, y −→ u3y + u2sx+ t, (12.2.2)

transforms the Weierstrass equation (12.2.1) into a Weierstrass equation

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

whose coefficients and associated quantities satisfy

ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4 u6c′6 = c6 u12∆′ = ∆ j′ = j

12.2.10 Definition Two elliptic curves E/K and E′/K are isomorphic over K if there is a sub-
stitution (12.2.2) with u ∈ K∗ and r, s, t ∈ K that transforms the Weierstrass equation
of E into the Weierstrass equation of E′.

12.2.11 Theorem [2670, III.1.4] Let K be an algebraically closed field. Then E/K and E′/K are iso-
morphic over K if and only if they have the same j-invariant, i.e., if and only if j(E) = j(E′).

12.2.12 Example According to Theorem 12.2.11, there are two F2-isomorphism classes of elliptic
curves defined over F2, namely those with j-invariant 0 and those with j-invariant 1. How-
ever, there are five F2-isomorphism classes of elliptic curves defined over F2. An example
from each isomorphism class is listed in the following table.

curve j
y2 + y = x3 0

y2 + y = x3 + x 0
y2 + y = x3 + x+ 1 0
y2 + xy = x3 + 1 1

y2 + xy + y = x3 + 1 1
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12.2.13 Theorem [2670, X.5.4.1] Let p ≥ 5, let q be a power of p, and let E1/Fq and E2/Fq be
elliptic curves. Then E1 and E2 are isomorphic over Fq if and only if j(E1) = j(E2) and
there exists a u ∈ F∗q such that

c4(E)c6(E) = u2c4(E′)c6(E′) if j(E1) 6= 0 and j(E1) 6= 1728,

c4(E) = u4c4(E′) if j(E1) = 1728,

c6(E) = u6c6(E′) if j(E1) = 0.

12.2.14 Definition Let Eq be the set of Fq-isomorphism classes of elliptic curves defined over Fq.

12.2.15 Remark The set E2 is described in Example 12.2.12; it has five elements. For p ≥ 5 and q
a power of p, we have

#Eq = 2(q − 2) + #F∗q/F∗q
4 + #F∗q/F∗q

6.

12.2.16 Remark There are curves over finite fields Fq that have no points with coordinates in Fq,
but a theorem of Lang says that this does not happen for curves of genus one.

12.2.17 Theorem [2670, Exercise 10.6] Let C/Fq be a smooth projective curve of genus one.
Then C(Fq) is not empty. More generally, if V/Fq is a variety that is isomorphic over Fq to
an abelian variety, then V (Fq) is not empty.

12.2.18 Remark In particular, if F (X,Y, Z) ∈ Fq[X,Y, Z] is homogeneous of degree 3 and if the
associated curve F = 0 is nonsingular, then there are values x, y, z ∈ Fq, not all zero, such
that F (x, y, z) = 0.

12.2.2 The group law

12.2.19 Definition Let E/K be an elliptic curve defined over a fieldK, and let L/K be an extension
field. The set of points E(L) forms an abelian group using the following rules:

1. The point O is the identity element. In what follows, we use the convention
that O is on every vertical line.

2. The negative of the point P = (x, y) is the point −P = (x,−y−a1x−a3). If E is
given by a simpler Weierstrass equation as in Remark 12.2.5, then a1 = a3 = 0,
and −P = (x,−y) is the reflection of P about the x-axis.

3. The sum of distinct points P and Q is obtained by intersecting the line
through P and Q with E. This yields three points P , Q, and R (counted with
appropriate multiplicities). Then P +Q equals −R.

4. The sum of P with itself is obtained similarly, using the tangent line to E at P .

The geometric definition of the group law is illustrated in Figure 12.2.2.

12.2.20 Remark All of the group axioms are easy to verify except for associativity; see [2670, III.3.4]
for a proof of associativity.

12.2.21 Algorithm Let E/K be an elliptic curve defined over a field K, and let L/K be an extension
field. The following addition algorithm gives the group structure on the set of points E(L).

1. The point O is the identity element, so

P +O = O + P = P for all P ∈ E(L).
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Figure 12.2.2 Examples of the addition law on an elliptic curve.

2. Let P0 = (x0, y0). Then

−P0 = (x0,−y0 − a1x0 − a3).

3. Let P1 = (x1, y1) and P2 = (x2, y2). If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.

4. Otherwise, define λ and ν by the following formulas:

λ ν

x1 6= x2
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

Then the sum P3 = P1 + P2 is given by

P3 = (x3, y3) with x3 = λ2+a1λ−a2−x1−x2 and y3 = −(λ+a1)x3−ν−a3.

12.2.22 Remark A special case of the addition algorithm is the duplication formula. Let P = (x, y) ∈
E(L). Then the x-coordinate of 2P is

x(2P ) =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 2b4x+ b6

.

12.2.23 Remark Algorithm 12.2.21 explains how to add and double points on an elliptic curve. For
cryptographic applications, it is important to do these operations as efficiently as possible.
There are tradeoffs between using affine versus projective coordinates. It may also be possi-
ble to use the Frobenius endomorphism in place of the doubling map for “double-and-add”
algorithms, and alternative equations for elliptic curves may also allow for more efficient
operations. For details, see Sections 12.3 and 16.4.

12.2.24 Definition For a positive integer m, the multiplication-by-m map on E(L) is the map

[m] : E(L) −→ E(L), [m](P ) = P + P + · · ·+ P︸ ︷︷ ︸
m terms

.
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For m < 0 define [m](P ) = −[−m](P ), and set [0](P ) = O. The kernel of multiplication-
by-m is the subgroup

E(L)[m] = {P ∈ E(L) : [m](P ) = O}.

12.2.25 Example The elliptic curve E : y2 = x3 + x+ 1 over the field F11 has discriminant ∆ = 10
and j-invariant j = 9. The points P = (2, 0), Q = (6, 5), and R = (8, 9) are in E(F11). The
addition algorithm (Algorithm 12.2.21) allows us to compute quantities such as

P +Q = (8, 9), Q+R = (4, 4), [2]Q = (0, 1), [3]P + [4]R = (4, 5).

The group E(F11) has 14 elements. The orders of the elements P , Q, and R are given by

[2]P = [7]Q = [14]R = O.

So for example, the kernel of multiplication by 7 in E(F11) consists of the seven points

E(F11)[7] =
{

[n](Q) : 0 ≤ n ≤ 6
}
, where Q = (6, 5).

However, going to an extension field, one finds that E(F11)[7] contains 49 points; see The-
orem 12.2.60.

12.2.3 Isogenies and endomorphisms

12.2.26 Definition Let E1/K and E2/K be elliptic curves. An isogeny from E1 to to E2 is a map
φ : E1 → E2 that is defined using rational functions and that sends the zero point on E1

to the zero point on E2. If the coefficients of the rational functions are in K, the isogeny
is defined over K. If there is an isogeny from E1 to E2, then E1 and E2 are isogenous.

12.2.27 Definition Let E/K be an elliptic curve. An endomorphism is an isogeny from E to
itself. An automorphism of E is an endomorphism of E that has an inverse, i.e., an
isomorphism of E with itself.

12.2.28 Definition The set of isogenies from E1 to E2 is denoted Hom(E1, E2), the set of en-
domorphisms of E is denoted End(E), and the set of automorphisms of E is de-
noted Aut(E). A subscript K indicates that we take only maps that are defined over K,
thus HomK(E1, E2), EndK(E), and AutK(E).

12.2.29 Example The multiplication-by-m map [m] : E → E is an endomorphism of E.

12.2.30 Example Let K be a field with char(K) 6= 2, and let a, b ∈ K satisfy b(a2 − 4b) 6= 0. Then
the elliptic curves

E1 : y2 = x3 + ax2 + bx, E2 : Y 2 = X3 − 2aX2 + (a2 − 4b)X,

are isogenous via the map

φ : E1 −→ E2, (x, y) 7−→
(
y2

x2
,
y(b− x2)

x2

)
.
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There is also an isogeny going the other direction,

φ̂ : E2 −→ E1, (X,Y ) 7−→
(
Y 2

4X2
,
Y (a2 − 4b−X2)

8X2

)
.

A direct computation shows that φ̂◦φ = [2] on E1 and φ ◦ φ̂ = [2] on E2. The maps φ and φ̂
are examples of dual isogenies as described in Theorem 12.2.41.

12.2.31 Example Let K be a field of characteristic p > 0, let q be a power of p, let E/K be an
elliptic curve given by a Weierstrass equation (12.2.1), and define an elliptic curve E(q)/K
using the Weierstrass equation

E(q) : y2 + aq1xy + aq3y = x3 + aq2x
2 + aq4x+ aq6.

Then the Frobenius map

φq : E(K) −→ E(q)(K), φq(x, y) = (xq, yq),

is an isogeny from E to E(q). Note that if K = Fq, then E = E(q), so in this case φq is an
endomorphism of E. Further,{

P ∈ E(Fq) : φq(P ) = P
}

= E(Fq),

and more generally, since φqn = φnq ,{
P ∈ E(Fq) : φnq (P ) = P

}
= E(Fqn).

12.2.32 Proposition [2670, II.2.3] Let E1/K and E2/K be elliptic curves and let φ : E1 → E2 be
an isogeny. Then either φ(P ) = O for all P ∈ E1(K), or else φ

(
E1(K)

)
= E2(K). (The

constant map φ(P ) = O is the zero isogeny.)

12.2.33 Definition In general, the degree of a finite map φ : C1 → C2 between algebraic curves is
the degree of the extension of function fields K(C1)/φ∗K(C2). The map is separable if
the field extension K(C1)/φ∗K(C2) is separable, and otherwise it is inseparable (which
can only happen in finite characteristic). The inseparability degree of φ, denoted degi(φ),
is the inseparability degree of the extension K(E1)/φ∗K(E2). Thus φ is separable if and
only if degi(φ) = 1, and φ is purely inseparable if degi(φ) = deg(φ).

12.2.34 Example The Frobenius map φq defined in Example 12.2.31 is purely inseparable. In gen-
eral, for integers m and n, the map

[m+ nφq] : E(K) −→ E(q)(K), [m+ nφq](P ) = [m](P ) + [n](φq(P )),

is separable if and only if gcd(m, q) = 1.

12.2.35 Proposition [2670, III.4.10] Let φ : E1 → E2 be a nonconstant isogeny of elliptic curves
defined over K. If φ is separable, then φ is unramified, and for every point Q ∈ E2(K) we
have

#
{
P ∈ E1(K) : φ(P ) = Q

}
= deg(φ).

More generally, for every nonconstant isogeny φ,

#
{
P ∈ E1(K) : φ(P ) = Q

}
=

deg(φ)

degi(φ)
.
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12.2.36 Proposition [2670, II.2.12] Let φ : E1 → E2 be a nonconstant isogeny of elliptic curves
defined over a field of characterstic p, and let q = degi(φ) be the inseparability degree of φ.
Then φ factors as

E1
φq−→ E

(q)
1

ψ−→ E2,

where φq is the Frobenius map (Example 12.2.31) and ψ is separable.

12.2.37 Remark An isogeny is only required to send zero to zero, but it turns out that this suffices
to force it to be a homomorphism, as described in the next result.

12.2.38 Theorem [2670, III.4.8] Let E1/K and E2/K be elliptic curves and let φ : E1 → E2 be an
isogeny. Then the map

φ : E1(K) −→ E2(K)

is a homomorphism, i.e., φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ E1(K).

12.2.39 Definition The sum of two isogenies φ, ψ ∈ Hom(E1, E2) is the map

(φ+ ψ) : E1(K) −→ E2(K), (φ+ ψ)(P ) = φ(P ) + ψ(P ).

In this way, Hom(E1, E2) becomes a group. The product of two endomorphisms φ, ψ ∈
End(E) is the composition

(φψ) : E(K) −→ E(K), (φψ)(P ) = φ
(
ψ(P )

)
.

Addition and multiplication of endomorphisms give End(E) the structure of a (not
necessarily commutative) ring. Similarly, multiplication (composition) gives Aut(E) the
structure of a group; it is the group of units in the ring End(E).

12.2.40 Remark For every isogeny E1 → E2 there is an isogeny going in the opposite direction, as
described in the next theorem.

12.2.41 Theorem [2670, III.6.1, III.6.2] Let E1/K and E2/K be a elliptic curves, and let φ : E1 →
E2 be an isogeny of degree n defined over K.

1 Then there is a unique isogeny φ̂ : E2 → E1 satisfying φ̂ ◦φ = [n] on E1. It is the
dual isogeny to φ. It is defined over K and has the same degree as φ.

2. The dual isogeny satisfies φ ◦ φ̂ = [n] on E2.

3. Let λ : E2 → E3 be another isogeny. Then λ̂ ◦ φ = φ̂ ◦ λ̂.

4. Let ψ : E1 → E2 be another isogeny. Then φ̂+ ψ = φ̂+ ψ̂.

5. Let m ∈ Z. Then [̂m] = [m].

6.
ˆ̂
φ = φ.

12.2.42 Remark Let E/K be an elliptic curve. Recall that Div(E) is the group of formal sums∑
P∈E(K) nP (P ), where the nP are integers and only finitely many of them are nonzero.

Also Pic(E), the Picard group of E, is the quotient of Div(E) by the subgroup of principal
divisors, i.e., divisors of functions. So there is an exact sequence

1 −→ K
∗ −→ K(E)∗ −→ Div(E) −→ Pic(E) −→ 0.

(For background on divisors, see Section 12.1.) On an elliptic curve, the group law can be
used to describe the principal divisors, as in the next result.



430 Handbook of Finite Fields

12.2.43 Proposition [2670, III.3.5] Let E/K be an elliptic curve. A divisor D =
∑
nP (P ) ∈ Div(E)

is principal if and only if∑
P∈E(K)

nP = 0 and
∑

P∈E(K)

[nP ](P ) = O.

(We note that the first sum is a sum of integers, while the second sum is a sum of points
on the elliptic curve E.)

12.2.44 Proposition [2670, III.3.4] Let E/K be an elliptic curve, let Div0(E) be the group of
divisors of degree 0, and let Pic0(E) be the corresponding group of divisor classes. Then
there is an isomorphism

E(K) −→ Pic0(E), P 7−→ divisor class of (P )− (O).

The inverse is the map that sends the divisor class of
∑
nP (P ) to the sum of points∑

[nP ](P ).

12.2.4 The number of points in E(Fq)

12.2.45 Remark If E/Fq is an elliptic curve defined over a finite field, then E(Fq) is a finite (abelian)
group.

12.2.46 Theorem (Hasse–Weil estimate) [2670, V.3.1] Let E/Fq be an elliptic curve defined over a
finite field. Then ∣∣q + 1−#E(Fq)

∣∣ ≤ 2
√
q.

12.2.47 Definition Let E/Fq be an elliptic curve. The quantity

aq(E) = q + 1−#E(Fq)

is the trace of the Frobenius map; see Theorem 12.2.66.

12.2.48 Remark The following theorem of Birch describes how aq(E) is distributed as E ranges
over all isomorphism classes of elliptic curves defined over Fq.

12.2.49 Theorem [284], [2101, Appendix B]. For each E ∈ Eq (see Definition 12.2.14), write aq(E) =
2
√
q cos θq(E) with 0 ≤ θq(E) ≤ π. Then for all 0 ≤ α ≤ β ≤ π,

lim
q→∞

#{E ∈ Eq : α ≤ θq(E) ≤ β}
#Eq

=
2

π

∫ β

α

sin2(t) dt.

12.2.50 Remark The number of points in E(Fq) is constrained by Theorem 12.2.46. The exact
orders that occur are given in the following theorem.

12.2.51 Theorem [2954] Let q = pn be a prime power, and let b be an integer with |b| ≤ 2
√
q. Then

there exists an elliptic curve E/Fq with #E(Fq) = q + 1− b if and only if b satisfies one of
the following conditions:

1. gcd(b, p) = 1;
2. n is even and b = ±2

√
q;

3. n is even and p 6≡ 1 (mod 3) and b = ±√q;
4. n is odd and p equals 2 or 3 and b = ±p(n+1)/2;
5. n is odd and b = 0;



Curves over finite fields 431

6. n is even and p 6≡ 1 (mod 4) and b = 0.

12.2.52 Remark Waterhouse [2954] proved a generalization of Theorem 12.2.51 for abelian varieties
of arbitrary dimension. Deuring [825] had earlier proven the theorem in the case that q is
prime, in which case every possible value of #E(Fp) allowed by the Hasse–Weil constraint
(Theorem 12.2.46) occurs. See also Rück’s description [2497] of all possible structures for
the group E(Fq) subject to the constraints provided by Theorem 12.2.51.

12.2.53 Remark For elliptic curves over finite fields, the number of points on the curve determines
its isogeny class, as in the following result.

12.2.54 Theorem [2783] Let E1/Fq and E2/Fq be elliptic curves. Then the following are equiva-
lent:

1. #E1(Fq) = #E2(Fq);
2. E1 and E2 are Fq-isogenous;
3. End(E1)⊗Q = End(E2)⊗Q.

12.2.5 Twists

12.2.55 Definition Let E/K be an elliptic curve. A twist of E is an elliptic curve E′/K such that E′

is isomorphic to E over K, but not necessarily isomorphic over K. Two twists E′/K
and E′′/K are equivalent if they are isomorphic over K.

12.2.56 Remark If E′ and E′′ are equivalent, then clearly E′(K) ∼= E′′(K), but if E′ and E′′ are
inequivalent twists of E, then E′(K) and E′′(K) may differ.

12.2.57 Proposition [2670, X.5.4] Assume that char(K) 6= 2, 3. Let E/K be an elliptic curve.
The set of equivalence classes of twists of E/K is isomorphic to K∗/(K∗)d, where d = 2 if
j(E) /∈ {0, 1728}, d = 4 if j(E) = 1728, and d = 6 if j(E) = 0. (Equivalently, d = # Aut(E);
see Theorem 12.2.83.) Precisely, for D ∈ K∗/(K∗)d, the corresponding twist E′ and iso-
morphism E′ → E defined over K( d

√
D ) are as follows:

[d = 2] E : y2 = x3 +Ax+B, E′ : y2 = x3 +D2Ax+D3B, (x, y) 7→ (D−1x,D−3/2y).

[d = 4] E : y2 = x3 +Ax, E′ : y2 = x3 +DAx, (x, y) 7→ (D−1/2x,D−3/4y).

[d = 6] E : y2 = x3 +B, E′ : y2 = x3 +DB, (x, y) 7→ (D−1/3x,D−1/2y).

12.2.58 Remark Let E/K and E′/K be quadratic twists (d = 2) as in Proposition 12.2.57,

E : y2 = x3 +Ax+B, E′ : y2 = x3 +D2Ax+D3B, (x, y) 7→ (D−1x,D−3/2y).

Let Gal
(
K(
√
D)/K

)
= {1, σ}. Then the group E′(K) may be identified with a subgroup

of E
(
K(
√
D)
)

via

E′(K) ∼=
{
P ∈ E

(
K(
√
D)
)

: σ(P ) = −P
}
,

just as E(K) is the subgroup of E
(
K(
√
D)
)

defined by the relation σ(P ) = P . With this
identification, the kernel and cokernel of the natural map

E(K)⊕ E′(K) −→ E
(
K(
√
D)
)
, (P,Q) 7−→ P +Q,

are finite 2-groups.

12.2.59 Proposition Let p ≥ 5, let q be a power of p, let E/Fq be an elliptic curve, and let d > 1
divide # Aut(E). Then Proposition 12.2.57 says that for each D ∈ F∗q/(F∗q)d, the curve E/Fq
has a twist ED/Fq. The orders of the groups of points on the twists satisfy the following
relations:
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1.
∑
D∈F∗q/(F∗q)d #ED(Fq) = d(q − 1);

2.
∏
D∈F∗q/(F∗q)d #ED(Fq) = #E(Fqd).

12.2.6 The torsion subgroup and the Tate module

12.2.60 Theorem [2670, III.6.4] Let E/K be an elliptic curve, and let K be an algebraic closure
of K.

1. Let p = char(K). Then

E(K)[m] ∼= Z/mZ× Z/mZ for all m ≥ 1 with p - m.

(If char(K) = 0, then this holds for all m ≥ 1.)
2. If char(K) = p > 0, then one of the following is true

E(K)[pr] ∼= Z/prZ for all r ≥ 1,
E(K)[pr] = 0 for all r ≥ 1.

12.2.61 Example Let E be an elliptic curve defined by a Weierstrass equation (12.2.1). One can
determine conditions on the coordinates of a point P = (x, y) ∈ E for it to be a torsion
point. For example

[2](P ) = O if and only if 2y + a1x+ a3 = 0

if and only if 4x4 − b4x2 − 2b6x− b8 = 0,

and
[3](P ) = O if and only if 3x4 + b2x

3 + 3b4x
2 + 3b6x+ b8 = 0.

In general, there is a division polynomial ψn(x, y) ∈ K[x, y] with the property that
[n](P ) = O if and only if ψn(x, y) = 0; see [2670, Exercise 3.7]. These polynomials can
be computed recursively using the formula

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n, valid for all n > m > r.

12.2.62 Remark Letting m = `i run over larger and larger powers of a prime `, we obtain a module
over the ring of `-adic integers Z`. This is convenient because Z` is a ring of characteristic
zero.

12.2.63 Definition Let E/K be an elliptic curve. The `-adic Tate module of E is the inverse limit

T`(E) = lim
←
E(K)[`n].

If the characteristic of K is different from `, then T`(E) ∼= Z` × Z`, although the
isomorphism depends on choosing a basis.

12.2.64 Remark Let E/Fq be an elliptic curve, where q is a power of p. The Frobenius map Fq :
E(Fq) −→ E(Fq) (Example 12.2.31) maps E(Fq)[m] to E(Fq)[m]. If p - m, then E(Fq)[m]
is a free Z/mZ-module of rank two, so choosing a Z/mZ-basis T1, T2 for E(Fq)[m], the
Frobenius map satisfies

φq(T1) = aT1 + bT2 and φq(T2) = cT1 + dT2 for some a, b, c, d ∈ Z/mZ.

Thus the action of φq on E(Fq)[m] is represented by the matrix φ̃q,m =
(
a b
c d

)
. The matrix

depends on the choice of the basis for E(Fq)[m], but its trace and determinant do not.
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The maps φ̃q,`i : E(Fq)[`i] → E(Fq)[`i] fit together to give a map φq,` : T`(E) → T`(E).
Choosing a basis for T`(E) ∼= Z2

` allows us to evaluate the trace and the determinant of φq,`
as `-adic numbers.

12.2.65 Remark The following theorem explains why the quantity aq(E) in Definition 12.2.47 is
the trace of the Frobenius map.

12.2.66 Theorem [2670, V.2.6] Let E/Fq be an elliptic curve with q a power of the prime p. Then
for every integer m with p - m,

Tr (φ̃q,m) ≡ q + 1−#E(Fq) (mod m) and det(φ̃q,m) ≡ q (mod m),

and for every prime ` 6= p,

Tr (φq,`) = q + 1−#E(Fq) and det(φq,`) = q.

12.2.67 Remark More generally, any isogeny φ : E1 → E2 induces a homomorphism of the associ-
ated Tate modules T`(E1) → T`(E2), and if φ is defined over K, then the induced map is
Gal(K/K)-invariant.

12.2.68 Theorem [2783] Let E1/Fq and E2/Fq be elliptic curves defined over a finite field, and let `
be a prime different from the characteristic of Fq. Then the natural map

HomK(E1, E2)⊗ Z` −→ HomZ`
(
T`(E1), T`(E2)

)Gal(K/K)

is an isomorphism.

12.2.69 Remark Theorem 12.2.68 is also true for elliptic curves defined over number fields. This
was conjectured by Tate and proven by Faltings [1024].

12.2.7 The Weil pairing and the Tate pairing

12.2.70 Theorem (Weil pairing) [2670, III.8.1, III.8.2] Let E/K be an elliptic curve, let m ≥ 1 be

an integer that is prime to the characteristic of K, and let µm ⊂ K
∗

denote the group of
m-th roots of unity. There is a pairing

em : E(K)[m]× E(K)[m] −→ µm

with the following properties:

1. It is bilinear, i.e., em(P + Q,R) = em(P,R)em(Q,R) and em(P,Q + R) =
em(P,Q)em(P,R).

2. It is alternating, i.e., em(P, P ) = 1, so in particular em(Q,P ) = em(P,Q)−1.
3. It is non-degenerate, i.e., if em(P,Q) = 1 for all Q ∈ E(K)[m], then P = 0.
4. It is Galois invariant, i.e., em

(
σ(P ), σ(Q)

)
= σ

(
em(P,Q)

)
for all σ ∈ Gal(K/K).

5. It is compatible in towers, i.e., emn(P,Q) = em([n](P ), Q) for P ∈ E(K)[mn]
and Q ∈ E(K)[n].

6. It respects duality, i.e., let φ : E1 → E2 be an isogeny, then em(P, φ̂(Q)) =
em(φ(P ), Q) for P ∈ E1(K)[m] and Q ∈ E2(K)[m].

12.2.71 Remark The non-degeneracy and Galois invariance of the Weil pairing imply that there
exist points P,Q ∈ E(K)[m] such that em(P,Q) is a primitive m-th root of unity. In
particular, if E(K)[m] ⊂ E(K), then µm ⊂ K.
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12.2.72 Remark The Weil pairings on E(K)[`i] fit together to give a bilinear, alternating, non-
degenerate, Galois invariant pairing

e`∞ : T`(E)× T`(E) −→ T`(µ),

where T`(µ) is the inverse limit of µ`i . Further, e`∞(P, φ̂(Q)) = e`∞(φ(P ), Q).

12.2.73 Theorem Each of the following recipes computes the Weil pairing em(P,Q).

1. Choose a function fP ∈ K(E) whose divisor satisfies div(fP ) = m(P ) −m(O).
Choose a function gP ∈ K(E) satisfying fP ◦ [m] = gmP . Then the quan-
tity gP (S +Q)/gP (S) does not depend on the point S ∈ E(K), and its value
is em(P,Q).

2. Choose arbitrary points S, T ∈ E(K) and choose functions FP and FQ in K(E)
whose divisors satisfy div(FP ) = m(S + P )−m(S) and div(FQ) = m(T +Q)−
m(T ). Then the quantity

FQ(T + P )

FQ(T )

/
FP (S +Q)

FP (S)

does not depend on S or T and is equal to em(P,Q).
3. Let fP ∈ K(E) have divisor div(fP ) = m(P ) − m(O) as in Part 1. This de-

termines fP up to multiplication by a constant. The function fP has a pole of
order m at O, so the function (x/y)mfP is defined and nonzero at O. We ad-
just the constant so that

(
(x/y)mfP

)
(O) = 1. Similarly, let fQ ∈ K(E) have

divisor div(fQ) = m(Q) − m(O), and normalize fQ in the same way. Then
em(P,Q) = (−1)mfP (Q)/fQ(P ).

12.2.74 Remark The fact that functions with the stated properties used in Theorem 12.2.73 exist
follows from Proposition 12.2.43, which explains when a divisor is the divisor of a function.
However, it is far from obvious that the formulas in Theorem 12.2.73 yield the same value;
see [2670, page 462] for the equality of formulas of Parts 1 and 2, but note that the last line
of [2670, page 462] should be replaced by = e(Q,P ) = e(P,Q)−1.

12.2.75 Theorem (Tate Pairing) [2670, XI §9] Let E/K be an elliptic curve and let m ≥ 1 be an
integer that is prime. There is a bilinear pairing

T : E(K)[m]× E(K)/mE(K) −→ K∗/(K∗)m

defined as follows: Let T ∈ E(K)[m] and P ∈ E(K). Choose a point Q ∈ E(K) with
[m](Q) = P . Then there exists an α ∈ K∗ such that

em
(
σ(Q)−Q,T

)
= ( m
√
α)σ/ m

√
α for all σ ∈ Gal(K/K),

and we set T(T, P ) = α mod (K∗)m. The Tate pairing may be computed by choosing a
function fT ∈ K(E) with divisor div(fT ) = m(T ) − m(O), and then T(T, P ) = fT (P +
Q)/fT (Q) for any Q ∈ E(K) such that the functions are defined and nonzero.

12.2.76 Remark If m is large, it is not clear in practice how to compute the functions used to
evaluate the Weil pairing (Theorem 12.2.73) and the Tate pairing (Theorem 12.2.75). A
double-and-add algorithm due to Miller allows these pairings to be computed quite effi-
ciently; see Theorem 16.4.38.

12.2.77 Remark There are functorial definitions of the Weil and Tate pairings from which our
rather ad hoc definitions may be derived. Briefly, the Weil pairing is a pairing between the
m torsion on an abelian variety A and the m-torsion on its dual Â ∼= Ext(A,Gm), combined
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with an identification of Â with the Picard group Pic0(A). The Tate pairing is a cup product
pairing on Galois cohomology that uses the Weil pairing to map A[m] ⊗ Â[m] to µm. For
details, see for example [2671].

12.2.8 The endomorphism ring and automorphism group

12.2.78 Definition Let A be a finite Q-algebra, i.e., A is a ring that contains Q as a subring and
that is a finite dimensional Q-vector space. An order of A is a subring of A that is
finitely generated as a Z-module and that contains a Q-basis of A. A maximal order is
an order that is contained in no other orders.

12.2.79 Example Let D ∈ Z be a positive integer that is not a perfect square and let Z[δ] be the

ring of integers of Q(
√
−D). For example, we can take δ = −D+

√
−D

2 . Then every order

in Q(
√
−D) has the form Z + fZ[δ] for some integer f ≥ 1. The integer f is the conductor

of the order Z + fZ[δ].

12.2.80 Definition A (definite) quaternion algebra over Q is a non-commutative ring of the form
Q+Q

√
ai+Q

√
bj+Q

√
abk, where a, b ∈ Q are positive numbers and i, j,k are quantities

satisfying the multiplication rules i2 = j2 = k2 = ijk = −1.

12.2.81 Remark A number field has a unique maximal order, its ring of integers. Quaternion alge-
bras may have many maximal orders.

12.2.82 Theorem [2670, III.9.4] Let E/K be an elliptic curve. The endomorphism ring End(E) of E
has one of the following forms:

1. End(E) = Z;
2. End(E) is an order in a quadratic imaginary field Q(

√
−D);

3. End(E) is an order in a quaternion algebra. (This form is only possible if K is a
finite field.)

12.2.83 Theorem [2670, III.10.1] Let E/K be an elliptic curve. Then its automorphism
group Aut(E) is a finite group whose order is given in the following table, where j(E)
is the j-invariant of E:

# Aut(E) j(E) char(K)

2 j(E) 6= 0, 1728 —
4 j(E) = 1728 char(K) 6= 2, 3
6 j(E) = 0 char(K) 6= 2, 3
12 j(E) = 0 = 1728 char(K) = 3
24 j(E) = 0 = 1728 char(K) = 2

12.2.84 Example Let K be a field whose characteristic is neither 2 nor 3, and let A,B ∈ K∗ with
4A3 + 27B2 6= 0. Then

EA,B : y2 = x3 +Ax+B

is an elliptic curve whose automorphism group is as follows:

1. If AB 6= 0, then Aut(EA,B) = µ2.
2. If B = 0, then j(E) = 1728 and Aut(EA,0) = µ4, where [ζ](x, y) = (ζ2x, ζy) for
ζ ∈ µ4.

3. If A = 0, then j(E) = 0 and Aut(E0,B) = µ6, where [ζ](x, y) = (ζ2x, ζ3y) for
ζ ∈ µ6.
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12.2.85 Remark Theorem 12.2.51 lists the possible values of #E(Fq). These determine the associ-
ated endomorphism rings as described in the following theorem.

12.2.86 Theorem [2954] Let E/Fq be an elliptic curve, let φq ∈ End(E) be the q-power Frobenius
map, and let A = End(E)⊗Q. Referring to the classification in Theorem 12.2.51:

In Case 1, A = Q(φq) is a quadratic imaginary field and End(E) is an arbitrary order
in A.

In Case 2, A is a quaternion algebra, φq ∈ Z, and End(E) is a maximal order in A.
In Cases 3–6, A = Q(φq) is a quadratic imaginary field and End(E) is an order in A

whose conductor is not divisible by p.

12.2.9 Ordinary and supersingular elliptic curves

12.2.87 Theorem [2670, V.3.1] Let E/K be an elliptic curve defined over a field of characteristic
p > 0. The following are equivalent:

1. E[pn] = 0 for some n ≥ 1, equivalently for all n ≥ 1.

2. The dual of the Frobenius map, φ̂pn : E(pn) → E, is purely inseparable for some
n ≥ 1, equivalently for all n ≥ 1.

3. The multiplication-by-pn map [pn] : E → E is purely inseparable for some n ≥ 1,
equivalently for all n ≥ 1.

4. The endomorphism ring End(E) is an order in a quaternion algebra.
5. The formal group associated to E has height 2. (See [2670, IV §1] for the con-

struction of the formal group associated to an elliptic curve and [2670, IV §7] for
the definition the height of a formal group.)

12.2.88 Definition Let K be a field of positive characteristic p. An elliptic curve E/K is supersin-
gular if one (equivalently all) of the conditions in Theorem 12.2.87 are true. Otherwise E
is ordinary.

12.2.89 Theorem [2670, V.3.1] If E is supersingular, then j(E) ∈ Fp2 .

12.2.90 Remark We comment that despite their name, supersingular elliptic curves are nonsingular
curves, since they are elliptic curves, which are nonsingular by definition.

12.2.91 Remark In characteristic 2 one can check that E/F2 is supersingular if and only if
j(E) = 0. There is thus only one F2-isomorphism class of such curves, a representative
being y2 + y = x3. However, there are three F2-isomorphism classes of supersingular elliptic
curves; see Example 12.2.12.

12.2.92 Remark The following theorem describes all supersingular curves in characteristic p ≥ 3.

12.2.93 Theorem [2670, V.4.1] Let q = pn with p ≥ 3.

1. Let E/Fq be an elliptic curve given by a Weierstrass equation of the form y2 =
f(x) with f ∈ Fq[x] a monic cubic polynomial. Then E is supersingular if and
only if the coefficient of xp−1 in f(x)(p−1)/2 is zero.

2. Let λ ∈ Fp. Then the elliptic curve y2 = x(x− 1)(x− λ) is supersingular if and
only if λ is a root of the polynomial

Hp(T ) =

p−1
2∑
i=0

(p−1
2

i

)2

T i.
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3. The polynomial Hp(T ) has distinct roots in Fp. There is one supersingular elliptic
curve in characteristic 3. For p ≥ 5, the number of Fp-isomorphism classes of
supersingular elliptic curves is

p− 1

12
+

1

2
Ap +

1

2
Bp,

where

Ap =

{
0 if p ≡ 1 (mod 3),

1 if p ≡ 2 (mod 3),
and Bp =

{
0 if p ≡ 1 (mod 4),

1 if p ≡ 3 (mod 4).

Equivalently, this number is equal to

⌊ p
12

⌋
+


0 if p ≡ 1 (mod 12),

1 if p ≡ 5 or 7 (mod 12),

2 if p ≡ 11 (mod 12).

12.2.94 Example The factorization of the first few polynomials Hp(T ) modulo p are listed in the
following table.

p Hp(T ) (mod p)

3 T + 1
5 T 2 + 4T + 1
7 (T + 1)(T + 3)(T + 5)
11 (T + 1)(T + 5)(T + 9)(T 2 + 10T + 1)
13 (T 2 + 4T + 9)(T 2 + 7T + 1)(T 2 + 12T + 3)
17 (T 2 + T + 16)(T 2 + 14T + 1)(T 2 + 16T + 1)(T 2 + 16T + 16)
19 (T + 1)(T + 9)(T + 17)(T 2 + 4T + 1)(T 2 + 13T + 6)(T 2 + 18T + 16)

12.2.95 Example The elliptic curve y2 = x3 + 1 is supersingular over Fp if p ≡ 2 (mod 3) and
ordinary if p ≡ 1 (mod 3). Similarly, the curve y2 = x3 +x is supersingular over Fp if p ≡ 3
(mod 4) and ordinary if p ≡ 1 (mod 4).

12.2.96 Remark [2670, V.4.2] Associated to the elliptic curve y2 = x(x− 1)(x− T ) is the Picard–
Fuchs differential operator

D = 4T (1− T )
d2

dT 2
+ 4(1− 2T )

d

dT
− 1.

The polynomial Hp(T ) in Theorem 12.2.93, Part 3 satisfies

DHp(T ) = p

p−1
2∑
i=0

(p− 2− 4i)

(p−1
2

i

)2

T i.

In particular, DHp(T ) = 0 in characteristic p, which shows that Hp(T ) has simple roots
in Fp, since Hp(0) = 1 and Hp(1) = (−1)(p−1)/2 in Fp.

12.2.97 Theorem [2670, Exercise 5.9] The following mass formula for supersingular elliptic curves
is due to Eichler and Deuring: ∑

E/Fp
supersingular

1

# Aut(E)
=
p− 1

24
.
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12.2.98 Remark Let E/Q be an elliptic curve given by a Weierstrass equation with integer coeffi-
cients. Reducing the coefficients modulo p gives an elliptic curve Ẽp/Fp for all primes p - ∆.

If End(E) is an order in a quadratic imaginary field k, then Ẽp is supersingular if p is inert
in k and ordinary if p is split in k; see Definition 12.4.3.

12.2.99 Remark The situation if End(E) = Z is more complicated. Serre and Elkies [969, 2590] have
proven that SS(X) = #{p < X : Ẽp is supersingular} is smaller that X3/4+ε as X → ∞.

Lang and Trotter have conjectured [1848] that SS(X) is asymptotic to C
√
X/ log(X) for

a certain positive constant C. In the opposite direction, Elkies [968] has proven that Ẽp is
supersingular for infinitely many p, i.e., SS(X)→∞ as X →∞.

12.2.10 The zeta function of an elliptic curve

12.2.100 Remark This section describes the zeta function of an elliptic curve. See Sections 11.6
and 12.7 for zeta functions of arbitrary curves and higher dimensional algebraic varieties.

12.2.101 Definition Let E/Fq be an elliptic curve. The zeta function of E/Fq is the formal power
series

Z(E/Fq, T ) = exp

( ∞∑
n=1

#E(Fqn)

n
Tn
)

12.2.102 Remark It might seem more natural to use the series
∑∞
n=1 #E(Fqn)Tn, but the series

defining Z(E/Fq, T ) has better transformation properties.

12.2.103 Theorem [2670, V.2.4] Let E/Fq be an elliptic curve, and let a = aq(E) be the trace of
Frobenius for E (Definition 12.2.47). Then

Z(E/Fq, T ) =
1− aT + qT 2

(1− T )(1− qT )
. (12.2.3)

12.2.104 Remark The zeta function satisfies

Z

(
E/Fq,

1

qT

)
= Z(E/Fq, T ).

This is an instance of Poincaré duality. For the general statement of Poincaré duality and
the associated functional equation for zeta functions of varieties over finite fields, see The-
orems 12.7.18 and 12.7.20.

12.2.105 Remark The formula (12.2.3) for Z(E/Fq, T ) is equivalent to the statement that if we
factor 1− aT + qT 2 = (1− αT )(1− βT ) over the complex numbers, then

#E(Fqn) = qn + 1− αn − βn for all n ≥ 1.

Further, the Hasse–Weil estimate (Theorem 12.2.46) is equivalent to the statement that α
and β are complex conjugates satisfying |α| = |β| = √q. So in particular,∣∣#E(Fqn)− qn − 1

∣∣ = |αn + βn| ≤ |α|n + |β|n = 2qn/2.

12.2.106 Example Consider the curve E/F2 defined by the Weierstrass equation

E : y2 + xy = x3 + 1.
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Then #E(F2) = 4 and a2(E) = −1. The roots of 1 + T + 2T 2 are −1±
√
−7

2 , so for all n ≥ 1,

#E(F2n) = 2n + 1−
(−1 +

√
−7

2

)n
−
(−1−

√
−7

2

)n
.

Using this formula, it is easy to compute #E(F2n) for large values of n, for example,

#E(F2173) = 2173 + 1− 67870783603944754053042229.

12.2.11 The elliptic curve discrete logarithm problem

12.2.107 Remark The elliptic curve discrete logarithm problem (ECDLP) underlies the use of elliptic
curves in cryptography. In this section we discuss ECDLP and some related problems. For
applications to cryptography, see Section 16.4.

12.2.108 Definition Let E/Fq be an elliptic curve and let P,Q ∈ E(Fq). A (discrete) logarithm of
Q to the base P is an integer N such that Q = [N ](P ). The discrete logarithm, which
is denoted by logP (Q), is well-defined modulo the order mP of the element P in the
group E(Fq), so one may view logP as a group homomorphism

logP : {Q ∈ E(Fq) : Q is a multiple of P} −→ Z/mPZ.

The elliptic curve discrete logarithm problem (ECDLP) is the problem of comput-
ing logP (Q) for given points P and Q. (Note the analogy with the classical discrete
logarithm problem for the multiplicative group F∗q ; see Section 11.6.)

12.2.109 Remark If the order mP of P is prime, then the fastest known general algorithm for solving
the ECDLP (as of 2012) has running time on the order of

√
mP . This may be compared to

the DLP in F∗q , for which there are algorithms with running times that are subexponential
in log q.

12.2.110 Definition Let E/Fq be an elliptic curve and let P ∈ E(Fq). The (computational) el-
liptic curve Diffie–Hellman problem (ECDHP-comp) is the following: Given the values
of P , [M ](P ), and [N ](P ), compute the value of [MN ](P ).

12.2.111 Definition The (decisional) elliptic curve Diffie–Hellman problem (ECDHP-dec) is the
following: Given the values of P , [M ](P ), and [N ](P ), with better than equal probability,
distinguish between the points [MN ](P ) and a randomly chosen point Q.

12.2.112 Definition The embedding degree of the integer m in the field Fq is the smallest integer k
such that µm ⊂ F∗qk , where µm is the group of m-th roots of unity. Equivalently, it is

the smallest integer k such that qk ≡ 1 (mod m).

12.2.113 Remark The importance of the embedding degree is that it describes the degree of an
extension field over which the Weil and Tate pairings are defined.

12.2.114 Remark [2079], [2670, XI.6.1] Let E/Fq, m ≥ 1, and T ∈ E(Fq)[m] be as in Theo-
rem 12.2.75, and let T be the Tate pairing. Then Menezes, Okamoto, and Vanstone have
noted that the ECDLP in E(Fq) can be reduced to the DLP in Fq, since if N = logP (Q),
then T(P,Q) = T(P, P )N . Similarly, the decisional ECDHP is as easy to solve as comput-
ing the Tate pairing, since (with rare exceptions) T([M ]P, [N ]P ) = T(P,Q) if and only if
Q = [MN ]P .
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12.2.115 Definition An elliptic curve E/Fp is anomalous if ap(E) = 1, that is, if #E(Fp) = p.

12.2.116 Remark Let p ≥ 3 and let E/Fp be an anomalous elliptic curve. Then Araki, Satoh,
Semaev, and Smart [2535, 2581, 2682] observed that the ECDLP in E(Fp) can be solved in
essentially linear time [2670, XI.6.5].

See Also

§10.5 For elliptic curves and Lattès dynamical systems.
§11.6 For the discrete logarithm problem for the multiplicative group F∗q .
§12.3 For efficient addition formulas on elliptic curves.
§12.7, §12.9 For zeta functions of higher genus curves and higher dimensional

algebraic varieties.
§16.4, §16.5, For cryptographic applications of elliptic curves, hyperelliptic curves,
§16.6 and abelian varieties.

References Cited: [284, 556, 557, 825, 968, 969, 1024, 1563, 1756, 1773, 1843, 1845, 1848,
2054, 2079, 2101, 2107, 2497, 2535, 2581, 2590, 2667, 2670, 2671, 2672, 2682, 2783, 2784,
2950, 2954]

12.3 Addition formulas for elliptic curves

Daniel J. Bernstein, University of Illinois at Chicago

Tanja Lange, Technische Universiteit Eindhoven

12.3.1 Curve shapes

12.3.1 Remark Section 12.2 defined elliptic curves using Weierstrass equations (12.2.1). The fol-
lowing definitions present other curve shapes which have algorithmic advantages.

12.3.2 Definition A short Weierstrass curve over a field K of characteristic not equal to 2 is a
curve of the form y2 = x3 + ax+ b with a, b ∈ K and 4a3 + 27b2 6= 0.

12.3.3 Definition A short Weierstrass curve over a field K of characteristic 2 is a curve of the
form y2 + xy = x3 + ax2 + b with a, b ∈ K and b 6= 0.

12.3.4 Remark The curve shape defined in Definition 12.3.3 covers only ordinary curves; supersin-
gular curves over a field K of characteristic 2 have short Weierstrass equations of the form
y2 + cy = x3 + ax+ b with a, b, c ∈ K and c 6= 0.

12.3.5 Definition A Montgomery curve over a field K of characteristic not equal to 2 is a curve
of the form by2 = x3 + ax2 + x with a ∈ K \ {−2, 2} and b ∈ K \ {0}.
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12.3.6 Definition An Edwards curve over a field K of characteristic not equal to 2 is a curve of
the form x2 + y2 = 1 + dx2y2 with d ∈ K \ {0, 1}.

A twisted Edwards curve over a field K of characteristic not equal to 2 is a curve of
the form ax2 + y2 = 1 + dx2y2 with a, d ∈ K \ {0} and a 6= d.

12.3.7 Definition A Hessian curve over a field K is a curve of the form x3 + y3 + 1 = dxy with
d ∈ K and d3 6= 27.

A twisted Hessian curve over a field K is a curve of the form ax3 + y3 + 1 = dxy
with a, d ∈ K, a 6= 0, and d3 6= 27a.

12.3.8 Remark Other curve shapes studied in the literature include binary Edwards curves, Ja-
cobi quartics, Jacobi intersections, and Doche-Icart-Kohel curves. Chudnovsky and Chud-
novsky’s work [636] studied addition formulas on Hessian curves, Jacobi quartics, Jacobi
intersections, and Weierstrass curves. Montgomery curves were proposed by Montgomery
in [2133] in the context of the elliptic-curve method to factor integers. Edwards curves
were introduced by Edwards in [956] in the form x2 + y2 = a2(1 + x2y2), and generalized
to x2 + y2 = 1 + dx2y2 by Bernstein and Lange in [247]. Twisted Edwards curves were
introduced by Bernstein, Birkner, Joye, Lange, and Peters in [244].

12.3.2 Addition

12.3.9 Remark Given a nonsingular projective genus one curve with a specified neutral element
O, one can abstractly define addition of points P on the curve to correspond to addition of
divisors P−O modulo principal divisors. However, computations use more concrete addition
laws specified as rational functions of the input coordinates.

12.3.10 Remark Addition on Weierstrass curves is described concretely in Definition 12.2.19 and
Algorithm 12.2.21. It is necessary to distinguish generic additions from doublings and from
computations involving O as input or output; the generic addition formulas fail for those
cases.

There are other addition formulas that do not require so many distinctions. An addition
law is strongly unified if it can be used to double generic points. It is K-complete (abbre-
viated complete when K is clear from context) if it can be used to add each pair of points
defined over K.

12.3.11 Example Consider the twisted Edwards curve ax2 + y2 = 1 + dx2y2 over K with neutral
element (0, 1). The negative of (x, y) on this curve is (−x, y). The Edwards addition law,
valid for almost all points P = (x1, y1) and Q = (x2, y2) on the curve, states that the sum
P +Q is (

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

The Edwards addition law is strongly unified: it does not make an exception for P = Q. If
a is a square in K and d is not a square in K then the Edwards addition law is K-complete.

12.3.12 Example Consider the twisted Hessian curve ax3 + y3 + 1 = dxy over K with neutral
element (0,−1). The negative of (x, y) on this curve is (x/y, 1/y). The rotated Hessian
addition law, valid for almost all points P = (x1, y1) and Q = (x2, y2) on the curve, states
that the sum P +Q is (

x1 − y2
1x2y2

ax1y1x2
2 − y2

,
y1y

2
2 − ax2

1x2

ax1y1x2
2 − y2

)
.



442 Handbook of Finite Fields

This addition law is strongly unified. It is K-complete if a is not a cube in K.

12.3.13 Remark The completeness of the Edwards addition law was proven by Bernstein and Lange
in [247]. Earlier addition laws, including the Weierstrass addition law and the usual (non-
rotated) Hessian addition law, were not complete.

12.3.3 Coordinate systems

12.3.14 Remark Additions in affine coordinates require inversions in the underlying field K. Inver-
sions are computationally expensive compared to multiplications and additions. Implemen-
tations thus work with fractions, delaying the inversions for as long as possible. Mathemat-
ically this means working in projective coordinates.

12.3.15 Definition The projective representations over a field K of a vector (x, y) ∈ K2 are the
vectors (X,Y, Z) ∈ K3 such that Z 6= 0, X/Z = x, and Y/Z = y.

12.3.16 Remark The conditions Z 6= 0, X/Z = x, and Y/Z = y are equivalent to (X : Y :
Z) ∈ P2(K) mapping to (x, y) ∈ A2(K) under the natural rational map from P2(K) to
A2(K). For computational purposes, however, projective representations of points are ele-
ments (X,Y, Z) ∈ K3, not equivalence classes (X : Y : Z) ∈ P2(K).

12.3.17 Remark Weighted projective coordinates sometimes lead to more efficient formulas.
In (a, b, 1)-weighted coordinates, the point (X,Y, Z) ∈ K3 with Z 6= 0 represents
(X/Za, Y/Zb) ∈ K2; any scaled point (Xλa, Y λb, Zλ) with λ ∈ K∗ represents the same
point in K2; one defines (X : Y : Z) as the set of such scaled points. For example, Jacobian
coordinates for Weierstrass curves are (2, 3, 1)-weighted coordinates. Standard projective
coordinates are (1, 1, 1)-weighted coordinates.

12.3.18 Remark Extra coordinates sometimes lead to more efficient formulas. For example, ex-
tended coordinates for Edwards curves represent an affine point (x, y) as any element of the
equivalence class (x : y : 1 : xy) in (1, 1, 1, 1)-weighted coordinates; i.e., (X,Y, Z, T ) with
Z 6= 0 and XY = ZT represents (X/Z, Y/Z).

12.3.19 Example The twisted Edwards curve ax2 + y2 = 1 + dx2y2 is naturally embedded into
P1 × P1 as aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2 with x = X/Z and y = Y/T for Z, T 6= 0. In
this representation addition can be written as follows:

((X1 : Z1), (Y1 : T1)) + ((X2 : Z2), (Y2 : T2)) =
(
(X1Y2Z2T1 +X2Y1Z1T2 : Z1Z2T1T2 + dX1X2Y1Y2),

(Y1Y2Z1Z2 − aX1X2T1T2 : Z1Z2T1T2 − dX1X2Y1Y2)
)

if defined,(
(X1Y1Z2T2 +X2Y2Z1T1 : aX1X2T1T2 + Y1Y2Z1Z2),

(X1Y1Z2T2 −X2Y2Z1T1 : X1Y2Z2T1 −X2Y1Z1T2)
)

if defined.

Bernstein and Lange showed in [249] that these two addition laws cover all possible pairs
of curve points; the outputs coincide if they are both defined; each defined output is on the
curve; and this addition turns the set of curve points into a group.

An analogous 56-monomial pair of addition laws for Weierstrass curves was presented
by Bosma and Lenstra in [362] before Edwards curves were introduced.
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12.3.4 Explicit formulas

12.3.20 Remark One can compute the scalar multiple nP for any positive integer n by writing n as∑
i ni2

i with ni ∈ {0, 1} and computing nP as
∑
i ni2

iP . This uses about log2 n doublings
and, typically, about (1/2) log2 n additions. The number of group operations to compute
nP is reduced by more advanced scalar-multiplication methods such as windows, sliding
windows, and fractional windows.

12.3.21 Remark Algorithms to compute elliptic-curve group operations using field operations are
referred to as explicit formulas. These algorithms try to minimize the cost of group opera-
tions and of higher-level operations such as scalar multiplication. These algorithms translate
addition formulas such as in Algorithm 12.2.21, and Examples 12.3.11, and 12.3.12 into se-
quences of field operations; they reduce cost by reusing intermediate results and applying
various optimization techniques. Explicit formulas depend on the curve shape.

A complete addition algorithm is typically built as a combination of an incomplete addi-
tion formula with various special-case formulas, glued together by appropriate comparisons
between P and Q, as in Algorithm 12.2.21.

12.3.22 Definition Explicit formulas to compute P,Q 7→ P + Q for generic P,Q are addition
formulas. Explicit formulas to compute P 7→ 2P for generic P are doubling formulas.
Explicit formulas to compute P,Q, P − Q 7→ P + Q for generic P,Q are differential
addition formulas.

12.3.23 Remark One way to compute a scalar multiplication P 7→ nP using differential additions,
where n =

∑l
i=0 ni2

i, is to compute the pairs (Lj , Rj) = (
∑l
i=j ni2

i−jP, P+
∑l
i=j ni2

i−jP )
for l ≥ j ≥ 0 recursively as follows: if nj−1 = 0 then (Lj−1, Rj−1) = (2Lj , Lj+Rj); otherwise
(Lj−1, Rj−1) = (Lj +Rj , 2Rj). Note that the differences in the addition are equal to P and
that the doublings are additions of points with difference O. This scalar-multiplication
method was introduced for Montgomery curves in [2133] and is called the Montgomery
ladder.

12.3.24 Definition Addition formulas with inputs and output in projective coordinates are pro-
jective addition formulas. Addition formulas with one input and output in projective
coordinates but the other input in affine coordinates are mixed addition formulas.

12.3.25 Remark Affine coordinates are equivalent to projective coordinates with Z = 1; mixed
addition formulas eliminate multiplications by 1 and sometimes save time in other ways.
The literature also contains various speedups for other types of restricted representations,
such as additions of projective points having X = 1 or of two points having the same
Z-coordinate.

12.3.26 Remark Often an addition formula involves some computations that depend only on one
input point. A readdition of the same input point reuses those computations.

12.3.27 Remark The following subsections state the most efficient explicit formulas known for the
most popular curve shapes used in computations. Cost is reported as squarings (S), mul-
tiplications by curve constants (D), and general multiplications (M); multiplications by
curve constants are counted separately because often these constants can be chosen small.
Additions and subtractions are ignored. Coordinate systems here are chosen primarily to
minimize doubling cost and secondarily to minimize addition cost, where cost counts multi-
plications and a fraction of squarings; the fraction is 0.8 in characteristic 6= 2 and 0.2 in char-
acteristic 2. See the Explicit Formulas Database [246] (http://hyperelliptic.org/EFD/)
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for a much more comprehensive collection of curve shapes, coordinate systems, computer-
verified addition formulas, and references.

12.3.5 Short Weierstrass curves, large characteristic: y2 = x3 − 3x+ b

12.3.28 Remark The following algorithms choose weights (2, 3, 1) and a = −3. These choices min-
imize the cost of known doubling algorithms on short Weierstrass curves, except for a few
curves (at most 6 isomorphism classes) having a = 0. All of the standard NIST curves over
prime fields have a = −3, and almost all curves over prime fields have low-degree isogenies
to curves with a = −3.

12.3.29 Algorithm: Doubling.
Input: P1 = (X1 : Y1 : Z1).
Output: P3 = (X3 : Y3 : Z3) = 2P1.
δ = Z2

1 ; γ = Y 2
1 ; β = X1γ; α = 3(X1 − δ)(X1 + δ); X3 = α2 − 8β; Z3 = (Y1 +Z1)2 − γ − δ;

Y3 = α(4β −X3)− 8γ2.

12.3.30 Algorithm: Addition.
Input: P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2).
Output: P3 = (X3 : Y3 : Z3) = P1 + P2.
A = Z2

1 ; B = Z2
2 ; U1 = X1 ·B; U2 = X2 ·A; S1 = Y1 ·Z2 ·B; S2 = Y2 ·Z1 ·A; H = U2−U1;

I = (2H)2; J = H ·I; r = 2(S2−S1); V = U1 ·I; X3 = r2−J−2V ; Y3 = r ·(V −X3)−2S1 ·J ;
Z3 = ((Z1 + Z2)2 −A−B) ·H.

12.3.31 Remark Doubling takes 3M+5S. Addition takes 11M+5S. Readdition of P2 saves 1M+1S
by caching B and Z2 ·B. Mixed addition with Z2 = 1 takes 7M+ 4S: it skips all operations
involving Z2 and computes K = H2; I = 4K;Z3 = (Z1 +H)2 −A−K.

12.3.6 Short Weierstrass curves, characteristic 2, ordinary case:
y2 + xy = x3 + a2x

2 + a6

12.3.32 Remark The following algorithms for short binary Weierstrass curves choose weights
(1, 2, 1), called Lopez-Dahab coordinates. The formulas use

√
a6 as a curve constant, as-

suming implicitly that a6 is a square (which is automatic for characteristic-2 finite fields
and other characteristic-2 perfect fields).

For fields F2n with n odd each isomorphism class contains a curve with a2 = 1 or one
with a2 = 0. Optimizations are different, as the following algorithms show. Lopez-Dahab
coordinates (X : Y : Z) are extended to include T = Z2, and further extended to include
W = XZ for a2 = 0.

Differential-addition formulas represent a point by its x-coordinate, and represent x in
turn as a fraction X/Z. These formulas do not differ between a2 = 0 and a2 = 1.

12.3.33 Algorithm: Doubling, a2 = 1.
Input: P1 = (X1 : Y1 : Z1 : T1).
Output: P3 = (X3 : Y3 : Z3 : T3) = 2P1.
A = X2

1 ; B = Y 2
1 ; Z3 = T1 · A; T3 = Z2

3 ; X3 = (A +
√
a6T1)2; Y3 = B · (B + X3 + Z3) +

a6T3 + T3.

12.3.34 Algorithm: Addition, a2 = 1.
Input: P1 = (X1 : Y1 : Z1 : T1), P2 = (X2 : Y2 : Z2 : T2).
Output: P3 = (X3 : Y3 : Z3 : T3) = P1 + P2.
A = X1 · Z2; B = X2 · Z1; C = A2; D = B2; E = A + B; F = C + D; G = Y1 · T2;
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H = Y2 ·T1; I = G+H; J = I ·E; Z3 = F ·Z1 ·Z2; T3 = Z2
3 ; X3 = A · (H+D)+B · (C+G);

Y3 = (A · J + F ·G) · F + (J + Z3) ·X3.

12.3.35 Algorithm: Mixed addition, a2 = 1.
Input: P1 = (X1 : Y1 : Z1 : T1), P2 = (X2 : Y2 : 1 : 1).
Output: P3 = (X3 : Y3 : Z3 : T3) = P1 + P2.
A = X1 + X2 · Z1; B = Y1 + Y2 · T1; C = A · Z1; D = C · (B + C); Z3 = C2; T3 = Z2

3 ;
X3 = B2 + C ·A2 +D; Y3 = (X3 +X2 · Z3) ·D + (X2 + Y2) · T3.

12.3.36 Remark For a2 = 1, doubling takes 2M + 4S + 2D; addition takes 13M + 3S; readdition
does not save anything; mixed addition with Z2 = 1 takes 8M + 4S.

12.3.37 Algorithm: Doubling, a2 = 0.
Input: P1 = (X1 : Y1 : Z1 : T1 : W1).
Output: P3 = (X3 : Y3 : Z3 : T3 : W3) = 2P1.
A = X2

1 ; B = Y 2
1 ; Z3 = W 2

1 ; X3 = (A +
√
a6T1)2; T3 = Z2

3 ; W3 = X3 · Z3; Y3 =
B · (B +X3 + Z3) + a6T3 +W3.

12.3.38 Algorithm: Addition, a2 = 0.
Input: P1 = (X1 : Y1 : Z1 : T1 : W1), P2 = (X2 : Y2 : Z2 : T2 : W2).
Output: P3 = (X3 : Y3 : Z3 : T3 : W3) = P1 + P2.
A = X1 · Z2; B = X2 · Z1; C = A2; D = B2; E = A + B; F = C + D; G = Y1 · T2;
H = Y2 · T1; I = G + H; J = I · E; Z3 = F · Z1 · Z2; X3 = A · (H + D) + B · (C + G);
Y3 = (A · J + F ·G) · F + (J + Z3) ·X3; T3 = Z2

3 ; W3 = X3 · Z3.

12.3.39 Algorithm: Mixed addition, a2 = 0.
Input: P1 = (X1 : Y1 : Z1 : T1 : W1), P2 = (X2 : Y2 : 1 : 1 : 1).
Output: P3 = (X3 : Y3 : Z3 : T3 : W3) = P1 + P2.
A = Y1 + Y2 · T1; B = X1 + X2 · Z1; C = B · Z1; Z3 = C2; T3 = Z2

3 ; D = X2 · Z3;
X3 = A2 +C · (A+B2 + a2C); Y3 = (D+X3) · (A ·C +Z3) + (Y2 +X2) ·T3; W3 = X3 ·Z3.

12.3.40 Remark For a2 = 0, doubling takes 2M + 5S + 2D; addition takes 14M + 3S; readdition
does not save anything; mixed addition with Z2 = 1 takes 8M + 4S + 1D.

12.3.41 Algorithm: Differential addition and doubling.
Input: P2 = (X2 : Z2), P3 = (X3 : Z3) with x(P3 − P2) = x1.
Output: P4 = (X4 : Z4) = 2P2, P5 = (X5 : Z5) = P2 + P3.
A = X2 · Z3; B = X3 · Z2; C = X2

2 ; D = Z2
2 ; Z5 = (A + B)2; X5 = x1 · Z5 + A · B;

X4 = (C +
√
a6D)2; Z4 = C ·D.

12.3.42 Remark The combined operation of differential addition and doubling takes 5M+4S+1D.
The Montgomery ladder thus takes 5M + 4S + 1D per bit of the scalar.

12.3.7 Montgomery curves: by2 = x3 + ax2 + x

12.3.43 Remark Montgomery curves are of interest primarily for their efficient differential addition.
Points are represented via their x-coordinate x(P ) = X/Z. The formulas depend on the
curve constant c = (a+ 2)/4.

12.3.44 Algorithm: Differential addition and doubling.
Input: P2 = (X2 : Z2), P3 = (X3 : Z3) with x(P3 − P2) = x1.
Output: P4 = (X4 : Z4) = 2P2, P5 = (X5 : Z5) = P2 + P3.
A = X2 + Z2; Ā = A2; B = X2 − Z2; B̄ = B2; E = Ā − B̄; C = X3 + Z3; D = X3 − Z3;
F = D ·A; G = C ·B; X5 = (F +G)2; Z5 = x1 · (F −G)2; X4 = Ā · B̄; Z4 = E · (B̄ + cE).
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12.3.45 Remark The combined operation of differential addition and doubling takes 5M+4S+1D.
A Montgomery curve is birationally equivalent to a twisted Edwards curve. Differential
addition formulas on twisted Edwards curves trade 1M for 1D; if the curve constant can
be chosen small those formulas are more efficient.

12.3.8 Twisted Edwards curves: ax2 + y2 = 1 + dx2y2

12.3.46 Remark The following formulas use extended coordinates: x = X/Z, y = Y/Z, xy = T/Z.
Three different formulas are stated below: a complete addition formula for the case that a
is a square and d is not a square; an incomplete but faster addition formula for the case
a = −1; and a faster doubling formula.

12.3.47 Algorithm: Complete addition.
Input: P1 = (X1 : Y1 : Z1 : T1), P2 = (X2 : Y2 : Z2 : T2).
Output: P3 = (X3 : Y3 : Z3 : T3) = P1 + P2.
A = X1 ·X2; B = Y1 · Y2; C = dT1 · T2; D = Z1 · Z2; E = (X1 + Y1) · (X2 + Y2)− A− B;
F = D − C; G = D + C; H = B − aA; X3 = E · F ; Y3 = G ·H; T3 = E ·H; Z3 = F ·G.

12.3.48 Algorithm: Addition, a = −1.
Input: P1 = (X1 : Y1 : Z1 : T1), P2 = (X2 : Y2 : Z2 : T2).
Output: P3 = (X3 : Y3 : Z3 : T3) = P1 + P2.
A = (Y1 − X1) · (Y2 + X2); B = (Y1 + X1) · (Y2 − X2); C = Z1 · 2 · T2; D = T1 · 2 · Z2;
E = D + C; F = B − A; G = B + A; H = D − C; X3 = E · F ; Y3 = G ·H; T3 = E ·H;
Z3 = F ·G.

12.3.49 Algorithm: Doubling.
Input: P1 = (X1 : Y1 : Z1 : T1).
Output: P3 = (X3 : Y3 : Z3 : T3) = 2P1.
A = X2

1 ; B = Y 2
1 ; C = 2Z2

1 ; D = aA; E = (X1 + Y1)2 − A − B; G = D + B; F = G − C;
H = D −B; X3 = E · F ; Y3 = G ·H; T3 = E ·H; Z3 = F ·G.

12.3.50 Remark Doubling takes 4M + 4S + 1D. Doubling does not use the input T ; suppressing
the computation of T from the previous addition or doubling reduces the effective cost of
doubling to 3M + 4S + 1D in typical addition chains.

A complete addition takes 9M + 2D. Readdition saves 1D. Mixed addition with Z2 = 1
saves 1M. The incomplete addition formulas for a = −1 take 8M. Mixed addition saves
1M. There are also complete addition formulas for a = −1 taking 8M + 1D, where the D
is a multiplication by 2d.

See Also

§12.2 For more material on function fields of genus 1 (elliptic curves).
§12.4 For more material on hyperelliptic function fields.
§12.5 For rational places of function fields (rational points on curves).
§12.6 For towers of function fields.
§15.2 For applications of function fields to coding theory.
§16.4 For applications in cryptography.

References Cited: [244, 246, 247, 249, 362, 636, 956, 2133]
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12.4 Hyperelliptic curves

Michael John Jacobson, Jr., University of Calgary

Renate Scheidler, University of Calgary

Recall that by Remark 12.1.119 every K-rational point on a projective curve over a field
K, and hence also every K-rational point on an affine curve over K, corresponds to a degree
one place of the associated function field. This section predominantly uses the language of
curves and points rather than function fields and places.

12.4.1 Hyperelliptic equations

12.4.1 Definition A hyperelliptic equation over a field K is an equation of the form

y2 + h(x)y = f(x) with h, f ∈ K[x]. (12.4.1)

12.4.2 Remark The curve defined by a hyperelliptic equation (12.4.1) is non-singular if and only
if for no point (x0, y0) on the curve, both partial derivatives vanish, i.e.,

2y0 + h(x0) = 0 and h′(x0)y0 = f ′(x0).

12.4.3 Definition A hyperelliptic curve C of genus g defined over a field K is given by a hyper-
elliptic equation over K that is irreducible in K(x, y), non-singular, and satisfies one of
the following three conditions:

1. deg(f) = 2g + 1 and deg(h) ≤ g;

2. deg(f) ≤ 2g + 1 and h is monic of degree g + 1, or deg(f) = 2g + 2 and

a. either K has characteristic different from 2, deg(h) ≤ g and the leading
coefficient of f is a square in K,

b. or K has characteristic 2, or h is monic of degree g + 1 and the leading
coefficient of f is of the form s2 + s for some s ∈ K∗;

3. deg(f) = 2g + 2 and

a. either K has characteristic different from 2, deg(h) ≤ g, and the leading
coefficient of f is not a square in K,

b. or K has characteristic 2, or h is monic of degree g + 1 and the leading
coefficient of f is not of the form s2 + s for any s ∈ K∗.

A curve C is imaginary or ramified in case (1), real or split in case (2), and unusual or
inert in case (3).

12.4.4 Remark An elliptic curve can be thought of as an imaginary hyperelliptic curve of genus
g = 1.

12.4.5 Remark Every unusual hyperelliptic curve is a real curve over a quadratic extension of K.

12.4.6 Remark It is customary, although not necessary, to take h to be identically zero if K does
not have characteristic 2. This is always possible by completing the square, i.e., adding h2/4
to both sides of (12.4.1) and replacing y by y − h/2.
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12.4.7 Definition The infinite places of a hyperelliptic curve C/K as given in (12.4.1) are exactly
the poles of x (see Definition 12.1.18).

12.4.8 Definition Let C/K be a hyperelliptic curve. For any extension field L of K, the set of
finite points of C defined over L is the set of solutions (x0, y0) ∈ L×L to the hyperelliptic
equation (12.4.1) defining C. The set of points at infinity of C defined over L is the set

S =


{∞} if C/L is imaginary,

{∞,∞} if C/L is real,

∅ if C/L is unusual.

The finite points and points at infinity defined over L together form the set of points of
C defined over L or the set of L-rational points of C, denoted by C(L).

12.4.9 Definition The hyperelliptic involution of a hyperelliptic curve C/K is the map
ι : C(K) → C(K) that sends a finite point P = (x0, y0) of C to the point
P = ι(P ) = (x0,−y0 − h(x0)) of C. If C is imaginary, then ι(∞) = ∞. If C is real,
then ι(∞) =∞ and ι(∞) =∞.

12.4.10 Remark A point on a hyperelliptic curve is ramified (when viewed as a place) if it is fixed
by ι, and unramified otherwise.

12.4.11 Remark If C is imaginary, then the infinite place of K(x) is a ramified K-rational point on
C; if C is real, then it is an unramified K-rational point on C, and if C is unusual, then it
is not a point on C, but rather a place of degree 2.

12.4.12 Theorem (Generalization of [2373, Section 5] and [1587, Proposition 2.1]) Let C be a
hyperelliptic curve of genus g over a perfect field K defined by (12.4.1), and let x0, y0 ∈ K.
Substituting

x = t−1 + x0, y =
bz

tg+1
+ a

into (12.4.1), with

a =

{
y0 if char(K) = 2,

−h(x0)/2 otherwise,

and

b =

{
1 if h(x0) + 2y0 = 0,

h(x0) + 2y0 otherwise,

yields a hyperelliptic curve C ′ : z2 +H(t)z = F (t) of genus g over K where

H(t) = b−1tg+1(h(t−1 + x0) + 2a), F (t) = b−2t2g+2(f(t−1 + x0)− ah(t−1 + x0)− a2),

and the following conditions hold:

1. If P = (x0, y0) is a finite ramified point on C, then C ′ is an imaginary hyperelliptic
curve.

2. If P = (x0, y0) is a finite unramified point on C, then C ′ is a real hyperelliptic
curve.

3. If no finite point on C has x-coordinate x0, then C ′ is an unusual hyperelliptic
curve.
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12.4.13 Example A hyperelliptic curve y2 = f(x) of genus g defined over R may have as few as one
and as many as g+ 1 connected components, as illustrated in Figure 12.4.13, depending on
the number of real roots of f .

(a) y2 = x5+x4−5x3−2x2+3x+1 (imaginary) (b) y2 = x6 + x4 − 5x3 − 2x2 + 3x+ 1 (real)

(c) y2 = −x6+x4−5x3−2x2+3x+1 (unusual)

Figure 12.4.1 Examples of imaginary, real, and unusual hyperelliptic curves of genus 2 defined over R.

12.4.2 The degree zero divisor class group

12.4.14 Remark Unlike the case of elliptic curves, the set of points of C defined over any exten-
sion field of K does not form an abelian group. Instead, one needs to use divisors, as in
Definition 12.1.21.

12.4.15 Definition Let C/K be a hyperelliptic curve and L an extension field of K. A divisor of
C is defined over L if Dσ =

∑
P nPP

σ = D for all L-automorphisms σ on K, where
Pσ = (σ(x), σ(y)) if P = (x, y), ∞σ =∞ and (in case C is real) ∞σ =∞.

12.4.16 Definition [661, Definition 14.3] Let C/K be a hyperelliptic curve. The set of degree zero
divisors of C defined over K, denoted by Div0

K(C), is a subgroup of the divisor group
of C/K (see Definition 12.1.21). The set of principal divisors defined over K, denoted
by PrincK(C), is a subgroup of Div0

K(C) (see Definition 12.1.26).
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12.4.17 Definition Let C/K be a hyperelliptic curve. The degree zero divisor class group defined
over K is given by Pic0

K(C) = Div0
K(C)/PrincK(C). We denote Pic0(C) = Pic0

K
(C).

12.4.18 Remark In the case of genus 1, i.e., elliptic curves, Pic0
K(C) is isomorphic to the group

of points defined over K on the elliptic curve; see Proposition 12.2.44. This is not true for
hyperelliptic curves of genus g > 1.

12.4.19 Remark The group Pic0
K(C) is isomorphic to the group of K-rational points on the Jaco-

bian variety JC(K) of C; see [661, Section 4.4.6.a]. As a result, the two terminologies and
notations are sometimes used interchangeably in the literature.

12.4.20 Definition Let K = Fq. Then Pic0
Fq (C) is a finite abelian group. Its order, denoted by h,

is the degree zero divisor class number, or class number, of C/Fq.

12.4.21 Definition For any divisor D of C, [D] denotes the divisor class of Pic0
K(C) represented

by D.

12.4.22 Definition Let C/Fq be a real hyperelliptic curve. The order R of the subgroup of Pic0
K(C)

generated by [∞−∞] is the regulator of C/K.

12.4.23 Remark The divisor R(∞ −∞) is principal, and thus the divisor of a function ε. This
function is a fundamental unit of the maximal order of the corresponding function field; see
Remark 12.1.119.

12.4.24 Remark Let C/Fq be a hyperelliptic curve and F/Fq the corresponding algebraic function
field; see Remark 12.1.119. Let C denote the ideal class group of the maximal order of
F/Fq(x). Then the following relationships hold between Pic0

K(C) and C.
1. If C/K is imaginary, then h = |C|, and the groups Pic0

K(C) and C are isomorphic.

2. If C/K is real, then h = R|C|.
3. If C/K is unusual, then h = |C|/2.

12.4.25 Remark The ideal class number |C| of a real hyperelliptic curve is expected to be small
(frequently 1), so we expect that R ≈ h [1125]; see also [1129, 1130, 1131] for the genus 1
case.

12.4.3 Divisor class arithmetic over finite fields

12.4.26 Remark In the case of imaginary and real hyperelliptic curves, and to a lesser extent for
unusual curves, there exist algorithms for efficient arithmetic in Pic0

K(C). We restrict our
attention to K = Fq.

12.4.27 Definition A divisor D =
∑
P nPP of a hyperelliptic curve C/Fq is finitely effective if

nP ≥ 0 for all finite points P of C.

12.4.28 Remark Every finitely effective degree zero divisor D of a hyperelliptic curve C/Fq can be
represented uniquely as

D =


DS − deg(DS)∞ if C/Fq is imaginary,

DS − deg(DS)∞+ n∞(∞−∞) if C/Fq is real,

DS − (deg(DS)/2)∞ if C/Fq is unusual,
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where DS =
∑
P nPP is only supported at finite points on C and n∞ ∈ Z; see [1588,

Section 3].

12.4.29 Definition A degree zero divisor D of a hyperelliptic curve C/Fq with a representation as
given in Remark 12.4.28 is semi-reduced if for all P ∈ supp(DS) we have P 6∈ supp(DS),
unless P = P , in which case nP = 1.

12.4.30 Definition A semi-reduced divisor D is reduced if deg(DS) ≤ g.

12.4.31 Remark If C/Fq is imaginary, then every divisor class of Pic0
Fq (C) contains a unique reduced

divisor.

12.4.32 Remark If C/Fq is real, then divisor classes of Pic0
Fq (C) do not generically contain unique

reduced divisors. However, each class does contain a unique reduced divisor D such that
n∞ lies in a specified range of length g + 1 − deg(DS). Paulus and Rück [2373] proposed
the interval [0, g − deg(DS)]. Galbraith, Harrison, and Mireles Morales [1155] proposed a
balanced divisor representation, using the interval centered around ddeg(DS)/2e.

12.4.33 Remark If C/Fq is unusual, then every divisor class of Pic0
Fq (C) contains at most one

reduced divisor. If the class contains a divisor of the form given in Remark 12.4.28, then it
contains either a unique reduced divisor or q + 1 divisors of the form as in Remark 12.4.28
with deg(DS) = g+1. Arithmetic in Pic0

Fq (C) when C/Fq is unusual is not as well developed
as for imaginary and real hyperelliptic curves C/Fq. For details, see [133].

12.4.34 Theorem [1774, Theorem 5.1] Let C/Fq be a hyperelliptic curve. If D is a semi-reduced
divisor defined over Fq as given in Remark 12.4.28, then DS can be represented uniquely
by a pair of polynomials u, v ∈ Fq[x] where

u(x) =
∏

P∈ supp(DS)

(x− xP )nP

is monic and v is the unique polynomial such that deg(v) < deg(u), v(xP ) = −yP for all
P = (xP , yP ) ∈ supp(DS), and u | v2 + hv − f.

12.4.35 Definition The pair [u, v] is the Mumford representation of D.

12.4.36 Remark In some sources such as [1774], the condition v(xP ) = −yP is replaced by
v(xP ) = yP . This also describes a unique representation of semi-reduced divisors in which
DS from Theorem 12.4.34 is replaced by DS =

∑
P nPP .

12.4.37 Remark Alternative representations to [u, v] can be obtained by taking [u, v′] where v′

is any polynomial with v′ ≡ v (mod u) that satisfies the same interpolation condition.
In the real case, it is sometimes computationally advantageous to use an alternative with
deg(v′) = g + 1 [988].

12.4.38 Remark If C/Fq is imaginary, then semi-reduced divisors are uniquely determined by
their Mumford representation. Thus, the Mumford representation gives an explicit, ef-
ficient representation of divisor classes of Pic0

Fq (C) via reduced representatives D with
deg(v) < deg(u) ≤ g. The identity divisor class, PrincFq (C), is represented by [1, 0], and
the inverse of [u, v] is given by [u,−h − v]. Cantor’s algorithm [497] (see also [661, Al-
gorithm 14.7]) describes how to compute the reduced sum of two divisors in Mumford
representation in polynomial time using only arithmetic with polynomials in Fq[x].
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12.4.39 Remark If C/Fq is real, then semi-reduced divisors are uniquely determined by their Mum-
ford representation and n∞ -value. Thus, the Mumford representation, together with the
integer n∞, can be used to represent divisor classes in Pic0

Fq (C). The identity class is rep-
resented by u = 1, v = 0, and n∞ = 0. The inverse of the divisor class [u, v, n∞] is given
by [u,−h − v,−n∞ − deg(u)], after which additional adjustment steps are performed to
obtain a value n∞ in the required range, as described in [1155, 2373]. A modification of
Cantor’s algorithm (see, for example, [1586]) can be used to compute the reduced sum of
two reduced divisors, after which additional operations are performed to obtain a value n∞
in the required range.

12.4.40 Remark A generalization of Shanks’ NUCOMP algorithm is more efficient than Cantor’s
algorithm for moderate and large genus [1588], and can be adapted for use in both the
imaginary and real models. For g ≤ 4, optimized explicit formulas exist in the imaginary
case that describe the addition and reduction algorithm in terms of operations in Fq; see
[661, Chapter 14] for a survey. Explicit formulas for genus 2 also exist in the real case
[987, 988].

12.4.41 Remark The multiplication-by-m map on elliptic curves (see Definition 12.2.24) generalizes
naturally to Pic0

K(C). The double-and-add method, as well as more advanced methods for
scalar multiplication, can also be applied to compute this map efficiently; see [661, Chapter 9]
for a survey.

12.4.42 Definition Let C/Fq be a real hyperelliptic curve. The infrastructure of C/Fq, denoted
by R, is the finite set of all reduced principal divisors D with 0 ≥ n∞ > −R.

12.4.43 Remark The infrastructure is often described in terms of reduced principal ideals of the
maximal order of the function field associated to C/Fq; see, for example [2707].

12.4.44 Definition Let C/Fq be a real hyperelliptic curve, and D ∈ R. The distance of D is
δ(D) = −n∞.

12.4.45 Remark Divisors in the infrastructure can be represented using a combination of the Mum-
ford representation and distance.

12.4.46 Remark Distance imposes a natural ordering on the set R. The baby step operation moves
cyclically from one divisor to the next in this ordering [2706]. The distance obtained by
traversing one entire cycle is exactly the regulator R.

12.4.47 Remark A modification of Cantor’s algorithm applied to two divisors in the infrastructure,
where the reduction process terminates as soon as a reduced divisor is obtained, produces
another infrastructure divisor [2706]. NUCOMP [1588] and explicit formulas for genus 2
[987, 988] can also be used for this purpose.

12.4.48 Definition The operation of computing the reduced sum of two divisors in R, as described
in the previous remark, is a giant step.

12.4.49 Remark The divisor [1, 0] with distance 0 acts as the identity with respect to the giant
step operation. The inverse of D = [u, v] 6= [1, 0] with respect to the giant step operation is
[u,−h− v] and has distance R+ deg(u)− δ(D).

12.4.50 Remark Giant steps move through R in larger steps than baby steps, because the distance
of a giant step applied to inputs D and D′ is δ(D) + δ(D′) − d, where 0 ≤ d ≤ 2g; see,
for example [1587]. Distances are not exactly additive due to the adjustments required to
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achieve reduction. Thus, although R is structurally similar to a cyclic group of order R
under the giant step operation, it is not a group as associativity does not hold [1587].

12.4.51 Remark The analogue of the multiplication-by-m map in the infrastructure is computing
a divisor with distance as close to m as possible but not exceeding m. This divisor can be
computed in O(logm) giant steps using methods similar to the double-and-add method,
and in some cases, can be sped up using the fact that computing baby steps is faster than
giant steps; see [1587] for details.

12.4.4 Endomorphisms and supersingularity

12.4.52 Definition Let C/K be a hyperelliptic curve. An endomorphism of Pic0(C) is a group
homomorphism of Pic0(C). An endomorphism of Pic0(C) is defined over K if it is
a group homomorphism of Pic0

K(C). The set of endomorphisms of Pic0(C) is de-
noted by End(Pic0(C)), and the set of endomorphisms defined over K is denoted by
EndK(Pic0(C)).

12.4.53 Remark If C has genus 1, then Definition 12.4.52 agrees with the definition of an endomor-
phism of an elliptic curve as given in Definition 12.2.27.

12.4.54 Remark As in the elliptic curve case (see Definition 12.2.39), End(Pic0(C)) and
EndK(Pic0(C)) are rings.

12.4.55 Example The multiplication-by-m map [m] : Pic0(C) −→ Pic0(C) is an endomorphism of
Pic0(C) that is defined over K. Thus, End(Pic0(C)) and EndK(Pic0(C)) always contain Z.

12.4.56 Definition [661, Definition 14.13] Let C/K be a hyperelliptic curve. If End(Pic0(C))
contains an order of a number field of degree 2g over Q, then End(Pic0(C)) has complex
multiplication.

12.4.57 Example Let C/Fq be hyperelliptic curve. As in the elliptic curve case (see Exam-
ple 12.2.31), the Frobenius automorphism of Fq that sends an element a to aq extends
to an endomorphism of Pic0(C) that is defined over K and is different from [m] for all
m ∈ Z.

12.4.58 Definition Let C/Fq be a hyperelliptic curve. The group Pic0(C) (or, more properly, the
Jacobian JC) is supersingular if it is isogenous to the product of supersingular elliptic
curves.

12.4.59 Remark If C/Fq is a hyperelliptic curve that is not supersingular, then C may have com-
plex multiplication. The Frobenius endomorphism satisfies a monic polynomial equation of
degree 2g with integer coefficients (its characteristic polynomial, see Remark 12.4.60). If
that polynomial is irreducible, then the Frobenius corresponds to an algebraic integer of
degree 2g and C/Fq has complex multiplication.

12.4.5 Class number computation

12.4.60 Remark The zeta function of a hyperelliptic curve C/Fq of genus g (Definition 12.5.12) is
of the form

Z(C/Fq, t) =
L(t)

(1− t)(1− qt) ,
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where L(t) is the L-polynomial of C/Fq (Theorem 12.5.13). The reciprocal polynomial
P (t) = t2gL(1/t) is the characteristic polynomial of the Frobenius endomorphism (Re-
mark 12.5.15), a polynomial of degree 2g with integer coefficients whose roots have absolute
value

√
q (Theorem 12.5.17).

12.4.61 Theorem (Special case of Theorem 12.5.13) Let C/Fq be a hyperelliptic curve of genus g
and class number h. Then h = L(1).

12.4.62 Remark Theorem 12.4.61 and Remark 12.4.60 immediately imply the bounds (
√
q−1)2g ≤

h ≤ (
√
q + 1)2g. The interval [(

√
q − 1)2g, (

√
q + 1)2g] is called the Hasse–Weil interval for

hyperelliptic curves of genus g over Fq.

12.4.63 Remark There is an extensive body of literature on algorithms for computing class numbers
of hyperelliptic curves over finite fields; see [815, 817, 1249, 1555, 1556, 1718, 1719, 1865,
1866, 1905, 2089, 2867] For genus 2 curves, see also [2399]. An overview of the main methods
can be found in [661, Section 17.3].

12.4.6 The Tate-Lichtenbaum pairing

12.4.64 Definition The kernel of the multiplication-by-m map on Pic0(C) is the subgroup

Pic0(C)[m] = {[D] ∈ Pic0(C) : m[D] = PrincK(C)}.

12.4.65 Definition Let C/Fq be a hyperelliptic curve. Let m ≥ 1 a prime integer with embedding
degree k in Fq (see Definition 12.2.112). The Tate-Lichtenbaum pairing is defined as

T : Pic0
Fq (C)[m]× Pic0

Fq (C)/mPic0
Fq (C)→ F∗qk/(F

∗
qk)m

([D1], [D2]) 7→ fm,D1
(D2) =

∏
P

fm,D1
(P )nP ,

where fm,D1
is a function with divisor m[D1] and D2 =

∑
P nP (P ).

12.4.66 Remark The Tate-Lichtenbaum pairing is bilinear, i.e.,

T ([D1] + [D2], [D3]) = T ([D1], [D3])T ([D2], [D3])

and

T ([D1], [D2] + [D3]) = T ([D1], [D2])T ([D1], [D3]),

non-degenerate (if T ([D1], [D2]) = 1 for all [D2] ∈ Pic0
K(C)[m] then [D1] = PrincK(C)),

and the result is independent of the divisor class representatives used.

12.4.67 Remark The Tate-Lichtenbaum pairing can be computed using an analogue of Miller’s
algorithm for elliptic curves [182, Section 5].

12.4.68 Remark Hyperelliptic curves with small embedding degree exist, i.e., for which computing
the Tate-Lichtenbaum pairing is efficient. For example, Galbraith [1154] proved that su-
persingular hyperelliptic curves of genus g have embedding degree bounded by an integer
k(g). For g ≤ 6, Rubin and Silverberg [2493] show that k(g) ≤ 7.5g. Various constructive
methods for non-supersingular hyperelliptic curves also exist; see [182] for a recent survey.
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12.4.69 Definition Let C/Fq be a hyperelliptic curve. Let m ≥ 1 a prime integer with embedding
degree k in Fq. Suppose that Pic0

Fq (C) contains no elements of order m2. The modified
Tate-Lichtenbaum pairing is defined as

T ′ : Pic0
Fq (C)[m]× Pic0

Fq (C)[m]→ µm

([D1], [D2]) 7→ T ([D1], [D2])(qk−1)/m,

where µm is the group of m-th roots of unity.

12.4.70 Remark The main advantage of the modified Tate-Lichtenbaum pairing over the Tate-
Lichtenbaum pairing is that it takes specific values in µm as opposed to equivalence classes.

12.4.71 Remark There are other types of pairings and algorithms to compute them, many designed
to have computational advantages over the Tate-Lichtenbaum pairing. For a recent survey,
see [182].

12.4.7 The hyperelliptic curve discrete logarithm problem

12.4.72 Remark Similar to the elliptic curve discrete logarithm problem (see Section 12.2.11), the
hyperelliptic curve discrete logarithm problem (HCDLP) is the basis of many hyperelliptic
curve cryptosystems. In this section we discuss the HCDLP and some related problems. For
applications to cryptography, see Section 16.5.

12.4.73 Definition Let C/Fq be a hyperelliptic curve and [D1], [D2] ∈ Pic0
Fq (C). The hyperelliptic

curve discrete logarithm problem (HCDLP) is the problem of computing n ∈ Z such
that [D1] = n[D2], if it exists.

12.4.74 Remark If the order l of [D2] is prime, then the fastest known general algorithm for solving
the HCDLP (as of 2011) has running time on the order of

√
l. As with the ECDLP, there

are a number of cases where the problem can be solved more easily; see [661, Part V] and
[1586] for recent surveys.

12.4.75 Remark If the genus g is sufficiently large compared to the finite field order q, then the
HCDLP can be solved in expected time subexponential in qg using the index-calculus
method [17, 977, 980]. The current state-of-the-art is Enge and Gaudry’s result [980] that if
g/ logg q > ϑ, the expected bit complexity is Lqg [1/2,

√
2((1 + 1/2ϑ)1/2 + (1/2ϑ)1/2)] where

Ln[β, c] = e((c+o(1))(logn)β(log logn)1−β).

12.4.76 Remark Index-calculus can also be used to solve the HCDLP faster than the generic
methods for smaller genera [1245, 1256, 2802]. The current state-of-the-art is Gaudry,
Thomé, Thériault, and Diem’s result [1256] that the HCDLP can be solved in expected

time O(g5q2− 2
g+ε) if q > g!. This is asymptotically faster than the generic algorithms for

g ≥ 3.

12.4.77 Remark Frey, Müller, and Rück [1106, 1413] showed how the modified Tate-Lichtenbaum
pairing can be used to reduce the HCDLP to the DLP in the group of m-th roots of unity
µm ⊂ Fqk , where k is the embedding degree of m in the field Fq (see Definition 12.2.112).
If k is sufficiently small, for example if C/Fq is supersingular, this is more efficient than the
generic algorithms.

12.4.78 Remark If m = pn where p is the characteristic of Fq, then an algorithm of Rück [2498]
can be used to solve the HCDLP in time O(n2 log p).
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12.4.79 Remark If Fq = Fpn where n is composite, the Weil descent methodology [661, Section 22.3]
can in certain cases be used to reduce the HCDLP to another instance of the HCDLP on
a curve of higher genus over a smaller finite field, where faster non-generic algorithms may
apply.

12.4.80 Remark The Diffie-Hellman and decisional Diffie-Hellman problems also generalize to
Pic0

Fq (C), and are also sometimes used as the underlying security assumption of certain
cryptographic protocols (see Section 16.5). Both reduce to the HCDLP, but equivalence is
not known.

12.4.81 Definition Let C/Fq be a real hyperelliptic curve and let D ∈ R. The infrastructure
discrete logarithm problem (IDLP) is the problem of computing δ(D).

12.4.82 Remark This problem has also been used as the underlying security assumption of crypto-
graphic protocols [1587]. It is computationally easy to compute a divisor in the infrastructure
close to a given distance [1587], but solving the IDLP is believed to be difficult. In fact,
the IDLP can be reduced to the DLP in the subgroup of Pic0

Fq (C) generated by [∞−∞]
[1089, 2142].

See Also

§12.1 For analagous material for general function fields and curves.
§12.2 For analagous material for the genus 1 case (i.e., elliptic curves).
§16.5 For applications of hyperelliptic curves to cryptography.

[1105] A general reference to hyperelliptic curves and their cryptographic applications.
[1774] The appendix of this reference consists of an excellent introduction to the

arithmetic of hyperelliptic curves.

References Cited: [17, 133, 182, 497, 661, 815, 817, 977, 980, 987, 988, 1089, 1105, 1106,
1125, 1129, 1130, 1131, 1154, 1155, 1245, 1249, 1256, 1413, 1555, 1556, 1586, 1587, 1588,
1718, 1719, 1774, 1865, 1866, 1905, 2089, 2142, 2373, 2399, 2493, 2498, 2706, 2707, 2802,
2867]

12.5 Rational points on curves

Arnaldo Garcia, IMPA

Henning Stichtenoth, Sabanci University

12.5.1 Remark In this section we use the language of function fields rather than algebraic curves,
see Section 12.1. A simple way for switching from function fields to algebraic curves is as
follows.

A function field F/Fq of genus g corresponds to a curve X of genus g over Fq, that is
an absolutely irreducible, non-singular, projective curve which is defined over Fq. If F =
Fq(x, y) and x, y satisfy the equation ϕ(x, y) = 0 for an irreducible polynomial ϕ(X,Y ) ∈
Fq[X,Y ], then X is a non-singular, projective model of the plane curve which is defined by
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ϕ(X,Y ) = 0. By abuse of notation, we say briefly that the curve X is given by ϕ(x, y) = 0.
Rational places of the function field correspond to Fq-rational points of X .

12.5.1 Rational places

12.5.2 Remark Let F be a function field over Fq. Then F has only finitely many rational places.

12.5.3 Definition Define N(F ) := |{P | P is a rational place of F}|.

12.5.4 Example For the rational function field F = Fq(x) we have N(F ) = q + 1. The rational
places are the zeros of x− a with a ∈ Fq, and the pole P∞ of x.

12.5.5 Lemma [2714, Lemma 5.1] Let F ′/F be a finite extension of function fields having the same
constant field Fq. Then the following hold.

1. Let P be a place of F and P ′ a place of F ′ lying above P . If P ′ is rational, then
P is rational.

2. N(F ′) ≤ [F ′ : F ] ·N(F ).

12.5.6 Remark The following special case of Kummer’s Theorem [2714, Theorem 3.3.7] is often
useful to determine rational places of a function field.

12.5.7 Lemma Let P be a rational place of F and let OP be its valuation ring. Consider a finite
extension E = F (y) of F such that Fq is also the full constant field of E. Assume that the
minimal polynomial ϕ(T ) of y over F has all its coefficients in OP (that is, y is integral
over OP ). Suppose that the reduction ϕ̄(T ) of ϕ(T ) modulo P (which is a polynomial over
the residue class field OP /P = Fq) splits over Fq as follows:

ϕ̄(T ) = (T − a1) · · · (T − as) · p1(T ) · · · pr(T )

with distinct elements a1, . . . , as ∈ Fq and distinct irreducible polynomials p1, . . . , pr ∈
Fq[T ] of degree > 1. Then there are exactly s rational places P1, . . . , Ps of E lying over P .

12.5.8 Example Assume that q = 2m with m ≥ 2, and consider the function field F = Fq(x, y)
with

y2 + y = xq−1.

The pole P∞ of x is totally ramified in the extension F/Fq(x); this gives one rational place
of F . Next we consider the place P = (x = a) of Fq(x) which is the zero of x − a with
a ∈ Fq. The reduction of the minimal polynomial ϕ(T ) = T 2 + T + xq−1 modulo P is then

ϕ̄(T ) =

{
T 2 + T + 1 if a 6= 0,

T 2 + T if a = 0.

The polynomial T 2 + T = T (T + 1) splits over Fq into linear factors. If m is odd, then
T 2 + T + 1 is irreducible over Fq, and for m even, T 2 + T + 1 splits into two distinct linear
polynomials over Fq. Therefore

N(F ) =

{
3 if m is odd,

2q + 1 if m is even.
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12.5.2 The Zeta function of a function field

12.5.9 Definition Throughout this subsection we use the following notations:

1. F is an algebraic function field over Fq of genus g(F ) = g, and Fq is algebraically
closed in F ;

2. PF is the set of places of F/Fq;
3. N(F ) is the number of rational places of F ;

4. Div(F ) is the divisor group of F ;

5. Div0(F ) := {A ∈ Div(F ) | degA = 0} is the group of divisors of degree zero,
and Princ(F ) ⊆ Div0(F ) is the group of principal divisors of F ;

6. Cl0(F ) := Div0(F )/Princ(F ) is the class group of F . In terms of algebraic curves
X , the class group corresponds to the rational points of the Jacobian of X and
is then denoted as Jac(X )(Fq).

12.5.10 Lemma [2714, Proposition 5.1.3]

1. For every n ≥ 0, there are only finitely many divisors A ≥ 0 with degA = n.

2. The class group Cl0(F ) is a finite group.

12.5.11 Definition The number h := hF := ord(Cl0(F )) is the class number of F .

12.5.12 Definition The Zeta function of F is defined by the power series in C[[t]] below (here C is
the complex number field):

Z(t) :=
∞∑
n=0

Ant
n,

where An denotes the number of positive divisors D ∈ Div(F ) of degree n.

12.5.13 Theorem [2714, Theorem 5.1.15]

1. The power series Z(t) converges for all t ∈ C with |t| < q−1.

2. Z(t) can be written as

Z(t) =
L(t)

(1− t)(1− qt)
with a polynomial L(t) = a0 + a1t + · · · + a2gt

2g ∈ Z[t] of degree 2g. This
polynomial is the L-polynomial of F .

3. (Functional equation of the L-polynomial) The coefficients of the L-polynomial
of F satisfy

a. a0 = 1 and a2g = qg,

b. a2g−i = qg−iai for 0 ≤ i ≤ g.

4. N(F ) = a1 + q + 1.

5. L(1) = hF is the class number of F .

12.5.14 Lemma [2714, Theorem 5.1.15]
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1. The L-polynomial factors into linear factors over C as follows:

L(t) =

2g∏
j=1

(1− ωjt)

with algebraic integers ωj ∈ C. As L(ω−1
j ) = 0, the complex numbers ωj are the

reciprocals of the roots of L(t).

2. One can arrange ω1, . . . , ω2g in such a way that ωj · ωg+j = q for 1 ≤ j ≤ g.

12.5.15 Remark The reciprocal polynomial P (t) := t2g · L(1/t) has an interpretation as the char-
acteristic polynomial of the Frobenius endomorphism acting on the Tate module T`; see
[1959, 2783]. The roots of P (t) are just the reciprocals of the roots of L(t). Therefore, the
complex numbers ωj in Lemma 12.5.14 are also called the eigenvalues of the Frobenius
endomorphism.

12.5.16 Remark The following theorem is fundamental for the theory of function fields over finite
fields. It was first proved by Hasse for g = 1; the generalization to all g ≥ 1 is due to Weil.

12.5.17 Theorem (Hasse–Weil theorem) [2714, Theorem 5.2.1] The reciprocals of the roots of the
L-polynomial satisfy

|ωj | = q1/2 for 1 ≤ j ≤ 2g .

12.5.18 Remark The Hasse–Weil theorem is often referred to as the Riemann Hypothesis for func-
tion fields over finite fields.

12.5.3 Bounds for the number of rational places

12.5.19 Remark The next result is an easy consequence of the Hasse–Weil theorem 12.5.17.

12.5.20 Theorem (Hasse–Weil bound) [2714, Theorem 5.2.3] The number N = N(F ) of rational
places of a function field F/Fq of genus g satisfies the inequality

|N − (q + 1)| ≤ 2gq1/2.

12.5.21 Remark If q is not a square, this bound can be improved as follows.

12.5.22 Theorem (Serre bound) [2591], [2714, Theorem 5.3.1]

|N − (q + 1)| ≤ g ·
⌊
2q1/2

⌋
,

where bαc means the integer part of the real number α.

12.5.23 Definition For every g ≥ 0, we define

Nq(g) := max{N ∈ N | there is a function field F/Fq of genus g with N(F ) = N}.

12.5.24 Remark Clearly Nq(g) ≤ q + 1 + g ·
⌊
2q1/2

⌋
. Further improvements of this bound can be

obtained.

12.5.25 Proposition (Serre’s explicit formulas) [2592], [2714, Proposition 5.3.4] Suppose that
u1, . . . , um are non-negative real numbers, not all of them equal to zero, satisfying
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1 +
∑m
n=1 un cosnθ ≥ 0 for all θ ∈ R. Then

Nq(g) ≤ 1 +
2g +

∑m
n=1 unq

n/2∑m
n=1 unq

−n/2 .

12.5.26 Remark The results of the examples and tables below are proved in the following way.
First one derives upper bounds for Nq(g) using Serre’s explicit formulas. In some cases,
these upper bounds can be improved slightly by rather subtle arguments [1549]. Lower
bounds for Nq(g) are usually obtained by providing explicit examples of function fields
having that number of rational places. Many methods of construction have been proposed,
see [1550, 2280, 2846] for some of them.

12.5.27 Example (The case g = 1) [2591] Let q = pe with a prime number p.

1. If e is odd, e ≥ 3 and p divides
⌊
2q1/2

⌋
, then Nq(1) = q +

⌊
2q1/2

⌋
.

2. Nq(1) = q + 1 +
⌊
2q1/2

⌋
, otherwise.

12.5.28 Example (The case g = 2) For all prime powers q,

q − 2 + 2 ·
⌊
2q1/2

⌋
≤ Nq(2) ≤ q + 1 + 2 ·

⌊
2q1/2

⌋
.

In fact, the exact value of Nq(2) is known in all cases [2591].

12.5.29 Example (The case g = 3) The value of Nq(3) is known for many but not for all q. For
instance, one knows Nq(3) for all q ≤ 169 and for all q = 2k with k ≤ 20. For details we
refer to [2459].

12.5.30 Remark The following tables show Nq(g) for some small values of q and g. Updated tables
can be found on the website http://www.manypoints.org/; see [1550].

12.5.31 Example (Values of Nq(g) for q = 2, 4, 8 and small g) In the tables below, an entry like
21−24 means that the exact value of N4(8) is not known; one knows only that 21 ≤ N4(8) ≤
24 (at the time of printing).

g 0 1 2 3 4 5 6 7 8 9 10 20
N2(g) 3 5 6 7 8 9 10 10 11 12 13 19-21
N4(g) 5 9 10 14 15 17 20 21 21-24 26 27 40-45
N8(g) 9 14 18 24 25 29 33-34 34-38 35-42 45 42-49 76-83

12.5.32 Example (Values of Nq(g) for 1 ≤ g ≤ 4 and prime numbers q ≤ 43) (at the time of
printing)

q 2 3 5 7 11 13 17 19 23 29 31 37 41 43
Nq(1) 5 7 10 13 18 21 26 28 33 40 43 50 54 57
Nq(2) 6 8 12 16 24 26 32 36 42 50 52 60 66 68
Nq(3) 7 10 16 20 28 32 40 44 48 60 62 72 78 80
Nq(4) 8 12 18 24 33 38 46 48-50 57 67-70 72 82 88-90 92

12.5.33 Remark If the genus g(F ) is large with respect to q, the Hasse–Weil bound can be improved
considerably.

12.5.34 Proposition (Ihara’s bound) [1569], [2714, Proposition 5.3.3] Suppose that Nq(g) = q+1+
2gq1/2. Then g ≤ q1/2(q1/2 − 1)/2.
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12.5.35 Example Let q be a square. Then there exists a function field of genus g = q1/2(q1/2−1)/2
having q + 1 + 2gq1/2 rational places. For more about function fields which attain the
Hasse–Weil upper bound, see Subsection 12.5.4.

12.5.36 Example

1. For q = 22m+1 with m ≥ 1 , and g = 23m+1−2m, one knows that Nq(g) = q2 +1.

2. Similarly, for q = 32m+1 with m ≥ 1 and g = 3m+1(34m+2 + 33m+1 − 3m − 1)/2
one has Nq(g) = q3 + 1.

The function fields which attain the valuesNq(g) in this example, correspond to the Deligne–
Lusztig curves associated to the Suzuki group and to the Ree group, respectively [474, 1414,
2593].

12.5.4 Maximal function fields

12.5.37 Definition A function field F/Fq is maximal if g(F ) > 0 and N(F ) attains the Hasse-Weil
upper bound N(F ) = q + 1 + 2gq1/2.

12.5.38 Remark It is clear that q must be the square of a prime power, if there exists a maximal
function field F/Fq. Therefore we assume in this subsection that q = `2 is a square. By
Ihara’s bound 12.5.34, the genus of a maximal function field F over F`2 satisfies 1 ≤ g(F ) ≤
`(`− 1)/2.

12.5.39 Example [2714, Lemma 6.4.4] Let H := F`2(x, y) where x, y satisfy the equation y` + y =
x`+1. Then H is a maximal function field over F`2 with g(H) = `(` − 1)/2 and N(H) =
`3 + 1 = `2 + 1 + 2g(H)`. The field H is called the Hermitian function field over F`2 .

12.5.40 Remark The rational places of the Hermitian function field H are the following: there is
a unique common pole of x and y, and for any α, β ∈ F`2 with α` + α = β`+1 there is a
unique common zero of y − α and x− β. In this way one obtains all 1 + `3 rational places
of H.

12.5.41 Remark There are generators u, v of the Hermitian function field H which satisfy the
equation u`+1 + v`+1 = 1. Hence the Hermitian function field is a special case of a Fermat
function field, which is defined by an equation un + vn = 1 with gcd(n, q) = 1.

12.5.42 Proposition

1. Suppose that F/F`2 is a maximal function field of genus g(F ) = `(`−1)/2. Then
F is isomorphic to the Hermitian function field H [2499].

2. There is no maximal function field E/F`2 whose genus satisfies 1
4 (`−1)2 < g(E) <

1
2`(`− 1) for ` odd (and 1

4`(`− 2) < g(E) < 1
2`(`− 1) for ` even) [1145].

3. Up to isomorphism there is a unique maximal function field E/F`2 of genus
g(E) = 1

4 (`− 1)2 for ` odd (and g(E) = 1
4`(`− 2) for ` even) [3, 1144].

12.5.43 Proposition [1826]. Let F be a maximal function field over Fq. Then every function field
E of positive genus with Fq ⊂ E ⊆ F is also maximal over Fq.

12.5.44 Remark The Hermitian function field H/F`2 has a large automorphism group G. Every
subgroup U ⊆ G whose fixed field is not rational, provides then an example of a maximal
function field HU over F`2 . Most known examples of maximal function fields over F`2 have
been constructed in this way [474, 1205, 1280], and [1511, Chapter 10].
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12.5.45 Example [1279] Over the field Fq with q = r6, consider the function field F = Fq(x, y, z)
which is defined by the equations

xr + x = yr+1 and y · x
r2 − x
xr + x

= z
r3+1
r+1 .

Here F is the Giulietti–Korchmáros function field; it is maximal over Fq of genus g(F ) =
(r− 1)(r4 + r3− r2)/2. It is (at the time of printing) the only known example of a maximal
function field over Fq which is not a subfield of the Hermitian function field H/Fq.

12.5.46 Remark [2722] An important ingredient in many proofs of results on maximal function
fields (for example, Parts 2 and 3 of Proposition 12.5.42) is the Stöhr–Voloch theory which
sometimes gives an improvement of the Hasse–Weil upper bound. The method of Stöhr–
Voloch involves the construction of an auxiliary function which has zeros of high order at
the Fq-rational points of the corresponding non-singular curve. We illustrate this method
in the case of plane curves. Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible polynomial
that defines a non-singular projective plane curve. Recall that an affine point (a, b) with
f(a, b) = 0 is non-singular if at least one of the partial derivatives fX(X,Y ) or fY (X,Y )
does not vanish at the point (a, b). The auxiliary function h(X,Y ) in this case is obtained
from the equation of the tangent line as h(X,Y ) = (X−Xq)fX(X,Y )+(Y −Y q)fY (X,Y ).
Suppose now that f(X,Y ) does not divide h(X,Y ). Then

N(F ) ≤ d(d+ q − 1)/2 ,

where F = Fq(x, y) with f(x, y) = 0 is the corresponding function field, and d denotes the
degree of the polynomial f(X,Y ). As an example consider the case d = 4. The genus of F is
g(F ) = (d−1)(d−2)/2 = 3. The bound above gives N(F ) ≤ 2q+6 which is better than the
Hasse–Weil upper bound for all q ≤ 23. We note that Nq(3) = 2q + 6 for q = 5, 7, 11, 13, 17
and 19; see Example 12.5.32.

12.5.5 Asymptotic bounds

12.5.47 Remark In this subsection we give some results about the asymptotic growth of the numbers
Nq(g), see 12.5.23. As was mentioned in Proposition 12.5.34, the Hasse-Weil upper bound
Nq(g) ≤ q + 1 + 2gq1/2 cannot be attained if the genus is large with respect to q.

12.5.48 Definition The real number A(q) := lim supg→∞Nq(g)/g is Ihara’s quantity.

12.5.49 Remark As follows from the Hasse–Weil bound, A(q) ≤ 2q1/2. The following bound is a
significant improvement of this estimate.

12.5.50 Theorem (Drinfeld–Vlǎduţ bound) [2714, Theorem 7.1.3], [2882]

A(q) ≤ q1/2 − 1.

12.5.51 Remark The proof of the Drinfeld–Vlǎduţ bound is a clever application of Serre’s explicit
formulas 12.5.25. If q is a square, the Drinfeld–Vlǎduţ bound is sharp.

12.5.52 Theorem [1569, 2821]
A(q) = q1/2 − 1 if q is a square.

12.5.53 Remark If q is a non-square, the exact value of A(q) is not known. The lower bounds for
A(q), given below, are proved by providing specific sequences of function fields Fn/Fq such



Curves over finite fields 463

that limn→∞N(Fn)/g(Fn) > 0. Every such sequence gives then a lower bound for A(q).
For details, see Section 12.6.

12.5.54 Theorem

1. [2280, Theorem 5.2.9], [2592] There is an absolute constant c > 0 such that
A(q) > c · log q for all prime powers q.

2. [265, 3079]

A(q3) ≥ 2(q2 − 1)/(q + 2).

12.5.55 Remark Recall that bαc and dαe denote the floor and the ceiling of a real number α.
The harmonic mean of two positive real numbers α, β is given by the formula H(α, β) =
2αβ/(α+β). The following result contains Theorem 12.5.52 and Part 2 of Theorem 12.5.54
as special cases.

12.5.56 Theorem [1203] (see also Example 12.6.29) For every prime number p and every n ≥ 2,

A(pn) ≥ H(pbn/2c − 1, pdn/2e − 1).

For example, one has for p = 2 and all sufficiently large odd integers n,

0.9428× (2n/2 − 1) ≤ A(2n) ≤ 2n/2 − 1.

12.5.57 Example [105, 938] The best known lower bounds for A(q) for q = 2, 3, 5 were obtained
from class field towers:

A(2) ≥ 0.316999... ,
A(3) ≥ 0.492876... ,
A(5) ≥ 0.727272... .

12.5.58 Remark A counterpart to Ihara’s quantity A(q) is the following quantity.

12.5.59 Definition We set A−(q) := lim infg→∞Nq(g)/g.

12.5.60 Proposition [973] A−(q) > 0 for all q. More precisely,

1. A−(q) ≥ (q1/2 − 1)/4, if q is a square.

2. There is an absolute constant d > 0 such that A−(q) ≥ d · log q for all q.

See Also

§12.2 For more material on function fields of genus 1 (elliptic curves).
§12.4 For more material on hyperelliptic function fields.
§12.6 For towers of function fields.
§12.7 For zeta functions for curves.
§15.2 For applications of function fields to coding theory.

References Cited: [3, 105, 265, 474, 938, 973, 1144, 1145, 1203, 1205, 1279, 1280, 1414,
1511, 1549, 1550, 1569, 1826, 1959, 2280, 2459, 2499, 2591, 2592, 2593, 2714, 2722, 2783,
2821, 2846, 2882, 3079]
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12.6 Towers

Arnaldo Garcia, IMPA

Henning Stichtenoth, Sabanci University

We use terminology as in Sections 12.1 and 12.5, see also [2714]. Some methods are
discussed how to obtain lower bounds for Ihara’s quantity A(q), see Definition 12.5.48. Such
bounds have a great impact in applications, for instance in coding theory, see Section 15.2.

12.6.1 Introduction to towers

12.6.1 Remark Lower bounds for A(q) are usually obtained in the following way: one con-
structs a sequence of function fields (Fi/Fq)i≥0 with g(Fi) → ∞ such that the limit
limi→∞N(Fi)/g(Fi) exists. If this limit is positive, then it provides a non-trivial lower
bound for A(q).

12.6.2 Remark Essentially three methods are known for constructing such sequences of function
fields: modular towers, class field towers, and explicit towers. In the following two remarks
we give a very brief description of the first two methods.

12.6.3 Remark (Modular towers) [217, 971, 972, 1569, 2821] Modular towers were introduced by
Ihara, and independently by Tsfasman, Vlăduţ, and Zink. Let N be a positive integer and
p a prime number not dividing N . There exists an affine algebraic curve Y0(N) defined over
Fp such that, for any field K of characteristic p, Y0(N) parametrizes the set of isomorphy
classes of pairs (E,C), where E is an elliptic curve (see Section 12.2) and C is a cyclic
subgroup of E of order N , defined over K, in a functorial way. The construction of Y0(N) is
independent of p and can be done in characteristic zero also. The complete curve obtained
from Y0(N) is denoted X0(N). If ` 6= p is another prime, then the curves X0(`n), n = 1, 2, . . .
form a tower with the maps sending (E,C) to (E,C ′) where C ′ is the unique subgroup of C
of index `. Over Fp2 , the supersingular elliptic curves (see Subsection 12.2.9) together with
all their cyclic subgroups of order `n give rational points on X0(`n)(Fp2), because Frobenius
is multiplication by −p on those curves. This gives a tower of curves over Fp2 which attains
the Drinfel’d–Vlăduţ bound.

For Fq2 , with q arbitrary, a similar construction can be made using Shimura curves which
parametrize abelian varieties of higher dimension with additional structure.

12.6.4 Remark (Class field towers) [938, 2280, 2561, 2592] Starting with any function field F0 of
genus g0 ≥ 2 and a set S0 of rational places of F0, one defines inductively the field Fn+1 to
be the maximal abelian unramified extension of Fn in which all places of Sn split completely,
and Sn+1 to be the set of all places of Fn+1 which lie over Sn. If Fn ( Fn+1 for all n (which
is not always the case), the tower thus obtained is called a class field tower, and its limit
(see Definition 12.6.8) is at least |S0|/(g0−1). The hard part is to choose F0, S0 so that the
tower is infinite. This is analogous to the corresponding problem in the number field case
of infinite class field towers which was solved by Golod and Shafarevich. A choice of F0, S0

then can be used to show that A(p) ≥ c · log p, for p prime, with an absolute constant c > 0.
This approach which is due to Serre [2592], is so far the only way to prove that A(p) > 0
holds for prime numbers p.

12.6.5 Remark (Explicit towers of function fields) These towers were introduced by Garcia and
Stichtenoth [1200, 2714]. The method, which is more elementary than modular towers and
class field towers, is presented below in some detail.
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12.6.6 Definition A tower F over Fq is an infinite sequence F = (F0, F1, F2, . . .) of function fields
Fi/Fq (with Fq algebraically closed in all Fi) such that

1. F0 $ F1 $ F2 $ · · · $ Fn $ · · · ;
2. each extension Fn+1/Fn is finite and separable;

3. for some n ≥ 0, the genus g(Fn) is ≥ 2.

12.6.7 Remark Items 2 and 3 imply that g(Fi) → ∞ as i → ∞. The following limit exists for
every tower over Fq [2714, Lemma 7.2.3].

12.6.8 Definition Let F = (F0, F1, . . .) be a tower of function fields over Fq. The limit λ(F) :=
limi→∞N(Fi)/g(Fi) is the limit of the tower F .

12.6.9 Remark We note that the inequalities 0 ≤ λ(F) ≤ A(q) hold for every tower over Fq.

12.6.10 Definition A tower F/Fq is asymptotically good if λ(F) > 0. It is asymptotically bad if
λ(F) = 0.

12.6.11 Remark The notion of asymptotically good (bad) towers is related to the notion of asymp-
totically good (bad) sequences of codes; see Section 15.2. The remark below follows imme-
diately from the definitions.

12.6.12 Remark As A(q) ≥ λ(F), every asymptotically good tower F over Fq provides a non-trivial
lower bound for Ihara’s quantity.

12.6.13 Remark Most towers turn out to be asymptotically bad and some effort is needed to find
asymptotically good ones. We discuss now some criteria which ensure that a tower is good.

12.6.14 Definition Let F = (F0, F1, . . .) be a tower over Fq.

1. A place P of F0 is ramified in F/F0, if there is some n ≥ 1 and some place Q of
Fn lying over P with ramification index e(Q|P ) > 1. Otherwise, P is unramified
in F .

2. A rational place P of F0 splits completely in F/F0, if P splits completely in the
extensions Fn/F0, for all n ≥ 1.

3. The set Ram(F/F0) := {P | P is a place of F0 which is ramified in F/F0} is
the ramification locus of F over F0.

4 The set Split(F/F0) := {P | P is a rational place of F0 splitting completely in
F/F0} is the splitting locus of F over F0.

12.6.15 Remark The splitting locus is always finite (it may be empty). The ramification locus can
be finite or infinite.

12.6.16 Theorem [2714, Theorem 7.2.10] Assume that the tower F = (F0, F1, . . .) over Fq has the
following properties.

1. The splitting locus Split(F/F0) is non-empty.

2. The ramification locus Ram(F/F0) is finite.
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3. For every P ∈ Ram(F/F0) there is a constant cP ∈ R such that for all n ≥ 0 and
all places Q of Fn lying over P , the different exponent d(Q|P ) is bounded by

d(Q|P ) ≤ cP · (e(Q|P )− 1).

Then the tower F is asymptotically good, and its limit satisfies the inequality

λ(F) ≥ s

g(F0)− 1 + r
,

where

s :=
∣∣ Split(F/F0)

∣∣ and r :=
1

2

∑
P∈Ram(F/F0)

cP · degP.

12.6.17 Remark Of course, one should choose the constant cP as small as possible (if it exists). In
general it is a difficult task to prove its existence in towers having wild ramification.

12.6.18 Remark A tower F/F0 is tame if all places P ∈ Ram(F/F0) are tame in all extensions
Fn/F0; that is, the ramification index e(Q|P ) is relatively prime to q for all places Q of Fn
lying over P .

12.6.19 Remark For a tame tower, the constants cP in Theorem 12.6.16 can be chosen as cP = 1.
Hence a tame tower with finite ramification locus and non-empty splitting locus is asymp-
totically good, and the inequality for λ(F) given in Theorem 12.6.16 holds with

r :=
1

2

∑
P∈Ram(F/F0)

degP.

12.6.20 Remark All known asymptotically good towers of function fields have properties 1, 2, and
3 of Theorem 12.6.16.

12.6.2 Examples of towers

12.6.21 Definition Let f(Y ) ∈ Fq(Y ) and h(X) ∈ Fq(X) be non-constant rational functions, and
let F = (F0, F1, . . .) be a tower of function fields over Fq. The tower F is recursively
defined by the equation f(Y ) = h(X), if there exist elements xi ∈ Fi (i = 0, 1, . . .) such
that

1. F0 = Fq(x0) is a rational function field;

2. Fi = Fi−1(xi) for all i ≥ 1;

3. for all i ≥ 1, the elements xi−1, xi satisfy the equation f(xi) = h(xi−1).

12.6.22 Example [2714, Proposition 7.3.2] Let q = `2 be a square, ` > 2. Then the equation

Y `−1 = 1− (X + 1)`−1

defines an asymtotically good tame tower F over Fq. The ramification locus of this tower
is the set of all places (x0 = α) with α ∈ F`, and the place (x0 =∞) splits completely. By
Theorem 12.6.16 the limit satisfies the inequality

λ(F) ≥ 2/(`− 2).

For q = 9 this limit attains the Drinfeld–Vlăduţ bound λ(F) = 2 =
√

9− 1.
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12.6.23 Example [2714, Proposition 7.3.3] Let q = `e with e ≥ 2 and set m := (q−1)/(`−1). Then
the equation

Y m = 1− (X + 1)m

defines an asymptotically good tame tower F over Fq with limit

λ(F) ≥ 2/(q − 2).

This gives a simple proof that A(q) > 0 for all non-prime values of q. For q = 4 the tower
attains the Drinfeld–Vlăduţ bound λ(F) = 1 =

√
4− 1.

12.6.24 Example [1204] Let q = p2 where p is an odd prime. Then the equation

Y 2 =
X2 + 1

2X

defines a tame tower F over Fq. Its ramification locus is

Ram(F/F0) = {(x0 = α) | α4 = 1 or α = 0 or α =∞}.

There are 2(p− 1) rational places of F0 which split completely in the tower. The inequality
in Theorem 12.6.16 gives λ(F) ≥ p − 1 which coincides with the Drinfeld–Vlăduţ bound.
So,

λ(F) = p− 1.

The fact that the splitting locus of this tower has cardinality 2(p− 1) is not easy to prove.
For p = 3, 5 one can check directly that the places (x0 = α) with α4 + 1 = 0 (for p = 3)
and α8 − α4 + 1 = 0 (for p = 5) split completely in F .

12.6.25 Remark Now we give some examples of wild towers, that is, there are some places of F0

whose ramification index in some extension Fn/F0 is divisible by the characteristic of Fq.
In wild towers, it is usually difficult to find a bound, if it exists, for the different exponents

in terms of ramification indices (see Theorem 12.6.16).

12.6.26 Example [1200] Let q = `2 be a square and define the tower F = (F0, F1, . . .) over Fq as
follows: F0 := Fq(x0) is the rational function field, and for all n ≥ 0, set Fn+1 := Fn(xn+1)
with

(xn+1xn)` + xn+1xn = x`+1
n .

The ramification locus of F is Ram(F/F0) = { (x0 = 0), (x0 =∞) }, and all other rational
places of F0 split completely in the tower. We note however that Theorem 12.6.16 is not
directly applicable to determine the limit λ(F). One can show that

λ(F) = `− 1,

so this tower attains the Drinfeld–Vlăduţ bound.

12.6.27 Example [1201] The equation

Y ` + Y =
X`

X`−1 + 1

defines a tower over Fq with q = `2, whose limit attains the Drinfeld–Vlăduţ bound λ(F) =
` − 1. The determination of the splitting locus and the ramification locus for this tower is
easy. The hard part is to show that cP = 2 for all ramified places (for the definition of cP
see Theorem 12.6.16).

12.6.28 Example [265, 2845] Over the field Fq with q = `3, the equation

Y ` − Y `−1 = 1−X +X−(`−1)
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defines an asymptotically good tower F with limit

λ(F) ≥ 2(`2 − 1)

`+ 2
.

It follows that

A(`3) ≥ 2(`2 − 1)

`+ 2
,

for all prime powers ` (see Theorem 12.5.54).

12.6.29 Example [1203] Let q = `n with n ≥ 2. For every partition of n into relatively prime parts,

n = j + k with j ≥ 1, k ≥ 1 and gcd(j, k) = 1,

a tower F over Fq is recursively defined by the equation

Trj

( Y

X`k

)
+ Trk

(Y `j
X

)
= 1,

where

Tra(T ) = T + T ` + T `
2

+ · · ·+ T `
a−1

for any a ∈ N.

The limit of this tower satisfies the inequality

λ(F) ≥ 2
( 1

`j − 1
+

1

`k − 1

)−1

,

which is the harmonic mean of `j − 1 and `k − 1. This tower gives the best known lower
bound for Ihara’s quantity A(q), for all non-prime fields Fq (at the time of printing).

12.6.30 Remark None of the towers in Examples 12.6.22 - 12.6.24 or 12.6.26 - 12.6.29 is Galois over
F0, that is, not all of the extensions Fn/F0, n ≥ 0 are Galois extensions. In some special
cases however, one can prove that the tower F̂ := (F̂0, F̂1, . . .), where F̂n is the Galois
closure of Fn/F0, is also asymptotically good [1202, 2713].

12.6.31 Remark There are examples of function fields with many rational points which are abelian
extensions of a rational function field (for instance, the Hermitian function field H; see
Example 12.5.39). Other abelian extensions over Fq(x) having many rational places can
be obtained via the method of cyclotomic function fields [2280]. However, abelian ex-
tensions F/Fq(x) of large genus have only few rational places. More precisely, if (Fi)i≥0

is a sequence of abelian extensions of a rational function field with g(Fi) → ∞, then
limi→∞N(Fi)/g(Fi) = 0 [1107].

12.6.32 Remark We conclude this section with a warning: not every irreducible equation f(Y ) =
h(X) defines a recursive tower. For instance, if one replaces X+1 by X in Examples 12.6.22
and 12.6.23, one just gets a finite extension F/F0 but not a tower. Also, one has to show
that Fq is algebraically closed in each field Fi of the tower. In most of the examples above
this follows from the fact that there is some place which is totally ramified in all extensions
Fi/F0.



Curves over finite fields 469

See Also

§13.5 For discussion of Drinfeld modules.
§15.2 For applications of towers to coding theory.

References Cited: [217, 265, 938, 971, 972, 1107, 1200, 1201, 1202, 1203, 1204, 1569, 2280,
2561, 2592, 2713, 2714, 2821, 2845]

12.7 Zeta functions and L-functions

Lei Fu, Nankai University

We use the terminology in [1427]. For the definitions of schemes, morphisms between
schemes, and the affine SpecA for a commutative ring A, see [1427, II 2]. For the definitions
of schemes or morphisms of finite type, see [1427, II 3]. For the definitions of separated,
proper or projective schemes or morphisms, see [1427, II 4]. For the definition of smooth
morphisms, see [1427, III 10].

Throughout this section, we assume our schemes are separated. Let X be a scheme of
finite type over Z. Denote the set of Zariski closed points in X by |X| (observe that in the
rest of the handbook this notation indicates the cardinality of the set X). For any x ∈ |X|,
the residue field k(x) of X at x is a finite field. Let N(x) be the number of elements of k(x).

12.7.1 Zeta functions

12.7.1 Definition The Zeta function ζX(s) of X is

ζX(s) =
∏
x∈|X|

1

1−N(x)−s
.

12.7.2 Remark When X is the affine scheme SpecZ, ζX(s) is just the Riemann zeta function

ζ(s) =
∏
p

1

1− p−s =
∞∑
n=1

1

ns
.

12.7.3 Remark We are concerned with the case where X is a scheme of finite type over a finite
field Fq with q elements of characteristic p. For any x ∈ |X|, k(x) is a finite extension of Fq.
Set deg(x) = [k(x) : Fq]. Then we have N(x) = qdeg(x).

12.7.4 Definition Suppose X is a scheme of finite type over Fq. We define

Z(X, t) =
∏
x∈|X|

1

1− tdeg(x)
.
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12.7.5 Remark The relation between ζX(s) and Z(X, t) is

ζX(s) = Z(X, q−s).

We have

Z(X, t) =
∑
α

tdeg(α),

where α goes over the set of effective 0-cycles in X.

12.7.6 Theorem [795, Equation (1.5.2)] For any positive integer m, let X(Fqm) be the set of
Fqm -rational points in X. We have an equation of formal power series

t
d

dt
lnZ(X, t) =

∞∑
m=1

#X(Fqm)tm.

12.7.7 Remark For the n-dimensional affine space AnFq , we have

#AnFq (Fqm) = qmn,

Z(AnFq , t) =
1

1− qnt .

For the n-dimensional projective space PnFq , we have

#PnFq (Fqm) = 1 + qm + · · ·+ qmn,

Z(PnFq , t) =
1

(1− t)(1− qt) · · · (1− qnt) .

12.7.8 Theorem Let X be a smooth projective scheme over Fq of dimension n.

1. Rationality : Z(X, t) is a rational function of t, that is, a quotient of polynomials
with rational coefficients.

2. Functional equation: Z(X, t) satisfies a functional equation of the form

Z

(
X,

1

qnt

)
= εq

nχ(X)
2 tχ(X)Z(X, t)

for some constants χ(X) and ε = ±1.

3. Riemann hypothesis: Z(X, t) can be written in the form

Z(X, t) =
2n∏
i=0

Pi(X, t)
(−1)i+1

such that Pi(X, t) ∈ Z[t] and all reciprocal zeros of Pi(X, t) lie on the circle

|t| = q
i
2 .

12.7.9 Remark The above theorem is usually called the Weil conjecture. It was proved to be true
by Dwork, Grothendieck, and Deligne. Weil points out that to prove his conjecture, one
needs to construct a cohomology theory for schemes over an abstract field. One such theory
is the `-adic cohomology theory constructed by Grothendieck, where ` is a prime number
distinct from the characteristic of the ground field. Results on `-adic cohomology theory
used in this section can be found in [136, 797, 1570].
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12.7.10 Remark In the Riemann hypothesis, we consider the Archimedean absolute values of the
zeros and poles of Z(X, t). One can show that for any prime number ` 6= p, all the zeros
and poles of Z(X, t) are `-adic units. (This follows from `-adic cohomology theory.) It is
interesting to study the p-adic absolute values of the zeros and poles of Z(X, t); see Section
12.8.

12.7.11 Definition [1570, Exp. XV] Let FrX : X → X be the morphism of schemes (FrX ,Fr#
X) :

(X,OX)→ (X,OX) such that on the underlying topological space, FrX : X → X is the

identity, and Fr#
X : OX → OX maps a section s of OX to sq. Fix an algebraic closure F

of Fq, and let X = X ⊗Fq F. The geometric Frobenius correspondence on X is the base

change FX : X → X of FrX from Fq to F.

12.7.12 Remark There is a canonical one-to-one correspondence between the set X(Fqm) of Fqm -
rational points in X, and the set of fixed points of FmX on X.

12.7.13 Remark Let Hi(X,Q`) and Hi
c(X,Q`) be the `-adic cohomology groups and the `-adic

cohomology groups with compact support of X, respectively. They are finite dimensional
vector spaces, and they vanish if i 6∈ [0, 2dimX]. If X is proper, we have Hi(X,Q`) ∼=
Hi
c(X,Q`).

12.7.14 Theorem [797, Rapport 3.2] (Lefschetz fixed point theorem) We have

#X(Fqm) =

2dimX∑
i=0

(−1)iTr
(
FmX , H

i
c(X,Q`)

)
.

12.7.15 Remark The following theorem follows from Theorems 12.7.6 and 12.7.14. It proves the
rationality of the function Z(X, t).

12.7.16 Theorem [797, Rapport 3.1] (Grothendieck’s formula) Let X be a scheme of finite type
over Fq. We have

Z(X, t) =
2dimX∏
i=0

det
(

1− FXt,Hi
c(X,Q`)

)(−1)i+1

.

12.7.17 Remark Suppose a finite group G acts on X. Then each Hi
c(X,Q`) is a representation G.

Let

Hi
c(X,Q`) =

⊕
j∈Ii

Vij

be the isotypic decomposition of this representation. Then each Vij is invariant under the
action of FX , and we have a further factorization for the formula of Z(X, t) in Theorem
12.7.16:

Z(X, t) =
2dimX∏
i=0

∏
j∈Ii

det(1− FXt, Vij)(−1)i+1

.

In this way, we can get further information about Z(X, t). As an example, let Xλ be the
Dwork hypersurface in Pn−1

Fq defined by the equation

xn1 + · · ·+ xnn − nλx1 · · ·xn = 0,
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where λ is a parameter. The group

A = {(ζ1, . . . , ζn)|ζi ∈ Fq, ζni =
∏
i

ζi = 1}/{(ζ, . . . , ζ)|ζ ∈ Fq, ζn = 1}

acts on Xλ by coordinatewise multiplication, and the symmetric group Sn acts on Xλ

by permuting coordinates. Thus the finite group G = A o Sn acts on Xλ. Goutet [1345]
studies the factorization of Z(Xλ, t) with respect to the group action of G on Hi(Xλ,Q`).
The function Z(Xλ, t) has also been studied by Candelas, de la Ossa, and Rodriguez-Villegas
[486] for the case n = 5, by Katz [1710], and by Brünjes [435] for the case λ = 0.

12.7.18 Theorem [136, Exp. XVIII, Paragraph 3.2.6] (Poincaré duality) Suppose X is proper
smooth over Fq and pure of dimension n. Then we have a perfect pairing

( , ) : Hi(X,Q`)×H2n−i(X,Q`)→ Q`

such that for any s ∈ Hi(X,Q`) and t ∈ H2n−i(X,Q`), we have

(FX(s), FX(t)) = qn(s, t).

12.7.19 Remark Poincaré duality implies the functional equation for Z(X, t).

12.7.20 Theorem [795, Paragraph 2.6] Suppose X is proper smooth over Fq and pure of dimension
n. We have

Z

(
X,

1

qnt

)
= εq

nχ(X)
2 tχ(X)Z(X, t),

where χ(X) =
∑2n
i=0(−1)idimHi(X,Q`) is the Euler characteristic of X, and if N is the

multiplicity of the eigenvalue q
n
2 of FX acting on Hn(X,Q`), then we have

ε =

{
1 if n is odd,
(−1)N if n is even.

12.7.21 Remark Together with Theorem 12.7.16, the following theorem of Deligne proves the Rie-
mann hypothesis for Z(X, t).

12.7.22 Theorem [795], [798, Corollaires 3.3.4-3.3.5] Suppose X is a scheme of finite type over Fq.
For any eigenvalue α of FX on Hi

c(X,Q`), α is an algebraic integer, and all the Galois
conjugates of α have Archimedean absolute value q

w
2 for some integer w ≤ i. The equality

w = i holds if X is proper smooth over Fq.

12.7.23 Remark For each 0 ≤ i ≤ 2dimX, let bi = dimHi
c(X,Q`), and let αij (j = 1, . . . , bi) be all

the eigenvalues of FX on Hi
c(X,Q`). By Theorem 12.7.14, we have

#X(Fq) =

2dimX∑
i=0

bi∑
j=1

(−1)iαij .

Theorem 12.7.22 provides bounds for |αij |. To get a bound for #X(Fq), it suffices to find a
bound for

∑
i bi.

12.7.24 Remark Suppose X is proper smooth over Fq, pure of dimension n, and geometrically
connected (i.e., X is connected). Then H0(X,Q`) and H2n(X,Q`) are one dimensional,
and FX acts on them by scalar multiplications 1 and qn, respectively.
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12.7.25 Corollary Suppose X is proper smooth over Fq, pure of dimension n, and geometrically
connected. Then we have

|#X(Fq)− (1 + qn)| ≤
2n−1∑
i=1

biq
i
2 .

12.7.26 Proposition [795, Théorème 8.1] Let X ⊂ Pn+r
Fq be a nonsingular complete intersection over

Fq of dimension n and multi-degree (d1, . . . , dr). Let b′ = dimHn(X,Q`). Set b = b′ if n is
odd, and set b = b′ − 1 if n is even. Then we have

|#X(Fq)−#Pn(Fq)| ≤ bq
n
2 .

12.7.27 Remark By Theorems 12.7.16 and 12.7.22, we can write

Z(X, t) =
Q(t)

P (t)
,

where P (t) = (1 − λ1) · · · (1 − λs) and Q(t) = (1 − µ1) · · · (1 − µt) are relatively prime
polynomials, and λi, µi are algebraic integers satisfying |λi|, |µj | ≤ qdimX . By Theorem
12.7.6, we have

#X(Fq) = λ1 + · · ·+ λs − µ1 − · · · − µt.
To get a bound for #X(Fq), it suffices to find a bound for s + t. We call s + t the total
degree of Z(X, t), and denote it by totdegZ(X, t). Note that t− s is the degree of Z(X, t),
and we have

s− t =
2dimX∑
i=0

(−1)idimHi
c(X,Q`).

12.7.28 Remark Using Dwork’s theory and Theorem 12.7.22, Bombieri obtains the following bound
for totdegZ(X, t); see [341, Theorems 1, 2, and Proposition in IV] and [339, Theorem 1].

12.7.29 Theorem Let X be a closed affine subvariety in ANFq defined by the vanishing of r polyno-

mials f1, . . . , fr ∈ Fq[t1, . . . , tN ] of degrees ≤ d. Then we have

totdegZ(X, t) ≤ (4(d+ 1) + 5)N+r.

12.7.30 Remark Adolphson and Sperber generalize Bombieri’s result as follows.

12.7.31 Proposition [22, Theorem 5.27, Corollary 6.13] Let X be a closed affine subvariety in ANFq
defined by the vanishing of r polynomials f1, . . . , fr ∈ Fq[t1, . . . , tN ] of degrees d1, . . . , dr,
respectively. Set

DN (x0, x1, . . . , xr) =
∑

i0+i1+···+ir=N

xi00 x
i1
1 · · ·xirr .

We have ∣∣∣∣∣
2dimX∑
i=0

(−1)idimHi
c(X,Q`)

∣∣∣∣∣ ≤ 2rDN (1, d1 + 1, . . . , dr + 1),

totdegZ(X, t) ≤ (2e3)N (2e3 + 1)N (5 max{d1, . . . , dr}+ 1)N .

12.7.32 Remark Starting from a universal bound |∑2dimX
i=0 (−1)idimHi

c(X,Q`)|, Katz [1706] de-

duces a bound for
∑2dimX
i=0 dimHi

c(X,Q`), and hence a bound for totdegZ(X, t). In par-
ticular, Katz gets the following estimate from those of Bombieri and Adolphson-Sperber.
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12.7.33 Proposition [1706, Corollary of Theorem 1] Let X be a closed affine subvariety in ANFq
defined by the vanishing or r polynomials f1, . . . , fr ∈ Fq[t1, . . . , tN ] of degrees ≤ d. Then
we have

2dimX∑
i=0

dimHi
c(X,Q`) ≤ 2r−2 · 5 · (4rd+ 13)N+2,

2dimX∑
i=0

dimHi
c(X,Q`) ≤ 2r+1 · 3 · (rd+ 3)N+1.

12.7.2 L-functions

12.7.34 Remark For any scheme X of finite type over Fq and any `-adic sheaf F , we can associate
an L-function L(X,F , t). For the definition of an `-adic sheaf on a scheme, we refer to [1570,
Exp. VI]. We simply mention that in the case where X = SpecF for a field F , giving an
`-adic sheaf on X is equivalent to giving a continuous `-adic Galois representation

Gal(F/F )→ GL(n,Q`).

Suppose X is a scheme of finite type over Fq. An Fqm-rational point x ∈ X(Fqm) is an
Fq-morphism SpecFqm → X. Let F be an `-adic sheaf on X. Then the inverse image of F
on SpecFqm defines a Galois representation which we denote by

Gal(F/Fqm)→ GL(Fx̄).

Here Fx̄ is the stalk of F at the geometric point SpecF → X over x. The Galois group
Gal(F/Fqm) has a special element, the Frobenius substitution

φx : Fqm → Fqm , φx(α) = αq
m

.

Denote by Fx the inverse of φx and call it the geometric Frobenius at x. Let x ∈ |X| be a
Zariski closed point in X. Then we have a closed immersion Spec k(x) → X, and hence x
defines a k(x)-rational point in X. We denote the corresponding geometric Frobenius also
by Fx.

12.7.35 Definition The L-function L(X,F , t) is the formal power series with variable t and with
coefficients in Q` defined by

L(X,F , s) =
∏
x∈|X|

1

det(1− Fxtdeg(x),Fx̄)
.

12.7.36 Remark When F is the constant `-adic sheaf Q`, L(X,F , t) coincides with Z(X, t).

12.7.37 Theorem [797, Rapport 3] For any positive integer m, let

Sm(X,F) =
∑

x∈X(Fqm )

Tr(Fx,Fx̄).

We have an equation of formal power series

t
d

dt
lnL(X,F , t) =

∞∑
n=1

Sm(X,F)tm.
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12.7.38 Remark [797, Sommes trig.] Let ψ : Fq → Q∗` be a nontrivial additive character. One can
construct an `-adic sheaf Lψ on A1

Fq such that for any Fqm -rational point x ∈ A1
Fq (Fqm) =

Fqm , we have
Tr(Fx, (Lψ)x̄) = ψ(TrFqm/Fq (x)).

Let f ∈ Fq[t1, . . . , tN ] be a polynomial. It defines a morphism f : ANFq → A1
Fq . For any

Fqm -rational point x ∈ ANFq (Fqm) = FNqm with coordinates x = (x1, . . . , xN ), the `-adic sheaf
f∗Lψ has the property

Tr(Fx, (f
∗Lψ)x̄) = ψ(TrFqm/Fq (f(x1, . . . , xN ))).

We note that

Sm(ANFq , f
∗Lψ) =

∑
x1,...,xN∈Fqm

ψ(TrFqm/Fq (f(x1, . . . , xN )))

is the classical exponential sum associated to the polynomial f .

12.7.39 Remark Let X = X ⊗Fq F and let F be the inverse image of F on X. We have the coho-

mology groups Hi(X,F) and the cohomology groups with compact support Hi
c(X,F).

They are finite dimensional vector spaces, and they vanish if i 6∈ [0, 2dimX]. If X
is proper, we have Hi(X,F) ∼= Hi

c(X,F). Moreover, we have a morphism of sheaves
F ∗ : F ∗XF → F . The pair (FX , F

∗) is the geometric Frobenius correspondence for F . Denote
the homomorphisms induced by this pair on cohomology groups with compact support by
F : Hi

c(X,F)→ Hi
c(X,F).

12.7.40 Theorem [797, Rapport 3.2] (Grothendieck trace formula) We have

∑
x∈X(Fqm )

Tr(Fx,Fx̄) =
2dimX∑
i=0

(−1)iTr
(
Fm, Hi

c(X,F)
)
.

12.7.41 Remark The following theorem follows from Theorems 12.7.37 and 12.7.40. It proves the
rationality of the function L(X,F , t).

12.7.42 Theorem [797, Rapport 3.1] (Grothendieck’s formula) Let X be a scheme of finite type
over Fq. We have

L(X,F , t) =
2dimX∏
i=0

det
(

1− Ft,Hi
c(X,F)

)(−1)i+1

.

12.7.43 Definition A number α in Q` is pure of weight w (relative to q) if it is an algebraic number
and all its Galois conjugates have Archimedean absolute value q

w
2 . An `-adic sheaf F

on X is punctually pure of weight w if for any x ∈ |X|, the eigenvalues of Fx on the
stalk Fx̄ are pure of weight w (relative to qdeg(x)). The sheaf F is mixed of weights ≤ w
if there exists a finite filtration of F such that the successive quotients are punctually
pure of weights ≤ w.

12.7.44 Remark Together with 12.7.42, the following theorem of Deligne proves the Riemann hy-
pothesis for L(X,F , t).

12.7.45 Theorem [798, Corollaire 3.3.4] Suppose X is a scheme of finite type over Fq and F is a
mixed `-adic sheaf of weights ≤ w on X. Then any eigenvalue of F on Hi

c(X,F) is pure of
weight ≤ i+ w relative to q.
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12.7.46 Remark For each 0 ≤ i ≤ 2dimX, let bi = dimHi
c(X,F), and let αij (j = 1, . . . , bi) be all

the eigenvalues of F on Hi
c(X,F). By 12.7.40, we have

Sm(X,F) =
∑

x∈X(Fqm )

Tr(Fx,Fx̄) =
2dimX∑
i=0

bi∑
j=1

(−1)iαmij .

Theorem 12.7.45 provides bounds for |αij |. To get a bound for Sm(X,F), it suffices to find
bounds for

∑
i bi.

12.7.47 Remark Applying Theorem 12.7.45 to the `-adic sheaf f∗Lψ in Remark 12.7.38, we can
get a bound for the exponential sum |∑x1,...,xN∈Fqm ψ(TrFqm/Fq (f(x1, . . . , xN )))|. We have

the following results.

12.7.48 Theorem [795, Théorème 8.4], [798, Paragraphs 3.7.2-3.7.4] Let f ∈ Fq[t1, . . . , tN ] be a
polynomial of degree d, and let fd be the homogeneous part of f of degree d. Suppose fd
defines a smooth hypersurface in PN−1

Fq and d is relatively prime to p.

1. Hi
c(ANF , f∗Lψ) = 0 for i 6= N .

2. dimHN
c (ANF , f∗Lψ) = (d− 1)N .

3. All eigenvalues of F on HN
c (ANF , f∗Lψ) are pure of weight N .

4. L(ANFq , f
∗Lψ) = P (t)(−1)N+1

for a polynomial P (t) of degree (d − 1)N so that all

reciprocal roots of P (t) have Archimedean absolute value qN .

5. |∑x1,...,xN∈Fqm ψ(TrFqm/Fq (f(x1, . . . , xN )))| ≤ (d− 1)Nq
Nm

2 .

12.7.49 Theorem [23, Theorem 4.2], [812, Theorem 1.3] Let f ∈ Fq[t1, . . . , tN , 1/t1, . . . , 1/tN ] be a
Laurent polynomial. Write

f =
∑

i1,...,iN

ci1...iN t
i1
1 · · · tiNN .

Let ∆∞(f) be the convex hull in QN of the set {(i1, . . . , iN )|ci1...iN 6= 0}∪{0}. For any face
τ of ∆∞(f), let fτ =

∑
(i1,...,iN )∈τ ci1...iN t

i1
1 · · · tiNN . Suppose f is nondegenerate with respect

to ∆∞(f) in the sense that for any face τ of ∆∞(f) that does not contain the origin, the
subscheme of GNm,Fq = (A1

Fq − {0})N defined by

∂fτ
∂t1

= · · · = ∂fτ
∂tN

= 0

is empty. Suppose furthermore that dim ∆∞(f) = N .

1. Hi
c(GNm,F , f

∗Lψ) = 0 for i 6= N .

2. dimHN
c (GNm,F, f∗Lψ) = N !Vol(∆∞(f)).

3. If, in addition, the origin is an interior point of ∆∞(f), then all eigenvalues of F on
HN
c (GNm,F, f∗Lψ) are pure of weight N .

4. L(GNm,Fq , f
∗Lψ) = P (t)(−1)N+1

for a polynomial P (t) of degree N !Vol(∆∞(f)). If, in

addition, the origin is an interior point of ∆∞(f), then all reciprocal roots of P (t) have
Archimedean absolute value qN .

5. |∑x1,...,xN∈F∗qm
ψ(TrFqm/Fq (f(x1, . . . , xN )))| ≤ N !Vol(∆∞(f))q

Nm
2 .

12.7.50 Remark The estimates in Theorem 12.7.29, and Propositions 12.7.31 and 12.7.33 can also
be extended to the L-functions associated to exponential sums [22, 339, 341, 1706].
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12.7.3 The case of curves

12.7.51 Remark Suppose X is a geometrically connected smooth projective curve over Fq of genus
g. Then H1(X,Q`) can be identified with T`(JX)⊗Z` Q`, where T`(JX) is the Tate module
of the Jacobian JX of X, and dimH1(X,Q`) = 2g. By Theorems 12.7.16 and 12.7.22 and
Corollary 12.7.25, we have the following.

12.7.52 Theorem Suppose X is a geometrically connected smooth projective curve over Fq of genus
g. We have

Z(X, t) =
P (t)

(1− t)(1− qt) ,

where P (t) = det(1 − Ft,H1(X,Q`)) is a polynomial with integer coefficients, and all its
reciprocal roots have Archimedean absolute value

√
q. Moreover, we have

|#X(Fq)− (1 + q)| ≤ 2g
√
q.

12.7.53 Remark The above theorem was proved by Hasse for elliptic curves and by Weil for curves
of higher genus. An elementary proof was given by Stepanov, Schmidt, and Bombieri [340].

12.7.54 Definition Let K(X) be the function field of X, and let ρ : Gal(K(X)/K(X))→ GL(V )
be a continuous Galois representation, where V is a finite dimensional vector space over
Q`. Suppose there exists a finite subset S of |X| such that ρ is unramified everywhere
on X − S. We define the L-function L(X, ρ, t) to be

L(X, ρ, t) =
∏
x∈|X|

1

det(1− Fxtdeg(x), V Ix)
,

where Ix is the inertia subgroup.

12.7.55 Remark The Galois representation ρ defines an `-adic sheaf FV on X−S such that for any
x ∈ |X −S|, the Galois representation Gal(k(x)/k(x))→ GL(Fx̄) coincides with the Galois
representation ρ|

Gal(k(x)/k(x))
. Let j : X − S ↪→ X be the open immersion. Then we have

det(1− Fxt, V Ix) = det(1− Fxt, (j∗FV )x̄)

for any x ∈ |X|. It follows that

L(X, ρ, t) = L(X, j∗FV , t).

We have
H0(X, j∗FV ) ∼= V Gal(K(X)/K(X)),

H2(X, j∗FV ) ∼= V
Gal(K(X)/K(X))

,

where K(X) is the function field of X, and j∗FV is the inverse image of j∗FV on X. It
follows from 12.7.42 that we have

L(X, ρ, t) =
det(1− Ft,H1(X, j∗FV ))

det
(

1− Ft, V Gal(K(X)/K(X))
)

det
(

1− qF t, V
Gal(K(X)/K(X))

) .
12.7.56 Theorem [136, Exp. XVIII. Paragraph 3.2.6], [797, Dualité 1.3] (Poincaré duality) We have

a perfect pairing
( , ) : Hi(X, j∗FV )×H2−i(X, j∗FV ∗)→ Q`,
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where V ∗ is the dual representation ρ∗ : Gal(K(X)/K(X)) → GL(V ∗) of ρ. For any s ∈
Hi(X, j∗FV ) and t ∈ H2−i(X, j∗FV ∗), we have

(FX(s), FX(t)) = q(s, t).

12.7.57 Remark By Poincaré duality and Theorem 12.7.42, we have the following functional equa-
tion for L-functions.

12.7.58 Theorem [1868, Equation (3.1.1.8)] We have

L

(
X, ρ,

1

qt

)
= ε(X, ρ)(qt)χ(X,ρ)L(X, ρ∗, t),

where

χ(X, ρ) =
2∑
i=0

(−1)idimHi(X, j∗FV ),

ε(X, ρ) =
2∏
i=0

det
(
− F,Hi(X, j∗FV )

)(−1)i+1

.

12.7.59 Remark Using Theorem 12.7.45 and Poincaré duality, one can prove the following, which
gives the Riemann hypothesis for L(X, ρ, t) by Remark 12.7.55.

12.7.60 Theorem Suppose for any x ∈ |X − S|, all eigenvalues of Fx on V are pure of weight w
relative to qdeg(x). Then any eigenvalue of F on Hi(X, j∗F) is pure of weight i+w relative
to q.

12.7.61 Remark For any point x ∈ |X|, let Kx be the completion of K(X) with respect to the
valuation corresponding to x, and let ρx : Gal(Kx/Kx) → GL(V ) be the restriction of the
representation ρ. In Theorem 12.7.58, the Euler characteristic χ(X, ρ) and the constant
ε(X, ρ) in the functional equation can be expressed in terms of the invariants of the Galois
representations ρx (x ∈ |X|) of the local fields Kx.

12.7.62 Theorem [1570, Exp. X, Théorème 7.1] (Grothendieck-Ogg-Shafarevich formula) We have

χ(X, ρ) = (2− 2g)dimV −
∑
x∈|X|

deg(x)ax(ρx),

where ax(ρx) is the Artin conductor of ρx.

12.7.63 Theorem [1868, Théorème 3.2.1.1] (Laumon’s product formula) Let ω be any nonzero
meromorphic differential 1-form on X. Then we have

ε(X, ρ) = q(1−g)dim(V )
∏
x∈|X|

ε(Kx, ρx, ω|SpecKx),

where ε(Kx, ρx, ω|SpecKx) are the epsilon-factors defined by Deligne [794].
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See Also

§6.2 For information on estimating exponential and character sums.
§12.8 For p-adic estimates of zeta-functions and L-functions.

References Cited: [22, 23, 136, 339, 340, 341, 435, 486, 794, 795, 797, 798, 812, 1345, 1427,
1570, 1706, 1710, 1868]

12.8 p-adic estimates of zeta functions and L-functions

Régis Blache, IUFM de Guadeloupe

12.8.1 Introduction

12.8.1 Remark We know from the preceding section that the reciprocal roots and poles of zeta
and L-functions defined over the finite field Fq are algebraic integers, which are units at all
primes except the Archimedean ones and those lying over p. Many Archimedean estimates
(the Riemann hypothesis over finite fields) have been given in Section 12.7; in this section
we are interested in p-adic estimates, i.e., the p-adic Riemann hypothesis. We often refer to
notations and results from Section 12.9.

12.8.2 Remark The first result in this direction seems to be Stickelberger’s congruence which
gives the valuation of Gauss sums and Jacobi sums (see Section 6.1). The modern results
come from the work of Dwork [940], who was the first to prove the rationality of zeta and
L-functions, by p-adic means. From his pioneering work, many p-adic cohomology theories
originated, such as Monsky-Washnitzer, crystalline, or rigid cohomology [1572]; most of the
results described below follow from the explicit description of these cohomologies. Note also
they proved very useful for explicit calculations.

12.8.3 Remark One can describe the variation of the p-adic cohomology spaces from differential
equations, such as the Picard-Fuchs one; they sometimes allow one to give an analytic
expression for roots or poles of some zeta and L-functions. The best known example is the
family of ordinary elliptic curves in Legendre form, which is linked to a hypergeometric
function 2F1 [941]; the Gross-Koblitz formula (Theorem 6.1.113) links Gauss sums with
the p-adic gamma function. As a consequence one gets a p-adic expression for Jacobi sums
and the zeta function of a diagonal hypersurface. Other examples are cubic sums linked
to the solutions of the Airy differential equation [1397], Kloostermann sums to the Bessel
differential equation [942], or the zeta function of a monomial deformation of a diagonal
hypersurface which can be expressed from hypergeometric functions nFn−1 [1754, 3041].

12.8.4 Remark Here we shall be concerned with p-adic valuations; we only mention briefly these
subjects; we neither speak about unit root functions, the reader interested in this subject
should refer to [2895, 2896, 2897] and the references therein.

12.8.5 Remark [798] Let L(T ) be an L-function as in Definition 12.7.35, coming from a scheme
over Fq of dimension n and a punctually pure sheaf of weight 0. From Deligne’s integrality
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theorem and Poincaré duality (see Section 12.7), the q-adic valuations of its reciprocal roots
and poles are rational numbers lying in the interval [0, n].

12.8.6 Definition Let F be a p-adic field, OF its ring of integers, π a uniformizing parameter,
and vq the valuation on F normalized by vq(q) = 1. If P =

∑d
i=0 aiT

i ∈ F [T ] is a one
variable polynomial, its q-adic Newton polygon, denoted NPq(P ), is the lower convex
hull of the set of points {(i, vq(ai)), 0 ≤ i ≤ d}.

12.8.7 Theorem [1770] Assume that P (0) = 1. Let s1, . . . , sr be the slopes of NPq(P ), of respective
multiplicity li (i.e., each si is the slope of a segment of horizontal length li); then the
polynomial P has exactly li reciprocal roots of q-adic valuation si for any 1 ≤ i ≤ r.

12.8.8 Remark One can give a more general statement about the valuations of the roots of P ,
removing the hypothesis P (0) = 1. However, the theorem above is sufficient in the following
results.

12.8.2 Lower bounds for the first slope

12.8.9 Remark We give lower bounds for the first slope of the Newton polygon of L-functions
attached to families of (additive) exponential sums over affine space, first uniform, then
depending on the characteristic. We end the subsection with an (incomplete) historical
account on these questions.

12.8.10 Proposition [150] Let X be a scheme of finite type over Fq and L(X,F , T ) be an L-function
as in Definition 12.7.35; for µ ∈ R+, the following statements are equivalent:

1. The q-adic valuations of the reciprocal roots and poles of L(X,F , T ) are greater than
or equal to µ.

2. For any m, we have vqm(Sm(X,F)) ≥ µ.
3. All slopes of the q-adic Newton polygons of the factors of L(X,F , T ) are greater than

or equal to µ.

12.8.11 Theorem [21, Theorem 1.2] Let f ∈ Fq[x1, . . . , xN ] be a polynomial, and ∆ := ∆∞(f) its
Newton polytope at infinity (see Theorem 12.7.49); denote by ω(∆) the smallest positive
rational number such that ω(∆)∆, the dilation of ∆ by the factor ω(∆), contains a lattice
point with all coordinates positive (a point in ZN>0). Then every reciprocal root or pole of
L(AN , f∗Lψ, T ) has q-adic valuation greater than or equal to ω(∆).

12.8.12 Remark Note that we make no assumption about the polynomial being non-degenerate
with respect to its Newton polytope here.

12.8.13 Remark (see Section 7.1) One can deduce divisibility results on the numbers of points
of algebraic varieties via the orthogonality relation on additive characters. Actually the
Chevalley-Warning, Ax and Katz theorems are all consequences of the theorem above.

12.8.14 Definition Let D ⊂ (N\{0})N be a finite subset, which is not contained in some Nk,
k < N ; for any m ≥ 1, define the subset ED,p(m) of {0, . . . , pm − 1}#D consisting of
all (ud)d∈D such that

∑
d∈D dud ≡ 0 (mod pm − 1) and

∑
d∈D dud has all coordinates

positive. We set

σD,p(m) := min

{∑
d∈D

σp(ud), (ud) ∈ ED,p(m)

}
.

12.8.15 Proposition [293] The set
{
σD,p(m)

m

}
m≥1

has a minimum.
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12.8.16 Definition The p-density of the set D is the rational number πp(D) :=
1
p−1 minm≥1

{
σD,p(m)

m

}
.

12.8.17 Theorem Let Fq[x1, . . . , xN ]D be the vector space of polynomials whose monomials have
their exponents in D.

1. For any f ∈ Fq[x1, . . . , xN ]D, the reciprocal roots and poles of L(An, f∗Lψ, T ) have
q-adic valuation greater than or equal to πp(D).

2. Moreover, this bound is optimal in the sense that there exists a polynomial f in
F[x1, . . . , xN ]D such that a reciprocal root or pole of L(AN , f∗Lψ, T ) has q-adic valuation
equal to πp(D).

12.8.18 Remark For f ∈ Fq[x1, . . . , xN ] a degree d polynomial, there are many lower bounds in the
literature for the q-adic valuation of the exponential sum

S(f) :=
∑

(x1,...,xN )∈FNq

ψ(f(x1, . . . , xN )),

giving in turn lower bounds for the valuations or the reciprocal roots and poles of the
associated L-function. We give a brief account of these results here.

1. Sperber [2698] proves the uniform bound vq(S(f)) ≥ N
d ; then with Adolphson they

give the bound in Theorem 12.8.11. This last bound is the best possible uniform one, since
it is attained for some large enough p.

2. Later on, Moreno and Moreno take into account the characteristic [2151] via Weil
descent; this leads to generally better bounds, less uniform however. Recently, Moreno,
Shum, Castro, and Kumar [2153] give a bound depending on the exponents effectively

appearing in the polynomial, and on the cardinality of the field (namely
σD,p(m)
m(p−1) , with

q = pm). Note this last bound depends on too many parameters to say anything about the
valuations of the reciprocal roots and poles of the L-function.

12.8.3 Uniform lower bounds for Newton polygons

12.8.19 Remark In this subsection, we describe lower bounds for the Newton polygons associated
to zeta functions of smooth projective varieties, to L-functions associated to an additive
character and a Laurent polynomial (toric exponential sums) or a rational function of one
variable. In the case of zeta functions, these bounds come from the Hodge numbers of related
varieties in characteristic 0; for this reason we shall call these bounds Hodge polygons.

12.8.20 Definition Let X be a smooth projective variety of dimension n, defined over Fq. For
any 0 ≤ m ≤ 2n, define NPm(X) as the q-adic Newton polygon of the characteristic
polynomial of the action of Frobenius on the m-th etale cohomology space det(1 −
FXt,H

m(X,Q`)).
Define the Hodge polygon in degree m of X as the polygon HPm(X) having slope i

with multiplicity hi,m−i := dimHm−i(X,Ωi) for 0 ≤ i ≤ m.

12.8.21 Theorem [29, 255, 2041] For any 0 ≤ m ≤ 2n, the polygon NPm(X) lies on or above the
polygon HPm(X), and they have the same endpoints.

12.8.22 Remark There is an analogous result in the case of a smooth complete intersection in
Gm × An [27].
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12.8.23 Definition Let X be a smooth projective variety of dimension n, defined over Fq. The
variety X is ordinary when we have NPm(X) = HPm(X) for any 0 ≤ m ≤ 2n.

12.8.24 Definition Notations and assumptions are as in Theorem 12.7.49. We set ∆ := ∆∞(f), and

denote by NPq(f) the q-adic Newton polygon of the polynomial L(GNm, f∗Lψ, T )(−1)N+1

.
Denote by C(∆) := R+∆ the cone of ∆ in RN , M∆ := C(∆) ∩ ZN the monoid

associated to this cone, and A∆ the algebra k[xM∆ ]. One can define a map from C(∆)
to R+, the weight associated to ∆, by

w∆(u) = min{ρ ∈ R+, u ∈ ρ∆}.

The vertices of ∆ lie in ZN , thus the image of M∆ by w∆ lies in Q+; more precisely
there is a positive integer D(∆) such that Imw∆ ⊆ 1

D(∆)N. The least integer D := D(∆)

having this property is the denominator of ∆. The weight w∆ turns the algebra A∆ into
a graded algebra

A∆ = ⊕i≥0A∆, iD
, A∆, iD

= Vect

{
xu, w∆(u) =

i

D

}
to which we associate the Poincaré series PA∆

(t) :=
∑
i≥0 dimA∆, iD

ti.

12.8.25 Proposition [1802, Lemme 2.9] The series PA∆(t) is a rational function. Precisely, the series
P∆(t) := (1− tD)NPA∆(t) is a polynomial with degree less than or equal to ND, such that
P∆(1) = N !Vol(∆).

12.8.26 Example Let f be a polynomial of degree d in the N variables x1, . . . , xN , containing
the monomials xd1, . . . , x

d
N with non-zero coefficients; its Newton polytope at infinity is the

simplex with vertices (0, . . . , 0), (d, . . . , 0), . . . , (0, . . . , d). The associated cone is RN+ , the

weight is w∆(u1, . . . , uN ) =
∑
ui
d , and the denominator is d. In this case the Poincaré series

can be written PA∆
(t) = 1

(1−t)N .

12.8.27 Definition Set P∆(t) :=
∑
`it

si . The Hodge polygon of ∆, HP(∆), is the polygon starting
at the origin, and formed by the slopes si

D with multiplicity `i.

12.8.28 Theorem [23, Theorem 3.10] For any polynomial f in Fq[t1, . . . , tN , 1
t1···tN ], non-degenerate

with respect to its Newton polytope ∆, the polygon NPq(f) lies on or above HP(∆), and
they have the same endpoints.

12.8.29 Remark One can show that the function L(GNm, f∗Lψ, T )(−1)N+1

has exactly one unit root.
Adolphson and Sperber [31] give an analytic expression for this root, as an eigenvalue for
the action of an operator on a p-adic Banach space.

12.8.30 Remark Adolphson and Sperber [25, 26] also consider twisted L-functions of the form
L(GNm, f∗Lψ ⊗ Lχ, T ), associated to the product of an additive character evaluated at a
Laurent polynomial, and of a multiplicative character χ of GNm. They construct a Hodge
polygon which is a lower bound for the Newton polygon as above; this Hodge polygon can
be written in terms of the Hodge polygon HP(∆) and the valuations of the Gauss sums
associated to the multiplicative characters appearing, as given by Stickelberger’s theorem.
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12.8.31 Definition Let d1, . . . , ds denote positive integers. We define the Hodge polygon
HP(d1, . . . , ds) as the polygon with slopes 0 and 1 with multiplicity s − 1,
1
d1
, . . . , d1−1

d1
, . . . , 1

ds
, . . . , ds−1

ds
, each with multiplicity 1.

12.8.32 Theorem [3069, Theorem 1.1] Let f ∈ Fq(x) be a rational function having s poles of prime
to p orders d1, . . . , ds, and X denote the projective line with the poles removed. Then the
q-adic Newton polygon of the function L(X, f∗Lψ, T ) lies on or above the Hodge polygon
HP(d1, . . . , ds), and they have the same endpoints.

12.8.33 Remark Lower bounds for Newton polygons of L-functions associated to a character of order
pl, evaluated at a Witt vector of functions, pure or twisted by a multiplicative character can
be found in [1948, 1950]. See also [1949], in which T -adic exponential sums are introduced,
giving a framework in which to unify the study of the p-adic properties of these L-functions
when l varies.

12.8.34 Remark There are also some results and conjectures on the p-adic theory of L-functions
associated to multiplicative characters; see [20] and the references therein.

12.8.4 Variation of Newton polygons in a family

12.8.35 Remark It is in general very hard to determine the exact Newton polygon of a given
L-function. Instead we consider L-functions associated to data varying in a family;
Grothendieck’s specialization Theorem 12.8.37 asserts that in such a family, most L-
functions share the same Newton polygon, the generic Newton polygon; for instance our
first result states that smooth complete intersections are generically ordinary. We describe
this last polygon (or parts of it) in the known cases (toric sums, affine sums in one variable).
Then we deal with its asymptotic variation with the characteristic.

12.8.36 Theorem [1571, 2910] Let S denote the scheme parametrizing smooth complete intersec-
tions of dimension n and multi-degree (d1, . . . , dr) in Pn+r

Fq , and X → S the universal family.
There exists a Zariski dense open subset U such that for any s ∈ U , Xs is ordinary.

12.8.37 Theorem [1699] (Grothendieck’s specialization theorem) Assume ft : X → A1 belongs to
a family parametrized by t varying in an affine scheme S/Fp. We assume the L-function
L(X, f∗t Lψ, T ) (or its inverse) to be a polynomial of constant degree when t varies, and we
denote by NPq(ft) its q-adic Newton polygon (the q-adic Newton polygon of its inverse).
There is a Zariski dense open subset U in S (the open stratum) and a polygon GNP(S, p)
such that

1. For any t ∈ U(Fq), NPq(ft) =GNP(S, p).
2. For any t ∈ S(Fq), NPq(ft) lies above GNP(S, p).

12.8.38 Definition The polygon GNP(S, p) defined above is the generic Newton polygon of the
family ft, t ∈ S. When it exists, the Hasse polynomial for the generic Newton polygon
of this family is the polynomial generating the ideal defining the Zariski closed subset
S\U .

12.8.39 Remark One can define more general Hasse polynomials, for instance for the first vertex,
or for the first m vertices.

12.8.40 Example Set fλ(x, y, z) := z(y2 − x(x − 1)(x − λ)) for λ ∈ A1
Fq (Fp)\{0, 1}. The generic

Newton polygon has vertices (0, 0), (1, 1), (2, 3), and the Hasse polynomial for the generic

Newton polygon (actually for the vertex (1, 1)) is the polynomial F (λ) =
∑ p−1

2
i=0

( p−1
2
i

)2
λi. In

other words, the supersingular elliptic curves in Legendre form are those for which F (λ) = 0.
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12.8.41 Theorem [2899, 2910] Let S∆ parametrize the space of Laurent polynomials over Fp with
Newton polytope ∆ ⊂ RN , non-degenerate with respect to it.

1. If N ≤ 3, then GNP(S∆, p) = HP(∆) for any p ≡ 1 (mod D(∆)).

2. If N ≥ 4, there exists an integer D′(∆) (in general strictly greater than D(∆))
depending only on ∆ such that GNP(S∆, p) = HP(∆) for any large enough prime p such
that p ≡ 1 (mod D′(∆)).

12.8.42 Remark The L-function associated to f has its coefficients in Qp(ζp), which is a totally
ramified extension of Qp of degree p − 1. Since the ordinates for the vertices of the Hodge
polygon are in 1

D(∆)N, a necessary condition in order to have GNP(S∆, p) = HP(∆) is p ≡ 1

(mod D(∆)). The theorem above shows that it is not a sufficient condition for N ≥ 4.

12.8.43 Remark When N = 1, something stronger is true: if p ≡ 1 (mod lcm(d, d′)), then for any

f(x) =
∑d
i=−d′ aix

i ∈ Fq[x, x−1] with ada−d′ 6= 0, we have NP(f) = HP([−d′, d]).

12.8.44 Remark [3069] More generally, this result remains true for rational functions of one variable
with poles of orders d1, . . . , ds when we have p ≡ 1 (mod lcm(d1, . . . , ds)).

12.8.45 Theorem [2553] Let D = {1, . . . , d}; if p > 2d, the first vertex of the generic Newton

polygon GNP(SD, p) is (1, 1
p−1d

p−1
d e), with Hasse polynomial

{
fd

p−1
d e
}
p−1

, the polynomial

associating to the coefficients a1, . . . , ad of f the degree p − 1 coefficient of the dp−1
d e-th

power of f .

12.8.46 Theorem [293] Let D ⊂ N be finite, d = maxD, and consider SD, the affine variety
parametrizing degree d polynomials whose monomials have their exponents in D. The first
slope of the generic Newton polygon GNP(SD, p) is equal to the p-density πp(D) of the set
D.

12.8.47 Theorem [291] Let p = 2, and D = {1 ≤ i ≤ d, 2 - i}; set SD =SpecFp[{ai}i∈D, a−1
d ] (we

parametrize the polynomials by their coefficients). The first vertex of the generic Newton
polygon GNP(SD, p) is

1. (n, 1) if 2n − 1 ≤ d < 2n+1 − 3, with Hasse polynomial a2n−1;

2. (2n, 2) if d = 2n+1 − 3, with Hasse polynomial a3·2n−1−1;

3. in the second case, if we consider D′ = D\{3 ·2n−1−1}, the first vertex of the generic
Newton polygon GNP(SD′ , p) is (n, 1), with Hasse polynomial a2n−1.

12.8.48 Remark The first result in the direction of Theorem 12.8.47 can be found in [2552] where
the authors determine the first slope and necessary conditions to get it. There are also
results for the first vertex in any characteristic p [291], but only dealing with the cases
pn − 1 ≤ d ≤ 2pn − 2.

12.8.49 Theorem [295] Let d ≥ 2 be an integer prime to p, and Sd = Spec Fp[a1, . . . , ad, a
−1
d ]

parametrize the degree d polynomials. If p ≥ 3d, the generic Newton polygon GNP(Sd, p)
has vertices (

i,
Yi

p− 1

)
0≤i≤d−1

, Yi =
i∑

j=1

⌈
pj − i
d

⌉
,

and the Hasse polynomial for the i-th vertex is a polynomial in Fp[a1, . . . , ad], homogeneous
of degree Yi.

12.8.50 Remark The Newton polygons corresponding to degree 4 [1528], degree 6 [1529] polyno-
mials, and to the family xd + λx when p is large enough and p ≡ −1 (mod d) [3028] are
completely determined.
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12.8.51 Remark The generic Newton polygons associated to twisted one variable sums (coming
from the product of an additive character evaluated at a Laurent polynomial and of a
multiplicative character evaluated at the variable) are given in [296] for p large enough.
Using the Poisson formula, they give the generic Newton polygons attached to families of
polynomials P (xs), degP = d.

12.8.52 Theorem [3067, 3068]
1. We have the limit limp→∞ GNP(Sd, p) = HP(d).
2. There is a Zariski dense open subset U in SpecQ[a1, . . . , ad, a

−1
d ] (parametrizing the de-

gree d polynomials defined over Q) such that for any f ∈ U we have limp→∞ NP(f mod p) =
HP(d).

12.8.53 Remark In the case of twisted exponential sums, by a multiplicative character of order s
(or for the family of polynomials P (xs), degP = d), the limit no longer exists as in the first
assertion above. Actually the limit exists if we restrict to the primes in a fixed residue class
modulo s [296], and there is a result similar to the second assertion in this case.

12.8.54 Remark For L-functions associated to a one variable rational function of fixed pole orders
d1, . . . , ds, the generic Newton polygon tends to the Hodge polygon HP(d1, . . . , ds) when p
tends to infinity [1915].

12.8.55 Problem There are conjectures by Wan [2899] asserting that under certain additional hy-
potheses, Theorem 12.8.52 remains true for the space S∆ of polynomials over Fp with
Newton polytope at infinity ∆ ⊂ RN , non-degenerate with respect to it. Actually a conse-
quence of Theorem 12.8.41 is that lim infp→∞ GNP(S∆, p) = HP(∆). Some special cases of
these conjectures are proved in [292].

12.8.5 The case of curves and abelian varieties

12.8.56 Remark We consider the Newton polygons of curves. To each curve one can associate its
Jacobian variety, and more generally we consider the Newton polygons of abelian varieties.
They encode useful invariants, such as the p-rank. We give the stratification of the space of
principally polarized abelian varieties by their Newton polygon as described in the work of
Oort and others. Then we focus on curves; even if the situation is less well-known than in
the case of abelian varieties, the subject has drawn much attention and we give the principal
results. We end the section with some remarks about Artin-Schreier curves.

12.8.57 Definition The Newton polygon of a curve C defined over Fq is the q-adic Newton polygon
of the numerator L(C, T ) of its zeta function.

Let A be an abelian variety of dimension g defined over Fq; for any prime ` 6= p, the
inverse limit of the `-th power torsion subgroups of A is the `-adic Tate module of A,
a Z`-module of rank 2g. Let PA(T ) denote the characteristic polynomial of the action
of Frobenius (q-th power) on the Q`-vector space T`(A) ⊗ Q`. The Newton polygon of
the abelian variety A defined over Fq is the q-adic Newton polygon of the polynomial
T 2gPA( 1

T ).

12.8.58 Remark The Newton polygon of a curve C coincides with one of its Jacobian variety JC ,
as defined above.

12.8.59 Remark For a curve of genus g, or an abelian variety of dimension g, the Newton polygon
starts at (0, 0) and ends at (2g, g). Moreover, it follows from Poincaré duality that it is
symmetric in the sense that if it contains the slope s with multiplicity m, it also contains
the slope 1− s with the same multiplicity.
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12.8.60 Remark Some authors consider the Newton polygon of the polynomial PA(T ); this Newton
polygon is symmetric to the one we consider here, with respect to the line x = g.

12.8.61 Definition A genus g curve (an abelian variety of dimension g) is ordinary when its Newton
polygon has the slopes 0 and 1 each with multiplicity g; it is supersingular when it has
the slope 1

2 with multiplicity 2g.
A polygon satisfying the requirements of Remark 12.8.59 is admissible.

12.8.62 Theorem [1769] Curves of genus g (resp. abelian varieties of dimension g) are generically
ordinary.

12.8.63 Theorem [2322] Let Ag,1⊗Fp denote the space parametrizing principally polarized abelian

varieties of dimension g defined over Fp. It has dimension g(g+1)
2 .

Let ζ be an admissible polygon; the space Wζ of principally polarized abelian varieties
having their Newton polygon lying on or above ζ is closed, and has dimension

dimWζ = #{(x, y) ∈ N2, y < x ≤ g, (x, y) above ζ}.

12.8.64 Remark There are more precise results by Li and Oort on the supersingular stratum [1919].

12.8.65 Problem As a consequence, every admissible polygon is the Newton polygon of an abelian
variety. It is not known whether this is true for curves. Van der Geer and Van der Vlugt
have shown that for p = 2, there are supersingular curves of every genus [2843], but this is
not even known in odd characteristic.

12.8.66 Definition The p-rank of the curve C (resp. of the abelian variety A) is the integer in
{0, . . . , g} defined as either the length of the horizontal segment of its Newton polygon,
or the dimension of the Fp-vector space JC [p] (resp. A[p]).

12.8.67 Remark From Theorem 12.8.63, the space of principally polarized abelian varieties having
p-rank f has codimension g − f in Ag,1 ⊗ Fp; this is also true in the space Mg of genus
g curves [1022] (which has dimension 3g − 3) and in the space Hg of genus g hyperelliptic
curves [1281] (of dimension 2g − 1).

12.8.68 Definition The Hasse-Witt matrix of a non-singular curve C of genus g is the matrix of
the Frobenius (p-th power) mapping on the g dimensional space H1(C,OC).

12.8.69 Remark Via Serre’s duality, the Hasse-Witt matrix is the transpose of the matrix of the
Cartier-Manin operator [553] on the space of differentials of the first kind.

12.8.70 Theorem [1999] Let H denote the Hasse Witt matrix of C, a curve defined over Fq, q = pm,

and H(pi) denote the matrix obtained by raising all coefficients of H to the power pi. Let
Ha := HH(p) · · ·H(pa−1). Then

1. The rank of Hg is the p-rank of the curve C.
2. We have the congruence L(C, T ) ≡ det(Ig − THm) (mod p).

12.8.71 Example With respect to the basis dual to the one given in Example 12.1.85, the Hasse-Witt

matrix of the hyperelliptic curve y2 = f(x) is the matrix ({f p−1
2 }pi−j)1≤i,j≤g.

12.8.72 Remark There are more general congruences for the factor of the zeta function of an
hypersurface coming from the primitive middle cohomology space [799].
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12.8.73 Theorem [752, Corollary 1.8] (Deuring-Shafarevich formula) Let C and C ′ be two curves
with function fields E and F ; assume that the extension E/F is Galois with Galois group
G a p-group. If f and f ′ denote the respective p-ranks of C and C ′, then the relation

1− f = #G(1− f ′) +
∑

x∈C(k)

(ex − 1),

holds, where ex is the ramification index of the place x in the extension E/F .

12.8.74 Example Let E = k(x, y) be the extension of the rational function field k(x) defined by
the (Artin-Schreier) equation yp − y = f(x); assume that f has s poles with orders prime
to p. Then E/k(x) is a Galois extension with Galois group Z/pZ, and the p-rank of E is
f = s− 1.

12.8.75 Remark One can deduce a stratification by the p-rank of the space of Artin-Schreier curves
(i.e., Artin-Schreier coverings of the projective line) [2430].

12.8.76 Remark [3068] We have an expression for the numerator of the zeta function of the Artin-
Schreier curve C : yp − y = f(x) from the L-functions L(af, T ) associated to the sums∑′
x∈P1 ψ(af(x)), where the sum is taken over the points which are not poles of f . Precisely

we have L(C, T ) =
∏
a∈Fp L(af, T ). The L-functions on the right are conjugated under the

action of Gal(Q(ζp)/Q); thus they all have the same Newton polygon, and NPq(C) is the
dilation by the factor p− 1 of NPq(f). As a consequence, the above determination of (parts
of) Newton polygons of L-functions associated to one variable exponential sums translate
to results on the Newton polygons of Artin-Schreier curves.

12.8.77 Remark The same argument gives the Newton polygon for curves with equation A(y) =
f(x), A an additive polynomial, as a dilation of the Newton polygon NPq(f).

12.8.78 Remark We focus on the case p = 2: here Artin-Schreier curves are hyperelliptic curves.
From the remark above, we have NPq(C) = NPq(f) for C : y2 +y = f(x). The stratification
of Hg by the 2-rank is described in [2430]: the irreducible components of the stratum of
curves with 2-rank f , Hg,f are in bijection with the partitions of g + 1 in f + 1 positive
integers. Inside Hg,0, one can reduce to f a polynomial, and Theorem 12.8.47 gives the first
vertex for the generic Newton polygon in this space. One can also deduce from these results
a theorem originally proved by Scholten and Zhu: there is no supersingular hyperelliptic
curve of genus g = 2n − 1, n ≥ 2 in characteristic 2 [2552].

12.8.79 Remark This result stands in striking contrast with the situation of genus g = 2n [2842].
In this case the dimension of the space of hyperelliptic supersingular curves is greater than
or equal to n; it can be as large as possible.

12.8.80 Remark For g ≤ 8, the supersingular hyperelliptic curves are completely determined when
p = 2 in [2551], and when p = 3 in [291]. When p = 2 one can also give the first vertices
occuring for Newton polygons of curves in Hg,0 for g ≤ 9 [291].

12.8.81 Remark There are results asserting the non-existence of supersingular Artin-Schreier curves
in odd characteristic for some infinite families of genera [291].
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12.9 Computing the number of rational points and zeta
functions

Daqing Wan, University of California Irvine

12.9.1 Remark As in Section 7.1, we shall restrict to the case of hypersurfaces. We focus on
theoretical and deterministic results. Probabilistic algorithms and improvements are not
discussed. As always, Fq denotes a finite field of characteristic p. The time for algorithms
means the number of field operations.

12.9.1 Point counting: sparse input

12.9.2 Definition For a polynomial f ∈ Fq[x1, . . . , xn], the sparse representation of f is the sum
of its non-zero terms

f(x1, . . . , xn) =
m∑
j=1

ajx
Vj , aj ∈ F∗q ,

where
Vj = (v1j , . . . , vnj), x

Vj = x
v1j

1 · · ·xvnjn .

The point counting problem is to compute the number #Af (Fq) of Fq-rational points of
the equation f = 0.

12.9.3 Remark For this problem, we may replace xqi by xi and assume that the degree of f in each
variable is at most q − 1. The sparse input size of f is then mn log(q).

12.9.4 Example For non-zero elements ai ∈ Fq and b ∈ Fq, let

f(x) = a1x
q−1
1 + · · ·+ anx

q−1
n + b,

be a diagonal polynomial. Deciding if #Af (Fq) > 0 is equivalent to deciding if there is a
subset {ai1 , . . . , aik} of the set {a1, . . . , an} such that

ai1 + · · ·+ aik + b = 0.
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The latter problem is the subset sum problem over Fq, which is well known to be NP-
complete. The fastest known deterministic algorithm for deciding if #Af (Fq) > 0 in this
case is the baby-step-giant-step method, which runs in time O(n2n/2 log(q)).

12.9.5 Theorem [1231] Computing #Af (Fq) is NP-hard, even in the case n = 2 or deg(f) = 3.

12.9.6 Remark For a positive integer r > 1, the modular counting problem is to compute the
residue class of #Af (Fq) modulo r. It is clear that 0 ≤ #Af (Fq) ≤ qn. Thus, if one can
compute #Af (Fq) modulo r for a single large r > qn or for many small r, the Chinese
remainder theorem implies that one can compute #Af (Fq) as well. This suggests that even
for small r, the modular counting problem is not going to be much easier than the full
counting problem.

12.9.7 Theorem [1318] Let r be a positive integer. Let q = ph. If r is not a power of p, then
computing #Af (Fq) modulo r is NP-hard. If r = pb is a power of p, computing #Af (Fq)
modulo r is also NP-hard, if either p ≥ 2n or h ≥ 2n or b > nh, that is, r = pb > qn.

12.9.8 Remark This complexity result shows that if r is not a power of p, one cannot expect a
fast algorithm to compute #Af (Fq) modulo r. Even in the case r = pb is a power of p,
any general algorithm computing #Af (Fq) modulo pb is expected to be fully exponential in
each of the three parameters {p, b, h}. The next two results provide non-trivial algorithms
in this direction.

12.9.9 Theorem [1318] Let q = ph and r = pb. The number #Af (Fq) modulo pb can be computed

in time O(nm2qb) = O(nm2phb), where m is the number of monomials of f .

12.9.10 Theorem [2903] Let q = ph and r = pb. The number #Af (Fq) modulo pb can be computed
in time O(n(8m)p(h+b)), where m is the number of monomials of f .

12.9.11 Problem Improve the exponent p(h+ b) to O(p+ h+ b) if possible.

12.9.2 Point counting: dense input

12.9.12 Definition For a polynomial f ∈ Fq[x1, . . . , xn] of degree at most d > 1, the dense repre-
sentation of f is the sum of all terms of degree at most d:

f(x1, . . . , xn) =
∑

i1+···+in≤d

ai1,...,inx
i1
1 · · ·xinn , ai1,...,in ∈ Fq.

12.9.13 Remark Replacing xqi by xi and we may again assume that the degree of f in each variable
is at most q − 1. The dense input size of f is then (d+ 1)n log(q).

12.9.14 Remark There is no known complexity result for the general point counting problem with
dense input. On the contrary, there are polynomial time algorithms in various special cases.
This suggests that the dense input point counting problem may have polynomial time
algorithms in much greater generality. We shall describe some of these positive results
below. In the special case that both n and d are fixed, the sparse input size agrees with the
dense input size. This is the case for elliptic curves for instance.

12.9.15 Theorem [1866] There is a p-adic algorithm which computes the number #Af (Fq) in time
O(p2n+4(dn logp q)

3n+7).

12.9.16 Remark This is a general purpose algorithm, which runs in polynomial time if p is small and
n is fixed. It assumes no conditions on the affine hypersurface Af . If one assumes additional
conditions on f , significant improvements can be made. In the following, we give several
such examples.
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12.9.17 Theorem [1862] Assume that both the affine hypersurface Af and its infinite part are
smooth of degree d not divisible by p > 2. Then, the number #Af (Fq) can be computed in
time Oε(p

2+ε(dn logp q)
O(1)).

12.9.18 Remark It may be possible to improve the factor p2+ε to p0.5+ε. This has been done in the
special case of hyperelliptic curves and more generally superelliptic curves [1429, 2109].

12.9.19 Theorem [18, 2394, 2560] Let n = 2 and assume that the projective curve defined by f is
smooth. Then, the number #Af (Fq) can be computed in time O((log q)cd), where cd is a
constant depending only on d.

12.9.20 Remark The constant cd is in general exponential in d. For hyperelliptic curves, the constant
cd can be taken to be a polynomial in d. It is not clear if the same theorem is true for singular
plane curves.

12.9.21 Remark In the case of the diagonal hypersurface

f(x1, . . . , xn) = a1x
d1
1 + · · ·+ anx

dn
n + b,

the number #Af (Fq) has a compact expression in terms of Jacobi sums, which can be
computed in polynomial time using LLL lattice basis reduction. This is worked out in some
cases in [455].

12.9.3 Computing zeta functions: general case

12.9.22 Remark For an affine hypersurface Af defined by a polynomial f(x1, . . . , xn) over Fq, the
zeta function

Z(Af , T ) = exp

( ∞∑
k=1

#Af (Fqk)

k
T k

)
is a rational function in T ; see Section 12.8 for more details. The degrees of its numerator
and the denominator can be bounded by a function depending only on the degree d of
the polynomial f and the number n of variables. The output size for the zeta function is
comparable to the dense input size O(dn log q) of f . Thus, in computing the zeta function,
we always use the dense input size.

12.9.23 Theorem [2894] There is an algorithm, that given f ∈ Fq[x1, . . . , xn] of degree d, computes
the reduction of the zeta function Z(Af , T ) modulo p in time bounded by a polynomial in

p
(
d
n

)
log q.

12.9.24 Remark This is a polynomial time algorithm if p is small. However, it only gives the modulo
p reduction of the zeta function. For any other prime ` 6= p, no nontrivial general algorithm
is known which computes the reduction of the zeta function modulo `, except when n ≤ 2.
By the Chinese remainder theorem, this is not much easier than computing the full zeta
function in general.

12.9.25 Theorem [1866] There is an algorithm, that given f ∈ Fq[x1, . . . , xn] of degree d, computes
the zeta function Z(Af , T ) in time bounded by a polynomial in (dnp log q)n.

12.9.26 Remark This is a polynomial time algorithm if p is small and n is fixed. In the case that
f is sufficiently smooth, this result can be greatly improved as follows.

12.9.27 Theorem [1862, 1863] There is an algorithm, that given f ∈ Fq[x1, . . . , xn] of degree d,
computes the zeta function Z(Af , T ) in time bounded by a polynomial in dnp log q, provided
that the affine hypersurface Af and its infinite part are both smooth and d is not divisible
by p > 2.
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12.9.28 Remark In various special cases, one can expect significantly better results. For instance,
when n = 1, there is always a polynomial time algorithm which computes the zeta function
of the zero-dimensional hypersurface Z(Af , T ) [2894]. The case n = 2 (the curve case)
has been studied most extensively. We state two such results in the next subsection. For a
diagonal hypersurface

f(x1, . . . , xn) = a1x
d1
1 + · · ·+ anx

dn
n + b,

the zeta function has an explicit expression in terms of Jacobi sums, which can then be
computed in polynomial time using LLL basis reduction; see [455] for the main ideas.

12.9.4 Computing zeta functions: curve case

12.9.29 Remark In this subsection, we restrict to the smooth plane curve Cf in P2 defined by a
smooth homogenous polynomial f(x1, x2, x3) of degree d over Fq. The genus of the curve is
then g = (d− 1)(d− 2)/2. The zeta function of Cf is of the form

Z(Cf , T ) =
Pf (T )

(1− T )(1− qT )
,

where Pf (T ) ∈ 1 +TZ[T ] is a polynomial of degree 2g. The special value Pf (1) is the order
of the Jacobian variety of Cf . Thus, any algorithm for computing the zeta function gives an
algorithm for computing the order of the Jacobian. We state two general results for curves.
The first one is `-adic in nature, and the second one is p-adic in nature.

12.9.30 Theorem [18, 2394, 2560] There is an algorithm which computes the zeta function Z(Cf , T )
of the curve Cf in time O((log q)cg ), where cg is a constant which in general depends
exponentially on g.

12.9.31 Remark This is a polynomial time algorithm for fixed genus g. For hyperelliptic curves,
the constant cg can be taken to be a polynomial in g.

12.9.32 Theorem [564, 1718] There is an algorithm which for fixed p, computes the zeta function
Z(Cf , T ) of the curve Cf in time Õ(g6(logp q)

3 + g6.5(logp q)
2).

12.9.33 Remark This is a polynomial time algorithm if p is fixed. The results in [564] work for more
general non-degenerate toric curves.

12.9.34 Remark There are a lot more specialized and more precise results on computing the zeta
function in various special cases, such as elliptic curves, hyperelliptic curves, superelliptic
curve, Cab-curves, Kummer curves, Artin-Scheirer curves, Fermat curves, etc. We refer to
[552, 816, 817, 1248, 1556, 1861, 1865, 1905, 2533] for more details and for further references.
For general survey, see [579, 1720, 2901].

See Also

§12.5 Discusses rational points on curves.
§12.7 Discusses zeta-functions and L-functions.
§12.8 Discusses p-adic estimates of zeta-functions.

References Cited: [18, 455, 552, 564, 579, 816, 817, 1231, 1248, 1318, 1429, 1556, 1718,
1720, 1861, 1862, 1863, 1865, 1866, 1905, 2109, 2394, 2533, 2560, 2894, 2901, 2903].
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13.1 Relations between integers and polynomials over finite
fields

Gove Effinger, Skidmore College

The arithmetic structures of the ring of integers Z and the ring of polynomials Fq[x],
where q is a prime power, are strikingly similar. In particular, the densities of irreducible
elements in these rings are virtually identical, leading to very closely analogous theorems
(and conjectures) in the two settings. For a general exposition on the ideas contained in this
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section, see, for example, [963]. Here we state some of these analogous definitions, theorems,
and conjectures, listing first the item involving Z and second its analogue in Fq[x]. The latter
of these first two definitions will be used throughout this section.

13.1.1 Definition For m (6= 0) ∈ Z, the absolute value of m, denoted |m|, is |Z/ 〈m〉 |.

13.1.2 Definition For f (6= 0) ∈ Fq[x], the absolute value of f , denoted |f |, is |Fq[x]/ 〈f〉 |.

13.1.3 Remark Suppose the degree of f in the above definition is n. Since the quotient ring consists
of all polynomials of degree less than n, we see that in fact |f | = qn. We note also that
n = logq(|f |). These facts will be relevant frequently in what follows.

13.1.4 Remark Throughout this section we shall use the notation f(k) ∼ g(k) to mean that
limk→∞ f(k)/g(k) = 1. In addition, the notation log denotes the natural logarithm.

13.1.1 The density of primes and irreducibles

13.1.5 Theorem (The Prime Number Theorem) Let π(m) be the number of prime numbers less
than or equal to m. Then

π(m) ∼ m

log(m)
.

13.1.6 Remark For the polynomial case, we employ the notation of Definition 2.1.23 but, in analogy
with integers, add the notation πq(n) to mean the number of monic irreducible polynomials
over Fq of degree less than or equal to n. The next result then follows immediately from
Theorem 2.1.24.

13.1.7 Theorem (The Polynomial Prime Number Theorem) If Iq(n) is as in Definition 2.1.23, we
have

Iq(n) ∼ qn

n
.

13.1.8 Remark We note that if f ∈ Fq[x] is of degree n, this theorem says that

Iq(n) ∼ |f |
logq(|f |)

,

in exact analogy to the Prime Number Theorem.

13.1.9 Remark The two Prime Number Theorems (integer and polynomial) both say that “near”
an element, the density of primes is 1 out of the log of the absolute value of the element.
In the integer case the log is natural; in the polynomial case the log is base q.

13.1.10 Remark The next result of Lenskoi [1891] gives asymptotic information for the case of
counting monic irreducibles of degree less than or equal to n (see also [2412]).

13.1.11 Theorem Let πq(n) be as defined in 13.1.6 above. Then we have

πq(n) ∼ q

q − 1

qn

n
.
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13.1.2 Primes and irreducibles in arithmetic progression

13.1.12 Theorem (Primes in Arithmetic Progression) Let the Euler function φ be as in Defini-
tion 2.1.43 and suppose a and d are relatively prime positive integers. By πa,d(m) we mean
the number of primes less than or equal to m which are congruent to a modulo d. Then

πa,d(m) ∼ m

log(m)φ(m)
.

13.1.13 Remark This then says that for any such pair {a, d} there are infinitely many primes
which are congruent to a (mod d), and moreover that the primes are “ultimately uniformly
distributed” among the eligible congruence classes of d. Artin [134] proved the following
analogous result for polynomials.

13.1.14 Theorem [134] Let the “polynomial Euler function” Φq be as in Definition 2.1.111 and
suppose A and D are relatively prime polynomials in Fq[x]. By Iq;A,D(n) we mean the
number of monic irreducible polynomials of degree n which are congruent to A modulo D.
Then

Iq;A,D(n) ∼ qn

nΦq(D)
.

13.1.15 Remark Hayes [1447] generalizes this result to a much broader class of congruence relations
which he calls “arithmetically distributed” relations. As an example, he shows that the
relation of two monic polynomials having the same first k and last m coefficients (see
Definition 3.5.1 in [1447]) is arithmetically distributed, and so the following theorem holds.

13.1.16 Theorem [1447] Let Iq;k,m(n) be the number of monic irreducible polynomials of degree n
for which the first k and last m coefficients are prescribed. Then

Iq;k,m(n) ∼ q

q − 1

qn−k−m

n
.

13.1.17 Remark This says that monic irreducibles are “ultimately uniformly distributed” with
respect to their first k and last m coefficients, provided of course that the constant term is
not 0. For much more information on irreducible polynomials with prescribed coefficients,
see Section 3.5.

13.1.3 Twin primes and irreducibles

13.1.18 Definition Two odd prime numbers are twin primes if the absolute value of their difference
is as small as possible, i.e., is 2.

13.1.19 Definition Two monic irreducible polynomials over Fq are twin irreducibles if the absolute
value of their difference is as small as possible, i.e., is 1 if q > 2 and is 4 if q = 2.

13.1.20 Remark This last definition implies that for q > 2, two monic irreducibles are twins provided
they are identical except in their constant terms (so their difference has degree 0). For q = 2,
however, all irreducible have 1 as their constant coefficient and all have an odd number of
terms (otherwise they are divisible by x + 1), and so in this case twins will differ in their
linear and quadratic terms (so their difference has degree 2).

13.1.21 Conjecture [1418] Let π2(m) be the number of twin prime pairs less than or equal to m.
Then

π2(m) ∼ 2
m

(logm)2

∏
odd p

(
1− 1

(p− 1)2

)
.
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13.1.22 Remark The product over odd primes in the above conjecture is the “twin primes constant”
and has value approximately 0.66016. If this conjecture were proved, it then implies the
“Twin Primes Conjecture,” i.e., the existence of infinitely many twin prime pairs. We have
an analogous conjecture in the polynomial setting.

13.1.23 Conjecture [962] Let I2,q(n) be the number of twin irreducible polynomials of degree n.
Then

I2,q(n) ∼ δ
(
q − 1

2

)
qn

n2

∏
P

(
1− 1

(|P | − 1)2

)
,

where either δ = 1 and the product is over all monic irreducibles P provided q > 2, or δ = 4
and the product excludes linear irreducibles when q = 2.

13.1.24 Remark Though unproven, these two conjectures are strongly supported by numerical
evidence. For example, for polynomials of degree 16 over F3, the above formula accurately
predicts the 66606 twin irreducible pairs. For more information on what is currently known
along the lines of Conjecture 13.1.23, especially for the “fixed n, q going to ∞” case, see
Pollack [2410] and [2411].

13.1.25 Remark Though the Twin Primes Conjecture remains unproven, it was first observed by
Hall [1402] and then further explored by Pollack [2409] and Effinger [959], that the “Polyno-
mial Twin Primes Conjecture” holds provided only that q > 2. The proof technique makes
use of the fact that unlike prime numbers, irreducible polynomials have “internal struc-
ture.” Specifically, “irreducibility preserving substitutions” can be exploited to guarantee
the following theorem.

13.1.26 Theorem [959] (Polynomial Twin Primes Theorem) Over every Fq with q > 2, there exist
infinitely many twin irreducible pairs.

13.1.27 Remark In fact one can prove the existence of “t-tuplets” (twins being 2-tuplets) in the
polynomial case. For example, over F7 we can guarantee the existence of infinitely many
4-tuplets. This follows from the next result.

13.1.28 Theorem [959] Let Fq satisfy that q ≥ 4. If q ≡ 0 (mod 4) or q ≡ 1 (mod 4) and if p is

any prime dividing q − 1, then there exist exactly t = (p−1)(q−1)
p irreducible polynomials of

the form xp
k − a over Fq for every k ≥ 1. If q ≡ 3 (mod 4), the conclusion holds for all odd

primes p, but no irreducibles of the form x2k − a exist provided k ≥ 2.

13.1.29 Problem The polynomial twin primes conjecture remains unsolved over F2.

13.1.4 The generalized Riemann hypothesis

13.1.30 Definition If χ is a Dirichlet character (see, for example, Section 1.4.3 of [751]), then the
corresponding Dirichlet L-function is

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

,

where s ∈ C and p ranges over all primes.

13.1.31 Remark The function L(s, χ), which converges for all Re(s) > 1, can, like the Riemann
zeta function, be extended analytically to a meromorphic function on the whole complex
plane.
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13.1.32 Conjecture (The Generalized Riemann Hypothesis) For every Dirichlet character χ, if
Re(s) > 0 and if L(s, χ) = 0, then Re(s) = 1/2.

13.1.33 Definition If χ is a character “of Dirichlet type” on Fq[x] (see, for example, Chapter 5 of
[961]), then the corresponding polynomial Dirichlet L-function is

Lq(s, χ) =
∏
P

(
1− χq(P )

|P |s
)−1

,

where s ∈ C and P ranges over all monic irreducibles over Fq.

13.1.34 Remark The following polynomial analogue of the Generalized Riemann Hypothesis follows
from the deep results of André Weil [2962] and is a key ingredient of the results of our next
subsection and of many other results in the number theory of polynomials over finite fields.
For example, see [1606] for an exposition of the polynomial analogue of Artin’s conjecture
on primitive roots.

13.1.35 Theorem [2962] (A Polynomial Generalized Riemann Hypothesis) The function Lq(s, χ) is
a complex polynomial Fχ in q−s and when factored into

Fχ(q−s) =
∏

(1− γiq−s),

each γi satisfies |γi| = q1/2.

13.1.5 The Goldbach problem over finite fields

13.1.36 Remark In both the integer and polynomial cases, the “two-primes” Goldbach problem of
writing an appropriate element of the ring Z or Fq[x] as a sum of two irreducible elements
remains unsolved. However, if one moves to the “three-primes” case, a great deal more can
be said. The first giant step forward was the pioneering work of Hardy and Littlewood in
the 1920s. In the following result, Hypothesis R (a Weak Generalized Riemann Hypothesis)
replaces the 1/2 in Conjecture 13.1.32 with Θ, where 1/2 ≤ Θ < 3/4.

13.1.37 Theorem [1420] If Hypothesis R holds, then, as m → ∞, the number N3(m) of represen-
tations of the odd integer m as a sum of three odd primes satisfies:

N3(m) ∼ m2

(logm)3

∏
p>2

(
1 +

1

(p− 1)3

)∏
p|m

(
1− 1

p2 − 3p+ 3

)
,

where p runs over prime numbers as specified.

13.1.38 Remark Vinogradov [2877] succeeded in removing Hypothesis R from the above Hardy-
Littlewood result, hence proving unconditionally that every sufficiently large odd number
is a sum of three primes. It has since been established using refinements of his analysis that
“sufficiently large” can be assumed to mean above 1043000 [602]. It has also been established
that if one assumes Conjecture 13.1.32, then every odd number greater than 5 is a sum of
three primes (the so-called “Complete 3-Primes Theorem under GRH”; see, for example,
[823]).

13.1.39 Remark Turning to the polynomial case, Hayes [1448] adapted the Hardy-Littlewood “Cir-
cle Method” to the function field setting, using the completion of Fq(x) at the infinite place
as the analogue of the unit circle in the complex plane and employing an appropriate version
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of Theorem 13.1.35, to obtain an asymptotic “3-primes” result for polynomials. However,
the irreducibles in his analysis were not monic and hence the result was not a perfect ana-
logue of the integer result. Later, using adelic analysis (wherein Fq(x) is completed at all
its places, not just the infinite one) and again an appropriate version of Theorem 13.1.35,
Hayes and Effinger [961] obtained the theorem below. First we need a definition.

13.1.40 Definition A polynomial f over Fq is even if f is divisible by an irreducible P with |P | = 2.
Otherwise f is odd.

13.1.41 Remark Obviously, even polynomials only exist over F2 and are then ones which are divis-
ible by x or x+ 1.

13.1.42 Theorem [961] Let f be an odd monic polynomial of degree n over Fq. As q → ∞ or
n → ∞, the number M3(f) of representations of f = P1 + P2 + P3, where deg(P1) = n,
deg(P2) < n and deg(P3) < n, satisfies:

M3(f) ∼ q2n

n3

∏
|P |>2

(
1 +

1

(|P | − 1)3

)∏
P |f

(
1− 1

|P |2 − 3|P |+ 3

)
,

where P runs over irreducible polynomials over Fq as specified.

13.1.43 Remark Because this result is asymptotic in both q and n, careful analysis of the error terms
and further investigation, both theoretical and numerical, of the low degree and small field
cases [957, 958, 960] yield the following “best possible” result.

13.1.44 Theorem (A Complete Polynomial 3-Primes Theorem) Every odd monic polynomial of
degree n ≥ 2 over every finite field Fq (except the case of x2 + α when q is even) is a sum
of three monic irreducible polynomials, one of degree n and the others of lesser degrees.

13.1.45 Remark Hence, we get “complete 3-primes theorems” in both the integer and polynomial
cases provided that we have a proven Generalized Riemann Hypothesis. In the polynomial
case, thanks to Weil, we do; in the integer case we still do not.

13.1.6 The Waring problem over finite fields

13.1.46 Remark The general problem of writing an arbitrary positive integer as a sum of a limited
number of k-th powers, known as the Waring Problem, was first settled by Hilbert in 1909.

13.1.47 Theorem (The Hilbert-Waring Theorem) [1500] For every positive integer k, there exists
an integer s(k) such that every positive integer m can be written as a sum of at most s(k),
k-th powers.

13.1.48 Remark Tremendous effort over the years has been put toward the question: Given k, what
is s(k)? To that end we have following definitions, the latter having first been introduced
by Hardy and Littlewood [1419].

13.1.49 Definition Let g(k) be smallest s such that every positive integer m is a sum of at most
s, k-th powers. Let G(k) be the smallest s for which every sufficiently large positive
integer is a sum of at most s, k-th powers.

13.1.50 Remark It is known that g(2) = G(2) = 4, that g(3) = 9, and that 4 ≤ G(3) ≤ 7. Exact
formulas are now known for g(k) for all k. Although exact values of G(k) are known only
for k = 2 and k = 4 (G(4) = 16), considerable progress has been made on good lower and
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upper bounds for G(k). For excellent surveys of the Waring Problem, see Ellison [974] and
the more current Vaughan and Wooley [2862].

13.1.51 Remark Turning to the polynomial case, one must first observe that no cancellation occurs
in the integer Waring Problem, and so the most appropriate analogue in the polynomial
case will allow as little cancellation as possible. This is achieved as follows:

13.1.52 Definition The representation f = Xk
1 + · · · + Xk

s of f ∈ Fq[x] as a sum of k-th powers
of polynomials in Fq[x] is a strict sum provided that for every 1 ≤ i ≤ s, deg(Xi) ≤
ddeg(f)/k)e (equivalently, provided that k deg(Xi) < k + deg(f)).

13.1.53 Remark The following result, first proved independently by Car [508], Webb [2955], and
Kubota [1810], is the best analogue to the Hilbert-Waring Theorem.

13.1.54 Theorem (Polynomial Waring Theorem) Suppose k < p = char(Fq). Then there exists an
integer s(k), independent of q, such that every f ∈ Fq[x] is a strict sum of s(k) k-th powers
of polynomials in Fq[x].

13.1.55 Remark Just as in the integer case, the question becomes: Given k, what is s(k)? The
following definition is from Section 1.1 of [961].

13.1.56 Definition Given k ≥ 2, let gpoly(k) be the smallest value of s such that for every q with
p = char(Fq) > k, every f ∈ Fq[x] is a strict sum of s k-th powers in Fq[x]. Let Gpoly(k)
be the smallest s such that this same condition holds except possibly for a finite number
of polynomials in the collection of all Fq[x] with p > k.

13.1.57 Remark As discussed in Section 1.2 of [961], the case of k = 2 is settled by Serre, with
Webb showing that the only exceptions are two polynomials of degree 3 and six polynomials
of degree 4 over F3 which require four squares.

13.1.58 Theorem [961] We have gpoly(2) = 4 and Gpoly(2) = 3.

13.1.59 Remark To date no exact values of gpoly(k) or Gpoly(k) are known for k > 2. The cases
of k = 3 and k = 4 have been extensively studied. See the Introduction of [513] for a
good summary of what is currently known, including cases not satisfying the hypothesis of
Theorem 13.1.54 (i.e., that k < p). Following our Definition 13.1.56, however, it is known
that gpoly(3) ≤ 9, Gpoly(3) ≤ 7, and that Gpoly(4) ≤ 11; see [514, 515]. For results on upper
bounds for gpoly(k), especially for large k, see [1167]. Finally, in [513], the following upper
bounds for general k are established for both parameters. Note that in the case of gpoly(k),
there is dependence on q.

13.1.60 Theorem [513] We have

1. Gpoly(k) ≤ k(log(k − 1) + 3) + 3;

2. If k ≥ 4, then gpoly(k) ≤ gcd(q − 1, k)(k3 − 2k2 − k + 1).
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13.2 Matrices over finite fields

Dieter Jungnickel, University of Augsburg

On one hand we collect results about the numbers of matrices of various types over Fq;
on the other hand, we shall also discuss matrix representations of the field Fqm over Fq and
give a few results concerning determinants.

13.2.1 Matrices of specified rank

13.2.1 Remark As noted in Remark 2.1.90, the vector space of all m × n matrices over a field
F = Fq has dimension mn, and thus the number of m × n matrices is qmn. We shall
mainly concentrate on square matrices. Clearly, the m × m matrices over Fq constitute

a ring R = F(m,m)
q , and the invertible matrices in R form a group G = GL(m, q), the

general linear group. The elements of G are exactly those matrices in R which transform
the elements of a fixed ordered basis B = {α1, . . . , αm} for Fqm over Fq into an ordered
basis again. Hence the order of G agrees with the total number of distinct ordered bases:

|GL(m, q)| = qm(m−1)/2(qm − 1)(qm−1 − 1) · · · (q − 1). (13.2.1)

Trivially, the determinants of the elements of G are uniformly distributed over F ∗. In
particular, the matrices in G with determinant 1 form a group SL(m, q) of order

|SL(m, q)| = qm(m−1)/2(qm − 1)(qm−1 − 1) · · · (q2 − 1),

called the special linear group. These two groups are the most elementary instances of the
classical groups, which are discussed in detail in Section 13.4.

13.2.2 Remark Generalizing Equation (13.2.1), we give a formula for the number of all m × n
matrices with prescribed rank k over Fq. This is closely related to the number of subspaces
of prescribed dimension in a vector space over Fq.
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13.2.3 Definition The number of k-dimensional subspaces of an m-dimensional vector space over
Fq is denoted by

[
m
k

]
q
. These numbers are the Gaussian coefficients; they constitute a

q-analogue of the binomial coefficients.

13.2.4 Lemma The Gaussian coefficient
[
m
k

]
q

is given explicitly as follows:

[m
k

]
q

=
(qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

13.2.5 Theorem [1070] Let V = F(m,n)
q be the vector space of all m × n matrices over the field

F = Fq. Then the number f(m,n, k) of matrices with rank k ≤ min{m,n} in V is

f(m,n, k) =
[n
k

]
q
qk(k−1)/2(qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

=
[m
k

]
q
qk(k−1)/2(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

= qk(k−1)/2
k−1∏
i=0

(
qm−i − 1

) (
qn−i − 1

) (
qi+1 − 1

)−1
.

13.2.6 Remark Clearly, the probability that a given entry of an m×n matrix of rank k over Fq is
6= 0 does not depend on the position of the entry. In [2093] this probability is determined
to be (

1− 1
q

)(
1− 1

qk

)
(

1− 1
qm

)(
1− 1

qn

) .
In [412], functions counting matrices of given rank over a finite field with specified positions
equal to 0 are studied. Such matrices may be viewed as q-analogues of permutations with
certain restricted values. In particular, a simple closed formula for the number of invertible
matrices with zero diagonal is obtained (see below), as well as recursions to enumerate
matrices with zero diagonal by rank.

13.2.7 Theorem [2093] The number of invertible m×m matrices over Fq whose diagonal consists
entirely of zeros is

q(
m−1

2 )(q − 1)m

(
q−1

m∑
i=0

(−1)i
(
m

i

)(
[m− i]q

)
!

)
,

where [k]q = qk−1 + · · ·+ q + 1.

13.2.2 Matrices of specified order

13.2.8 Remark By basic group theory, the order of an invertible m × m matrix over Fq has to
divide the order of GL(m, q) given in Equation (13.2.1). This elementary result can be
strengthened in two ways.

13.2.9 Theorem [2293] The least common multiple of all orders of matrices in GL(m, q) is peM ,
where q is a power of the prime p, e is the least integer satisfying m ≤ pe, and M is the least
common multiple of q− 1, q2− 1, . . . , qm− 1. In particular, the order o(A) of A ∈ GL(m, q)
divides peM . Moreover, o(A) is always bounded by qm − 1.
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13.2.10 Example Consider F = Fqm as a vector space over K = Fq, and let γ be any element of
F ∗. Then γ defines a K-linear mapping Tγ : F → F via

Tγ : ξ 7→ γξ for ξ ∈ F,

and the order of Tγ equals the order o(γ) of γ in F ∗. Now represent Tγ with respect to
some basis B of F over K; then the associated matrix Aγ(B) is a matrix of order o(γ) in
GL(m, q). In particular, choosing γ as a primitive element ω for F gives a matrix Aω(B) of
the maximum possible order qm − 1.

13.2.11 Definition An invertible m × m matrix A of the maximum possible order qm − 1 over
Fq is a Singer cycle, and the group generated by A is a Singer subgroup of GL(m, q).
Moreover, an involutory matrix is simply a matrix of order two.

13.2.12 Theorem [1269] Any two Singer subgroups of G = GL(m, q) are conjugate in G. The
number S(m, q) of Singer subgroups of G equals

S(m, q) =
|GL(m, q)|
m(qm − 1)

,

and the number of Singer cycles in G is given by

S(m, q)φ(qm − 1) =
φ(qm − 1)

m
·
m−1∏
i=1

(
qm − qi

)
,

where φ is the Euler function given in Definition 2.1.43.

13.2.13 Theorem [1517] The number i(m, q) of involutory m×m matrices over Fq equals

i(m, q) =

gm ·
∑m
t=0 g

−1
t g−1

m−t if q is odd,

gm ·
∑dm/2e
t=0 g−1

t g−1
m−2tq

−t(2m−3t) if q is even,

where gt denotes the number of invertible t × t matrices over Fq as given in (13.2.1) (for
t 6= 0) and g0 = 1.

13.2.14 Remark [2166] More generally, there is a (rather involved) formula for the number of m×m
matrices of order k over Fq. Clearly, the probability that a randomly chosen m×m matrix

over Fq is invertible (and therefore has an order) is gm/q
m2

, where gm denotes the number
of invertible m ×m matrices over Fq as given in (13.2.1). For fixed q, this probability has
a limit:

lim
m→∞

gm
qm2 =

∏
r≥1

(
1− 1

qr

)
.

For q = 2, this limit is 0.28878 . . .; for q = 3, the limit is 0.56012 . . .; and, as q → ∞, the
probability of being invertible goes to 1.

13.2.15 Remark [1064] On the other end of the spectrum, the number of nilpotent m×m matrices
over Fq – that is, matrices A satisfying Ak = 0 for some k – is given by a very simple
formula: it equals qm(m−1).
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13.2.3 Matrix representations of finite fields

13.2.16 Definition Any subring R of the full matrix ring K(m,m) over a field K which is itself a
field is a matrix field (of degree m) over K. If K is a finite field and if R ∼= Fq, R is a
matrix representation of degree m for Fq (over K).

13.2.17 Remark The following result concerning the existence of matrix representations for Fq is
an obvious consequence of Theorem 13.2.9 and Example 13.2.10. For details, see Example
13.2.19.

13.2.18 Theorem Any matrix representation for Fqm over Fq has degree at least m. Moreover, there
always exists a representation of degree m.

13.2.19 Example With the notation of Example 13.2.10, the qm − 1 matrices Aγ(B) with γ ∈ F ∗
together with the zero matrix form a matrix representation R(B) of degree m for Fqm over
Fq. Clearly, one may write R(B) as the qm − 1 powers of the Singer cycle Aω(B) together
with the zero matrix. Now let f(x) = xm + fm−1x

m−1 + · · · + f1x + f0 be the minimal
polynomial of a primitive element ω (so that f is a primitive polynomial of degree m over
K), and let B = {1, ω, ω2, . . . , ωm−1} be the associated polynomial basis. Then Aω(B) is
the companion matrix of f , that is,

Aω(B) =



0 0 · · · 0 −f0

1 0 · · · 0 −f1

0 1
. . .

...
...

...
...

. . . 0 −fm−2

0 0 · · · 1 −fm−1


.

As this example shows, Singer cycles in GL(m, q) give rise to matrix representations for
Fqm over Fq of the smallest possible degree. Essentially, all minimal degree representations
may be obtained in this way.

13.2.20 Theorem [2980] Let R ⊂ F(m,m)
q be a matrix representation for F = Fqm over K = Fq.

Then there exists a matrix A ∈ R such that

R = {Ak : k = 1, . . . , qm − 1} ∪ {0}.

Moreover, A is similar to the companion matrix of a primitive polynomial of degree m over
K, and detA is a primitive element of K.

13.2.21 Remark Theorem 13.2.20 characterizes the matrix representations for Fqm of smallest de-
gree. There are considerably more general results due to Willett [2980] who classified all
matrix fields of degree m over Fq in terms of primitive polynomials over the underlying
prime field Fp. The general result is rather technical, so we only give the special case q = p
here. Proofs for all these results can also be found in Section 1.5 of [1631].

13.2.22 Theorem [2980] Let p be a prime, and let R be any representation of Fpm as a matrix field
of degree n over Fp. Up to similarity, R has the form

R = {diag
(
0, . . . , 0, Ak, . . . , Ak

)
: k = 1, . . . , pm − 1} ∪ {0},

where A is the companion matrix of a primitive polynomial of degree m over Fp.

13.2.23 Remark It is of interest to study representations for Fqm consisting of special types of
matrices. We present some results due to Seroussi and Lempel [2584] concerning symmetric
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matrix representations, that is, matrix representations consisting of symmetric matrices
only. This turns out to be closely related to the duality theory for bases, see Section 5.1.
With the exception of Theorem 13.2.27, proofs for the subsequent results can be found in
Section 4.6 of [1631].

13.2.24 Lemma [2584] Let B be a basis for F = Fqm over Fq, and let R(B) be the associated matrix
representation. Then R(B) is symmetric if and only if there exists an element λ ∈ F ∗ such
that the dual basis B∗ of B satisfies B∗ = λB, where λB consists of all elements λβ with
β ∈ B.

13.2.25 Theorem [2584] Every finite field F = Fqm admits a basis B over Fq such that the associated
matrix representation R(B) is symmetric.

13.2.26 Theorem [2584] Let B be a basis of F = Fqm over Fq with associated matrix representation
R(B), and assume that q is even or that q and m are both odd. Then the dual basis B∗

of B satisfies B∗ = λB for some λ ∈ F ∗ (so that R(B) is symmetric) if and only if λ is a
square, say λ = µ2, and the basis µB is self-dual.

13.2.27 Theorem [2584] Let B be a basis of F = Fqm over Fq, and assume that the associated matrix
representation R(B) is closed under transposition of matrices. Then R(B) is symmetric
provided that either q is even or q and m are both odd. If q is odd and m is even, then

R(B) is not symmetric if and only if B∗ = (λB)
qm/2

for some λ ∈ F ∗.

13.2.4 Circulant and orthogonal matrices

13.2.28 Remark There are many results on the number of matrices of special types over Fq. In
the remaining subsections, we present a selection of such results. We begin with those cases
which are related to the enumeration of various types of bases as discussed in Chapter 5.
Let us summarize these connections as follows:

Type of basis Associated transformation matrices Reference

normal bases circulant matrices 5.2.15

self-dual bases orthogonal matrices 5.1.22

self-dual normal bases orthogonal circulant matrices 5.2.28

13.2.29 Definition An m ×m matrix C = (cij)i,j=1,...,m is circulant if its rows are generated by
successive cyclic shifts of its first row, that is

ci+1,j+1 = cij for all i, j = 1, . . . ,m, (13.2.2)

where indices are computed modulo m. Thus C is specified by the entries cj = c1,j in
its first row:

C =


c1 c2 · · · cm−1 cm
cm c1 · · · cm−2 cm−1

cm−1 cm · · · cm−3 cm−2

...
...

. . .
...

...
c2 c3 · · · cm c1

 .

Such a matrix C is denoted as circ(c1, . . . , cm).
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13.2.30 Remark The following three results are well-known. They may be found, for example, in
[1631].

13.2.31 Lemma Let F be a field. Mapping the matrix C = circ(c1, . . . , cm) to the coset of the
polynomial c(x) = c0 + c1x+ · · ·+ cm−1x

m−1 modulo xm−1 gives an isomorphism between
the ring of all circulant m×m matrices over F and the ring R = F [x]/(xm−1). In particular,
C is invertible if and only if the associated polynomial c(x) is a unit in R.

13.2.32 Corollary Let C(m, q) denote the multiplicative group of all invertible circulant m × m
matrices over Fq. Then the order of C(m, q) equals Φq(x

m − 1), where Φq is the function
introduced in Definition 2.1.111.

13.2.33 Theorem Let q be a power of the prime p, let m be a positive integer, and write m = pbn,
where p does not divide n. Then

|C(m, q)| = qm
∏
d|n

(
1− qod(q)

)φ(d)/od(q)

, (13.2.3)

where φ is the Euler function given in Definition 2.1.43 and where od(q) denotes the multi-
plicative order of d modulo q.

13.2.34 Corollary Assume that q and m are co-prime. Then |C(m, q)| =
∏r
j=1 (qmj − 1) , where

m1, . . . ,mr are the degrees of the irreducible factors of xm − 1 over Fq.

13.2.35 Definition An m × m matrix A is orthogonal if it satisfies the condition AAT = I. We
denote the multiplicative group of all orthogonal m×m matrices over Fq by O(m, q).

13.2.36 Remark The preceding terminology is somewhat ambiguous, as the term orthogonal group
usually refers to the group of isometries of an orthogonal geometry, that is, of a vector space
equipped with a quadratic form. In the case of finite fields, no ambiguity arises if both q
and m are odd. However, if q is odd and m is even, then there are two distinct orthogonal
groups (of different orders); and if q is even, an orthogonal geometry is by definition a
symplectic geometry refined by an additional quadratic form, which forces m to be even.
In particular, the standard text books do not contain the order of O(m, q) for even values
of q. Nevertheless, the definition given in 13.2.35 makes sense for all cases. See Section 13.4
for the “classical” orthogonal groups.

13.2.37 Theorem [1989] Assume that either q is even or both q and m are odd. Then

|O(m, q)| = γ
m−1∏
i=1

(
qi − εi

)
, (13.2.4)

where

εi =

{
1 if i is even,

0 if i is odd,
and γ =

{
2 if q is even,

1 if q and n are odd.

Now let q be odd and m even, say m = 2s. Then

|O(m, q)| = qs(s−1)/2 (qs + ε)

s−1∏
i=1

(
q2i − 1

)
, (13.2.5)

where

ε =

{
1 if s is odd and q ≡ 3 (mod 4),

−1 otherwise.
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13.2.38 Lemma Let F be a field, C = circ(c1, . . . , cm) a circulant matrix, and c(x) = c0 + c1x +
· · · + cm−1x

m−1 the associated polynomial c(x) in the ring R = F [x]/(xm − 1), as in
Lemma 13.2.31. Then C is an orthogonal matrix if and only if c(x)cT (x) = 1 in R, where
cT (x) = c0+cm−1x+· · ·+c2xm−2+c1x

m−1 is the polynomial corresponding to the transpose
CT of C.

13.2.39 Remark We require some notation to state the number of orthogonal circulant m × m
matrices over Fq; clearly all these matrices form a group which is denoted by OC(m, q).
First assume that q and m are co-prime. (The general case is reduced recursively to this
special case.) Then let x − 1, possibly x + 1 (this factor arises only if q is odd and m is
even) and f1, . . . , fr be the monic irreducible factors of xm − 1. Some of the fi may be
self-reciprocal (that is, fi = f∗i , see Definition 2.1.48), say f1, . . . , fs. Then the remaining
fj split into pairs of the form {f, f∧} with f 6= f∧, where f∧ = f∗/f0 and where f0 is the
constant term of f ; say r = s+ 2t, and (fs+j)

∧ = fs+t+j for j = 1, . . . , t.

13.2.40 Theorem [258, 471, 1633, 1990] Assume that q and m are co-prime, and write, using the
notation introduced in Remark 13.2.39,

deg(fi) = 2di for i = 1, . . . , s and deg(fs+j) = deg(fs+t+j) = ej for j = 1, . . . , t.

Then the order of OC(m, q) is given by

|OC(m, q)| = γ
s∏
i=1

(
qdi + 1

) t∏
i=1

(qej − 1) , (13.2.6)

where

γ =


1 if q is even,

2 if q and m are odd,

4 if q is odd and m is even.

Now let q be a power of the prime p. If p 6= 2, then

|OC(pn, q)| = qn(p−1)/2 |OC(n, q)| (13.2.7)

for every positive integer n. Finally,

|OC(2n, q)| =


q(n+1)/2 |OC(n, q)| if n is odd,

2qn/2 |OC(n, q)| if n ≡ 2 (mod 4),

qn/2 |OC(n, q)| if n ≡ 0 (mod 4),

(13.2.8)

for every positive integer n.

13.2.41 Remark With the exception of the special case of Theorem 13.2.37 where q is odd and m
is even, proofs for all the preceding results can also be found in [1631].

13.2.5 Symmetric and skew-symmetric matrices

13.2.42 Remark In order to prove the results on (circulant) orthogonal matrices presented in the
previous subsection, one needs a connection with and enumeration results for two other
interesting classes of matrices, which are the topic of the present subsection. Again, proofs
for these results are in [1631].
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13.2.43 Definition A matrix A over Fq is symmetric if it satisfies the condition A = AT , and
skew-symmetric if it satisfies A = −AT and has diagonal entries 0 only. (This extra
condition has to be added in view of the special case where q is a power of 2.)

13.2.44 Definition Let A be a symmetric invertible matrix over Fq. Then any (invertible) m×m
matrix M satisfying A = MMT is a factor of A.

13.2.45 Lemma [1989] The invertible symmetric m×m matrices over Fq admitting a factor are in
a 1-to-1 correspondence with the cosets of O(m, q) in GL(m, q). Hence

|O(m, q)| = |GL(m, q)|
sf(m, q)

,

where sf(m, q) denotes the number of invertible symmetric matrices over Fq admitting a
factor.

13.2.46 Lemma [69] Let A be a symmetric invertible matrix over Fq. If q is odd, A admits a factor
if and only if detA is a square; and if q is even, A admits a factor if and only if A has at
least one non-zero diagonal entry.

13.2.47 Theorem [544, 1989] The number N(m, r) of symmetric m×m matrices of rank r over Fq
equals

N(m, r) =

s∏
i=1

q2i

q2i − 1
·
r−1∏
i=0

(
qm−i − 1

)
,

where r ≤ m and s = br/2c. In particular, the number of invertible symmetric m × m
matrices over Fq is given by

N(m,m) =
m∏
i=1

(
qi − δi

)
, where δi =

{
0 if i is even,

1 otherwise.

13.2.48 Theorem [545, 1989] The number N0(m, r) of skew-symmetric m ×m matrices of rank r
over Fq is given by

N0(m, 2s) =
s∏
i=1

q2i−2

q2i − 1
·

2s−1∏
i=0

(
qm−i − 1

)
and N0(m, 2s+ 1) = 0,

where 2s ≤ m. In particular, there are no invertible skew-symmetric m ×m matrices over
Fq if m is odd; if m is even, the number of invertible skew-symmetric m×m matrices over
Fq equals

N0(m,m) =
m−1∏
i=1

(
qi − δi

)
, where δi =

{
0 if i is even,

1 otherwise.

13.2.6 Hankel and Toeplitz matrices

13.2.49 Remark (Infinite) Toeplitz and Hankel matrices with complex entries play a prominent role
in classical linear algebra and have many important applications; see, for instance, [1354] for
an introductory treatment or [367] for a monograph on large finite Toeplitz matrices. In this
subsection, we discuss such matrices over Fq. Both classes of matrices are closely related,
as a Hankel matrix may be viewed as an “upside-down” Toeplitz matrix, so it suffices to
concentrate on one of these two classes.
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13.2.50 Definition An m×m matrix A = (aij)i,j=1,...,m is a Toeplitz matrix if

aij = akl whenever i− j = k − l. (13.2.9)

Thus A is specified by the entries in its first row and column:

A =


am am−1 · · · a2 a1

am+1 am · · · a3 a2

am+2 am+1 · · · a4 a3

...
...

. . .
...

...
a2m−1 a2m−2 · · · am+1 am

 .

13.2.51 Remark Note that indices are not computed modulo m in the defining condition (13.2.9) for
a Toeplitz matrix. If we would do so, we get further restrictions and arrive at an equivalent
formulation for the defining condition (13.2.2) for circulant matrices. Thus circulant matrices
constitute a special class of Toeplitz matrices.

13.2.52 Definition An m×m matrix A = (aij)i,j=1,...,m is a Hankel matrix if

aij = akl whenever i+ j = k + l.

Thus A is specified by the entries in its first row and column:

A =


a1 a2 · · · am−1 am
a2 a3 · · · am am+1

a3 a4 · · · am+1 am+2

...
...

. . .
...

...
am am+1 · · · a2m−2 a2m−1

 . (13.2.10)

13.2.53 Remark “Rotating” a Toeplitz matrix by 90 degrees (counter-clockwise) transforms it into
a Hankel matrix. More formally, let P be the m×m matrix with entries 1 on the antidiagonal
and 0 elsewhere, that is,

P =
(
δi,m−j+1

)
i,j=1,...,m

,

where δik = 0 if i 6= k and δik = 1 if i = k. Then the bijection defined by A 7→ AP
transforms the set of all m×m Toeplitz matrices into the set of all m×m Hankel matrices.
Note that this bijection preserves the rank of matrices, so that the following result applies
for Hankel matrices as well.

13.2.54 Theorem [1207] The number t(m, r, q) of m ×m Toeplitz matrices over Fq with rank r is
given by

t(m, r, q) =


q2m−2(q − 1) if r = m,

q2r−2(q2 − 1) if 1 ≤ r ≤ m− 1,

1 if r = 0.

13.2.55 Corollary For any positive integer r, the number of m ×m Toeplitz (or Hankel) matrices
over Fq with rank r is constant for every m ≥ r + 1.

13.2.56 Remark We note that Toeplitz and Hankel matrices over finite fields have some interesting
applications. For instance, Toeplitz matrices are used as pre-conditioners in the process of
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solving linear systems having unstructured coefficient matrices [1665]. In [1207], an explicit
surjective map σ from the set of all ordered pairs of coprime monic polynomials of degree m
over Fq to the set of all invertible m×m Hankel matrices over Fq is constructed; this map
has the additional property that, for any such matrix A, the pre-image σ−1(A) is in a one-
to-one correspondence with Fq. Therefore Theorem 13.2.54 gives a proof for the following
result.

13.2.57 Theorem [226] The number of ordered pairs of coprime monic polynomials of degree m
over Fq equals q2m−1(q − 1).

13.2.58 Corollary The probability that two randomly chosen monic polynomials of the same posi-
tive degree with coefficients in Fq are coprime is 1− (1/q).

13.2.59 Remark Further results on the greatest common divisor of polynomials are given in Section
11.2.

13.2.7 Determinants

13.2.60 Definition Let {α1, . . . , αm} be a set of m elements of Fqm . Then the determinant∣∣∣∣∣∣∣∣∣
α1 · · · αm
αq1 · · · αqm
...

. . .
...

αq
m−1

1 · · · αq
m−1

m

∣∣∣∣∣∣∣∣∣
is the Moore determinant of {α1, . . . , αm}.

13.2.61 Remark By Corollary 2.1.95, the set {α1, . . . , αm} is a basis for Fqm over Fq if and only if
its Moore determinant is nonzero. The Moore determinant may be viewed as a finite field
analogue of the well-known Vandermonde determinant. It is used extensively in the theory
of Drinfeld modules, see Section 13.3. Moore [2140] proved the following formula for his
determinant, which immediately implies the validity of Corollary 2.1.95.

13.2.62 Theorem Let {α1, . . . , αm} be a set of m elements of Fqm . Then its Moore determinant
detM(α1, . . . , αm) is given by

detM(α1, . . . , αm) = α1

m−1∏
i=1

∏
c1,...,ci∈Fq

αi+1 −
i∑

j=1

cjαj

 .

13.2.63 Remark [910] Equation (13.2.1) immediately gives an exact formula for the probabilty that
the determinant of a random m ×m matrix A over Fq equals 0. From this one easily sees
that the probability in question is in the order of magnitude prob(detA = 0) = 1

q +O
(

1
q2

)
.

It is remarkable that one actually has the following much more general result for both
determinants and permanents:

prob(detA = α) = prob(perA = α) =
1

q
+O

(
1

q2

)
for every α ∈ Fq. This result is obtained in [910] as a byproduct of the authors’ study of
the Polya permanent problem for matrices over finite fields.
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13.2.64 Remark Several further results concerning the enumeration of various types of matrices over
finite fields can be found in the nice survey article [2166]. We have considered the number
of invertible m×m matrices over Fq with the smallest (viz. 2) and the largest (viz. qm− 1)
possible orders in Subsection 13.2.2. Matrices of a specified order k are, of course, closely
related to the solutions of the matrix equation f(X) = 0, where f(x) = xk − 1. There are
many papers concerning matrix equations over finite fields; see the notes to Section 6.2 in
[1939] for a collection of references.

See Also

§5.1 For bases of finite fields.
§5.2 For a discussion of normal bases.
§13.3 For a discussion of classical groups over finite fields.

References Cited: [69, 226, 258, 367, 412, 471, 544, 545, 910, 1064, 1070, 1207, 1269, 1354,
1517, 1631, 1633, 1665, 1989, 1990, 2093, 2140, 2166, 2293, 2584, 2980]

13.3 Classical groups over finite fields

Zhe-Xian Wan, Chinese Academy of Sciences

13.3.1 Linear groups over finite fields

13.3.1 Definition Let Fq be a finite field with q elements and n an integer > 1. The set of n× n
nonsingular matrices over Fq forms a group with respect to matrix multiplication, called
the general linear group of degree n over Fq and denoted by GLn(q). The set of n × n
matrices over Fq of determinant 1 forms a subgroup of GLn(q), called the special linear
group of degree n over Fq and denoted by SLn(q).

The group GLn(q) can also be defined as the group consisting of nonsingular
linear transformations of an n-dimensional vector space over Fq.

13.3.2 Remark In literatures of group theory the groups GLn(q) and SLn(q) are sometimes written
as GL(n, q) instead of GLn(q) and SL(n, q) instead of SLn(q).

13.3.3 Theorem [1589] The order of GLn(q) is

|GLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−1);

SLn(q) is a normal subgroup of GLn(q) and is of order

|SLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−2)qn−1.

13.3.4 Theorem [1589] The center Zn of GLn(q) consists of those matrices λIn, where λ ∈ F∗q and
In is the n×n identity matrix. The center of SLn(q) is SLn(q)∩Zn, which consists of those
matrices λIn, where λ ∈ F∗q and λn = 1.
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13.3.5 Definition The factor group GLn(q)/Zn is the projective general linear group of degree n
over Fq and denoted by PGLn(q). The factor group SLn(q)/SLn(q)∩Zn is the projective
special linear group of degree n over Fq and is denoted by PSLn(q).

13.3.6 Theorem [1589] The order of PGLn(q) is

|PGLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−2)qn−1;

and the order of PSLn(q) is

|PSLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−2)qn−1/d,

where d = gcd (n, q − 1).

13.3.7 Theorem [1589] The group SLn(q) is generated by the elementary matrices

Tij(b) = In + bEij , 1 ≤ i, j ≤ n and i 6= j,

where In is the n×n identity matrix, b ∈ F∗q and Eij is the n×n matrix with 1 in the (i, j)
position and 0 elsewhere.

13.3.8 Lemma Every element A of GLn(q) can be expressed in the form

A = BD(µ)

where B ∈ SLn(q) and D(µ) is a diagonal matrix with 1, 1, . . . , 1, µ along its main diagonal.

13.3.9 Theorem [1589] The group SLn(q) is the commutator subgroup of GLn(q) unless n = 2
and q = 2. Moreover, SLn(q) is its own commutator subgroup unless n = 2 and q = 2 or
3. When n = 2 and q = 2, SL2(2) = GL2(2) ' S3, where S3 denotes the symmetric group
on three letters. When n = 2 and q = 3, |SL2(3)| = 24 and the commutator subgroup of
SL2(3) is of order 8.

13.3.10 Theorem (Dickson) [1589] The group PSLn(q) is simple except in the cases n = 2, q = 2
or 3.

13.3.11 Remark Except for the cases n = 2, q = 2 or 3, GLn(q) has the normal series

GLn(q) ⊃ SLn(q) ⊃ Zn ∩ SLn(q) ⊃ {I},
where GLn(q)/SLn(q) and Zn ∩ SLn(q) are cyclic and SLn(q)/(Zn ∩ SLn(q)) ' PSLn(q)
is simple.

When n = 2 and q = 2, the group GL2(2) = SL2(2) ' S3 has composition factors 2 and
3 and is not simple.

When n = 2 and q = 3, the group GL2(3) has generators

A =

(
−1 0
1 1

)
, B =

(
0 1
−1 1

)
, C =

(
0 −1
1 0

)
,

D =

(
1 1
1 −1

)
, E =

(
−1 0
0 −1

)
and defining relations

E2 = I2,

D2 = E, DE = ED,

C2 = E, CE = EC, CD = EDC,

B3 = E, BE = EB, BD = EDBC, BC = ECDB,

A2 = I2, AE = EA, AD = CA, AC = DA, AB = ECB2AC.
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Then GL2(3) has the composition series

GL2(3) = {E,D,C,B,A} ⊃ SL2(3)

= {E,D,C,B} ⊃ {E,D,C} ⊃ {E,D} ⊃ Z2 = {E} ⊃ {I2}

and the orders of these groups are 48, 24, 8, 4, 2, respectively. Thus PSL2(3) is not simple.

13.3.12 Theorem [858] The only isomorphisms between the groups PSLn(q) are

1. PSL2(4) ' PSL2(5), and

2. PSL2(7) ' PSL3(2).

13.3.13 Theorem [858] The only isomorphisms between the groups PSLn(q) and Am are

1. PSL2(3) ' A4,

2. PSL2(4) ' PSL2(5) ' A5,

3. PSL2(9) ' A6, and

4. PSL4(2) ' A8.

13.3.14 Definition Let Fnq be the n-dimensional row vector space over Fq consisting of all n-
dimensional row vectors (x1, x2, . . . , xn), xi ∈ Fq, 1 ≤ i ≤ n, over Fq. Let P be an
m-dimensional subspace of Fnq and let v1, v2, . . . , vm be a basis of P . Then the m × n
matrix 

v1

v2

...
vm


is a matrix representation of P and is denoted by P also. Two matrix representations
of P differ from an m × m nonsingular matrix multiplied on the left. Every element
A ∈ GLn(q) acts on Fnq in the following way:

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn)A,

which induces a transformation on the set of subspaces of Fnq :

P 7→ PA.

The subset of subspaces of the same dimension forms an orbit. The cardinality of the
orbit of m-dimensional subspaces (0 ≤ m ≤ n) is denoted by N(m,n).

13.3.15 Theorem [2920] We have N(m,n) =
[
n
m

]
q
, where

[
n
m

]
q

is the Gaussian coefficient

[ n
m

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
.

13.3.16 Remark For more details on Gaussian coefficients, see Section 13.2.

13.3.2 Symplectic groups over finite fields

13.3.17 Definition Let n be an integer > 0. An n× n matrix K over Fq is alternate, if tK = −K
and the diagonal elements are 0. When q is even, alternate matrices are simply skew-
symmetric matrices. Let n = 2ν be even and K be a 2ν × 2ν nonsingular alternate
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matrix over Fq. The set of 2ν × 2ν matrices T satisfying TK tT = K forms a group
with respect to matrix multiplication, the symplectic group of degree 2ν with respect to
K over Fq and denoted by Sp2ν(q,K).

Let K = (kij) be an n× n alternate matrix over Fq. The bilinear form K(x, y)
defined by K(x, y) =

∑
kijxiyj is an alternate form, which is nonsingular if det K 6= 0.

Now Let n = 2ν be even andK(x, y) be a nonsingular alternate form on a 2ν-dimensional
vector space V over Fq. Then Sp2ν(q,K) can also be defined as the group of linear
transformations T of V satisfying K(xT, yT ) = K(x, y) for all x, y ∈ V .

13.3.18 Theorem [857] All elements of Sp2ν(q,K) are nonsingular matrices with determinant 1
and, hence, Sp2ν(q,K) is a subgroup of SL2ν(q). Moreover, Sp2(q,K) = SL2(q).

13.3.19 Definition Two n × n matrices A and B over Fq are cogredient , if there is an n × n
nonsingular matrix P over Fq such that A = PB tP .

13.3.20 Theorem [857] Let K1 and K2 be two cogredient 2ν × 2ν nonsingular alternate matrices,
then Sp2ν(q,K1) ' Sp2ν(q,K2).

13.3.21 Remark By the previous theorem it is sufficient to consider the symplectic group
Sp2ν(q,K0) where

K0 =

(
0 Iν
−Iν 0

)
.

The group Sp2ν(q,K0) is simply the symplectic group of degree 2ν over Fq and denoted by
Sp2ν(q).

13.3.22 Theorem [1589] The order of Sp2ν(q) is

|Sp2ν(q)| = qν
2
ν∏
i=1

(q2i − 1).

13.3.23 Definition Let T ∈ Sp2ν(q). If I2ν − T is of rank 1, then T is a symplectic transvection.

13.3.24 Lemma Every symplectic transvection can be expressed in the form

T

(
Iν 0

diag(λ, 0, . . . , 0) Iν

)
T−1

where T ∈ Sp2ν(q), and diag(λ, 0, . . . , 0) is a diagonal matrix with λ, 0, . . . , 0 along the main
diagonal and λ ∈ F∗q .

13.3.25 Theorem [1589] The group Sp2ν(q) is generated by symplectic transvections.

13.3.26 Theorem [1589] The group Sp2ν(q) is its own commutator subgroup in all cases except
ν = 1, q = 2 or 3 and ν = 2, q = 2.

13.3.27 Remark The group Sp2(2) = SL2(2) ' S3 and its commutator subgroup is A3. The group
Sp2(3) = SL2(3) is of order 24 and is solvable.

13.3.28 Theorem [2786] The group Sp4(2) ∼= S6.

13.3.29 Theorem [2786] For ν ≥ 2, the symmetric group S2ν+2 is a subgroup of Sp2ν(2).

13.3.30 Theorem [1589] The center of Sp2ν(q) consists of I2ν and −I2ν .
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13.3.31 Definition The factor group Sp2ν(q)/{±I2ν} is the projective symplectic group of degree
2ν over Fq and denoted by PSp2ν(Fq).

13.3.32 Theorem (Dickson) [1589] The group PSp2ν(q) is a simple group except for the cases
PSp2(2), PSp2(3), and PSp4(2).

13.3.33 Definition Let P be an m-dimensional subspace of F2ν
q . Then PK t

0P is an m×m alternate
matrix. Suppose PK t

0P is cogredient to 0 Is 0
−Is 0 0

0 0 0(2ν−2s)

 ,

then P is a subspace of type (m, s). Clearly, 0 ≤ 2s ≤ m ≤ 2ν.

13.3.34 Theorem [2920] The action of GL2ν(q) on the subspaces of F2ν
q induces an action of Sp2ν(q)

on the subspaces of F2ν
q . Two subspaces P and Q are in the same orbit of Sp2ν(q) if and

only if they are of the same type.

13.3.35 Theorem [2920] Denote the cardinality of the orbit of subspaces of type (m, s) by
N(m, s; 2ν). Then

N(m, s; 2ν) = q2s(ν+s−m)

∏ν
i=ν+s−m+1(q2ν − 1)∏s

i=1(q2i − 1)
∏m−2s
i=1 (qi − 1)

.

13.3.3 Unitary groups over finite fields

13.3.36 Definition Let Fq2 be a finite field with q2 elements, where q is a prime power. The
Frobenius automorphism (refer to Remark 2.1.77)

a 7→ aq

of Fq2 is denoted by −, i.e., a = aq for all a ∈ Fq2 , and is the involution of Fq2 .

13.3.37 Definition Let n be an integer > 1, and H = (hij) be an n × n matrix over Fq2 . The

matrix (hij) is denoted by H. If tH = H, H is a Hermitian matrix. Let H be an
n × n nonsingular Hermitian matrix over Fq2 . The set of n × n matrices T satisfying
TH tT = H forms a group with respect to matrix multiplication, the unitary group
of degree n with respect to H over Fq2 and denoted by Un(q2, H). The subgroup of
Un(q2, H) consisting of those T ∈ Un(q2, H) with determinant 1 is the special unitary
group and denoted by SUn(q2, H).

Let H = (hij) be an n × n matrix over Fq2 and H(x, y) =
∑
hijxiyj be

the corresponding Hermitian form, which is nonsingular if detH 6= 0. Let H(x, y)
be a nonsingular Hermitian form on an n-dimensional vector space V over Fq2 . Then
Un(q2, H) can also be defined as the group of linear transformations T of V satisfying
H(xT, yT ) = H(x, y) for x, y ∈ V .

13.3.38 Theorem [857] All elements of Un(q2, H) are nonsingular matrices and, hence, Un(q2, H)
is a subgroup of GLn(q2) and SUn(q2, H) is a subgroup of SLn(q2).
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13.3.39 Definition Two n × n Hermitian matrices H1 and H2 over Fq2 are cogredient if there is
an n× n nonsingular matrix P over Fq2 such that H1 = PH t

2 P .

13.3.40 Theorem [857] Let H1 and H2 be two cogredient nonsingular Hermitian matrices, then
Un(q2, H1) ' Un(q2, H2), and also SUn(q2, H1) ' SUn(q2, H2).

13.3.41 Remark When n is even, write n as n = 2ν; and when n is odd, write n as n = 2ν + 1. By
the above theorem, it is sufficient to consider the unitary groups Un(q2, H0), SUn(q2, H0)
and Un(q2, H1), SUn(q2, H1), where

H0 =

(
0 Iν
Iν 0

)
and H1 =

 0 Iν 0
Iν 0 0
0 0 1

 .

Here Un(q2, H0) and Un(q2, H1) are the unitary groups of degree n over Fq2 , and are denoted
by U2ν(q2) and U2ν+1(q2), respectively. Similarly, we have SU2ν(q2) and SU2ν+1(q2). We
use the symbols Un(q2) and SUn(q2) to cover these two cases. In the literatures of group
theory these groups are sometimes written as Un(q) instead of Un(q2) and SUn(q) instead
of SUn(q2).

13.3.42 Theorem [2786] The orders of Un(q2) and SUn(q2) are, respectively,

|Un(q2)| = q
1
2n(n−1)

n∏
i=1

(qi − (−1)i),

and

|SUn(q2)| = q
1
2n(n−1)

n∏
i=2

(qi − (−1)i).

13.3.43 Theorem [857] We have SU2(q2) ' SL2(q).

13.3.44 Lemma [857] The center Wn of Un(q2) is

Wn = Un(q2) ∩ Zn = {aIn : aa = 1}

and the center of SUn(q2) is

SUn(q2) ∩ Zn = {aIn : aa = 1 and an = 1}.

(Recall that Zn is the subgroup of n×n nonsingular scalar matrices over Fq2 , i.e., the center
of GLn(q2).)

13.3.45 Definition The factor group Un(q2)/Wn is the projective unitary group of degree n over
Fq2 and denoted by PUn(q2). Similarly, the factor group SUn(q2)/(SUn(q2)∩Zn) is the
projective special unitary group of degree n over Fq2 and denoted by PSUn(q2).

13.3.46 Theorem [2786] The order of PUn(q2) and PSUn(q2) are, respectively,

|PUn(q2)| = q
1
2n(n−1)

n∏
i=2

(qi − (−1)i)

and

|PSUn(q2)| = (gcd(n, q + 1))−1q
1
2n(n−1)

n∏
i=2

(qi − (−1)i).
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13.3.47 Definition Let T ∈ Un(q2). If In − T is of rank 1, then T is a unitary transvection.

13.3.48 Lemma [857] Every unitary transvection can be expressed in the form

T

(
Iν 0

diag(λ, 0, . . . , 0) Iν

)
T−1 or T

 Iν 0 0
diag(λ, 0, . . . , 0) Iν 0

0 0 1

T−1

corresponding to n = 2ν or n = 2ν+1, respectively, where T ∈ Un(q2) and λ ∈ F∗q satisfying

λ+ λ = 0.

13.3.49 Theorem [857] For n ≥ 2, the group SUn(q2) is generated by unitary transvections except
SU3(22).

13.3.50 Theorem (Dickson) [857] For n ≥ 2, the group PSUn(q2) is simple except for PSU2(22),
PSU2(32) and PSU3(22).

13.3.51 Remark [857, 858] For the exceptional cases in Theorem 13.3.50, the group

PSU2(22) ' PSL2(2) ' SL2(2) ' S3,

the group
PSU2(32) ' PSL2(3) ' A4,

and the group PSU3(22) is of order 23 · 32 = 72 and is solvable.

13.3.52 Theorem [858] We have PSU4(22) ' PSp4(3).

13.3.53 Definition Let P be an m-dimensional subspace of Fnq2 and H = H0 or H1 according to

n = 2ν or n = 2ν + 1, respectively. The matrix PH tP is an m×m Hermitian matrix.
Suppose PH tP is of rank r, then P is a subspace of type (m, r). Clearly, 0 < r ≤ m ≤ n.

13.3.54 Theorem [2920] The action of GLn(q2) on the subspaces of Fnq2 induces an action of Un(q2)

on the subspaces of Fnq2 . Two subspaces P and Q are in the same orbit of Un(q2) if and
only if they are of the same type.

13.3.55 Theorem [2920] Denote the cardinality of the orbit of subspaces of type (m, r) by
N(m, r;n). Then

N(m, r;n) = qr(n+r−2m)

∏n
i=n+r−2m+1(qi − (−1)i)∏r

i=1(qi − (−1)i)
∏m−r
i=1 (q2i − 1)

.

13.3.4 Orthogonal groups over finite fields of characteristic not two

13.3.56 Definition Let n be an integer > 1, Fq be a finite field with q elements where q is an odd
prime power; and S be an n×n nonsingular symmetric matrix over Fq. The set of n×n
matrices T satisfying TS tT = S forms a group with respect to matrix multiplication,
the orthogonal group of degree n with respect to S over Fq and denoted by On(q, S).

Let S = (sij) be an n× n symmetric matrix over Fq and Q(x) =
∑
sijxixj be

the corresponding quadratic form, which is nonsingular if S is nonsingular. Let Q(x)
be a nonsingular quadratic form on an n-dimensional vector space V over Fq. Then
On(q, S) can also be defined as the group of linear transformations T of V such that
Q(xT ) = Q(x) for all x ∈ V .



Miscellaneous theoretical topics 517

13.3.57 Theorem [1589] All elements of On(q, S) are nonsingular matrices of determinant ±1 and,
hence, On(q, S) is a subgroup of GLn(q).

13.3.58 Theorem [1589] Let S1 and S2 be two cogredient n × n nonsingular symmetric matrices,
then On(q, S1) ' On(q, S2). Moreover, for any n× n nonsingular symmetric matrix S over
Fq and any λ ∈ F∗q , On(q, S) = On(q, λS).

13.3.59 Remark Choose a fixed non-square element z of F∗q . By the previous theorem it is sufficient
to consider the four orthogonal groups with respect to the following four n× n nonsingular
symmetric matrices

S2ν =

(
0 Iν
Iν 0

)
,

S2ν+1,1 =

 0 Iν 0
Iν 0 0
0 0 1

 , S2ν+1,z =

 0 Iν 0
Iν 0 0
0 0 z



S2ν+2 =


0 Iν 0 0
Iν 0 0 0
0 0 1 0
0 0 0 −z

 ,

where n = 2ν, 2ν + 1, 2ν + 1 and 2ν + 2, respectively. In order to cover these four cases, we
introduce the notation S2ν+δ,∆, where δ = 0, 1 or 2 and ∆ denotes its definite part, i.e.,

∆ =


φ if δ = 0,
1 or z if δ = 1,(

1 0
0 −z

)
if δ = 2.

The orthogonal group of degree 2ν + δ with respect to S2ν+δ,∆ over Fq will be
denoted by O2ν+δ(q, S2ν+δ,∆). Clearly, O2ν+1(q, S2ν+1,z) = O2ν+1(q, zS2ν+1,z). Since
zS2ν+1,z and S2ν+1,1 are cogredient, the groups O2ν+1(q, zS2ν+1,z) and O2ν+1(q, S2ν+1,1)
are isomorphic. It follows that O2ν+1(q, S2ν+1,z) and O2ν+1(q, S2ν+1,1) are isomor-
phic. Therefore actually only three types of orthogonal groups need to be considered;
they are O2ν(q, S2ν), O2ν+1(q, S2ν+1,1), and O2ν+2(q, S2ν+2,∆), which simply denoted by
O2ν(q), O2ν+1(q) and O2ν+2(q), respectively. We use O2ν+δ(q) to cover these three cases.

13.3.60 Remark For odd n, there is only one type of orthogonal groups, and for even n = 2ν there
are two types of orthogonal groups: O2ν(q) and O2(ν−1)+2(q). In literatures of group theory
they are sometimes called the plus type and the minus type, and denoted by O+

n (q) and
O−n (q), respectively.

13.3.61 Remark Throughout the remainder of this section we assume ν ≥ 1.

13.3.62 Theorem [1589] The order of O2ν+δ(q) is

|O2ν+δ(q)| = qν(ν+δ−1)
ν∏
i=1

(qi − 1)
ν+δ−1∏
i=0

(qi + 1).

13.3.63 Definition Let T ∈ O2ν+δ(q). If T 2 = I and T − I is of rank 1, T is a symmetry.

13.3.64 Theorem [857] Every element of O2ν+δ(q) is a product of at most 2ν + δ symmetries.
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13.3.65 Definition Elements of O2ν+δ(q) are orthogonal matrices and those of determinant 1 are
proper orthogonal matrices. All proper orthogonal matrices form a subgroup of O2ν+δ(q),
the proper orthogonal group also referred to as the special orthogonal group, and denoted
by SO2ν+δ(q). The commutator subgroup of O2ν+δ(q) is denoted by Ω2ν+δ(q).

13.3.66 Lemma The center of O2ν+δ(q) is {I2ν+δ,−I2ν+δ}.

13.3.67 Definition The factor group O2ν+δ(q)/{±I2ν+δ} over Fq is the projective orthogonal group
of degree 2ν + δ with respect to S2ν+δ over Fq and is denoted by PO2ν+δ(q). Similarly,
the factor group SO2ν+δ(q)/(SO2ν+δ(q)∩{±I2ν+δ}) is the projective proper orthogonal
group of degree 2ν + δ with respect to S2ν+δ over Fq and is denoted by PSO2ν+δ(q).
We also define PΩ2ν+δ(q) = Ω2ν+δ(q)/(Ω2ν+δ(q) ∩ {±I2ν+δ}).

13.3.68 Remark We have the normal series of O2ν+δ(q)

O2ν+δ(q) ⊃ SO2ν+δ(q) ⊃ Ω2ν+δ(q) ⊃ Ω2ν+δ(q) ∩ {±I2ν+δ} ⊃ {I}.

Clearly, O2ν+δ(q) : SO2ν+δ(q) = 2.

13.3.69 Theorem [857] We have SO2ν+δ(q)/Ω2ν+δ(q) ' F∗q/F∗2q .

13.3.70 Theorem (Dickson) [1589] The group PΩ2ν+δ(q) is a simple group except the following
cases:

1. ν = 2, δ = 0,

2. ν = 1, δ = 1 and q = 3.

13.3.71 Remark For the exceptional cases in the above Theorem, we have

PΩ2·2(q) ' PSL2(q)× PSL2(q),

PΩ2·1+1(3) ' PSL2(3).

13.3.72 Theorem [2786] When ν ≥ 2, PΩ2ν+1(q) (= Ω2ν+1(q)) and PSp2ν(q) are non-isomorphic
simple groups of the same order.

13.3.73 Remark The action of GL2ν+δ(q) on the subspaces of F2ν+δ
q induces an action of O2ν+δ(q)

on the subspaces. Let P be an m-dimensional subspace of F2ν+δ
q . PS t

2ν+δ P is cogredient
to one of the following normal forms

M(m, 2s, s) =

 0 Is 0
Is 0 0
0 0 0(m−2s)

 ,

M(m, 2s+ 1, s, 1) =


0 Is 0 0
Is 0 0 0
0 0 1 0
0 0 0 0(m−2s−1)

 ,

M(m, 2s+ 1, s, z) =


0 Is 0 0
Is 0 0 0
0 0 z 0
0 0 0 0(m−2s−1)

 ,
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and

M(m, 2s+ 2, s) =


0 Is 0 0 0
Is 0 0 0 0
0 0 1 0 0
0 0 0 −z 0

0 0 0 0 0(m−2s−2)

 .

Then P is a subspace of type (m, 2s, s), (m, 2s + 1, s, 1), (m, 2s + 1, s, z), and (m, 2s +
2, s,diag(1,−z)), respectively.

13.3.74 Theorem [2920] Two subspaces P and Q of F2ν+δ
q belong to the same orbit of O2ν+δ(q) if

and only if they are of the same type.

13.3.75 Remark The cardinality of any orbit of O2ν+δ(q) has already been determined [2920].

13.3.5 Orthogonal groups over finite fields of characteristic two

13.3.76 Definition Let q be a power of 2 and n be an integer > 1. Let G be an n×n regular matrix
over Fq. An n×n matrix T over Fq is orthogonal with respect to G, if TG tT +G is an
alternate matrix. The set of n× n orthogonal matrices with respect to G over Fq forms
a group with respect to matrix multiplication, the orthogonal group of degree n with
respect to G over Fq and denoted by On(q,G).

Let G(x) be a nonsingular quadratic form on an n-dimensional vector space V
over Fq. Then On(q,G) can also be defined as the group of linear transformations T of
V such that G(vT ) = G(v) for all v ∈ V .

13.3.77 Theorem [857] All elements of On(q,G) are nonsingular matrices of determinant 1 and,
hence, On(q,G) is a subgroup of SLn(q).

13.3.78 Theorem [857] Let G1 and G2 be two cogredient n× n regular matrices, then O(q,G1) '
O(q,G2).

13.3.79 Remark Choose a fixed element α such that α cannot be expressed in the form x2 + x
where x ∈ Fq. Write n = 2ν+δ where δ = 0, 1 or 2. Assume ν > 0. By the previous theorem
it is sufficient to consider the orthogonal groups O2ν+δ(q,G), where G is an n × n matrix
of one of the following forms

(
0 Iν
0 0

)
,

 0 Iν 0
0 0 0
0 0 1

 ,


0 Iν 0 0
0 0 0 0
0 0 α 1
0 0 0 α

 ,

corresponding to the cases n = 2ν, n = 2ν + 1 and n = 2ν + 2, respectively. The orthogonal
group with respect to G over Fq will be denoted by O2ν+δ(q).

13.3.80 Theorem [857] We have O2ν+1(q) ' Sp2ν(q).

13.3.81 Remark In the following we consider only the groups O2ν(q) and O2ν+2(q). In the literature
on group theory, O2ν(q) and O2ν+2(q) are sometimes denoted by O+

2ν(q) and O−2ν+2(q), and
called the plus type and the minus type, respectively.

13.3.82 Theorem [2786] The order of O2ν+δ(q), where δ = 0 or 2, is

|O2ν+δ(q)| = qν(ν+δ−1)
ν∏
i=1

(qi − 1)
ν+δ−1∏
i=0

(qi + 1).
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13.3.83 Definition Let T ∈ O2ν+δ(q). If I2ν+δ − T is of rank 1, T is an orthogonal transvection.

13.3.84 Theorem [857] Every element of O2ν+δ(q) is a product of at most 2ν+δ orthogonal transvec-
tions except for the case n = 4, ν = 2 and q = 2; if an element of O2ν+δ(q) is expressed as
a product of an even number of orthogonal transvections, so is every such expression.

13.3.85 Definition Except for the case n = 4, ν = 2 and q = 2, an orthogonal matrix T ∈ O2ν+δ(q)
which is a product of an even number of orthogonal transvections is a rotation. The
set of rotations forms a subgroup of O2ν+δ(q), the group of rotations and denoted by
SO2ν+δ(q). The commutator subgroup of O2ν+δ(q) is denoted by Ω2ν+δ(q).

13.3.86 Lemma For n ≥ 4 the center of Ω2ν+δ(q) consists of the identity element only.

13.3.87 Remark Except for the case n = 4, ν = 2, and q = 2, we have the normal series of O2ν+δ(q)

O2ν+δ(q) ⊃ SO2ν+δ(q) ⊃ Ω2ν+δ(q) ⊃ {I2ν+δ}.

13.3.88 Theorem [857, 858] Except for the case n = 4, ν = 2 and q = 2,

|O2ν+δ(q)/SO2ν+δ(q)| = |SO2ν+δ(q)/Ω2ν+δ(q)| = 2.

13.3.89 Theorem (Dickson) [857] The group Ω2ν+δ(q) is a simple group except for the case n =
4, ν = 2.

13.3.90 Theorem [858] If q 6= 2 and n = 4, ν = 2, then

Ω2·2(q) ' SL2(q)× SL2(q).

If q = 2 and n = 4, ν = 2, then SO2·2(2) = SL2(2)×SL2(2) and Ω2·2(2) is a direct product
of two cyclic groups of order 3.

13.3.91 Remark The action of GL2ν+δ(q) on the subspaces of F2ν+δ
q induces an action of O2ν+δ(q)

on the subspaces of F2ν+δ
q . The cardinality of any orbit of O2ν+δ(q) has already been de-

termined [2920].

See Also

§7.2 For a discussion of quadratic forms.
§13.2 For a discussion of orthogonal, symmetric, and skew-symmetric matrices.

References Cited: [135, 857, 858, 1589, 2786, 2920]

13.4 Computational linear algebra over finite fields
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We present algorithms for efficient computation of linear algebra problems over finite
fields. Implementations∗ of the proposed algorithms are available through the Magma,
Maple (within the LinearAlgebra[Modular] subpackage) and Sage systems; some parts
can also be found within the C/C++ libraries NTL, FLINT, IML, M4RI, and the special
purpose LinBox template library for exact, high-performance linear algebra computation
with dense, sparse, and structured matrices over the integers and over finite fields [931].

13.4.1 Dense matrix multiplication

13.4.1 Definition For A ∈ Fm×kq and B ∈ Fk×nq with elements Ai,j and Bi,j , the matrix C = A×B
has Ci,j =

∑k
l=1Ai,lBl,j . We denote by MM(m, k, n) a time complexity bound on the

number of field operations necessary to compute C.

13.4.2 Remark Classical triple loop implementation of matrix multiplication makes MM(m, k, n) ≤
2mkn. The best published estimates to date gives MM(n, n, n) ≤ O (nω) with ω ≈ 2.3755
[723], though improvements to 2.3737 and 2.3727 are now claimed [2728, 2985]. For very
rectangular matrices one also have astonishing results like MM(n, n, nα) ≤ O

(
n2+ε

)
for a

constant α > 0.294 and any ε > 0 [720]. Nowadays practical implementations mostly use
Strassen-Winograd’s algorithm, see Subsection 13.4.1.4, with an intermediate complexity
and ω ≈ 2.8074.

13.4.1.1 Tiny finite fields

13.4.3 Remark The practical efficiency of matrix multiplication depends highly on the repre-
sentation of field elements. We thus present three kinds of compact representations for
elements of a finite field with very small cardinality: bitpacking (for F2), bit-slicing (for say
F3,F5,F7,F23 , or F32), and Kronecker substitution. These representations are designed to
allow efficient linear algebra operations, including matrix multiplication.

13.4.4 Algorithm (Greasing) Over F2, the method of the four Russians [124], also called Greasing,
can be used as follows:

1. A 64 bit machine word can be used to represent a row vector of dimension 64.

2. Matrix multiplication of a m × k matrix A by a k × n matrix B can be done
by first storing all 2k k-dimensional linear combinations of rows of B in a table.
Then the i-th row of the product is copied from the row of the table indexed by
the i-th row of A.

3. By ordering indices of the table according to a binary Gray Code, each row of
the table can be deduced from the previous one, using only one row addition.
This brings the bit operation count to build the table from k2kn to 2kn.

4. Choosing k = log2 n in the above method implies MM(n) = O
(
n3/ log n

)
over F2.

∗http://magma.maths.usyd.edu.au, http://www.maplesoft.com, http://sagemath.org, http://www.

shoup.net/ntl, http://www.flintlib.org, http://www.cs.uwaterloo.ca/~astorjoh/iml.html, http:

//m4ri.sagemath.org, http://linalg.org
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13.4.5 Definition [349] Bit slicing consists in representing an n-dimensional vector of k-bit sized
coefficients using k binary vectors of dimension n. In particular, one can use Boolean
word instruction to perform arithmetic on 64 dimensional vectors.

1. Over F3, the binary representation 0 ≡ [0, 0], 1 ≡ [1, 0],−1 ≡ [11] allows to add
and subtract two elements in 6 Boolean operations:

Add([x0, x1], [y0, y1]) : s← x0 ⊕ y1, t← x1 ⊕ y0

Return(s ∧ t, (s⊕ x1) ∨ (t⊕ y1))
Sub([x0, x1], [y0, y1]) : t← x0 ⊕ y0

Return(t ∨ (x1 ⊕ y1), (t⊕ y1) ∧ (y0 ⊕ x1))

2. Over F5 (resp. F7), a redundant representation x = x0 +2x1 +4x2 ≡ [x0, x1, x2]
allows to add two elements in 20 (resp. 17) Boolean operations, negate in 3
(resp. 6) Boolean operations, and double in 0 (resp. 5) Boolean operations.

F3 F5 F7

Addition 6 20 17
Negation 1 5 3
Double 5 0

Table 13.4.1 Boolean operation counts for basic arithmetic using bit slicing

13.4.6 Definition Bit packing consists in representing a vector of field elements as an integer
fitting in a single machine word using a 2k-adic representation:

(x0, . . . , xn−1) ∈ Fnq ≡ X = x0 + 2kx1 + · · ·+ (2k)n−1xn−1 ∈ Z264 .

Elements of extension fields are viewed as polynomials and stored as the evaluation
of this polynomial at the characteristic of the field. The latter evaluation is known as
Kronecker substitution.

13.4.7 Remark We first need a way to simultaneously reduce coefficients modulo the characteristic,
see [929].

13.4.8 Algorithm (REDQ: Q-adic REDuction)

Require: three integers p, q and r̃ =
∑d
i=0 µ̃iq

i ∈ Z
Ensure: ρ ∈ Z, with ρ =

∑d
i=0 µiq

i where µi = µ̃i mod p

REDQ COMPRESSION

1. s =
⌊
r̃
p

⌋
;

2. for i = 0 to d do
3. ui =

⌊
r̃
qi

⌋
− p

⌊
s
qi

⌋
;

4. end for

REDQ CORRECTION {only when p - q, otherwise µi = ui is correct}
5. µd = ud;
6. for i = 0 to d− 1 do
7. µi = ui − qui+1 mod p;
8. end for
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9. Return ρ =
∑d
i=0 µiq

i;

13.4.9 Remark Once we can pack and simultaneously reduce coefficients of finite field in a single
machine word, the obtained parallelism can be used for matrix multiplication. Depending on
the respective sizes of the matrix in the multiplication one can pack only the left operand or
only the right one or both [930]. We give here only a generic algorithm for packed matrices,
which use multiplication of a right packed matrix by a non-packed left matrix.

13.4.10 Algorithm (Right packed matrix multiplication)

Require: a prime p and Ac ∈ Fm×kp and Bc ∈ Fk×np , stored with several field elements
per machine word

Ensure: Cc = Ac ×Bc ∈ Fm×np

1. A = Uncompress(Ac); {extract the coefficients}
2. Cc = A×Bc; {Using e.g., Algorithm 13.4.14}
3. Return REDQ(Cc);

13.4.11 Remark Then, over extensions, fast floating point operations can be used on the Kro-
necker substitution of the elements. Indeed, it is very often desirable to use floating point
arithmetic, exactly. For instance floating point routines can more easily use large hard-
ware registers, they can more easily optimize the memory hierarchy usage [1336, 2974] and
portable implementations are more widely available. We present next the dot product and
the matrix multiplication is then straightforward [929, 930, 932].

13.4.12 Algorithm (Compressed dot product over extension fields)

Require: a field Fpk with elements represented as exponents of a generator of the field
Require: two vectors v1 and v2 of elements of Fpk
Require: a sufficiently large integer q
Ensure: R ∈ Fpk , with R = vT1 · v2

{Tabulated conversion: uses tables from exponent to floating point evaluation}
1. Set ṽ1 and ṽ2 to the floating point Kronecker substitution of the elements of v1

and v2.
2. Compute r̃ = ṽ1

T · ṽ2; {The floating point computation}
3. r = REDQ COMPRESSION(r̃, p, q); {Computing a radix decomposition}
{Variant of REDQ CORRECTION: µi = µ̃i mod p for r̃ =

∑2k−2
i=0 µ̃iq

i}
4. Set L = representation(

∑k−2
i=0 µiX

i);

5. Set H = representation(Xk−1 ×∑2k−2
i=k−1 µiX

i−k+1);
6. Return R = H + L ∈ Fpk ; {Reduction in the field}

13.4.1.2 Word size prime fields

13.4.13 Remark Over word-size prime fields one can also use the reduction to floating point routines
of algorithm 13.4.12. The main point is to be able to perform efficiently the matrix mul-
tiplication of blocks of the initial matrices without modular reduction. Thus delaying the
reduction as much as possible, depending on the algorithm and internal representations,
in order to amortize its cost. We present next such a delaying with the classical matrix
multiplication algorithm and a centered representation [933].

13.4.14 Algorithm (fgemm: Finite Field GEneric Matrix Multiplication)

Require: an odd prime p of size smaller than the floating point mantissa β and Fp
elements stored by values between 1−p

2 and p−1
2

Require: A ∈ Fm×kp and B ∈ Fk×np

Ensure: C = A×B ∈ Fm×np
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1. if n(p− 1)2 < 2β+1 then
2. Convert A and B to floating point matrices Af and Bf ;
3. Use floating point routines to compute Cf = Af ×Bf ;
4. C = Cf mod p;
5. else
6. Cut A and B into smaller blocks;
7. Call the algorithm recursively for the block multiplications;
8. Perform the block additions modulo p;
9. end if

13.4.1.3 Large finite fields

13.4.15 Remark If the field is too large for the strategy 13.4.14 over machine words, then two main
approaches would have to be considered:

1. Use extended arithmetic, either arbitrary of fixed precision, if the characteristic
is large, and a polynomial representation for extension fields. The difficulty here
is to preserve an optimized memory management and to have an almost linear
time extended precision polynomial arithmetic.

2. Use a residue number system and an evaluation/interpolation scheme: one can
use Algorithm 13.4.14 for each prime in the residue number system (RNS) and
each evaluation point. For Fpk , the number of needed primes is roughly 2 log2β (p)
and the number of evaluations points is 2k − 1.

13.4.1.4 Large matrices: subcubic time complexity

13.4.16 Remark With matrices of large dimension, sub-cubic time complexity algorithms, such
as Strassen-Winograd’s [2987] can be used to decrease the number of operations. Algo-
rithm 13.4.17 describes how to compute one recursive level of the algorithm, using seven
recursive calls and 15 block additions.

13.4.17 Algorithm (Strassen-Winograd)

A =

[
A11 A12

A21 A22

]
;B =

[
B11 B12

B21 B22

]
;C =

[
C11 C12

C21 C22

]
;

S1 ← A21 +A22; T1 ← B12 −B11; P1 ← A11 ×B11; P2 ← A12 ×B21;
S2 ← S1 −A11; T2 ← B22 − T1; P3 ← S4 ×B22; P4 ← A22 × T4;
S3 ← A11 −A21; T3 ← B22 −B12; P5 ← S1 × T1; P6 ← S2 × T2;
S4 ← A12 − S2; T4 ← T2 −B21; P7 ← S3 × T3;

C11 ← P1 + P2; U2 ← P1 + P6; U3 ← U2 + P7; U4 ← U2 + P5;
C12 ← U4 + P3; C21 ← U3 − P4; C22 ← U3 + P5;

13.4.18 Remark In practice, one uses a threshold in the matrix dimension to switch to a base case
algorithm, that can be any of the previously described ones. Following Subsection 13.4.1.2,
one can again delay the modular reductions, but the intermediate computations of Strassen-
Winograd’s algorithm impose a tighter bound.

13.4.19 Theorem [933] Let A ∈ Zm×k, B ∈ Zk×n C ∈ Zm×n and β ∈ Z with ai,j , bi,j , ci,j , β ∈
{0, . . . , p− 1}. Then every intermediate value z involved in the computation of A×B+βC
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with l (l ≥ 1) recursive levels of Algorithm 13.4.17 satisfy

|z| ≤
(

1 + 3l

2

)2 ⌊
k

2l

⌋
(p− 1)2.

Moreover, this bound is tight.

13.4.20 Remark For instance, on a single Xeon 2.8GHz core with gcc-4.6.3, Strassen-Winograd’s
variant implemented with LinBox-1.2.1 and GotoBLAS2-1.13 can be 37% faster for the
multiplication of 10 000× 10 000 matrices over F219−1, in less than 1′49”.

13.4.2 Dense Gaussian elimination and echelon forms

13.4.21 Remark We present algorithms computing the determinant and inverse of square matrices;
the rank, rank profile, nullspace, and system solving for arbitrary shape and rank matrices.
All these problems are solved a la Gaussian elimination, but recursively in order to effectively
incorporate matrix multiplication. The latter is denoted generically gemm and, depending
on the underlying field, can be implemented using any of the techniques of Subsections
13.4.1.1, 13.4.1.2, or 13.4.1.3.

13.4.22 Remark A special care is given to the asymptotic time complexities: the exponent is reduced
to that of matrix multiplication using block recursive algorithms, and the constants are also
carefully compared. Meanwhile, this approach is also effective for implementations: grouping
arithmetic operations into matrix-matrix products allow to better optimize cache accesses.

13.4.2.1 Building blocks

13.4.23 Remark Algorithms 13.4.24, 13.4.25, 13.4.26, and 13.4.27 show how to reduce the computa-
tion of triangular matrix systems, triangular matrix multiplications, and triangular matrix
inversions to matrix-matrix multiplication. Note that they do not require any temporary
storage other than the input and output arguments.

13.4.24 Algorithm [trsm: Triangular System Solve with Matrix right hand side)
Require: A ∈ Fm×mq non-singular upper triangular, B ∈

Fm×nq

Ensure: X ∈ Fm×nq s.t. AX = B

1. if m=1 then return X = A−1
1,1 ×B end if

2. X2 =trsm(A3, B2);
3. B1 = B1 − A2X2; {using gemm, e.g., via Algorithm

13.4.14}
4. X1 =trsm(A1, B1);

5. return X =

[
X1

X2

]
;

Using the conformal block
decomposition:[
A1 A2

A3

] [
X1

X2

]
=

[
B1

B1

]

13.4.25 Algorithm (trmm: Triangular Matrix Multiplication)
Require: A ∈ Fm×mq upper triangular, B ∈ Fm×nq

Ensure: C ∈ Fm×nq s.t. AB = C
1. if m=1 then return C = A1,1 ×B end if
2. C1 =trmm(A1, B1);
3. C1 = C1 +A2B2; {using gemm}
4. C2 =trmm(A3, B2);

5. return C =

[
C1

C2

]
;

Using the conformal block
decomposition:[
A1 A2

A3

] [
B1

B2

]
=

[
C1

C2

]
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13.4.26 Algorithm (trtri: Triangular Matrix Inversion)
Require: A ∈ Fn×nq upper triangular and non-singular
Ensure: C = A−1

1. if m=1 then return C = A−1
1,1 end if

2. C1 = A−1
1 ; {using trtri recursively}

3. C3 = A−1
3 ; {using trtri recursively}

4. C2 = A2C3; {using trmm }
5. C2 = −C1C2; {using trmm }
6. return C =

[
C1 C2

C3

]
;

Using the conformal block
decomposition:[
A1 A2

A3

]
,

[
C1 C2

C3

]

13.4.27 Algorithm (trtrm: Upper-Lower Triangular Matrix Multiplication)
Require: L ∈ Fn×nq lower triangular
Require: U ∈ Fn×nq upper triangular
Ensure: A = UL

1. if m=1 then return A = U1,1L1,1 end if
2. A1 = U1L1; {using trtrm recursively}
3. A1 = A1 + U2L2; {using gemm}
4. A2 = U2L3; {using trmm }
5. A3 = U3L2; {using trmm }
6. A4 = U3L3; {using trtrm recursively}
7. return A =

[
A1 A2

A3 A4

]
;

Using the conformal block
decomposition:[
L1

L2 L3

]
,

[
U1 U2

U3

]
,

[
A1 A2

A3 A4

]

13.4.2.2 PLE decomposition

13.4.28 Remark Dense Gaussian elimination over finite fields can be reduced to matrix multiplica-
tion, using the usual techniques for the LU decomposition of numerical linear algebra [457].
However, in applications over a finite field, the input matrix often has non-generic rank
profile and special care needs to be taken about linear dependencies and rank deficiencies.
The PLE decomposition is thus a generalization of the PLU decomposition for matrices
with any rank profile.

13.4.29 Definition A matrix is in row-echelon form if all its zero rows occupy the last row positions
and the leading coefficient of any non-zero row except the first one is strictly to the right
of the leading coefficient of the previous row. Moreover, it is in reduced row-echelon form
if all coefficients above a leading coefficient are zeros.

13.4.30 Definition For any matrix A ∈ Fm×nq of rank r, there is a PLE decomposition A = PLE
where P is a permutation matrix, L is a m× r lower triangular matrix and E is a r×n
matrix in row-echelon form, with unit leading coefficients.

13.4.31 Remark Algorithm 13.4.32 shows how to compute such a decomposition by a block recursive
algorithm, thus reducing the complexity to that of matrix multiplication.

13.4.32 Algorithm (PLE decomposition)

Require: A ∈ Fm×nq

Ensure: (P,L,E) a PLE decomposition of A
1. if n = 1 then
2. if A = 0m×1 then return (Im, I0, A); end if
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3. Let j be the column index of the first non-zero entry of A and P = T1,j the
transposition between indices 1 and j;

4. return (P, PA, [1]);
5. else
6. (P1, L1, E1) = PLE(A1); {recursively}
7. A2 = P1A2;
8. A3 = L−1

1,1A3; {using trsm}
9. A4 = A4 − L1,2A3; {using gemm}

10. (P2, L2, E2) = PLE(A4); {recursively}

Split A columnwise in halves:
A =

[
A1 A2

]
Split A2 =

[
A3

A4

]
, L1 =

[
L1,1

L1,2

]
where A3 and L1,1 have r1 rows.

11. return

(
P1

[
Ir1

P2

]
,

[
L1,1

P2L1,2 L2

]
,

[
E1 A3

E2

])
;

12. end if

13.4.2.3 Echelon forms

13.4.33 Remark The row-echelon and reduced row-echelon forms can be obtained from the PLE
decomposition, using additional operations: trsm, trtri, and trtrm, as shown in Algo-
rithms 13.4.34 and 13.4.35.

13.4.34 Algorithm (RowEchelon)

Require: A ∈ Fm×nq

Ensure: (X,E) such that XA = E, X is non-singular and E is in row-echelon form
1. (P,L,E) = PLE(A);

2. X1 = L−1
1 ; {using trtri}

3. X2 = −L2X1; {using trmm} Split L =

[
L1

L2

]
, L1 : r × r.

4. return

(
X =

[
X1

X2 Im−r

]
PT , E

)
;

13.4.35 Algorithm (ReducedRowEchelon)

Require: A ∈ Fm×nq

Ensure: (Y,R) such that Y A = R, Y is non-singular and R is in reduced row-echelon
form

1. (X,E) = RowEchelon(A);
2. Let Q be the permutation matrix that brings the leading row coefficients of E to

the diagonal;
3. Set EQ =

[
U1 U2

]
; {where U1 is r × r upper triangular}

4. Y1 = U−1
1 ; {using trtri}

5. Y1 = Y1X1; {using trtrm}
6. R =

[
Ir U−1

1 U2

]
QT ; {using trsm}

7. return

(
Y =

[
Y1

U2 In−r

]
PT , R

)
;

13.4.36 Remark Figure 13.4.2 shows the various steps between the classical Gaussian elimination
(LU decomposition), the computation of the echelon form and of the reduced echelon form,
together with the various problems that each of them solve. Table 13.4.3 shows the leading
constant Kω in the asymptotic time complexity of these algorithms, assuming that two
n× n matrices can be multiplied in Cωn

ω + o(nω).

13.4.37 Remark If the rank r is very small compared to the dimensions m × n of the matrix, a
system Ax = b can be solved in time bounded by O

(
(m+ n)r2

)
[2170, Theorem 1].
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Figure 13.4.2 Reductions from PLE decomposition to reduced echelon form.

Algorithm Constant Kω K3 Klog2 7

gemm Cω 2 6
trsm Cω

2ω−1−2 1 4

trtri Cω
(2ω−1−2)(2ω−1−1)

1
3 ≈ 0.33 8

5 = 1.6

trtrm, PLE Cω
2ω−1−2 − Cω

2ω−2
2
3 ≈ 0.66 14

5 = 2.8

Echelon Cω
2ω−2−1 − 3Cω

2ω−2 1 22
5 ≈ 4.4

RedEchelon
Cω(2ω−1+2)

(2ω−1−2)(2ω−1−1) 2 44
5 = 8.8

Table 13.4.3 Complexity of elimination algorithms

13.4.3 Minimal and characteristic polynomial of a dense matrix

13.4.38 Definition

1. A Las-Vegas algorithm is a randomized algorithm which is always correct. Its
expected running time is always finite.

2. A Monte-Carlo algorithm is a randomized algorithm which is correct with a
certain probability. Its running time is deterministic.

13.4.39 Remark The computation of the minimal and characteristic polynomials is closely related
to that of the Frobenius normal form.

13.4.40 Definition Any matrix A ∈ Fn×nq is similar to a unique block diagonal matrix F =
P−1AP = diag(Cf1 , . . . , Cft) where the blocks Cfi are companion matrices of the poly-
nomials fi, which satisfy fi+1|fi. The fi are the invariant factors of A and F is the
Frobenius normal form of A.

13.4.41 Remark Most algorithms computing the minimal and characteristic polynomial or the
Frobenius normal form rely on Krylov basis computations.

13.4.42 Definition

1. The Krylov matrix of order d for a vector v with respect to a matrix A is the
matrix KA,v,d =

[
v Av . . . Ad−1v

]
∈ Fn×dq .

2. The minimal polynomial PA,vmin of A and v is the least degree monic polynomial
P such that P (A)v = 0.

I~ ~ ~ 

-- -

- - -
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13.4.43 Theorem

1. AKA,v,d = KA,v,dCPA,vmin
, where d = deg(PA,vmin ).

2. For linearly independent vectors (v1, . . . , vk), if K =
[
KA,v1,d1 . . . KA,vk,dk

]
is

non-singular. Then AK = K


C
P
A,v1
min

B1,2 . . . B1,k

B2,1 C
P
A,v1
min

. . . B2,k

...
...

. . .
...

Bk,1 Bk,2 C
P
A,vk
min

, where the blocks

Bi,j are zero except on the last column.

3. For linearly independent vectors (v1, . . . , vk), let (d1, . . . dk) be the lexicograph-
ically largest sequence of degrees such that K =

[
KA,v1,d1

. . . KA,vk,dk

]
is

non-singular. Then

K−1AK =


C
P
A,v1
min

B1,2 . . . B1,k

C
P
A,v1
min

. . . B2,k

. . .
...

C
P
A,vk
min

 = H. (13.4.1)

13.4.44 Remark

1. Some choice of vectors v1, . . . , vk lead to a matrix H block diagonal: this is the
Frobenius normal form [1171].

2. The matrix obtained from Equation (13.4.1) is a Hessenberg form. It suffices to
compute the characteristic polynomial from its diagonal blocks.

13.4.45 Theorem The Frobenius normal form can be computed:

1. by a deterministic algorithm [2727] in 6n3 +O
(
n2 log2 n

)
field operations, (only

(2 + 2
3 )n3 +O

(
n2
)

for the characteristic polynomial [934]);

2. by a deterministic algorithm [2726] in O (nω log n log logn), together with a trans-
formation matrix (only O (nω log n) for the characteristic polynomial [1723]);

3. by a Las-Vegas algorithm [944] in O (nω log n) field operations for any field, to-
gether with a transformation matrix;

4. by a Las-Vegas algorithm [2386] in O (nω) for q > 2n2, without a transformation
matrix.

13.4.46 Remark The minimal and characteristic polynomials, obtained as the first invariant factor
and the product of all invariant factors, can be computed with the same complexities.

13.4.47 Remark These algorithms are all based upon Krylov bases. The algorithm in Part 1 it-
eratively computes the Krylov iterates one after the other. Their cubic time complexity
with a small leading constant makes them comparable to Gaussian elimination. A fast ex-
ponentiation scheme by Keller-Gehrig [1723] achieves a sub-cubic time complexity for the
characteristic polynomial, off by a logarithmic factor of n from the matrix multiplication.
The choice for the appropriate vectors that will generate the Frobenius normal form can be
done either probabilistically (Las Vegas) or deterministically with an extra log logn factor.
The algorithm in Part 4 uses a different iteration where the size of the Krylov increases
according to an arithmetic progression rather than geometric (as all others) and the trans-
formation matrix is not computed. This allows the algorithm to match the complexity of
matrix multiplication. This reduction is practical and is implemented as in LinBox.
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13.4.48 Remark These probabilistic algorithms depend on the ability to sample uniformly from a
large set of coefficients from the field. Over small fields, it is always possible to embed the
problem into an extension field, in order to make the random sampling set sufficiently large.
In the worst case, this could add a O (log(n)) factor to the arithmetic cost and prevent most
of the bit-packing techniques. Instead, the effort of [944] is to handle cleanly the small finite
field case.

13.4.4 Blackbox iterative methods

13.4.49 Remark We consider now the case where the input matrix is sparse, i.e., has many zero
elements, or has a structure which enables fast matrix-vector products. Gaussian elimination
would fill-in the sparse matrix or modify the interesting structure. Therefore one can use
iterative methods instead which only use matrix-vector iterations (blackbox methods [1669]).
There are two major differences with numerical iterative routines: over finite fields there
exists isotropic vectors and there is no notion of convergence, hence the iteration must
proceed until exactness of the result [1840]. Probabilistic early termination can nonetheless
be applied when the degree of the minimal polynomial is smaller than the dimension of the
matrix [935, 945, 1664]. More generally the probabilistic nature of the algorithms presented
in this section is subtle: e.g., the computation of the minimal polynomial is Monte-Carlo, but
that of system solving, using the minimal polynomial, is Las Vegas (by checking consistency
of the produced solution with the system). Making some of the Monte-Carlo solutions Las
Vegas is a key open problem in this area.

13.4.4.1 Minimal polynomial and the Wiedemann algorithm

13.4.50 Remark The first iterative algorithm and its analysis are due to Wiedemann [2976]. The
algorithm computes the minimal polynomial in the Monte-Carlo probabilistic fashion.

13.4.51 Definition For a linearly recurring sequence S = (Si), its minimal polynomial is denoted
by ΠS .

1. The minimal polynomial of a matrix is denoted ΠA = Π(Ai).

2. For a matrix A and a vector b, we note ΠA,b = Π(Ai·b).

3. For another vector u, we note Πu,A,b = Π(uT ·Ai·b).

13.4.52 Algorithm (Wiedemann minimal polynomial)

Require: A ∈ Fn×nq , u, b ∈ Fnq
Ensure: Πu,A,b

1. Compute S = (uTAib) for i ≤ 2n;
2. Use the Berlekamp-Massey algorithm to compute the minimal polynomial of the

scalar sequence S;

13.4.53 Definition [See Definition 2.1.111] We extend Euler’s totient function by Φq,k(f) =∏
(1 − q−kdi), where di are the degrees of the distinct monic irreducible factors of the

polynomial f .

13.4.54 Theorem For u1, . . . , uj selected uniformly at random, the probability that lcm(Πuj ,A,b) =
ΠA,b is at least Φq,k(ΠA,b).

13.4.55 Theorem For b1, . . . , bk selected uniformly at random, the probability that lcm(ΠA,bi) = ΠA

is at least Φq,k(ΠA).
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13.4.4.2 Rank, determinant, and characteristic polynomial

13.4.56 Remark It is possible to compute the rank, determinant, and characteristic polynomial of a
matrix from its minimal polynomial. All these reductions require to precondition the matrix
so that the minimal polynomial of the obtained matrix will reveal the information sought,
while keeping a low cost for the matrix-vector product [607, 935, 947, 1666, 2824, 2874, 2875].

13.4.57 Theorem [947] Let S be a finite subset of a field F that does not include 0. Let A ∈ Fm×n
having rank r. Let D1 ∈ Sn×n and D2 ∈ Sm×m be two random diagonal matrices then

deg(minpoly(D1 ×At ×D2 ×A×D1)) = r, with probability at least 1− 11n2−n
2|S| .

13.4.58 Theorem [2824] Let S be a finite subset of a field F that does not include 0. Let U ∈ Sn×n
be a unit upper bi-diagonal matrix where the second diagonal elements u1, . . . , un−1 are
randomly selected in S. For A ∈ Fn×n, the term of degree 0 of the minimal polynomial of

UA is the determinant of A with probability at least 1− n2−n
2|S| .

13.4.59 Remark If A is known to be non-singular the algorithm can be repeated with different
matrices U until the obtained minimal polynomial is of degree n. Then it is the characteristic
polynomial of UA and the determinant is certified. Alternatively if the matrix is singular
then X divides the minimal polynomial. As Wiedemann’s algorithm always returns a factor
of the true minimal polynomial, and U is invertible, the algorithm can be repeated on
UA until either the obtained polynomial is of degree n or it is divisible by X. Overall the
determinant has a Las-Vegas blackbox solution.

13.4.60 Theorem [2874, 2875] Let S be a finite subset of a field F that does not include 0 and A ∈
Fn×n with s1, . . . , st as invariant factors. Let U ∈ Sn×k and V ∈ Sk×n be randomly chosen
rank k matrices in F. Then gcd(ΠA,ΠA+UV ) = sk+1 with probability at least 1− nk+n+1

|S| .

13.4.61 Remark Using the divisibility of the invariant factors and the fact that their product is of
degree n, one can see that the number of degree changes between successive invariant factors
is of order O (

√
n) [2874]. Thus by a binary search over successive applications of Theorem

13.4.60 one can recover all of the invariant factors and thus the characteristic polynomial
of the matrix in a Monte-Carlo fashion.

13.4.4.3 System solving and the Lanczos algorithm

13.4.62 Remark For the solution of a linear system Ax = b, one could compute the minimal
polynomial ΠA,b and then derive a solution of the system as a linear combination of the Aib.
The following Lanczos approach is more efficient for system solving as it avoids recomputing
(or storing) the latter vectors [947, 1273].

13.4.63 Algorithm (Lanczos system solving)

Require: A ∈ Fm×n, b ∈ Fm
Ensure: x ∈ Fn such that Ax = b or failure

1. Let Ã = D1A
TD2AD1 and b̃ = D1A

TD2b+ Ãv with D1 and D2 random diagonal
matrices and v a random vector;

2. w0 = b̃; v1 = Ãw0; t0 = vT1 w0; γ = b̃tw0t
−1
0 ; x0 = γw0;

3. repeat
4. α = vTi+1vi+1t

−1
i ; β = vTi+1vit

−1
i−1; wi+1 = vi+1 − αwi − βwi−1;

5. vi+2 = Ãwi+1; ti+1 = wTi+1vi+2;

6. γ = b̃twi+1t
−1
i+1; xi+1 = xi + γwi+1;

7. until wi+1 = 0 or ti+1 = 0;
8. Return x = D1(xi+1 − v);
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13.4.64 Remark The probability of success of Algorithm 13.4.63 follows from Theorem 13.4.57.

13.4.65 Remark Over small fields, if the rank of the matrix is known, the diagonal matrices of line
1 can be replaced by sparse preconditioners with O (n log(n)) non-zero coefficients to avoid
the need of field extensions [607, Corollary 7.3].

13.4.66 Remark If the system with A and b is known to have a solution then the algorithm can
be turned Las Vegas by checking that the output x indeed satisfies Ax = b. In general, we
do not know if this algorithm returns failure because of bad random choices or because the
system is inconsistent. However, Giesbrecht, Lobo, and Saunders have shown that when the
system is inconsistent, it is possible to produce a certificate vector u such that uTA = 0
together with uT b 6= 0 within the same complexity [1273, Theorem 2.4]. Overall, system
solving can be performed by blackbox algorithms in a Las-Vegas fashion.

13.4.5 Sparse and structured methods

13.4.67 Remark Another approach to sparse linear system is to use Gaussian elimination with
pivoting, taking into account the zero coefficients. This algorithm modifies the structure of
the matrix and might suffer from fill-in. Consequently the available memory is usually the
bottleneck. From a triangularization one can naturally derive the rank, determinant, system
solving, and nullspace. Comparisons with the blackbox approaches above can be found, e.g.,
in [935].

13.4.5.1 Reordering

13.4.68 Algorithm (Gaussian elimination with linear pivoting)

Require: a matrix A ∈ Fm×n
Ensure: An upper triangular matrix U such that there exists a unitary lower-

triangular matrix L and permutations matrices P and Q over F, with A = P ·L·U ·Q

1. for all elimination steps do
2. Choose as pivot row the sparsest remaining row;
3. In this row choose the non-zero pivot with lowest number of non-zero elements

in its column;
4. Eliminate using this pivot;
5. end for

13.4.69 Remark Yannakakis showed that finding the minimal fill-in (or equivalently the best piv-
ots) during Gaussian elimination is an NP-complete task [3031]. In numerical algorithms,
heuristics have been developed and comprise minimal degree ordering, cost functions, or
nested dissection; see for example [89, 1485, 3082]. These heuristics for reducing fill-in in
the numerical setting, often assume symmetric and invertible matrices, and do not take into
account that new zeros may be produced by elimination operations (aij = aij + δi ∗ akj),
as is the case with matrices over finite fields. Thus, [935] proposes the heuristic 13.4.68 to
take those new zeros into account, using a local optimization of a cost function at each
elimination step.

13.4.5.2 Structured matrices and displacement rank

13.4.70 Remark Originating from the seminal paper [1643] most of the algorithms dealing with
structured matrices use the displacement rank approach [2346].
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13.4.71 Definition For A ∈ Fm×m and B ∈ Fn×n, the Sylvester (respectively Stein) linear dis-
placement operator 5A,B (respectively 4A,B) satisfies for M ∈ Fm×n:

5A,B(M) = AM −MB,

4A,B(M) = M −AMB.

A pair of matrices (Y,Z) ∈ Fm×α × Fn×α is an (A,B)-Sylvester-generator of length α
(respectively Stein) for M if 5A,B(M) = Y ZT (respectively 4A,B(M) = Y ZT ).

13.4.72 Remark The main idea behind algorithms for structured matrices is to use such generators
as a compact data structure, in cases where the displacement has low rank.

13.4.73 Remark Usual choices of matrices A and B are diagonal matrices and cyclic down shift
matrices.

13.4.74 Definition We denote the diagonal matrix whose (i, i) entry is xi by Dx, x ∈ Fn and by
Zn,ϕ, ϕ ∈ F the n × n unit circulant matrix having ϕ at position (1, n), ones in the
subdiagonal (i+ 1, i) and zeros elsewhere.

operator matrices class of structured rank of number of flops
A B matrices M 5A,B(M) for computing M · v

Zn,1 Zn,0 Toeplitz and its inverse ≤ 2 O ((m+ n) log(m+ n))
Zn,1 ZTn,0 Hankel and its inverse ≤ 2 O ((m+ n) log(m+ n))

Zn,0 + ZTn,0 Zn,0 + ZTn,0 Toeplitz + Hankel ≤ 4 O ((m+ n) log(m+ n))

Dx Zn,0 Vandermonde ≤ 1 O
(
(m+ n) log2(m+ n)

)
Zn,0 Dx inverse of Vandermonde ≤ 1 O

(
(m+ n) log2(m+ n)

)
ZTn,0 Dx transposed of Vandermonde ≤ 1 O

(
(m+ n) log2(m+ n)

)
Dx Dy Cauchy and its inverse ≤ 1 O

(
(m+ n) log2(m+ n)

)

Table 13.4.4 Complexity of the matrix-vector product for some structured matrices

13.4.75 Remark As computing matrix vector products with such structured matrices have close
algorithmic correlation to computations with polynomials and rational functions, these ma-
trices can be quickly multiplied by vectors, in nearly linear time as shown on Table 13.4.4.
Therefore the algorithms of Subsection 13.4.4 can naturally be applied to structured matri-
ces, to yield almost O

(
n2
)

time linear algebra.

13.4.76 Remark If the displacement rank is small there exist algorithms quasilinear in n, the dimen-
sion of the matrices, which over finite fields are essentially variations or extensions of the
Morf/Bitmead-Anderson divide-and-conquer [290, 2154] or Cardinal’s [517] approaches. The
method is based on dividing the original problem repeatedly into two subproblems with one
leading principal submatrix and the related Schur complement. This leads to O

(
α2n1+o(1)

)
system solvers, which complexity bound have recently been reduced to O

(
αω−1n1+o(1)

)
[364, 1600]. With few exceptions, all algorithms thus need matrices in generic rank profile.
Over finite fields this can be achieved using Kaltofen and Saunders unit upper triangu-
lar Toeplitz preconditioners [1666] and by controlling the displacement rank growth and
non-singularity issues [1656].
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13.4.6 Hybrid methods

13.4.6.1 Hybrid sparse-dense methods

13.4.77 Remark Overall, as long as the matrix fits into memory, Gaussian elimination methods over
finite fields are usually faster than iterative methods [935]. There are heuristics trying to
take advantage of both strategies. Among those we briefly mention the most widely used:

1. Perform the Gaussian elimination with reordering 13.4.68 until the matrix is
almost filled up. If the remaining non-eliminated part would fit as a dense matrix,
switch to the dense methods of Subsection 13.4.2.

2. Maintain two sets of rows (or columns), sparse and dense. Favor elimination on
the sparse set. This is particularly adapted to index calculus [1839].

3. Perform a preliminary reordering in order to cut the matrix into four quadrants,
the upper left one being triangular. This, together with the above strategies has
proven effective on matrices which are already quasi-triangular, e.g., Gröbner
bases computations in finite fields [1043].

4. If the rank is very small compared to the dimension of the matrix, one can use left
and right highly rectangular projections to manipulate smaller structures [2040].

5. The arithmetic cost and thus timing predictions are easier on iterative methods
than on elimination methods. On the other hand the number of non-zero elements
at a given point of the elimination is usually increasing during an elimination,
thus providing a lower bound on the remaining time to triangularize. Thus a
heuristic is to perform one matrix-vector product with the original matrix and
then eliminate using Gaussian elimination. If at one point the lower bound for
elimination time surpasses the predicted iterative one or if the algorithm runs
out of memory, stop the elimination and switch to the iterative methods [937].

13.4.6.2 Block-iterative methods

13.4.78 Remark Iterative methods based on one-dimensional projections, such as Wiedmann and
Lanczos algorithm can be generalized with block projections. Via efficient preconditioning
[607] these extensions to the scalar iterative methods can present enhanced properties:

1. Usage of dense sub-blocks, after multiplications of blocks of vectors with the
sparse matrix or the blackboxes, allows for a better locality and optimization of
memory accesses, via the application of the methods of Subsection 13.4.1.

2. Applying the matrix to several vectors simultaneously introduces more paral-
lelism [718, 719, 1664].

3. The probability of success augments with the size of the considered blocks, espe-
cially over small fields [1657, 2873].

13.4.79 Definition Let X ∈ Fk×nq , Y ∈ Fn×kq and Hi = XAiY for i = 0, . . . , n/k. The matrix

minimal polynomial of the sequence Hi is the matrix polynomial FX,A,Y ∈ Fq[X]k×k

of least degree, with its leading degree matrix column-reduced, that annihilates the
sequence (Hi).

13.4.80 Theorem The degree d matrix minimal polynomial of a block sequence (Hi) ∈ (F k×kq )Z

can be computed in O
(
k3d2

)
using block versions of Hermite-Pade approximation and ex-

tended Euclidean algorithm [214] or Berlkamp-Massey algorithm [719, 1657, 2873]. Further
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improvement by [214, 1275, 1670, 2804] bring this complexity down to O
(

(kωd)
1+o(1)

)
,

using a matrix extended Euclidean algorithm.

13.4.81 Algorithm (Nullspace vector)

Require: A ∈ Fn×nq

Ensure: ω ∈ Fnq a vector in the nullspace of A

1. Pick X ∈ Fk×nq , Y ∈ Fn×kq uniformly at random;

2. Compute the sequence Hi = XAiY ;
3. Compute FX,A,Y the matrix minimal polynomial;
4. Let f = frx

r + · · ·+ fdx
d be a column of FX,A,Y ;

5. Return ω = Y fr +AY fr+1 + · · ·+Ad−rY fd;

13.4.82 Remark These block-Krylov techniques are used to achieve the best known time com-
plexities for several computations with black-box matrices over a finite field or the ring of
integers: computing the determinant, the characteristic polynomial [1670], and the solution
of a linear system of equations [946].

See Also

Chapter 10 For generating sequences and their links to Wiedemann’s algorithm
via Berlekamp-Massey’s shift register synthesis.

§11.1, §11.3 For effective finite field constructions.
§13.2 For structured matrices over finite fields.

References Cited: [89, 124, 214, 290, 349, 364, 457, 517, 607, 718, 719, 720, 723, 929, 930,
931, 932, 933, 934, 935, 937, 944, 945, 946, 947, 1043, 1171, 1273, 1275, 1336, 1485, 1600,
1643, 1656, 1657, 1664, 1666, 1669, 1670, 1723, 1839, 1840, 2040, 2154, 2170, 2346, 2386,
2726, 2727, 2728, 2804, 2824, 2873, 2874, 2875, 2974, 2976, 2985, 2987, 3031, 3082]

13.5 Carlitz and Drinfeld modules

David Goss, Ohio State University

13.5.1 Remark Much of the theory presented here will be familiar to the reader from the theory
of elliptic curves. Moreover, the reader may profit on first reading this by only focusing on
the basic case A = Fq[t]. We have given a very rapid introduction to Drinfeld modules and
the like and have naturally omitted many topics; the subject is quite active and changing
rapidly. For much of the elided material please consult [919, 920, 1333, 1451, 2793].∗

13.5.2 Remark One of the salient points about Drinfeld modules is that they allow one to go
as far as possible in replacing the integers Z as the fundamental object in arithmetic. In
other words, while all of the fields involved obviously lie over Spec(Z), the theory allows
one to study invariants coming from characteristic 0 (such as class groups, etc.) as well

∗This survey is dedicated to the memory of my friend, and function field pioneer, David Hayes.
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as analogous invariants arising only in finite characteristic (such as the “class module” of
Subsection 13.5.6 below).

13.5.1 Quick review

13.5.3 Remark It is well known that the most important function in classical analysis is the expo-
nential function ez; in analysis in characteristic p, it is the q-th power mapping τq(z) := zq

(q = pn0 , n0 a positive integer) and functions created out of it. Note that τq is clearly an Fq-
linear mapping by the Binomial Theorem and separable polynomials in τq are characterized
among all separable polynomials as those having their zeroes form an Fq vector space. For
any Fq-field E we let E{τq} be the algebra of polynomials in τq (which is noncommutative
in general); the ring E{τq} is the ring of algebraic Fq-linear endomorphisms of the additive
group over E. We also let Ē be a fixed algebraic closure of E.

13.5.4 Remark Let E be an arbitrary field (of arbitrary characteristic).

13.5.5 Definition A non-Archimedean absolute value on E is a mapping | | : E → R satisfying:

1. |x| ≥ 0,

2. |x| = 0 if and only if x = 0,

3. |xy| = |x||y|, and,

4. |x+ y| ≤ max{|x|, |y|}.

13.5.6 Example Let E = Fq(t) where t is an indeterminate. Let g ∈ E and suppose that g(t) has
a zero of order j at ∞; set |g| := q−j .

13.5.7 Remark The field E is complete if every Cauchy sequence converges to an element of E.
If the field is not complete one can complete it by mimicking the construction of the real
numbers (the field E of Example 13.5.6 completes to the formal Laurent series field Fq((1/t))
in 1/t). We assume that E is complete for the rest of this subsection.

13.5.8 Remark Property 4 in Definition 13.5.5 immediately implies that a series with coefficients
in E converges if and only if the n-th term goes to 0.

13.5.9 Remark Let F be a finite extension of E. It is well-known that | · | extends uniquely to F
(and thus to any algebraic closure Ē of E).

13.5.10 Proposition [1846] Let F be a normal extension of E. Let σ : F → F be an E-
automorphism. Then |σ(x)| = |x| for all x ∈ F .

13.5.11 Corollary [1846] Let F/E be finite of degree d and let NF
E be the norm. Then |x| =

|NF
E (x)|1/d for all x ∈ E.

13.5.12 Remark The absolute value | · | is also readily seen to extend uniquely to the completion
of Ē which remains algebraically closed.

13.5.13 Definition A power series
∑∞
i=0 aix

i with coefficients in E is entire if it converges for all
x ∈ E.

13.5.14 Theorem [1333] Let f(x) be an entire power series with coefficients in E. Then there
exists a nonnegative integer j, an element c ∈ E and a (possibly empty or finite) sequence
{0 6= λi} ⊂ Ē, where |λi| → ∞ as i→∞, with f(x) = cxj

∏
i(1− x/λi).
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13.5.15 Remark Conversely a product, as in Theorem 13.5.14, defines an E-entire power series
if {λi} is stable under E-automorphisms of Ē and inseparability indices are taken into
account. Note that Theorem 13.5.14 immediately implies that the power series for ez is
never entire as an E-power series for non-Archimedean E of characteristic 0.

13.5.16 Remark The notion of analytic continuation in complex analysis is essential; it is what
allows analytic functions to be defined locally. In non-Archimedean analysis, as just de-
scribed, there are far too many open sets for any analogous theory. Following ideas from
algebraic geometry (and Grothendieck), Tate had the fantastic idea to use a “Grothendieck
topology” to very seriously cut down on the number of such open sets. This theory is called
“rigid analysis” and it does in fact allow for analytic continuation, etc. More importantly,
via this theory one is able to pass between (rigid) analytic sheaves and algebraic sheaves
in the manner of Serre’s famous G.A.G.A. paper [2585]. In particular, one is then able to
construct algebraic functions via analysis. For details on all of this, see for example [354].

13.5.2 Drinfeld modules: definition and analytic theory

13.5.17 Remark Let X be a smooth, complete, geometrically irreducible curve over Fq with function
field k. Note that k is precisely a global field of characteristic p. We let ∞ ∈ X be a fixed
closed point of degree d∞ over Fq, and A the ring of functions holomorphic away from ∞;
set K := k∞ = the completion of k under the absolute value |x|∞ = q−v(x) where v(x) is
the order of zero of x at ∞. We set C∞ to be the completion of a fixed algebraic closure K̄
of K. Let K1 ⊂ C∞ be a finite extension of K (automatically also complete) with separable
closure Ksep

1 ⊂ C∞.

13.5.18 Definition 1. A K1-lattice is a discrete, finitely generated, Gal(Ksep
1 /K1)-stable A-

submodule M of Ksep
1 . 2. A morphism between two lattices M1 and M2 of the same

A-rank is a scalar c such cM1 ⊆M2. 3. To a lattice M we attach the exponential function
eM (z) := z

∏
06=β∈M (1− z/β).

13.5.19 Remark By Theorem 13.5.14, eM (z) is entire with K1 coefficients. As M can be exhausted
by finite dimensional Fq-vector spaces, one deduces that eM (z) is a limit of Fq-linear poly-
nomials and so is, itself, an Fq-linear surjection from C∞ to itself. We obtain an exact
sequence

0 −→M −→ C∞
eM (z)−→ C∞ −→ 0 . (13.5.1)

Let a ∈ A; by transport of structure (and matching divisors) we now obtain an exotic
A-module structure φMa (z) on C∞ via the functional equation

eM (az) := φMa (eM (z)) = a · eM (z)
∏

06=α∈a−1M/M

(1− eM (z)/eM (α)) . (13.5.2)

The essential observation is that a 7→ φMa (z) embeds A into K1{τq} as Fq-algebras; that is
we are representing an element a ∈ A by the nontrivial Fq-linear polynomial φMa (z) with
φMa+b(z) = φMa (z) + φMb (z) and φMab(z) = φMa (φMb (z)).

13.5.20 Definition Let E be a field with an Fq-linear homomorphism ı : A → E. Then a Drin-
feld module over (E, ı) is a homomorphism φ : A → E{τq}, a 7→ φa, such that
φa = ı(a)τ0

q+{higher terms} and such that there exists a ∈ A such that φa 6= ı(a)τ0
q . Let

φ and ψ be two Drinfeld modules over E; then a morphism from φ to ψ is a polynomial
P ∈ E{τq} such that Pφa = ψaP for all a. Nonzero morphisms are isogenies.
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13.5.21 Remark Via φ, E and Ē become A-modules with a∗z := φa(z) for a ∈ A, z ∈ Ē. Let I ⊆ A
be an ideal and let φ[I] ⊂ Ē be those points annihilated by all i ∈ I; commutativity of A
implies that φ[I] is a finite A-module. Now let a ∈ A 6∈ ker ı. As A is a Dedekind domain,
simple counting arguments show the existence of an integer d, independent of a, such that
φ[(a)] ' A/(a)d; d is the rank of φ. Isogenies are only possible between Drinfeld modules of
the same rank and isomorphisms correspond to those P of the form cτ0

q where c 6= 0.

We then have the following fundamental result of Drinfeld.

13.5.22 Theorem [919] The exponential construction gives an equivalence of categories between
Drinfeld modules of rank d over K1 and rank d K1-lattices.

13.5.23 Example Let A = Fq[t]. The Carlitz module C is the rank 1 Drinfeld module over Fq(t)
given by Ct := tτ0

q + τq. The associated Carlitz exponential is eC(z) :=
∑∞
j=0 z

qj/Dj ,
where Dj is the product of all monic polynomials of degree j, and the Carlitz lattice is Aξ

where ξ := (−t)q/(q−1)
∏∞
j=1(1 − t1−qj )−1 is the Carlitz period. For general A, Hayes has

constructed generalizations of C which are defined over a Hilbert class field of k.

13.5.24 Remark It was a fundamental observation of Carlitz that adding the elements of C[a] to k
gave an abelian extension. These extensions were then shown to provide the abelian closure
of k which is tamely ramified at ∞ by Hayes [1449] and generalized by him to arbitrary
A in [1450] in analogy with cyclotomic fields. Drinfeld gave a modular approach to the
construction of these class fields in his paper [919]; in [920] he obtained the full abelian
closure. This full abelian closure has also recently been explicitly constructed by Zywina
[3084].

13.5.25 Remark Carlitz originally constructed his module very concretely based on the famous
combinatorial formula called the Moore Determinant (a finite characteristic analog of the
Wronskian as well as the Vandermonde determinant) as given in the next definition (see
also Section 13.2).

13.5.26 Definition We define ∆q(w1, . . . , wn) to be the determinant of
w1 . . . wn
wq1 . . . wqn
...

...

wq
n−1

1 . . . wq
n−1

n

 =

 τ0
q (w1) . . . τ0

q (wn)
...

...
τn−1
q (w1) . . . τn−1

q (wn)

 .

13.5.27 Remark Moore then shows the following basic result analogous to Abel’s calculation of the
Wronskian.

13.5.28 Proposition [1333] ∆q(w1, . . . , wd) equals

d∏
i=1

∏
ki−1∈Fq

· · ·
∏
k1∈Fq

(wi + ki−1wi−1 + · · ·+ k1w1) .

13.5.29 Remark Proposition 13.5.28 allowed Carlitz to calculate various products of polynomials
over finite fields, and thus to explicitly construct his exponential, lattice, and module.

13.5.30 Remark Returning to a general Drinfeld modules φ, let p now be a prime of A with
completions kp, Ap. Let φ[p∞] be the set of all p-power torsion points.
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13.5.31 Definition We set Tp(φ) := HomA(kp/Ap, φ[p∞]); this is the p-adic Tate module of φ.

13.5.32 Remark If p 6= ker ı, then Tp(φ) is isomorphic to Adp as A-module; the construction of Tate
modules is functorial.

13.5.3 Drinfeld modules over finite fields

13.5.33 Remark Let E be as in Definition 13.5.20 now also be finite; let φ be a Drinfeld module over
E of rank d. Let FE := τ tq which is an endomorphism of φ. Set b := ker ı (which is a maximal
ideal of A) and let p 6= b be another nontrivial prime of A; set fφ(u) := det(1−uFE | Tp(φ)).
Very clever use of central simple arithmetic allows one to establish the following results.

13.5.34 Theorem [920] The polynomial fφ(u) depends only on the isogeny class of fφ(u) and has
coefficients in A which are independent of the choice of p. The reciprocal roots of fφ(u) in
C∞ have absolute value qt/d and their product generates the ideal b[E : A/b].

13.5.35 Definition An element α ∈ C∞ is a Weil number of rank d for E if and only if

1. α is integral over A,

2. there is only place in k(α) which is a zero of α and there is only one place of
k(α) above ∞,

3. |α|∞ = qt/d, and,

4. [k(α) : k] | d.

13.5.36 Remark Clearly the set of Weil numbers of rank d for E is acted on by the group of
k-automorphism of k̄ ⊂ C∞ and we let Wd(E) be the set of orbits under this action.

13.5.37 Theorem [920] The mapping from the set of isogeny classes of Drinfeld modules over E of
rank d to Wd(E) given by Theorem 13.5.34 is a bijection.

13.5.4 The reduction theory of Drinfeld modules

13.5.38 Remark Let E now be a finite extension of k equipped with a Drinfeld module φ of rank d;
let O be the A-integers of E. As A is a finitely generated Fq-algebra, for almost all O-primes
P we can reduce the coefficients of φ modulo P to obtain a Drinfeld module of rank d over
O/P. For the other primes, we now localize and assume that E is equipped with a nontrivial
discrete valuation v with v(A) nonnegative; let Ov ⊂ E be the associated valuation ring of
v-integers and let Mv ⊂ Ov be the maximal ideal.

13.5.39 Definition 1. The Drinfeld module φ has stable reduction at v if there exists ψ which is
isomorphic to φ such that ψ has coefficients in Ov and such that the reduction ψv of ψ
is a Drinfeld module (of rank d1 ≤ d). 2. The module φ has good reduction at v if it has
stable reduction and d1 = d. 3. The module φ has potential stable (resp. potential good)
reduction if there is an extension (E1, w) of (E, v) such that φ has stable (resp. good)
reduction at w.

13.5.40 Remark Drinfeld [919] established that every Drinfeld module has potential stable reduc-
tion. Let p be a prime of A not contained in Mv and view Tp(φ) as a Gal(Esep/E)-module.

13.5.41 Theorem [2767] The Drinfeld module φ has good reduction at v if and only if Tp(φ) is
unramified at v as a Gal(Esep/E)-module.
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13.5.42 Remark Theorem 13.5.41 is an obvious analog of the theorem of Ogg-Néron-Shafarevich and
is due to Takahashi. Taguchi [2765] has established that Tp(φ) is a semisimple Gal(Esep/E)-
module; this was also independently established by Tamagawa [2773],

13.5.5 The A-module of rational points

13.5.43 Remark Let E continue to be a finite extension of k equipped with a Drinfeld module φ of
rank d; using φ, E becomes a natural A-module which is denoted “φ(E)”.

13.5.44 Theorem [2419] The A-module φ(E) is isomorphic to T ⊕ N where T is a finite torsion
module and N is a free A-module of rank ℵ0.

13.5.45 Remark The above result, due to Poonen, applies more generally to other modules of
rational points (such as a ring OS of S-integers which contains the coefficients of φ). The
main technique in the proof is to establish the tameness of φ(L); that is, let M ⊆ φ(L) be a
submodule such that k⊗AM is finite dimensional, then M is itself finitely generated. This
result is established via the use of heights and is analogous to the theorem of Mordell-Weil
for elliptic curves/abelian varieties except that the rank is always infinite.

13.5.6 The invariants of a Drinfeld module

13.5.46 Remark We now present very recent work of Taelman [2760, 2761] that establishes an
analog of the classical class group/Tate-Shafarevich group and the group of units/Mordell-
Weil group in the theory of Drinfeld modules.

13.5.47 Remark As above, let E be a finite extension of k with A-integers O; set E∞ := E ⊗k K.
Let φ be a Drinfeld A-module of rank d over E whose coefficients will be assumed to lie in
O (N.B., this does not imply that φ has good reduction at all primes of O); let eφ(z) be the
associated exponential function. The functional equation satisfied by eφ(z) implies that the
coefficients of φ lie in E. Thus eφ(z) induces a natural Fq-linear, continuous endomorphism
of E∞ (also denoted eφ); it is an open map as the derivative of eφ(z) is identically 1. Let

M̂(φ/O) := e−1
φ (O) ⊂ E∞. The openness of eφ(z) immediately implies the next result.

13.5.48 Proposition [2760, 2761] The A-module M̂(φ/O) is discrete and cocompact in E∞.

13.5.49 Definition We set M(φ/O) ⊂ φ(O) to be the image of M̂(φ/O) under eφ(z).

13.5.50 Corollary [2760, 2761] M(φ/O) is a finitely generated A-module under the Drinfeld action.

13.5.51 Remark M(φ/O) is an analog of both the group of units of a number field and the Mordell-
Weil group of an elliptic curve.

13.5.52 Definition We set H(φ/O) := φ(E∞)/(φ(O) + eφ(E∞)).

13.5.53 Remark As O is cocompact in E∞ and eφ(E∞) is open in E∞, we deduce the next result.

13.5.54 Proposition [2760, 2761] H(φ,O) is a finite A-module.

13.5.55 Remark H(φ,O) is the class module or the Tate-Shafarevich module of φ over O.

13.5.56 Example Let A = Fq[t] and let φ = C be the Carlitz module.

1. Suppose first of all that E = k. In this case, one finds that H(C/A) = {0} and
that e−1

C (A) has rank one with generator the logarithm e−1
C (1).
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2. For general E, all torsion elements of C(O) are contained in M(C/O).

3. When E is obtained by adjoining torsion elements of C, Anderson [95] has pro-
duced an A-module of special points (analogous to cyclotomic units) which has
maximal rank inside M(C/O).

13.5.57 Remark One can reformulate the invariants of the Carlitz module in terms of Zariski sheaves
and shtuka (see Remark 13.5.116) thereby reinterpreting them à la motivic cohomology, see
[2762].

13.5.7 The L-series of a Drinfeld module

13.5.58 Remark Let F∞ ⊂ K be the field of constants and let π ∈ K be a fixed element of order 1
at ∞. Every element x ∈ K∗ has a decomposition x = ζx,ππ

v∞(x)〈x〉π with ζx,π ∈ F∗∞ and
〈x〉π ≡ 1 (mod π); x is positive if ζx,π = 1 (generalizing the notion of “monic polynomial”).
Let I be the group of A-fractional ideals with subgroups P+ ⊆ P where P (resp. P+) is
the group of principal (resp. and positively) generated ideals; I/P+ is finite, etc.

13.5.59 Remark Let U1 ⊂ C∞ be the group of elements 1 + w where |w|∞ < 1. The binomial
theorem implies that U1 is a Zp-module in the usual exponential fashion; as we can also
take p-power roots uniquely in U1, it is in fact a Qp-vector space. Let I = (i) ∈ P+ where
i is positive and define 〈I〉π := 〈i〉π. As U1 is divisible the next result follows directly.

13.5.60 Proposition [1333] The map I 7→ 〈I〉π extends uniquely to a homomorphism I 7→ 〈I〉π of
I to U1.

13.5.61 Remark Let deg(I) denote the degree over Fq of the associated divisor on Spec(A).

13.5.62 Definition We set S∞ := C∞ × Zp. For a fractional ideal I and s = (x, y) ∈ S∞, we set
Is := xdeg(I)〈I〉yπ.

13.5.63 Remark Let π∗ ∈ C∞ be a fixed d∞-th root of π and let j ∈ Z; set sj := (π−j∗ , j) ∈ S∞.
For positive a ∈ A, we have (a)sj = aj (with the standard meaning).

13.5.64 Remark Let E,O be as above and suppose φ is a Drinfeld module over E. Let NE
k be the

norm mapping on O-ideals. For each O-prime p of good reduction, we let fp(u) ∈ A[u] be
the characteristic polynomial of the reduction as in Subsection 13.5.3. The next definition
builds on classical theory.

13.5.65 Definition We formally put L(φ, s) :=
∏

p good fp(NE
k p−s)−1 for s ∈ S∞.

13.5.66 Remark Theorem 13.5.34 immediately implies that L(φ, s) converges on a “half-plane” of
S∞ consisting of (x, y) with |x|∞ bounded below (see [1208] for factors at the finitely many
bad primes).

13.5.67 Theorem [335] The function L(φ, s) analytically continues to a continuous (in y ∈ Zp)
family of entire power series in x−1 which is also continuous on S∞.

13.5.68 Remark Note that these entire power series are obtained by expanding the Euler products
and “summing by degree.”

13.5.69 Corollary [335] Let j be a nonnegative integer. Then L(φ, (x,−j)) is a polynomial in x−1.

13.5.70 Remark These special polynomials play an essential role in the theory. By [335], their degree
grows logarithmically in j. They interpolate continuously to entire families at all places of
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k. Moreover, this logarithmic growth allows one to analogously handle all associated partial
L-series obtained by summing only over a residue class [1334].

13.5.71 Definition We set ζA(s) :=
∑
I I
−1 =

∏
p, prime(1− p−s)−1 where I runs over the nonzero

ideals of A, etc. In a similar fashion one defines the zeta function of the A-integers in a
finite extension of k.

13.5.72 Example Let A = Fq[t] and let “positive=monic.” Then L(C, s) = ζA(s− 1).

13.5.8 Special values

13.5.73 Remark Let ξ be a Hayes-period (as in Example 13.5.23). Judicious use of the associated
exponential function gives the next result.

13.5.74 Theorem [1333] Let j be a positive integer divisible by qd∞ − 1. Then 0 6= ζA(j)/ξj is
algebraic over k.

13.5.75 Example In the case A = Fq[t], Carlitz in the 1930’s defined a suitable “factorial” element
and thus analogs of Bernoulli numbers; these are called “Bernoulli-Carlitz” elements.

13.5.76 Theorem [1333] Let j be as in Theorem 13.5.74. Then ζA(−j) = 0.

13.5.77 Remark Clearly, for all j ∈ Z, we have ζA(jp) = ζA(j)p. For the rest of this subsection,
we let A = Fq[t], etc. In this case, one knows that the order of zero (i.e., of the polynomial
ζA(x,−j) at x = 1) in Theorem 13.5.76 is exactly 1.

13.5.78 Theorem [582] The only algebraic relations on {ζA(j)}, j > 0, arise from Theorem 13.5.74
and the p-th power mapping.

13.5.79 Remark The obvious analog of Theorem 13.5.78 without the p-th power mapping is con-
jectured for the Riemann zeta function.

13.5.80 Remark Let E,O be as in Subsection 13.5.6. One lets |H(C/O)| be the monic generator
of the associated Fitting ideal and one defines a natural regulator R(C/O) using M̂(C/O).
Taelman then establishes the next fundamental result.

13.5.81 Theorem [2764] We have ζO(1) = |H(C/O)|R(C/O).

13.5.82 Remark Let φ be as in Subsection 13.5.6. Using the dual representation of the Tate module
of φ, one defines the L-series L(φ∨, s). Theorem 13.5.81 then generalizes to a formula for
L(φ∨, 0).

13.5.83 Remark In [2792], Thakur extends Theorem 13.5.81 to some basic examples involving
certain factorial, non-rational A thus indicating that Theorem 13.5.81 should hold in general.

13.5.84 Remark In [2763] Taelman establishes the analog for the Bernoulli-Carlitz elements and
the class module of the classical Theorem of Herbrand-Ribet.

13.5.9 Measures and symmetries

13.5.85 Remark Let A = Fq[t], p a prime of A of degree d, and let πp ∈ A have order 1 at p; thus
the completion Ap is isomorphic to F[[πp]] where F ' Fqd . Set R = Ap equipped with the
canonical topology.
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13.5.86 Definition An R-valued measure on R is a finitely additive R-valued function on the
compact opens of R.

13.5.87 Remark Let f : R→ R be a continuous function and µ a measure; it is easy to see that the
associated “Riemann sums” will converge to an element denoted “

∫
R
f(t) dµ(t).” Let µ and

ν be two R-valued measures; it is clear that their sum is also an R-valued measure. Their
product is defined, as usual, by convolution as below.

13.5.88 Definition Let µ, ν be as above. Their convolution µ ∗ ν is the R-valued measure on R
given by

∫
R
f(t) dµ ∗ ν(t) :=

∫
R

∫
R
f(x+ y) dµ(x)dν(y).

13.5.89 Remark It is easy to check that the space of measures forms a commutative R-algebra
under convolution. Now let Dj be the hyperdifferential operator given by Djx

i :=
(
i
j

)
xi−j .

Notice that DiDj =
(
i+j
i

)
Di+j . Let R{{D}} be the algebra of formal power-series in the

Di with the above multiplication rule. Building certain bases for the continuous functions
out of additive polynomials (following Carlitz) one can establish the next result.

13.5.90 Theorem [1333] There is an isomorphism (which depends on the basis constructed) of the
R-algebra of measures and R{{D}}.

13.5.91 Remark Let y ∈ Zp be written as y =
∑∞
i=0 ciq

i, where 0 ≤ ci < q. Let ρ be a permutation
of the set {0, 1, 2, . . .}.

13.5.92 Definition We define ρ∗(y), y ∈ Zp, by ρ∗(y) :=
∑∞
i=0 ciq

ρ(i) . We let S(p) denote the
induced group of bijections of Zp.

13.5.93 Theorem [1335] The map ρ∗ is a homeomorphism of Zp and ρ(y0 + y1) = ρ(y0) + ρ(y1) if
there is no carry-over of q-adic digits in the sum of y0 and y1. Furthermore, ρ∗ stabilizes
both the positive and negative integers. Finally, n ≡ ρ∗(n) (mod q − 1) for all integers n.

13.5.94 Remark It is remarkable that S(q) appears to act as a group of symmetries of the L-series
of Drinfeld modules. We present some evidence of this here and refer the reader to [1335] for
more details. Our first result is completely general and is an application of Lucas’ formula
for the reduction modulo p of binomial coefficients.

13.5.95 Proposition [1335] Let ρ∗ ∈ S(p), y ∈ Zp, and j a nonnegative integer. Then we have(
ρ∗(y)
ρ∗(j)

)
≡
(
y
j

)
(mod p).

13.5.96 Theorem [1335] Let j be a nonnegative integer. Then, as polynomials in x−1, ζA(x,−j)
and ζA(x,−ρ∗(j)) have the same degree.

13.5.97 Remark Theorem 13.5.96 also depends on another old formula of Carlitz (resurrected by
Thakur) that allows one to compute the relevant degrees; these degrees then turn out to be
invariant of the ρ∗ action as a corollary of Theorem 13.5.93. Using Lucas’ formula again,
one also establishes the next result.

13.5.98 Theorem [1335] Let ρ∗ be as above. Then the map Di → Dρ∗(i) gives rise to an automor-
phism of R{{D}}.

13.5.99 Remark Thus, of course, S(p) also acts as automorphisms of measure algebras. Moreover,
long ago Carlitz computed the denominators of his Bernoulli-Carlitz elements (as in Exam-
ple 13.5.75) in analogy with the classical result of von Staudt-Clausen. It is quite remarkable
that the condition that a prime f ∈ A of degree d divides this denominator is invariant
under S(qd).
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13.5.100 Remark We finish this subsection by noting that, in examples including A = Fq[t], the
zeroes of ζA(s) “lie on a line” (with perhaps finitely many exceptions for nonrational A)
with orders agreeing with classical predictions. For this, see [2611, 2892].

13.5.10 Multizeta

13.5.101 Remark L-series of Drinfeld modules give rise to entire power series upon summing by
degree. If one takes these sums and intermixes them, one obtains “multi-L-series” whose
study was initiated by Thakur (see for example [2792]). One obtains a remarkably rich
edifice with analogs of many essential classical results such as shuffle relations and the
realization of multizeta values as periods, etc. For instance, Anderson and Thakur [97] have
shown the analog of a result of Terasoma giving an interpretation of multizeta values as
periods of “mixed Carlitz-Tate t-modules.”

13.5.11 Modular theory

13.5.102 Remark Let A again be a general base ring. Let M be a rank d lattice as in Definition
13.5.18. Let {m1, . . . ,md} ∈M be chosen so that M = Am1 + · · ·+Amd−1 +Imd where I is
a nonzero ideal of A (as can always be done since A is a Dedekind domain). The discreteness
of M implies that (m1, . . . ,md) does not belong to any hyperplane defined over K = k∞.

13.5.103 Definition We define Ωd := Pd−1(C∞) \ Yd, where Yd is the subset of all points lying in
K-hyperplanes.

13.5.104 Remark The space Ωd comes equipped with the structure of a rigid analytic space. It is
connected (in the appropriate rigid sense) [2847]; in particular, functions are determined by
their local expansions.

13.5.105 Example Let d = 2. Then Ω2 = P1(C∞)− P1(K). This space is analogous to the classical
upper and lower half-planes.

13.5.106 Remark Let M , {m1, . . . ,md}, be as above; clearly M is isomorphic (Definition 13.5.18) to
the lattice M̂ := A+ Am2

m1
+ · · ·+ Amd−1

m1
+ Imdm1

which is, itself, associated to the element

(m2/m1, . . . ,md/m1) ∈ Ωd. It is therefore reasonable that modular spaces associated to
Drinfeld modules (i.e., spaces whose points parametrize Drinfeld modules with, perhaps,
some added structure on their torsion points) can be described using Ωd in a manner
exactly analogous to elliptic modular curves and the classical upper half plane. Indeed, this
was accomplished by Drinfeld in his original paper [919].

13.5.107 Remark Drinfeld’s construction can be quite roughly sketched as follows: For simplicity,
assume that I = A and let J ⊂ A be a nontrivial ideal. Let ΓJ ⊂ GLd(A) be the principal
congruence subgroup. Then ΓJ acts on Ωd in complete analogy with the standard action of
congruence subgroups of SL2(Z). This action of ΓJ is rigid analytic and the quotient ΓJ\Ωd
also exists as a rigid space which is denoted Md

J .

13.5.108 Theorem [919] The space Md
J is a regular affine variety of dimension d. It is equipped with

a natural morphism to Spec(A) which is flat and smooth away from the primes dividing J .

13.5.109 Remark The space M2
J is a relative curve highly analogous to elliptic modular curves.

Indeed, it also can be compactified via “Tate objects” at a finite number of cusps.

13.5.110 Example Let I = A before and let Γ = SL2(A). Let eA(z) be the exponential function
associated to A considered as a rank 1 lattice (Definition 13.5.18). Set EA(z) := eA(z)−1.
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Then one shows [1332] that EA(z) is a uniformizing parameter at the infinite cusp for Γ
acting on Ω2 in analogy with e2πiz and the upper half plane classically. (We note that our
notation “EA(z)” is highly nonstandard but necessary as the commonly used symbols are
already taken here.)

13.5.111 Remark Given the analogy between the spaces Ωd (and especially Ω2) and the classically
upper half plane, it makes sense to discuss modular forms in this context [1332]. For sim-
plicity, let Γ = GL2(A).

13.5.112 Definition [1267] A rigid analytic function f on Ω2 is a modular form of weight k and type
m (for a nonnegative integer k and class m of Z/(q − 1)) if and only if

1. for γ =

(
a b
c d

)
∈ Γ one has f

(
az+b
cz+d

)
= det γ−m(cz + d)kf(z),

2. f is holomorphic at the cusps.

13.5.113 Remark Property 1 of Definition 13.5.112 implies that f(z) has a Laurent-series expansion
in terms of EA(z) and Property 2 is the requirement that this expansion has no negative
terms; similar expansions are mandated at the other cusps. Modular forms of a given weight
and type then comprise finite dimensional vector spaces.

13.5.114 Example Let A = Fq[t]. A Drinfeld module ρ of rank 2 is determined by ρt = tτ0+gτ+∆τ2.
Here g is a modular form of weight q − 1 and type 0 and ∆ is a form of weight q2 − 1 and
type 0.

13.5.115 Remark One can readily equip such modular forms with an action of the Hecke operators
which are related to Galois representations. For this see, for example, [125, 126, 334, 1267].

13.5.116 Remark The modular theory has been highly important in a number of ways. In analogy
with work on the Korteweg-de Vries equation, Drinfeld found a way to sheafify his modules,
(see, for example, [2201] for a very nice account). These sheaves, called “shtuka,” have been
essential to the work of Lafforgue completing the Langlands program for function fields and
the general linear group [1829, 1830].

13.5.117 Remark Building on the notion of shtuka, in a fundamental paper Anderson [94] generalized
Drinfeld modules to “t-modules” by replacing the additive group with additive n-space. Such
t-modules have a tensor product as well as associated exponential functions and Anderson
presents an extremely useful criterion for the surjectivity of these functions. The paper [94]
has played a key role in many developments.

13.5.118 Remark Another application of the Drinfeld modular curves has been in the algebraic-
geometric construction of codes due to Goppa. For example, the reader may consult [2280,
2881].

13.5.119 Remark Finally, we mention the very recent result of Pellarin [2375] which establishes a
two-variable deformation of Theorem 13.5.74. In particular, one obtains deformations of
Bernoulli-Carlitz elements.

13.5.12 Transcendency results

13.5.120 Remark There is a vast theory related to the transcendency of elements arising in the
theory of Drinfeld modules and the like. For instance, the Carlitz period (Example 13.5.23)
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was shown to be transcendental by Wade [2888]. Since then a vast number of other results
and techniques were introduced into the theory including ideas from automata theory. For
a sampling of what can be found, we refer the reader to [78, 79, 96, 581, 582, 3039, 3040].
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2585, 2611, 2760, 2761, 2762, 2763, 2764, 2765, 2767, 2773, 2792, 2793, 2847, 2881, 2888,
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14.1 Latin squares

Gary L. Mullen, The Pennsylvania State University

14.1.1 Definition A latin square of order n is an n×n array based upon n distinct symbols with
the property that each row and each column contains each of the n symbols exactly
once.

14.1.2 Example The following are latin squares of orders 3 and 5

0 1 2
1 2 0
2 0 1

,

1 2 3 4 0
3 4 0 1 2
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3

.

14.1.3 Remark Given any latin square of prime power order q (with symbols from Fq, the finite
field of order q), using the Lagrange Interpolation Formula from Theorem 2.1.131, we can
construct a polynomial P (x, y) of degree at most q − 1 in both x and y which represents
the given latin square. The field element P (a, b) is placed at the intersection of row a and
column b. For example, the two squares given in the previous example can be represented
by the polynomials x+ y over F3 and 2x+ y + 1 over F5.

14.1.4 Definition Assume that a latin square of order n is based upon the n distinct symbols
1, 2, . . . , n. Such a latin square of order n is reduced if the first row and first column are
in the standard order 1, 2, . . . , n. Let ln denote the number of reduced latin squares of
order n. Let Ln denote the total number of distinct latin squares of order n.

14.1.5 Theorem [706] For each n ≥ 1, Ln = n!(n− 1)!ln.

14.1.6 Remark Using the addition table of the ring Zn of integers modulo n, it is easy to see that
ln ≥ 1 and hence Ln ≥ n!(n − 1)! for each n ≥ 2. The total number Ln of latin squares of
order n is unknown if n > 11 [2053]. The table from [706, p. 142], gives the values of ln for
n ≤ 11.

14.1.7 Definition Two latin squares of order n are orthogonal if upon placing one of the squares
on top of the other, we obtain each of the possible n2 distinct ordered pairs exactly
once. In addition, a set {L1, . . . , Lt} of latin squares all of the same order is orthogonal
if each distinct pair of squares is orthogonal, i.e., if Li is orthogonal to Lj whenever
i 6= j. Such a set of squares is a set of mutually orthogonal latin squares (MOLS).
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14.1.8 Remark There are numerous combinatorial objects which are equivalent to sets of MOLS.
These include transversal designs, orthogonal arrays, edge-partitions of a complete bipartite
graph, and (k, n)-nets. We refer to Chapter III, Theorem 3.18 of [706] for a more detailed
discussion of these topics; see also Sections 14.5 and 14.7.

14.1.9 Definition Let N(n) denote the maximum number of mutually orthogonal latin squares
(MOLS) of order n.

14.1.10 Theorem [706] For n ≥ 2, N(n) ≤ n− 1.

14.1.11 Definition A set {L1, . . . , Lt} of MOLS of order n is complete if t = n− 1.

14.1.1 Prime powers

14.1.12 Theorem [355] For any prime power q, the polynomials ax+ y with a 6= 0 ∈ Fq represent a
complete set of q−1 MOLS of order q by placing the field element ax+y at the intersection
of row x and column y of the a-th square.

14.1.13 Remark In Subsection 14.1.5 we discuss connections of complete sets of MOLS with other
combinatorial objects; in particular with affine and projective planes where it is stated that
the existence of a complete set of MOLS of order n is equivalent to the existence of an
affine, or projective, plane of order n.

14.1.14 Example The following gives a complete set of 4 MOLS of order 5, arising from the poly-
nomials x+ y, 2x+ y, 3x+ y, 4x+ y over the field F5

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

,

0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

,

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

,

0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0

.

14.1.15 Theorem For q ≥ 5 an odd prime power, the polynomials ax + y, a 6= 0, 1,−1 ∈ Fq give a
(maximal) set of q − 3 MOLS of order q, each of which is diagonal, i.e., which has distinct
elements on both of the main diagonals. When q ≥ 4 is even the same construction with
a 6= 0, 1 ∈ Fq gives a (maximal) set of q − 2 diagonal MOLS of order q.

14.1.16 Remark The construction of sets of infinite latin squares containing nested sets of mutually
orthogonal finite latin squares is discussed in [397, 398]. The construction involves use of
polynomials of the form ax+ y over infinite algebraic extensions of finite fields.

14.1.17 Remark If q is odd, a latin square of order q − 1 which is the multiplication table of the
group F∗q , is mateless; i.e., there is no latin square which is orthogonal to the given square.
In fact, a latin square arising from the multiplication table of a cyclic group of even order
is mateless; Fq with q odd is such an example.

14.1.18 Conjecture [1875] A complete set of n − 1 MOLS of order n exists if and only if n is a
prime power.

14.1.19 Remark The above conjecture is the prime power conjecture, and is discussed in many
articles. In [2177] this conjecture is referred to as the next Fermat problem.
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14.1.2 Non-prime powers

14.1.20 Definition If A is a latin square of order m and B is a latin square of order n, denote the
entry at row i and column j of A by aij . Similarly we denote the (i, j) entry of B by
bij . Then the Kronecker product of A and B is the mn×mn square A⊗B, given by

A⊗B =

(a11, B) (a12, B) · · · (a1m, B)
(a21, B) (a22, B) · · · (a2m, B)

...
...

...
(am1, B) (am2, B) · · · (amm, B)

where for each entry a of A, (a,B) is the n× n matrix

(a,B) =

(a, b11) (a, b12) · · · (a, b1n)
(a, b21) (a, b22) · · · (a, b2n)

...
...

...
(a, bn1) (a, bn2) · · · (a, bnn)

.

14.1.21 Example As an illustration of this Kronecker product construction, for m = 2, n = 3 let

A =
0 1
1 0

, B =
0 1 2
1 2 0
2 0 1

.

Then the Kronecker product construction using A and B yields the following 6×6 square
whose elements are ordered pairs:

00 01 02 10 11 12
01 02 00 11 12 10
02 00 01 12 10 11
10 11 12 00 01 02
11 12 10 01 02 00
12 10 11 02 00 01

.

14.1.22 Lemma If H and K are latin squares of orders n1 and n2, then H ⊗K is a latin square of
order n1n2.

14.1.23 Lemma If H1 and H2 are orthogonal latin squares of order n1 and K1 and K2 are orthogonal
latin squares of order n2, then H1 ⊗K1 and H2 ⊗K2 are orthogonal latin squares of order
n1n2.

14.1.24 Corollary If there is a pair of MOLS of order n and a pair of MOLS of order m, then there
is a pair of MOLS of order mn.

14.1.25 Theorem If n = q1 · · · qr, where the qi are distinct prime powers with q1 < · · · < qr, then
N(n) ≥ q1 − 1.

14.1.26 Remark In 1922, MacNeish [1988] conjectured that N(n) = q1 − 1. This has been shown
to be false for all non-prime power values of n ≤ 62; it is in fact conjectured in [1876] that
this conjecture is false at all values of n other than 6 and prime powers.
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14.1.3 Frequency squares

14.1.27 Definition Let n = λm. An F (n;λ) frequency square is an n × n square based upon m
distinct symbols so that each of the m symbols occurs exactly λ times in each row and
column. Thus an F (n; 1) frequency square is a latin square of order n. Two F (n;λ)
frequency squares are orthogonal if when one square is placed on top of the other, each
of the m2 possible distinct ordered pairs occurs exactly λ2 times [2173]. A set of such
squares is orthogonal if any two distinct squares are orthogonal. Such a set of mutually
orthogonal squares is a set of MOFS.

14.1.28 Theorem [1456] The maximum number of MOFS of the form F (n;λ) is bounded above by
(n− 1)2/(m− 1).

14.1.29 Theorem [2173] If q is a prime power and i ≥ 1 is an integer, a complete set of (qi−1)2/(q−
1), F (qi; qi−1) MOFS can be constructed using the linear polynomials a1x1 + · · · + a2ix2i

over the field Fq where
1. The vector (a1, . . . , ai) 6= (0, . . . , 0),
2. The vector (ai+1, . . . , a2i) 6= (0, . . . , 0),
3. The vector (a′1, . . . , a

′
2i) 6= e(a1, . . . , a2i) for any e 6= 0 ∈ Fq.

14.1.4 Hypercubes

14.1.30 Definition A d-dimensional hypercube of order n is an n × · · · × n array with nd points
based on n distinct symbols with the property that if any single coordinate is fixed,
each of the n symbols occurs exactly nd−2 times in that subarray. Such a hypercube is
of type j, 0 ≤ j ≤ d − 1 if whenever any j of the coordinates are fixed, each of the n
symbols appears nd−j−1 times in that subarray. Note that the definition implies that a
hypercube of type j is also of types 0, 1, . . . , j − 1.

14.1.31 Definition Two hypercubes are orthogonal if, when superimposed, each of the n2 ordered
pairs appears nd−2 times. Again the d = 2 case reduces to that of latin squares. A set
of t ≥ 2 hypercubes is orthogonal if every pair of distinct hypercubes is orthogonal.

14.1.32 Theorem [1876] The maximum number of mutually orthogonal hypercubes of order n ≥ 2,
dimension d ≥ 2, and fixed type j with 0 ≤ j ≤ d− 1 is bounded above by

1

n− 1

(
nd − 1−

(
d

1

)
(n− 1)−

(
d

2

)
(n− 1)2 − · · · −

(
d

j

)
(n− 1)j

)
.

14.1.33 Corollary The maximum number of order n, dimension d, and type 1 hypercubes is bounded
above by

Nd(n) ≤ nd − 1

n− 1
− d.

14.1.34 Remark In the case that d = 2, Nd(n) reduces to the familiar bound of n − 1 for sets of
MOLS of order n. As was the case for d = 2, the bound for d > 2 can always be realized
when n is a prime power.

14.1.35 Corollary There are at most

(n− 1)d−1 +

(
d

d− 1

)
(n− 1)d−2 + · · ·+

(
d

j + 1

)
(n− 1)j



554 Handbook of Finite Fields

cube cube cube cube cube cube cube cube cube cube
1 2 3 4 5 6 7 8 9 10

012 012 012 012 000 000 012 012 012 012
120 201 012 012 111 111 120 201 201 120
201 120 012 012 222 222 201 120 120 201

012 012 120 201 111 222 120 201 120 201
120 201 120 201 222 000 201 120 012 012
201 120 120 201 000 111 012 012 201 120

012 012 201 120 222 111 201 120 201 120
120 201 201 120 000 222 012 012 120 201
201 120 201 120 111 000 120 201 012 012

x+ y 2x+ y y + z y + 2z x+ z x+ 2z x+ y 2x+ y 2x+ y x+ y
+z +2z +z +2z

Figure 14.1.1 A complete set of mutually orthogonal cubes of order 3.

hypercubes of order n, type j, and dimension d.

14.1.36 Theorem The polynomials a1x1 + · · ·+ adxd with
1. the elements ai ∈ Fq for i = 1, . . . , d with at least j + 1 of the ai 6= 0,
2. and (a′1, . . . , a

′
d) 6= e(a1, . . . , ad) for any e 6= 0 ∈ Fq, represent a complete set of

mutually orthogonal hypercubes of dimension d, order q, and type j.

14.1.37 Remark In [2155] another definition of orthogonality for hypercubes, called equi-
orthogonality is studied. In [992, 993] sets of hypercubes using various other definitions
of orthogonality are considered. Such stronger definitions of orthogonality turn out to be
useful in the study of MDS codes (see Section 15.1). In one definition, not only does one
keep track of the total number of times that ordered pairs occur, but their locations are
also taken into account. In other definitions, one studies various notions of orthogonality
involving more than the usual two hypercubes at a time. In all of these definitions, polyno-
mials over finite fields are used to construct complete sets of such orthogonal hypercubes of
prime power orders.

14.1.38 Remark In [2737] sets of very general mutually orthogonal frequency hyperrectangles of
prime power orders are constructed using linear polynomials over finite fields.

14.1.5 Connections to affine and projective planes

14.1.39 Remark Affine and projective planes are discussed in Section 14.3. We first state the
following fundamental result; and then discuss a few other related results.

14.1.40 Theorem [355], [706, Theorem III.3.20] There exists a projective plane (or an affine plane)
of order n if and only if there exists a complete set of MOLS of order n.

14.1.41 Definition Two complete sets of MOLS of order n are isomorphic if after permuting the
rows, permuting the columns with a possibly different permutation, and permuting the
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symbols with a third possibly different permutation of each square of the first set, we
obtain the second set of MOLS. See Part III of [706] for further discussion of non-
isomorphic sets of MOLS, affine, and projective planes.

14.1.42 Conjecture If p is a prime, any two complete sets of MOLS of order p are isomorphic.

14.1.43 Remark The above conjecture is only known to be true for p = 3, 5, 7. Truth of the conjec-
ture would imply that all planes of prime order are Desarguesian.

14.1.44 Theorem [2917, 2918] For q = pn, let 0 ≤ k < n, N = (q − 1)/(q − 1, pk − 1) and

set e = q − N . Let u be a primitive N -th root of unity in Fq. Assume that xp
k

+ cix
is a permutation polynomial for e elements c1, . . . , ce ∈ Fq, where one can assume that

c1 − 1 = c2. Let a 6= 0 and c1 be such that f(x) = axp
k

+ c1x is an orthomorphism of Fq
(so f is a permutation polynomial with f(0) = 0, and f(x)− x is also a permutation). Let

di = c1− ci. Then the polynomials aujxp
k

+ c1x+y, j = 1, . . . , N ; dix+y, i = 3, . . . , e;x+y
represent a complete set of q − 1 MOLS of order q.

14.1.45 Corollary For each n ≥ 2 and any odd prime p, the above construction gives τ(n) ≥ 2, non-
isomorphic complete sets of MOLS of order pn, where τ(n) denotes the number of positive
divisors of n.

14.1.46 Example For any odd prime p, this construction gives an example of a non-Desarguesian
affine translation plane of order p2, constructed without the use of a right quasifield as used
in [818].

14.1.47 Remark For q = 9, let F9 be generated by the primitive polynomial f(x) = x2 + 2x + 2
over F3. Let α be a root of f(x). The Desarguesian plane of order 9 may be constructed by
using the polynomials αix + y, i = 0, . . . , 7. Since u = α2 is a primitive 4-th root of unity,
the construction from the above corollary leads to the polynomials αx3 +y, α3x3 +y, α5x3 +
y, α7x3+y which represent four MOLS of order 9. To extend these four MOLS to a complete
set of 8 MOLS of order 9, we consider the polynomials x + y, α2x + y, α4x + y, α6x + y.
Thus four of the latin squares are the same in both the Desarguesian and non-Desarguesian
constructions.

14.1.6 Other finite field constructions for MOLS

14.1.48 Remark There are other finite field constructions for sets of MOLS; here we briefly allude to
a few of them which are described in much more detail in [706]. Quasi-difference matrices and
V (m, t) vectors are discussed in Section VI.17.4; self-orthogonal latin squares are considered
in Section III.5.6; MOLS with holes are considered in Section III.1.7; starters are studied
in VI.55.; and atomic latin squares are studied in Section III.1.6.

See Also

§14.3 Discusses affine and projective planes.
§14.5 Discusses block designs.

[706] Part III discusses latin squares.
[706] Part III, Section 3 discusses sets of MOLS.
[1875] Discusses topics in discrete mathematics with topics motivated by latin squares.
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14.2 Lacunary polynomials over finite fields

Simeon Ball, Universitat Politècnica de Catalunya

Aart Blokhuis, Eindhoven University of Technology

14.2.1 Introduction

14.2.1 Remark In 1970 Rédei published his treatise Lückenhafte Polynome über endlichen Körpern
[2444], soon followed by the English translation Lacunary Polynomials over Finite Fields
[2445], the title of this chapter. One of the important applications of his theory is to give
information about the following two sets.

14.2.2 Definition For f : Fq → Fq, or f ∈ Fq[X] define the set of directions (slopes of secants of
the graph):

D(f) :=

{
f(x)− f(y)

x− y |x 6= y ∈ Fq
}
.

14.2.3 Definition For f ∈ Fq[X] let

P (f) := {m ∈ Fq | f(X) +mX is a permutation polynomial}.

14.2.4 Remark The sets P (f) and D(f) partition Fq. If (f(x) − f(y))/(x − y) = m then the
polynomial f(x) + mx = f(y) + my, so m is a direction determined by f precisely when
f(X) +mX is not a permutation polynomial (on Fq).

14.2.2 Lacunary polynomials

14.2.5 Definition Let K be a (finite) field. A polynomial f ∈ K[x] is fully reducible if K is a
splitting field for f , that is, if f factors completely into linear factors in K[X].

14.2.6 Definition Denote by f◦ the degree of f , and by f◦◦ the second degree, the degree of the
polynomial we obtain by removing the leading term.

14.2.7 Definition If f◦◦ < f◦ − 1 then f is lacunary and the difference f◦ − f◦◦ is the gap.

14.2.8 Remark We want to survey what is known about lacunary polynomials (with a large gap)
that are fully reducible. In many applications however the gap is not between the degree and
the second degree, so instead of being of the form f(X) = Xn + h(X), where h◦ ≤ n− 2, it
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is of the more general form f(X) = g(X)Xn+h(X), where h◦ ≤ n−2, for some polynomial
g.

14.2.9 Example For d | (q− 1) the field K = Fq contains the d-th roots of unity, so the polynomial
Xd − ad is fully reducible.

14.2.10 Remark In many applications the degree f◦ = q, as is the case in the following examples.

14.2.11 Example The lacunary polynomials Xq + c, Xq −X, and if q is odd then Xq ±X(q+1)/2

and Xq ± 2X(q+1)/2 +X, are fully reducible in Fq[X].

14.2.12 Theorem [2445] Let f(X) = Xp + g(X), with g◦ = f◦◦ < p, be fully reducible in Fp[X], p
prime. Then either g is constant, or g = −X or g◦ is at least (p+ 1)/2.

14.2.13 Remark Let s(X) be the zeros polynomial of f , that is the polynomial with the same set
of zeros as f , but each with multiplicity one. So s = gcd(f,Xp −X). It follows that

s | f − (Xp −X) = X + g.

We may write f = s · r, where r is the fully reducible polynomial that has the zeroes of f
with multiplicity one less. Hence r divides the derivative f ′ = g′. So we conclude that

f = s · r | (X + g)g′.

If the right hand side is zero, then either g = −X, corresponding to the fully reducible
polynomial f(X) = Xq − X, or g′ = 0 which (since g◦ < p) implies g(X) = c for some
c ∈ K and f(X) = Xp+c = (X+c)p. If the right hand side is nonzero, then, being divisible
by f , it has degree at least p, so g◦ + g◦ − 1 ≥ p which gives g◦ ≥ (p+ 1)/2.

14.2.14 Remark In the next section we see how this result can be applied to obtain information
about the number of directions determined by a function.

14.2.3 Directions and Rédei polynomials

14.2.15 Definition Let AG(2, q) be the Desarguesian affine plane of order q, where points of
AG(2, q) are denoted by pairs (a, b), a, b ∈ Fq.

14.2.16 Definition Let PG(2, q) be the Desarguesian projective plane of order q with homogeneous
point coordinates (a : b : c) and line coordinates [u : v : w]. The point (a : b : c) is
incident with the line [u : v : w] precisely when au+ bv + cw = 0. The equation of the
line [u : v : w] is then uX + vY + wZ = 0.

14.2.17 Remark We consider AG(2, q) as part of the projective plane PG(2, q) where [0 : 0 : 1] is
the line at infinity, the line with equation Z = 0. The affine point (a, b) corresponds to the
projective point (a : b : 1).

14.2.18 Definition Let u = (u1, u2) and v = (v1, v2) be two affine points. The pair u, v determines
the direction m if the line joining them has slope m, or equivalently, if (u2 − v2)/(u1 −
v1) = m.
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14.2.19 Definition Let R be a set of q points in AG(2, q). We define DR ⊆ Fq ∪{∞} to be the set
of directions determined by the pairs of points in R.

14.2.20 Remark The reason we take R to have size q is two-fold. Firstly, in Rédei’s formulation of
the problem R is the graph of a function f and DR = Df . Secondly, any set with more than
q points determines all directions, by the pigeon hole principle: there are exactly q lines in
every parallel class, so if |R| > q, then there is a line with at least two points of R in each
parallel class. For results concerning the case |R| < q, see [2756].

14.2.21 Definition With R we associate its Rédei polynomial

F (U,W ) =
∏

(a,b)∈R

(W + aU + b).

14.2.22 Lemma If the direction m 6∈ DR then F (m,W ) = W q −W .

14.2.23 Lemma If the direction m ∈ DR, then F (m,W ) is a fully reducible lacunary polynomial of
degree q, and second degree at most |DR| − 1.

14.2.24 Theorem [322, Theorem 1] Let R be a set of q points in AG(2, q), and let N = |DR|. Then
either N = 1, or N ≥ (q + 3)/2, or 2 + (q − 1)/(pe + 1) ≤ N ≤ (q − 1)/(pe − 1) for some e,
1 ≤ e ≤ bn/2c.

14.2.4 Sets of points determining few directions

14.2.25 Remark The third case in Theorem 14.2.24, 2 + (q− 1)/(pe + 1) ≤ N ≤ (q− 1)/(pe− 1) for
some e satisfying 1 ≤ e ≤ bn/2c, is not sharp. The following are some examples of functions
that determine few directions.

14.2.26 Example The function f(X) = X(q+1)/2, where q is odd, determines (q + 3)/2 directions.

14.2.27 Example The function f(X) = Xs, where s = pe is the order of a subfield of Fq, determines
(q − 1)/(s− 1) directions.

14.2.28 Example The function f(X) = TrFq/Fs(X), the trace from Fq to the subfield Fs, determines
(q/s) + 1 directions.

14.2.29 Example If f(X) ∈ Fq[Xs], where s is the order of a subfield of Fq and is chosen maximal
with this property, in other words, f is Fs-linear (apart from the constant term) but not
linear over a larger subfield, then (q/s) + 1 ≤ N ≤ (q − 1)/(s− 1).

14.2.30 Remark Motivated by the form of the examples the following theorem was obtained (in
a number of steps) by Ball, Blokhuis, Brouwer, Storme, and Szőnyi. Initial results are in
[322], then the classification was all but obtained in [321], and completed in [185].

14.2.31 Theorem [185] If, for f : Fq → Fq, with f(0) = 0, the number N = |D(f)| > 1 of directions
determined by f is less than (q + 3)/2, then for a subfield Fs of Fq

q

s
+ 1 ≤ N ≤ q − 1

s− 1
,

and if s > 2 then f is Fs-linear.

14.2.32 Remark This result is obtained using several lemmas about fully reducible lacunary poly-
nomials which are of independent interest.
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14.2.33 Lemma [2445, Satz 18] Let s = pe be a power of p with 1 ≤ s < q. If

Xq/s + g(X) ∈ Fq[X] \ Fq[Xp]

is fully reducible over Fq then either s = 1 and g(X) = −X or

g◦ ≥ ((q/s) + 1)/(s+ 1).

14.2.34 Lemma [185] Let s be a power of p with 1 ≤ s < q and suppose that

Xq/s + g(X) ∈ Fq[X] \ Fq[Xp]

is fully reducible over Fq. If s > 2, g◦ = q/s2 and 2(g′)◦ < g◦ then Xq/s+ g(X) is Fs-linear.

14.2.35 Remark Theorem 14.2.31 completely characterizes the case in which the number of direc-
tions is small, that is less than (q + 3)/2. In the case that q = p is prime, N < (p + 3)/2
implies N = 1, and the characterization of N = (p + 3)/2 directions was given by Lovász
and Schrijver [1961].

14.2.36 Theorem [1961] If f ∈ Fp[X], p prime, determines (p + 3)/2 directions, then f(X) =
X(p+1)/2 up to affine equivalence.

14.2.37 Remark Much more can be said in this case, the following surprising theorem by Gács
[1151] shows that there is a huge gap in the spectrum of possible number of directions.

14.2.38 Theorem [1151] If the number of directions determined by f ∈ Fp[X], p prime, is more
than (p+ 3)/2, then it is at least

⌈
2
3 (p− 1)

⌉
+ 1.

14.2.39 Remark This bound is almost tight, there are examples that determine 2
3 (p−1)+2 directions

if p ≡ 1 (mod 3). Progress was made using Gács’ approach in [190] indicating that a further
gap is possible from 2p/3 to 3p/4. If there is an example with less than 3p/4 directions then
lines meet the graph of f in at most 3 points or at least p/4. Futhermore, if there are 3 lines
meeting the graph of f in more than 3 points then the graph of f is contained in these 3
lines. There are examples that determine 3

4 (p− 1) + 2 directions if p ≡ 1 (mod 4) and some
constructions where |D(f)| ≈ 7p/9 can be found in [1423].

14.2.40 Remark For results concerning the case q = p2, see [1152]. For related results on functions
f : Fkq → Fq, with k ≥ 2, that determine few directions, see [186], and for results on functions
f, g : Fq → Fq, where the set

P (f, g) = {(r, s) ∈ F2
q | X + rf(X) + sg(X) is a permutation polynomial}

is large [191].

14.2.5 Lacunary polynomials and blocking sets

14.2.41 Remark Let R be a subset of AG(2, q) of size q. The set of points of PG(2, q)

B = {(a : b : 1) | (a, b) ∈ R} ∪ {(1 : m : 0) | m ∈ DR}

has the property that every line of PG(2, q) intersects B.

14.2.42 Definition A blocking set of PG(2, q) is a set of points B of PG(2, q) with the property
that every line of is incident with a point of B.
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14.2.43 Lemma [358] A blocking set of PG(2, q) has at least q + 1 points and equality can only be
obtained if these points all are on a line.

14.2.44 Definition A blocking set of PG(2, q) that contains a line is trivial.

14.2.45 Remark We tacitly assume that all blocking sets under consideration are minimal, so
they do not contain a proper subset that is also a blocking set. For blocking sets of non-
Desarguesian planes and for further reading on blocking sets see [320, 329, 430, 432, 433,
1150, 1153] and for more recent references, see Remark 14.2.54.

14.2.46 Lemma [319] Suppose that B is a blocking set of size q + k + 1 and that (1 : 0 : 0) ∈ B
and assume that the line with equation Z = 0, that is [0 : 0 : 1] is a tangent to B. Then
the non-horizontal lines [1 : u : v] are blocked by the affine points of B and the Rédei
polynomial of the affine part of B can be written as

F (V,W ) = (V q − V )G(V,W ) + (W q −W )H(V,W ),

where G and H are of total degree k in the variables V and W .

14.2.47 Lemma [319] Let F0 denote the part of F that is homogeneous of degree q + k, and let G0

and H0 be the parts of G and H that are homogeneous of total degree k. Restricting to the
terms of total degree q + k we obtain the homogeneous equation

F0 = V qG0 +W qH0,

with
F0(V,W ) =

∏
(a:b:1)∈B

(bV +W ).

Writing f(W ) = F0(1,W ) and defining g and h analogously, we obtain a one-variable fully
reducible lacunary polynomial in Fq[W ],

f(W ) = g(W ) +W qh(W ).

14.2.48 Lemma [320] Let f ∈ Fq[X] be fully reducible, and suppose that f(X) = Xqg(X) + h(X),
where g and h have no common factor. Let k be the maximum of the degrees of g and
h. Then k = 0, or k = 1 and f(X) = a(Xq − X) for some a ∈ F∗q , or q is prime and
k ≥ (q + 1)/2, or q is a square and k ≥ √q, or q = p2e+1 for some prime p and k ≥ pe+1.

14.2.49 Theorem [430] A non-trivial blocking set B in PG(2, q), q square, has at least q +
√
q + 1

points. If equality holds then B consists of the points of a subplane of order
√
q.

14.2.50 Theorem [320] A non-trivial blocking set B in PG(2, q), q = p2e+1, p prime, q 6= p, has at
least q + pe+1 + 1 points. This bound is sharp only in the case e = 1.

14.2.51 Theorem [319] A non-trivial blocking set B in PG(2, p), p prime, has at least 3
2 (p + 1)

points. If equality holds then every point of B is on precisely 1
2 (p− 1) tangents.

14.2.52 Remark The bound in Theorem 14.2.51 was conjectured in [831].

14.2.53 Remark The proof of Lemma 14.2.48 leads to the following divisibility condition

f |(Xg + h)(h′g − g′h).

It would be good (and probably not infeasible) to characterize the case of equality in the
case p is prime, that is find all f, g, and h with f of degree q+ (q+ 1)/2, g and h of degree
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at most (q+ 1)/2 and f=̂(Xg+h)(h′g− g′h), where a=̂b means there exists a scalar c ∈ Fq
such that a = cb. This is the subject of the next section.

14.2.54 Remark Blocking sets in PG(2, pn), p prime, of size less than 3(pn+1)/2 have been classified
for n = 2 [2757] and n = 3 [2417] and they come from the construction in Remark 14.2.41.
However, for n ≥ 4, there are examples known which are not of this form. These examples,
called linear blocking sets, include those obtained by the construction in Remark 14.2.41.
It is conjectured that all small blocking sets are linear blocking sets. More precisely, we
have the following conjecture which is called the linearity conjecture. For recent articles
concerning this conjecture see [1872, 1977, 1978, 2408, 2755, 2757].

14.2.55 Conjecture [2755] If B is a blocking set in PG(2, pn), p prime, of less than 3(pn + 1)/2
points then there exists an n-dimensional subspace U of PG(3n − 1, p) with the property
that every point of B, when viewed as an (n − 1)-dimensional subspace of PG(3n − 1, p),
has non-trivial intersection with U .

14.2.6 Lacunary polynomials and blocking sets in planes of prime
order

14.2.56 Remark The blocking set problem in PG(2, p), p prime, leads one to search for polynomials
f(X), g(X), h(X), where f = Xpg + h factors completely into linear factors and g and h
have degree at most 1

2 (p + 1). More precisely, given a blocking set B of size 3
2 (p + 1), for

each point P ∈ B, and each tangent ` passing through P , there is a polynomial f with the
above property. A factor of f of multiplicity e corresponds to a line incident with P distinct
from ` meeting B in e+ 1 points.

14.2.57 Remark The equation f=̂(Xg+ h)(h′g− g′h) has several infinite families of solutions, and
some sporadic ones, not all of them necessarily corresponding to blocking sets.

14.2.58 Theorem [323] The following list contains all non-equivalent solutions for f = Xpg + h,
where f factors completely into linear factors and g and h have degree at most 1

2 (p + 1),
for p < 41.

1. (For odd p, say p = 2r + 1.) Take f(X) = X
∏

(X − a)3 where the product is
over the nonzero squares a. Then f satisfies f(X) = X(Xr− 1)3 = Xpg+h with
g(X) = Xr − 3, h(X) = 3Xr+1 −X. This would correspond to line intersections
of the lines incident with P (with frequencies written as exponents) 1r, 22, 4r.
For p = 7 this is the function for the blocking set {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 :
1)} ∪ {(a : b : 1) | a, b ∈ {1, 2, 4}}.

2. (For p = 4t+ 1.) Take f(X) = X
∏

(X − a)
∏

(X − b)4 where the product is over
the nonzero squares a and fourth powers b. Here f(X) = X(X2t− 1)(Xt− 1)4 =
Xpg + h with g(X) = X2t − 4Xt + 5 and h(X) = −5X2t+1 + 4Xt+1 −X. This
would correspond to line intersections 12t, 2t+2, 6t.

3. (For p = 4t+1.) Take f(X) = Xt+1
∏

(X−a)
∏

(X−b)2 where the product is over
the nonzero squares a and fourth powers b. Here f(X) = Xt+1(X2t−1)(Xt−1)2 =
Xpg+h with g(X) = Xt−2 and h(X) = 2X2t+1−Xt+1. This would correspond
to line intersections 12t, 2t, 4t (t + 2)2. For p = 13 this is a function for the
blocking set {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)} ∪ {(1 : a : 0), (0 : 1 : a), (a : 0 :
1) | a3 = −1} ∪ {(b : c : 1) | b3 = c3 = 1}.

4. (For p = 13.) Take f(X) = X
∏

(X − a)4
∏

(X − 1
2a) where the product is

over the values a with a3 = 1. Here f(X) = X(X3 − 1)4(X3 − 1
8 ) = Xpg + h

with g(X) = X3 + 4 and h(X) = 5X7 − 5X4 − 5X. This corresponds to line
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intersections 16, 24, 54, and indeed occurs.

5. Take f(X) = Xp−X(p+1)/2 = X(p+1)/2
∏

(X − a) where the product is over the
nonzero squares a.

6. Take f(X) = Xp− 2X(p+1)/2 +X = X
∏

(X − a)2 where the product is over the
nonzero squares a.

14.2.59 Remark These lacunary polynomials are just weighted subsets of the projective line, so
equivalence means that f = Xpg+ h is equivalent to those polynomials obtained under the
maps f(X) 7→ (cX+d)3(p+1)/2f((aX+ b)/(cX+d)), for some a, b, c, d ∈ Fp, where ad 6= bc.

14.2.60 Theorem [323] Let B be a non-trivial blocking set in PG(2, p) of size 3
2 (p+ 1), where p is

a prime less than 41. Then either there is a line incident with (p + 3)/2 points of B (and
hence is the example characterized in Theorem 14.2.36) or p ∈ {7, 13} and there is a unique
other example in both cases.

14.2.61 Conjecture [323] The restriction p < 41 is unnecessary in the above theorem.

14.2.7 Lacunary polynomials and multiple blocking sets

14.2.62 Definition A t-fold blocking set B of PG(2, q) is a set of points such that every line is
incident with at least t points of B.

14.2.63 Theorem [328] Let B be a t-fold blocking set in PG(2, q), q = ph, p prime, of size t(q+1)+c.
Let c2 = c3 = 2−1/3 and cp = 1 for p > 3.

1. If q = p2d+1 and t < q/2− cp q2/3/2, then c ≥ cp q2/3, unless t = 1 in which case
B, with |B| < q + 1 + cp q

2/3, contains a line.

2. If 4 < q is a square, t < q1/4/2 and c < cp q
2/3, then c ≥ t√q and B contains the

union of t disjoint Baer subplanes, except for t = 1 in which case B contains a
line or a Baer subplane.

3. If q = p2, p prime, and t < q1/4/2 and c < p
⌈

1
4 +

√
p+1

2

⌉
, then c ≥ t

√
q and B

contains the union of t disjoint Baer subplanes, except for t = 1 in which case B
contains a line or a Baer subplane.

14.2.64 Remark For more precise results in the case t = 2 see [188]; for t = 3 see [184]; for q = p3

see [2416, 2417, 2418]; for q = p6n+3 see [328]; and for q = p6n see [328, 2418].

14.2.65 Remark The proof of Theorem 14.2.63 starts with the main theorem of [330] on fully
reducible lacunary polynomials.

14.2.66 Theorem [330] Let f ∈ Fq[X], q = pn, p prime, be fully reducible, f(X) = Xqg(X)+h(X),
where (g, h) = 1. Let k = max(g◦, h◦) < q. Let e be maximal such that f is a pe-th power.
Then we have one of the following:

1. e = n and k = 0;

2. e ≥ 2n/3 and k ≥ pe;
3. 2n/3 > e > n/2 and k ≥ pn−e/2 − (3/2)pn−e;

4. e = n/2 and k = pe and f(X) = aTr (bX + c) + d or f(X) = aNorm(bX + c) + d
for suitable constants a, b, c, d. Here Tr and Norm respectively denote the trace
and norm function from Fq to F√q;

5. e = n/2 and k ≥ pe
⌈

1
4 +

√
(pe + 1)/2

⌉
;
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6. n/2 > e > n/3 and k ≥ pn/2+e/2 − pn−e − pe/2, or if 3e = n+ 1 and p ≤ 3, then
k ≥ pe(pe + 1)/2;

7. n/3 ≥ e > 0 and k ≥ ped(pn−e + 1)/(pe + 1)e;
8. e = 0 and k ≥ (q + 1)/2;

9. e = 0, k = 1 and f(X) = a(Xq −X).

14.2.67 Remark Lacunary polynomials over finite fields and in particular Redei’s theorem, The-
orem 14.2.12, and Blokhuis’ theorem, Theorem 14.2.51, have also been used in algebra,
algebraic number theory, group theory, and group factorization. For a survey of these ap-
plications, see [2758].

Polynomials over finite fields have been used to tackle a variety of problems associated
with incidence geometries. Various extensions of the ideas first used for lacunary polynomials
have been studied. This has led to some interesting techniques involving field extensions,
algebraic curves which in turn have led to classification, non-existence, and stability results
concerning subsets of points of a finite projective spaces with a certain given property. For
a recent survey, see [187].

See Also

Chapter 8 For more on permutation polynomials over finite fields.
§14.3 For more on affine and projective planes over finite fields.
§14.4 For more on higher dimensional spaces over finite fields.
§14.9 For more on polynomials over finite fields with restricted weights.

References Cited: [184, 185, 186, 187, 188, 190, 191, 319, 320, 321, 322, 323, 328, 329, 330,
358, 430, 432, 433, 831, 1150, 1151, 1152, 1153, 1423, 1872, 1961, 1977, 1978, 2408, 2416,
2417, 2418, 2444, 2445, 2755, 2756, 2757, 2758]

14.3 Affine and projective planes

Gary Ebert, University of Delaware

Leo Storme, Universiteit Gent

All structures in this section are finite. Reference [1560] is an excellent introduction to
projective and affine planes. See Section VII.2 of [706] for a concise description of the Hall,
André, Hughes, and Figueroa planes.

14.3.1 Projective planes

14.3.1 Definition A finite projective plane is a finite incidence structure of points and lines such
that

1. every two distinct points together lie on a unique line;

2. every two distinct lines meet in a unique point;

3. there exists a quadrangle (four points with no three collinear).
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14.3.2 Remark If π is a finite projective plane, then there is a positive integer n such that any
line of π has exactly n+ 1 points, every point lies on exactly n+ 1 lines, the total number
of points is n2 + n+ 1, and the total number of lines is n2 + n+ 1. This number n is called
the order of π.

14.3.3 Construction [1510] The classical examples of finite projective planes are constructed as
follows. Let V be a 3-dimensional vector space over the finite field Fq of order q. Take as
points the 1-dimensional subspaces of V and as lines the 2-dimensional subspaces of V , and
let incidence be given by containment. The resulting incidence structure is a finite projective
plane of order q, denoted by PG(2, q). These projective planes are Desarguesian since they
satisfy the classical configurational theorem of Desargues (for instance, see [555]). Note that
this construction shows that there exists a finite projective plane of order q for any prime
power q. Alternatively, one may use homogeneous coordinates (x : y : z) = {(fx, fy, fz) : f ∈
Fq\{0}} for the points of PG(2, q), and [a : b : c] = {[fa, fb, fc] : f ∈ Fq\{0}} for the lines
of PG(2, q), where the point (x : y : z) is incident with the line [a : b : c] if and only if
ax+ by + cz = 0.

14.3.4 Remark Some non-classical finite projective planes are discussed in Subsections 14.3.3 to
14.3.5. Many other constructions can be found in [807]. One of the most difficult problems in
finite geometry is determining the spectrum of possible orders for finite projective planes. All
known examples have prime power order, but it is unknown if this must be true in general.
The Bruck-Ryser-Chowla Theorem (Section 14.5) excludes an infinite number of positive
integers as possible orders. In addition, order 10 has been excluded via a computer search
[1837]. There are precisely four different (non-isomorphic, as defined in Subsection 14.3.3)
projective planes of order 9, the smallest order for which non-classical examples exist [1836].

An overview of the state of knowledge concerning small projective planes follows:

order n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
existence y y y y n y y y n y ? y n ? y
number 1 1 1 1 0 1 1 4 0 ≥ 1 ? ≥ 1 0 ? ≥ 22

14.3.2 Affine planes

14.3.5 Definition A finite affine plane is a finite incidence structure of points and lines such
that

1. any two distinct points together lie on a unique line;

2. for any point P and any line ` not containing P , there exists a unique line m
through P that has no point in common with ` (the “parallel axiom”);

3. there exists a triangle (three points not on a common line).

14.3.6 Remark If one defines a parallelism on the lines of an affine plane by saying that two lines
are parallel if they are equal or have no point in common, then parallelism is an equivalence
relation whose equivalence classes are called parallel classes. Each parallel class of lines is a
partition of the point set, and every line belongs to exactly one parallel class.

14.3.7 Remark If one removes a line ` together with all its points from a projective plane π, then
one obtains an affine plane π0 = π`. Two lines of the affine plane π` are parallel if and
only if the projective lines containing them meet the line ` in the same point. We call `
the line at infinity of π0, and the points of ` are called the points at infinity. Conversely,
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to construct a projective plane from an affine plane π0, create a new point for each parallel
class of π0 and adjoin this new point to each line in that parallel class. Also adjoin a new
line that contains all the new points and no other points. The resulting incidence structure
is a projective plane π, called the projective completion of π0. The order of π0 is the order
of its projective completion.

14.3.8 Construction The classical way to construct finite affine planes is as follows. Take as points
the ordered pairs (a, b), with a, b ∈ Fq, and as lines the sets of points (x, y) satisfying an
equation of the form Y = mX + b for some m, b ∈ Fq or an equation of the form X = c
for some c ∈ Fq. The resulting structure is an affine plane of order q, denoted by AG(2, q).
Such an affine plane is also Desarguesian since the projective completion of AG(2, q) is
(isomorphic to) PG(2, q). Alternatively, AG(2, q) may be constructed from a 2-dimensional
vector space V over Fq by taking as points all vectors in V and as lines all cosets of 1-
dimensional subspaces, where incidence is then given by containment.

14.3.3 Translation planes and spreads

14.3.9 Definition Let π be a projective plane. A collineation (automorphism) of π is a bijective
map φ on the point set of π that preserves collinearity. All collineations of π form the
automorphism group Aut(π) of π under composition of maps. A collineation group of π
is any subgroup of Aut(π). Two projective planes are isomorphic if there is a bijective
map from the point set of one plane to the point set of the other plane that sends
collinear points to collinear points.

14.3.10 Definition If φ is a collineation of a projective plane π, and φ fixes all lines through a
point P and all points on a line `, then φ is a (P, `)-perspectivity. In particular, it is a
(P, `)-elation if P ∈ `.

14.3.11 Definition A projective plane π is (P, `)-transitive if for any distinct points A,B not on `
and collinear with P (A 6= P 6= B), there is a (P, `)-perspectivity φ in Aut(π) such that
Aφ = B. Similarly, π is (m, `)-transitive if it is (P, `)-transitive for all points P on m. If
π is (`, `)-transitive for some line `, then ` is a translation line of π and π is a translation
plane with respect to `.

14.3.12 Remark If π is a translation plane with respect to a line `, then the affine plane π` = π \ `
is also a translation plane. Most often a translation plane is considered an affine plane, with
its line at infinity the translation line. The translation group of such an affine plane is the
group of all (`, `)-elations, which acts sharply transitively on the points of the affine plane
π`. References [279, 1613] provide extensive information on translation planes.

14.3.13 Remark Translation planes are coordinatized by algebraic structures called quasifields (see
Section 2.1). Every quasifield has an algebraic substructure called its kernel, which in the
finite setting is necessarily a finite field. The quasifield is then a finite dimensional vector
space over its kernel, and the dimension of the translation plane is the dimension of this
vector space.
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14.3.14 Definition Let Σ = PG(2t + 1, q) be a (2t + 1)-dimensional projective space for some
non-negative integer t (see Section 14.4 for the definition of projective space). A spread
of Σ is a set S of t-subspaces of Σ such that any point of Σ belongs to exactly one
element of S. The set-wise stabilizer of S in Aut(Σ) is the automorphism group Aut(S)
of the spread.

14.3.15 Construction View the finite field F = Fq2t+2 as a (2t+2)-dimensional vector space V over
its subfield Fq, and let Σ = PG(2t+ 1, q) be the associated (2t+ 1)-dimensional projective
space. If θ is a primitive element of F and L = Fqt+1 is the subfield of order qt+1, then for
each positive integer i, θiL is a (t + 1)-dimensional vector subspace of V that represents

a t-subspace of Σ. Moreover, S = {L, θL, θ2L, . . . , θq
t+1

L} is a spread of Σ. The spreads
obtained in this way are regular as defined below.

14.3.16 Definition A t-regulus of PG(2t + 1, q) is a set R of q + 1 mutually disjoint t-subspaces
such that any line intersecting three elements of R intersects all elements of R. These
lines are the transversals of R.

14.3.17 Proposition [1515, p. 200] Any three mutually skew t-subspaces of the projective space
PG(2t+ 1, q) determine a unique t-regulus containing them.

14.3.18 Remark The points covered by a 1-regulus R in PG(3, q) are the points of a hyperbolic
quadric. The transversals to R form another 1-regulus covering the same hyperbolic quadric.
This 1-regulus is the opposite regulus Ropp to R.

14.3.19 Definition Let q > 2 be a prime power. A spread S in PG(2t + 1, q) is regular if for any
three elements of S, the t-regulus determined by them is contained in S. (See [1515] for
an alternative definition valid for q = 2.)

14.3.20 Construction (Bruck-Bose [428]) Let Σ ∼= PG(2t + 1, q) be a hyperplane of Σ = PG(2t +
2, q), for some integer t ≥ 0, and let S be a spread of Σ. Define A(S) to be the geometry
whose points are the points of Σ\Σ, and whose lines are the (t + 1)-subspaces of Σ that
intersect Σ precisely in an element of S.

14.3.21 Theorem [428] The structure A(S) is an affine translation plane of order qt+1 which is at
most (t+1)-dimensional over its kernel. Conversely, any finite affine translation plane can be
constructed in this way for an appropriate choice of t. In particular, every finite translation
plane has prime power order. In addition, A(S) is isomorphic to AG(2, qt+1) if and only if
S is regular.

14.3.22 Remark The automorphism group of an affine translation plane A(S) is isomorphic to the
semidirect product of the translation group with the group of all nonsingular semilinear
mappings of the underlying vector space which fix the spread S [104]. The affine translation
plane A(S) is completed to a projective plane P (S) by adding the members of the spread
S as the points at infinity. Projective planes P (S1) and P (S2) are isomorphic if and only if
there is a collineation of Σ mapping S1 to S2 [1980].

14.3.23 Remark Let t = 1 above. Replacing a regulus R by its opposite regulus Ropp in a regular
spread S0 produces a new spread S which is not regular, provided q > 2. The associated
planes A(S) are the Hall planes. Simultaneously replacing mutually disjoint reguli by their
opposite reguli in a regular spread S0 produces a subregular spread S, whose associated
translation planes A(S) are also called subregular. If the set of mutually disjoint reguli in S0
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is “linear” in a well-defined way [427], then the resulting subregular planes are the André
planes which are two-dimensional over their kernels. Thus Hall planes are André planes,
but not necessarily vice versa.

14.3.24 Remark In [1508], a method is given for obtaining a spread of PG(3, q2) from a spread of
PG(3, q) for every odd prime power q.

14.3.4 Nest planes

14.3.25 Definition Let S0 be a regular spread of PG(3, q). A nest N in S0 is a set of reguli in S0

such that every line of S0 belongs to 0 or 2 reguli of N . Thus a nest is a 2-cover of the
lines of S0 which are contained in the nest.

14.3.26 Remark Counting arguments show that the number t of reguli in a nest must satisfy
(q + 3)/2 ≤ t ≤ 2(q − 1). In particular, we note that q must be odd for nests to exist. If a
nest contains t reguli, it is a t-nest. If U denotes the t(q + 1)/2 lines of S0 contained in the
reguli of a t-nest N , there is a natural potential replacement set for U . Namely, if (q+ 1)/2
lines can be found in the opposite regulus to each regulus of N such that the resulting set
W of t(q + 1)/2 lines are mutually disjoint, then S = (S0 \ U) ∪W is a non-regular spread
of PG(3, q) and hence A(S) is a non-Desarguesian translation plane. In this case, the nest
N is replaceable, and the resulting plane A(S) is a nest plane.

14.3.27 Definition An inversive plane is a 3− (n2 + 1, n+ 1, 1) design (see Section 14.5), for some
integer n ≥ 2. That is, an inversive plane is an incidence structure of n2 + 1 points and
n(n2 + 1) blocks, each block of size n + 1, such that every three points lie in a unique
block. The blocks are the circles of the inversive plane.

14.3.28 Construction Let q be any prime power. Take as points the elements of Fq2 together with
the symbol∞. Take as circles the images of Fq∪{∞} under the nonsingular linear fractional
mappings on Fq2 , with the usual conventions on∞. If incidence is given by containment, this
produces an inversive plane with q2 + 1 points whose circles have size q + 1. This inversive
plane is Miquelian because it satisfies the classical configurational result of Miquel, and is
denoted by M(q) [807].

14.3.29 Theorem [427] There is a one-to-one correspondence between the points and circles of
M(q), and the lines and reguli of a regular spread of PG(3, q). There is an associated
homomorphism from the stabilizer of the regular spread to the automorphism group of
M(q), whose kernel is a cyclic group of order q + 1.

14.3.30 Remark Using the above correspondence, it is usually easier to search for nests in M(q)
rather than directly in a regular spread S0 of PG(3, q). Such nests can often be constructed
by taking the orbit of some carefully chosen “base” circle under a natural cyclic or elemen-
tary abelian subgroup of Aut(M(q)). However, to check if the resulting nest is replaceable,
one must pull back to S0 and work in PG(3, q). Some nests are replaceable and some are
not. Computations involving finite field arithmetic lead to the following results.

14.3.31 Theorem [172, 173, 949, 950, 2374] For any odd prime power q ≥ 5, there exist replaceable
t-nests for t = q − 1, q, q + 1, 2(q − 1). The resulting spreads determine non-Desarguesian
translation planes of order q2 which are two-dimensional over their kernels.

14.3.32 Remark The nesting technique for constructing two-dimensional translation planes is quite
robust. In addition to the above examples, replaceable t-nests have been constructed for



568 Handbook of Finite Fields

many values of t in the range 3(q + 1)/4 − √q/2 ≤ t ≤ 3(q + 1)/4 +
√
q/2; see [174].

Moreover, the translation planes associated with nests often can be characterized by the
action of certain collineation groups [1609, 1612, 1614, 1615].

14.3.33 Remark Circle geometries and the notion of subregularity can be extended to higher dimen-
sions. Using algebraic pencils of Sherk surfaces, in [756] several infinite families of non-André
subregular translation planes are constructed which are 3-dimensional over their kernels.
Proofs use intricate finite field computations involving the trace, norm, and bitrace.

14.3.5 Flag-transitive affine planes

14.3.34 Definition An affine plane is flag-transitive if it admits a collineation group which acts
transitively on incident point-line pairs.

14.3.35 Remark A straightforward counting argument shows that transitivity on lines implies tran-
sitivity on flags for affine planes.

14.3.36 Remark By a celebrated result of Wagner [2889], every finite flag-transitive affine plane is
necessarily a translation plane, and hence arises from a spread S of PG(2t+ 1, q), for some
positive integer t, according to Theorem 14.3.21. The affine plane A(S) is flag-transitive if
and only if the spread S admits a transitive collineation group.

14.3.37 Construction Let F = Fq2t+2 be treated as a (2t + 2)-dimensional vector space over its
subfield Fq, thus serving as the underlying vector space for Σ = PG(2t + 1, q). If θ is a
primitive element of F, the collineation θ induced by multiplication by θ is a Singer cycle
of Σ; that is, the cyclic group 〈θ〉 acts sharply transitively on the points and hyperplanes
of Σ. If G denotes the Singer subgroup of order qt+1 + 1, let O denote the partition of the
points of Σ into (qt+1 − 1)/(q − 1) G-orbits of size qt+1 + 1 each. As shown in [948], these
point orbits are caps when t is odd (see Section 14.4 for the definition of a cap). For future
reference we let H denote the index two subgroup of G.

14.3.38 Example [1674] Let q be an odd prime power, and let t be an odd integer. Using the above

model, choose b ∈ F such that bq
t+1−1 = −1. Let σ : F → F via σ : x 7→ xq, and let E

denote the subfield of F whose order is qt+1. Then A1 = {x + bxσ : x ∈ E} represents a
t-space Γ1 of Σ that meets half the G-orbits of O in two points each (from different H-
orbits) and is disjoint from the rest. Similarly, A2 = {bx + bσ+1xσ : x ∈ E} represents a
t-space Γ2 of Σ that meets the G-orbits of O which are disjoint from Γ1 in two points each
(from different H-orbits). Moreover, S = ΓH1 ∪ ΓH2 is a spread of Σ admitting a transitive
collineation group, which yields a non-Desarguesian flag-transitive affine plane A(S) of order
qt+1 with Fq in its kernel.

14.3.39 Example [1674, 1681] Let q be an odd prime power, and let t be an even integer. Using
the notation of Example 14.3.38, Γ1 now meets every G-orbit of O in one point each, and
hence S1 = ΓG1 is a spread of Σ which admits a transitive (cyclic) collineation group. The
resulting affine plane A(S1) is a non-Desarguesian flag-transitive affine plane of order qt+1

with Fq in its kernel. If q ≡ 1 (mod 4), then Γ2 also meets each G-orbit of O in one point
each, and these points lie in H-orbits that are disjoint from Γ1. Moreover, S2 = ΓH1 ∪ΓH2 is a
spread of Σ admitting a transitive (non-cyclic) collineation group, thereby yielding another
non-Desarguesian flag-transitive affine plane A(S2) of order qt+1 with Fq in its kernel. This
plane does not admit a cyclic collineation group acting transitively on the line at infinity.
For q ≡ 3 (mod 4), one may obtain such a spread S2 by replacing Γ2 with the t-space of Σ

represented by {µxqt+1

+ µbq
t+1

(xσ)q
t+1

: x ∈ E}, where µ = θ(qt+1−1)/(q−1).
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14.3.40 Remark The field automorphism σ in the above examples may be replaced by any element
of Gal(Fq2t+2/Fq). The resulting planes are non-Desarguesian provided σ does not induce
the identity map on the subfield E. Lower bounds are given in [1674, 1681] for the number
of mutually non-isomorphic planes obtained as b and σ vary.

14.3.41 Example [1675] Let q be a power of 2, and let t ≥ 2 be an even integer. Using the notation of
Example 14.3.38, let Tr denote the trace from E to Fq, and choose some element r ∈ Fq2\Fq.
Let Γ′ be the t-space of Σ represented by {Tr (x)+rx : x ∈ E}. Then Γ′ meets every G-orbit
of O in one point each, and hence S′ = (Γ′)G is a spread of Σ which admits a transitive
(cyclic) collineation group. The resulting flag-transitive affine plane A(S′) of order qt+1 with
Fq in its kernel is non-Desarguesian provided qt+1 > 8.

14.3.42 Remark Other than the Hering plane [1488] of order 27 and the Lüneburg planes [1979]
of order 22d for odd d ≥ 3, all known finite flag-transitive affine planes arise from spreads
consisting of a single G-orbit or the union of two H-orbits, where G and H are the Singer
subgroups defined in Construction 14.3.37. It is shown in [951] that if q = pe for some
odd prime p and some positive integer e and if gcd((qt+1 + 1)/2, (t + 1)e) = 1, then any
flag-transitive affine plane of order qt+1 with Fq in its kernel (other than the above Hering
plane) must arise in this way. More can be said for t = 1, 2.

14.3.43 Theorem [175] If q = pe is an odd prime power such that gcd((q2 + 1)/2, e) = 1, then any
two-dimensional flag-transitive affine plane of order q2 is isomorphic to one of the planes
constructed in Example 14.3.38 with t = 1. The number of such isomorphism classes can be
determined by Möbius inversion. For e = 1 (hence q = p prime), the above gcd condition is
necessarily satisfied and the number of isomorphism classes is precisely (q − 1)/2.

14.3.44 Theorem [169, 176] If q = pe is an odd prime power such that gcd((q3 + 1)/2, 3e) = 1, then
any three-dimensional flag-transitive affine plane of order q3, other than Hering’s plane of
order 27, is isomorphic to one of the planes constructed in Example 14.3.39 with t = 2. For
e = 1 (hence q = p prime), the number of isomorphism classes of each type arising from
Example 14.3.39 is precisely (q − 1)/2.

14.3.45 Problem For q even, the classification and complete enumeration of finite flag-transitive
affine planes of dimension two or three over their kernel remains an open problem. The only
known two-dimensional examples are the Lüneburg planes.

14.3.46 Problem The classification of finite flag-transitive affine planes is one of the few open cases
in the program announced in [454] to classify all finite flag-transitive linear spaces. For
arbitrary dimension over the kernel, it is not known if there exist examples of finite flag-
transitive affine planes other than the ones listed above, and the classification seems to be
quite difficult. In the projective setting, it is believed that the only flag-transitive projective
plane is the Desarguesian one, although this remains an open problem.

14.3.6 Subplanes

14.3.47 Definition Let π be a projective plane with point set P and line set L. A projective plane
π′ with point set P ′ and line set L′ is a subplane of π if P ′ ⊆ P and L′ ⊆ L, and π′

inherits its incidence relation from π.

14.3.48 Theorem [425] Let π be a finite projective plane of order n, and let π′ be a subplane of π
with order m < n. Then n = m2 or m2 +m ≤ n.

14.3.49 Remark It is unknown whether equality can hold in the above inequality; if so, this would
imply that the order n = m2 +m of π is not a prime power. The case n = m2 is of particular
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interest. In this case, every point of π \ π′ is incident with a unique line of π′, and dually
every line of π \ π′ is incident with a unique point of π′.

14.3.50 Definition A subplane π′ of order m in a projective plane π of order n = m2 is a Baer
subplane of π.

14.3.51 Remark In the classical setting, the lattice of subplanes follows directly from the lattice of
subfields. Namely, if q = pe for some prime p and some positive integer e, then the subplanes
of PG(2, q), up to isomorphism, are precisely PG(2, pk) as k varies over all positive divisors
of e. So PG(2, q) has a Baer subplane if and only if q is a square. Moreover, one can easily
count the number of subplanes of a given order in this classical (Desarguesian) setting.

14.3.52 Theorem [1510, Lemma 4.20] If q is any prime power and n ≥ 2 is any integer, then the
number of subplanes of order q in PG(2, qn), all of which are isomorphic to PG(2, q), is

q3(n−1)(q3n − 1)(q2n − 1)

(q3 − 1)(q2 − 1)
.

In particular, the number of Baer subplanes in PG(2, q2) is q3(q3 + 1)(q2 + 1).

14.3.53 Remark It is currently unknown if PG(2, q2) has the greatest number of Baer subplanes
among all projective planes of order q2. No counter-examples have been found. Amazingly,
there are affine planes of order q2 which contain more affine subplanes of order q than does
AG(2, q2) [1099].

14.3.54 Definition A Baer subplane partition, or BSP for short, of PG(2, q2) is a partition of the
points of PG(2, q2) into subplanes, each isomorphic to PG(2, q).

14.3.55 Example [426] Consider the full Singer group of order q4 +q2 +1 acting sharply transitively
on the points and lines of π = PG(2, q2). Then the orbits under the Singer subgroup of order
q2 + q + 1 are Baer subplanes, and the orbit of any one of these Baer subplanes under the
complementary Singer subgroup of order q2−q+1 forms a BSP of π. Such a BSP is classical.

14.3.56 Remark It is shown in [171] that any spread of PG(5, q) admitting a linear cyclic sharply
transitive action corresponds to a “perfect” BSP of PG(2, q2), and this spread is regular if
and only if the BSP is classical. By definition, a BSP is perfect if and only if it is an orbit
of some Baer subplane under an appropriate Singer subgroup, although the Baer subplane
itself need not be a point orbit under a Singer subgroup. Examples 14.3.39 and 14.3.41 for
t = 2 yield the following result.

14.3.57 Theorem [171] Let q 6= 2 be a prime power. Then there exist non-classical BSPs of
PG(2, q2).

14.3.58 Remark Relatively little is known about the subplane structure of non-Desarguesian planes.
There is no known example of a square order projective plane which has been shown not
to contain a Baer subplane. However, it is not known if every square order projective plane
must contain a Baer subplane. At the other extreme, the Hall planes, the Hughes planes, the
Figueroa planes, and many two-dimensional subregular translation planes have been proven
to contain subplanes of order two (that is, Fano subplanes). It has been conjectured that
every finite non-Desarguesian plane must contain a subplane of order two. More surprisingly,
it is shown in [480] that the Hughes plane of order q2 (q odd) has a subplane of order 3 when
q ≡ 2 (mod 3). Extensive, but not exhaustive, computer searches for small q have found no
subplanes of order 3 in this plane when q ≡ 1 (mod 3). Very recently [481], subplanes of
order 3 have been proven to exist in all odd order Figueroa planes.
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14.3.7 Embedded unitals

14.3.59 Remark Reference [205] provides an excellent introduction to the topic of unitals. Proofs
and precise statements of most results in this subsection may be found in the above reference.

14.3.60 Definition A unital is a 2−(n3 + 1, n + 1, 1) design for some integer n ≥ 3 (that is, a
geometry having n3 +1 points, with n+1 points on each line such that any two distinct
points are on exactly one line).

14.3.61 Remark Here the interest is not in unitals as designs, but in unitals embedded in a projective
plane of order n2. The lines (blocks) of the unital are then the lines of the ambient projective
plane which meet the unital in more than one point (and hence in n+ 1 points).

14.3.62 Example Let PG(2, q2) be represented using homogeneous coordinates. Then the points
(x : y : z) for which xxq + yyq + zzq = 0 form a unital. This unital is a Hermitian curve.

14.3.63 Construction (Buekenhout [452]) Using the Bruck-Bose representation of Construc-
tion 14.3.20, with t = 1 for a 2-dimensional translation plane, let S be any spread of Σ
and let U be an ovoidal cone of Σ (that is, the point cone over some 3-dimensional ovoid as
defined in Section 14.4) that meets Σ in a line of S. Then U corresponds to a unital U in
P (S) which is tangent to the line at infinity. Also, if U is a nonsingular (parabolic) quadric
in Σ that meets Σ in a regulus of the spread S, then U corresponds to a unital U in P (S)
which meets the line at infinity in q + 1 points. Of course, the second construction is valid
only for those 2-dimensional translation planes of order q2 whose associated spread contains
at least one regulus.

14.3.64 Remark If the ovoidal cone above is an orthogonal cone (with an elliptic quadric as base),
the resulting unital in P (S) is an orthogonal Buekenhout unital. Unitals embedded in P (S)
which arise from the nonsingular quadric construction are nonsingular Buekenhout unitals.

14.3.65 Remark Orthogonal Buekenhout unitals embedded in PG(2, q2) have been completely enu-
merated. In particular, if q is an odd prime, then the number of mutually inequivalent or-
thogonal Buekenhout unitals in PG(2, q2) is 1

2 (q + 1), one of which is the Hermitian curve.
The only nonsingular Buekenhout unital embedded in PG(2, q2) is the Hermitian curve.
Exhaustive computer searches in [195, 2382] show that there are precisely two inequivalent
unitals embedded in each of PG(2, 9) and PG(2, 16), the Hermitian curve and one other
orthogonal Buekenhout unital. The enumeration of orthogonal and nonsingular Buekenhout
unitals in various non-Desarguesian translation planes may be found in [179, 180]. For in-
stance, if q ≥ 5 is a prime, then, up to equivalence, the Hall plane of order q2 has 1

2 (q + 1)

nonsingular Buekenhout unitals and 1 + b 3q
4 c orthogonal Buekenhout unitals.

14.3.66 Remark In [915], it is shown that the Hall planes contain unitals which are not obtainable
from any Buekenhout construction. This is the only infinite family of unitals embedded in
translation planes which has been proven to be non-Buekenhout. There are also square-order
non-translation planes which are known to contain unitals, necessarily non-Buekenhout. For
instance, the Hughes planes of order q2 are known to contain unitals for all odd prime powers
q [2482, 2947]. In [788], the Figueroa planes of order q6 are shown to contain unitals for any
prime power q. In fact, there is no known example of a square-order projective plane which
has been shown not to contain a unital.
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14.3.8 Maximal arcs

14.3.67 Remark Proofs of almost all results in this subsection may be found in Chapter 12 of [1510].

14.3.68 Definition A {k; r}-arc in PG(2, q) is a set K of k points such that r is the maximum
number of points in K that are collinear. A {k; 2}-arc is a k-arc.

14.3.69 Theorem Let K be a {k; r}-arc in PG(2, q). Then k ≤ (q + 1)(r − 1) + 1.

14.3.70 Definition The {k; r}-arcs in PG(2, q) with k = (q+ 1)(r−1) + 1 are maximal {k; r}-arcs.

14.3.71 Example Singleton points (r = 1), the whole plane (r = q + 1), and the complement of
a line (r = q) are trivial maximal {k; r}-arcs. The {q + 2; 2}-arcs in PG(2, q) for q even,
also called hyperovals (see Section VII.2.9 of [706]), are examples of non-trivial maximal
{k; r}-arcs, and have been objects of intense interest for many years.

14.3.72 Lemma If K is a non-trivial maximal {k; r}-arc in PG(2, q), then r must be a (proper)
divisor of q.

14.3.73 Theorem [189] If PG(2, q) contains a non-trivial maximal {k; r}-arc, then q must be even.

14.3.74 Construction [820] Let X2 + βX + 1 be an irreducible quadratic polynomial over Fq, q
even. Consider the algebraic pencil in PG(2, q) consisting of the conics Cλ : X2

0 + βX0X1 +
X2

1 + λX2
2 = 0 for λ ∈ Fq ∪ {∞}. Let A be an additive subgroup of (Fq,+) of order r,

and let K be the set of points which is the union of the conics Cλ for λ ∈ A. Then K is a
maximal {k; r}-arc of PG(2, q).

14.3.75 Construction [2024] Let q be even, and let Tr denote the absolute trace from Fq to F2. In
PG(2, q), consider a set C consisting of conics Cα,β,λ : αX2

0 +X0X1 +βX2
1 +λX2

2 = 0, where
α, β ∈ Fq with Tr (αβ) = 1 and λ ∈ Fq ∪ {∞}. Define the “composition” of two distinct
conics from C in the following way:

Cα,β,λ ⊕ Cα′,β′,λ′ = Cα⊕α′,β⊕β′,λ⊕λ′ ,

where

α⊕ α′ =
αλ+ α′λ′

λ+ λ′
, β ⊕ β′ =

βλ+ β′λ′

λ+ λ′
, λ⊕ λ′ = λ+ λ′.

Let F ⊂ C be a set of 2d−1 non-singular conics with common nucleus (0, 0, 1), which is closed
under the composition of distinct conics. Then the points of the conics in F , together with
(0, 0, 1), form a maximal {k; 2d}-arc in PG(2, q). To obtain one such set F , assume q = 24m+2

and let ε ∈ F24m+2 be such that Tr (ε) = 1. Let A = {x ∈ F24m+2 : x2 + x ∈ F22m+1}, and let
r(λ) = λ3 + ε for all λ ∈ A. Then |A| = 22m+2 and

F = {C1,r(λ),λ : λ ∈ A \ {0}}

is such a subset of C which determines, as indicated above, a maximal {k; 22m+2}-arc in
PG(2, 24m+2). These arcs do not arise from Construction 14.3.74. Other possibilities for F
may be found in [1062, 1406, 1407].
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14.3.9 Other results

14.3.76 Remark Semifields (see Section 2.1) are algebraic structures that may be used to coor-
dinatize certain translation planes, called semifield planes. These are the only translation
planes which are also dual translation planes. Many new examples have recently been found.
Chapter 6 of [785] is an excellent source for many of these new developments.

14.3.77 Problem As previously mentioned, all known finite projective (and affine) planes have prime
power order, although it is certainly unclear whether this must be true in general. However,
it is now known that if a projective plane of order n admits an abelian collineation group
of order n2 or n2 − n, then n must be a prime power [326, 1634]. An equally important
open problem is whether any finite projective (or affine) plane of prime order p must be
Desarguesian. This appears to be a very difficult problem; the smallest open case is p = 11.

14.3.78 Remark A hyperbolic fibration of PG(3, q) is a collection of q − 1 hyperbolic quadrics and
two lines that partition the points of PG(3, q). By selecting one of the two reguli ruling each
hyperbolic quadric in the fibration, one obtains 2q−1 spreads of PG(3, q), which in turn give
rise to 2q−1 translation planes of order q2 which are at most two-dimensional over their
kernels. Although there may be some isomorphisms among these planes, this is a very ro-
bust method for constructing two-dimensional translation planes (see [177] for isomorphism
counts). An easy example of a hyperbolic fibration is the hyperbolic pencil, which is an al-
gebraic pencil of quadrics of the appropriate types. Other examples of hyperbolic fibrations
may be found in [170, 178]. All known hyperbolic fibrations have the property that the two
lines in the fibration form a conjugate (skew) pair with respect to each of the polarities
associated with the q − 1 hyperbolic quadrics (such hyperbolic fibrations are called regular
in the literature), and also have the property that all q−1 hyperbolic quadrics intersect one
of the two skew lines in the same pair of conjugate points with respect to the quadratic ex-
tension Fq2 of Fq (such hyperbolic fibrations are said to agree on one of the two skew lines).
In [422], it is shown that all hyperbolic fibrations are necessarily regular if q is even (the
problem is still open for q odd), and it is also shown for any q that a hyperbolic fibration
which agrees on one of its two skew lines is necessarily regular. In [177], it is shown that
there is a bijection between regular hyperbolic fibrations which agree on one of their two
lines and flocks of a quadratic cone, once a conic of the flock is specified. This further leads
to a correspondence with normalized q-clans and certain types of generalized quadrangles.

14.3.79 Remark There are other survey articles on substructures in projective planes. The sec-
tion on Finite Geometry in The Handbook of Combinatorial Designs [706] and the survey
article [1513] state the main results on arcs, {k; r}-arcs, caps, unitals, and blocking sets
in PG(2, q), where exact definitions, tables, and supplementary results are provided. In
addition, the collected work [785] contains a great variety of results on substructures in
PG(2, q), techniques for investigating these substructures, and important open problems in
this area. The linearity conjecture on small minimal blocking sets in PG(2, q) is one of the
most important such open problems (see Chapter 3 of [785] for an explicit statement of this
conjecture). Proving this conjecture would imply several new results on various substruc-
tures in PG(2, q) as well as in PG(n, q), for n > 2. In particular, this would include new
results on maximal partial spreads, minihypers, extendability of linear codes, tight sets,
and Cameron-Liebler line classes. The investigation of maximal arcs in PG(2, q) for q even,
inspired by the new construction method of Mathon described in Construction 14.3.75, and
the investigation of embedded unitals as discussed in Section 14.3.7 are central problems
on substructures in projective planes which also merit further research.
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14.4 Projective spaces

James W.P. Hirschfeld, University of Sussex

Joseph A. Thas, Ghent University

14.4.1 Projective and affine spaces

14.4.1 Definition Let V = V (n+ 1, F ), with n ≥ 1, be an (n+ 1)-dimensional vector space over
the field F with zero element 0. Consider the equivalence relation on the elements of
V \{0} whose equivalence classes are the one-dimensional subspaces of V with the zero
deleted. Thus, if X,Y ∈ V \{0}, then X is equivalent to Y if Y = tX for some t in
F0 = F\{0}.
1. The set of equivalence classes is the n-dimensional projective space over F and

is denoted by PG(n, F ) or, when F = Fq, by PG(n, q).

2. The elements of PG(n, F ) are points; the equivalence class of the vector X is
the point P(X). The vector X is a coordinate vector for P(X) or X is a vector
representing P(X). In this case, tX with t in F0 also represents P(X); that is,
by definition, P(tX) = P(X).

3. If X = (x0, . . . , xn) for some basis, then the xi are the coordinates of the point
P(X).

4. The points P(X1), . . . ,P(Xr) are linearly independent if a set of vectors
X1, . . . , Xr representing them is linearly independent.
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14.4.2 Definition

1. For any m = −1, 0, 1, 2, . . . , n, a subspace of dimension m, or m-space, of
PG(n, F ) is a set of points all of whose representing vectors form, together
with the zero, a subspace of dimension m+ 1 of V = V (n+ 1, F ); it is denoted
by Πm.

2. A subspace of dimension zero is a point; a subspace of dimension −1 is the
empty set. A subspace of dimension one is a line, of dimension two is a plane,
of dimension three is a solid. A subspace of dimension n− 1 is a hyperplane. A
subspace of dimension n− r is a subspace of codimension r.

14.4.3 Definition

1. The set of m-spaces of PG(n, F ) is denoted PG(m)(n, F ) or, when F = Fq, by

PG(m)(n, q).

2. For r, s,m, n ∈ N, let

(a) θ(n, q) = (qn+1 − 1)/(q − 1), also denoted by θ(n);

(b) |PG(m)(n, q)| = φ(m;n, q);

(c) [r, s]− =
∏s
i=r(q

i − 1), for s ≥ r.

14.4.4 Theorem [1510, Chapter 3]
For n ≥ 1, m ≥ 0, and q any prime power,

1. |PG(n, q)| = θ(n, q);

2. φ(m;n, q) = [n−m+ 1, n+ 1]− /[1,m+ 1]− .

14.4.5 Theorem [1510, Chapter 2]

1. A hyperplane is the set of points P(X) whose vectors X = (x0, . . . , xn) satisfy a
linear equation

u0x0 + u1x1 + · · ·+ unxn = 0,

with U = (u0, . . . , un) in Fn+1\{(0, . . . , 0)}; it is denoted π(U) = Πn−1.

2. An m-space Πm is the set of points whose representing vectors X = (x0, . . . , xn)
satisfy the equations XA = 0, where A is an (n + 1) × (n −m) matrix of rank
n−m with coefficients in F .

14.4.6 Remark [1510, Chapter 2] The vector U in the theorem is a coordinate vector of the hyper-
plane; the ui are hyperplane or tangential coordinates.

14.4.7 Definition

1. If a point P lies in a subspace Πm, then P is incident with Πm or, equally well,
Πm is incident with P .

2. If Πr and Πs are subspaces of PG(n, F ), then the meet or intersection of Πr

and Πs, written Πr ∩Πs, is the set of points common to Πr and Πs; it is also a
subspace.

3. The join of Πr and Πs, written ΠrΠs, is the smallest subspace containing Πr

and Πs.

14.4.8 Theorem [1510, Chapter 2] Subspaces have the following properties.
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1. If Πr and Π′r are both r-spaces in PG(n, F ) and Π′r ⊂ Πr, then Π′r = Πr.

2. (Grassmann Identity) If Πr ∩Πs = Πt and ΠrΠs = Πm, then r + s = m+ t.

3. A subspace Πm is the join of m + 1 linearly independent points; it is also the
intersection of n−m linearly independent hyperplanes.

4. Equivalently, the set of all representing vectors of the points of Πm, together with
the zero vector, is the intersection of n −m hyperplanes of the vector space V ,
which define n−m linearly independent vectors U = (u0, . . . , un).

14.4.9 Theorem (The principle of duality) [1510, Chapter 2] For any space S = PG(n, F ), there is
a dual space S∗, whose points and hyperplanes are respectively the hyperplanes and points
of S. For any theorem true in S, there is an equivalent theorem true in S∗. In particular, if
T is a theorem in S stated in terms of points, hyperplanes, and incidence, the same theorem
is true in S∗ and gives a dual theorem T∗ in S by substituting “hyperplane” for “point” and
“point” for “hyperplane.” Thus “join” and “meet” are dual. Hence the dual of an r-space
in PG(n, F ) is an (n− r − 1)-space.

14.4.10 Remark For small dimensions, in PG(2, F ), point and line are dual; in PG(3, F ), point and
plane are dual, whereas the dual of a line is a line.

14.4.11 Definition

1. If H∞ is any hyperplane in PG(n, F ), then AG(n, F ) = PG(n, F )\H∞ is an
affine space of n dimensions over F . When F = Fq, write AG(n, F ) = AG(n, q).

2. The subspaces of AG(n, F ) are the subspaces of PG(n, F ), apart from H∞, with
the points of H∞ deleted in each case.

3. This hyperplane H∞ is the hyperplane at infinity of AG(n, F ).

14.4.2 Collineations, correlations, and coordinate frames

14.4.12 Definition

1. If S and S′ are two spaces PG(n, F ), n ≥ 2, then a collineation α : S −→ S′ is
a bijection which preserves incidence; that is, if Πr ⊂ Πs, then Πα

r ⊂ Πα
s .

2. It is sufficient that α is a bijection such that, if Π0 ⊂ Π1, then Πα
0 ⊂ Πα

1 .

3. When n = 1, consider the lines S and S′ embedded in planes over F ; then
a collineation α : S −→ S′ is a transformation induced by a collineation of
the planes; that is, if S0 and S′0 are planes with S ⊂ S0 and S′ ⊂ S′0, and
α0 : S0 −→ S′0 is a collineation mapping S onto S′, then let α be the restriction
of α0 to S.

14.4.13 Definition A projectivity α : S −→ S′ is a bijection given by a matrix T , necessarily
non-singular, such that P(X ′) = P(X)α if and only if tX ′ = XT , where t ∈ F0. Write
α = M(T ); then α = M(λT ) for any λ in F0.

14.4.14 Remark A projectivity is a collineation. Mostly the case to be considered is when S = S′.
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14.4.15 Definition With respect to a fixed basis of V (n+1, F ), an automorphism σ of F defines an
automorphic collineation σ of S = PG(n, F ); in coordinates, this is given by P(X)σ =
P(Xσ), where Xσ = (xσ0 , x

σ
1 , . . . , x

σ
n).

14.4.16 Theorem (The fundamental theorem of projective geometry) [1510, Chapter 2]

1. If α′ : S −→ S′ is a collineation, then α′ = σα, where σ is an automorphic
collineation, given by a field automorphism σ, and α is a projectivity. In partic-
ular, if K = Fq with q = ph, p prime, and P(X ′) = P(X)α

′
, then there exists m

in {1, 2, . . . , h}, tij ∈ F for i, j ∈ {0, 1, . . . , n}, and t ∈ F0 such that

tX ′ = XpmT,

where

Xpm = (xp
m

0 , . . . , xp
m

n ),

T = (tij);

that is,

tx′i = xp
m

0 t0i + · · ·+ xp
m

n tni,

for i = 0, 1, . . . , n.

2. If {P0, . . . , Pn+1} and {P ′0, . . . , P ′n+1} are both subsets of PG(n, F ) of cardinality
n+2 such that no n+1 points chosen from the same set lie in a hyperplane, then
there exists a unique projectivity α such that P ′i = Pαi , for all i ∈ {0, 1, . . . , n+1}.

14.4.17 Remark There are cases where Theorem 14.4.16 simplifies.

1. For n = 1, there is a unique projectivity transforming any three distinct points
on a line to any other three.

2. When F = F2, it suffices to give the images of P0, . . . , Pn to determine a projec-
tivity. For n = 1, the images of two points determine the projectivity.

14.4.18 Remark Part 2 of Theorem 14.4.16 emphasizes a difference between the spaces V (n+ 1, F )
and PG(n, F ). In the former, linear transformations are determined by the images of n+ 1
vectors; in the latter, projectivities are determined by the images of n+ 2 points.

14.4.19 Definition Let {P0, . . . , Pn+1} be any set of n + 2 points in PG(n, F ), no n + 1 in a
hyperplane. If P is any other point of the space, then a coordinate vector for P is
determined in the following manner. Let Pi be represented by the vector Xi for some
vector Xi in V (n+1, F ). For any given t in F0 there exist ai in F for all i ∈ {0, 1, . . . , n}
such that

tXn+1 = a0X0 + · · ·+ anXn.

So, for any t, the ratios ai/aj remain fixed. Thus, if P is any point with P = P(X),
then

X = t0a0X0 + · · ·+ tnanXn.

Hence, with respect to {P0, . . . , Pn+1}, the point P is given by (t0, . . . , tn) where the ti
are determined up to a common factor. Then {P0, . . . , Pn} is the simplex of reference
and Pn+1 the unit point. Together the n+ 2 points form a (coordinate) frame.
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14.4.20 Remark In V (n + 1, F ), a basis is a set of n + 1 linearly independent vectors and, in
PG(n, F ), a frame is a set of n + 2 points, no n + 1 in a hyperplane; that is, every set of
n+ 1 points is linearly independent.

14.4.21 Theorem [1510, Chapter 2] Again from Theorem 14.4.16, if two coordinate frames are given
by the vectors X = (x0, . . . , xn) and Y = (y0, . . . , yn), then a change from one frame to the
other is given by Y = XA, where A is an (n+ 1)× (n+ 1) non-singular matrix over F . If
a projectivity α in the one frame is given by X ′ = XT , then, since Y ′ = X ′A, in the other
frame it is given by Y ′ = X ′A = XTA = Y A−1TA.

14.4.22 Definition Let S be a space PG(n, F ) and S′ its dual space superimposed on S; that is,
the points of S′ are the hyperplanes of S and the hyperplanes of S′ are the points of S.
Consider a function α : S −→ S′. If α is a collineation, it is a correlation of S and induces
a collineation, also named α, of S′ to S; that is, as the points of S are transformed to
hyperplanes, then hyperplanes are transformed to points since α preserves incidence. If
α is a projectivity, then it is a reciprocity of S. In either case, if α is involutory, that is
α2 = 1, where 1 is the identity, then α is a polarity of S.

14.4.23 Remark If P and P ′ are points and π is a hyperplane such that Pα = π and πα = P ′,
then, in a polarity, P = P ′.

14.4.24 Definition Let AG(n, F ) = PG(n, F )\H∞ be an affine space over F . Then, in a given
coordinate frame where H∞ has equation x0 = 0, a point of AG(n, F ) can be written
P(1, x1, . . . , xn) and hence as (x1, . . . , xn). So the points of AG(n, F ) are the elements
of V (n, F ). The xi are the affine or non-homogeneous coordinates of the given point.

14.4.25 Remark It is assumed that, for any AG(n, F ), the coordinate frame is this one.

14.4.26 Theorem [1510, Chapter 2]

1. The subspaces of AG(n, F ) have the form X + S, where X is any vector and S
is any subspace of V (n, F ).

2. Three points X,Y, Z of AG(n, F ) are collinear if and only if there exists λ in
F\{0, 1} such that X = λY + (1− λ)Z.

14.4.27 Theorem [1510, Chapter 2]

1. If Fqn = Fq(β), then the map

X = (x1, . . . , xn) 7→ x = x1 + x2β + · · ·+ xnβ
n−1

gives a bijection between AG(n, q) and Fqn .

2. Distinct points X,Y, Z in AG(n, F ) are collinear if and only if, in Fqn ,

(x− y)q−1 = (x− z)q−1.

14.4.3 Polarities

14.4.28 Theorem [1510, Chapter 2] Suppose that α is a correlation of PG(n, F ); then it is the
product of an automorphic collineation σ and a projectivity of PG(n, F ) to its dual space
given by the matrix T . Then α is a polarity if and only if

σ2 = 1 and TσT ∗
−1

= tI,
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where T ∗ denotes the transpose of T and t ∈ F0.

14.4.29 Theorem [1510, Chapter 2] If α is a polarity of PG(n, F ), then, with σ and T as in Theorem
14.4.28, there are the following possibilities.

1. If σ = 1 and charF 6= 2, then T = T ∗ or T = −T ∗.
2. If σ = 1 and charF = 2, then T = T ∗.

3. If σ2 = 1, σ 6= 1, then Tσ = tT ∗ with tσ+1 = 1. For a given frame, T can be
chosen so that t = 1; that is, Tσ = T ∗.

14.4.30 Remark [1560, Chapter 2] If α is a polarity of PG(n, F ) with n even, then, for a given
frame, T can be chosen so that Tσ = T ∗ with σ2 = 1.

14.4.31 Definition Let α be a polarity of PG(n, F ).

1. If σ = 1, charF 6= 2, and T = T ∗, then α is an orthogonal or ordinary polarity
or a polarity with respect to a quadric.

2. If σ = 1, charF 6= 2, and T = −T ∗, then α is a null polarity or symplectic
polarity or a polarity with respect to a linear complex. Since T is non-singular
and skew-symmetric, n is odd.

3. If σ = 1, charF = 2, T = T ∗, and all elements on the main diagonal of T are
zero, then α is a null polarity or symplectic polarity or a polarity with respect to
a linear complex. This only occurs for n odd.

4. If σ = 1, charF = 2, T = T ∗, and some element on the main diagonal of T is
not zero, then α is a pseudo-polarity.

5. If σ 6= 1, then α is a Hermitian or unitary polarity.

14.4.32 Definition

1. In a polarity α, if Pα = π and π′α = P ′, with P, P ′ points and π, π′ hyperplanes,
then π is the polar (hyperplane) of P and P ′ is the pole of π′. Since α2 = 1, the
converse is also true.

2. If P ′ lies in π = Pα, then P lies in π′ = P ′α. In this case, P and P ′ are conjugate
points, and π and π′ are conjugate hyperplanes. The point P is self-conjugate
if it lies in its own polar hyperplane; the hyperplane π is self-conjugate if it
contains its own pole.

14.4.33 Remark [1510, Chapter 2] The self-conjugate points P(X) of α are given by XσTX∗ = 0.

14.4.34 Remark For the definition of a linear complex see [1509, Section 15.2].

14.4.35 Definition

1. A quadric Q (or Qn) in PG(n, F ), n ≥ 1, is the set of points P(x0, . . . , xn)
satisfying a quadratic equation

n∑
i, j = 0
i ≤ j

aijxixj = 0,

with aij in F and not all zero. For n = 2, a quadric is a conic; for n = 3, a
quadric is a quadric surface.
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2. A Hermitian variety H (or Hn) in PG(n, F ), n ≥ 1, is the set of points
P(x0, . . . , xn) satisfying an equation

n∑
i,j=0

aijxix
σ
j = 0,

with aij in F and not all zero, with σ an automorphism of F of order 2, and
with aσij = aji. For n = 2, a Hermitian variety is a Hermitian curve; for n = 3,
a Hermitian variety is a Hermitian surface.

14.4.36 Definition Let F be a quadric or Hermitian variety in PG(n, F ).

1. The point P of PG(n, F ) is singular for F if `∩F = {P} or `∩F = ` for every
line ` through P .

2. If F has a singular point, then F is singular; otherwise, it is non-singular.

14.4.37 Theorem [1510, Chapters 2,5]

1. If α is an orthogonal polarity of PG(n, F ), then the set of self-conjugate points
of α is a non-singular quadric Q of PG(n, F ).

2. If α is a symplectic polarity of PG(n, F ), then every point of PG(n, F ) is self-
conjugate.

3. If α is a pseudo-polarity of PG(n, F ), then the set of self-conjugate points of α
is a subspace of PG(n, F ).

4. If α is a Hermitian polarity of PG(n, F ), then the set of self-conjugate points of
α is a non-singular Hermitian variety H of PG(n, F ).

14.4.38 Theorem [1510, Chapter 5] If α is a symplectic polarity of PG(n, F ), then, in a suitable
coordinate frame, the matrix of α is

T =



0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0


.

14.4.39 Theorem [1510, Chapter 5] If α is a pseudo-polarity of PG(n, q), q even, then, in a suitable
coordinate frame, the matrix of α is as follows:

1. for n even,

T =



1 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1
0 0 0 0 0 · · · 1 0


;
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2. for n odd,

T =



1 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0


.

14.4.40 Remark [1510, Chapter 5] Theorem 14.4.39 holds for every field F of characteristic two
with the property that {x2 | x ∈ F} = F .

14.4.41 Theorem [1510, Chapter 5] Let Q be a non-singular quadric of PG(n, q). The coordinate
frame can be chosen so that Q has the following equation:

1. n even,
x2

0 + x1x2 + x3x4 + · · ·+ xn−1xn = 0;

2. n odd,

a.
x0x1 + x2x3 + · · ·+ xn−1xn = 0;

b.
f(x0, x1) + x2x3 + · · ·+ xn−1xn = 0,

where f is any chosen irreducible quadratic form.

Hence, up to a projectivity, there is a unique non-singular quadric in PG(n, q) with n even;
for n odd, there are two types of non-singular quadric.

14.4.42 Definition

1. In case 1 of Theorem 14.4.41, the quadric is parabolic. In case 2.a, it is hyperbolic;
in case 2.b, it is elliptic;

2. The character w of a non-singular quadric in PG(n, q) is 0 if it is elliptic, 1 if it
is parabolic, and 2 if it is hyperbolic.

14.4.43 Theorem [1510, Chapter 5] If Qn is a non-singular quadric of PG(n, q) with character w,
then

|Qn| = (qn − 1)/(q − 1) + (w − 1)q(n−1)/2.

14.4.44 Theorem [1510, Chapter 5] Let H be a non-singular Hermitian variety of PG(n, q2). The
coordinate frame can be chosen so that H has the following equation:

xq+1
0 + xq+1

1 + · · ·+ xq+1
n = 0.

14.4.45 Theorem [1510, Chapter 5] If Hn is a non-singular Hermitian variety of PG(n, q2), then

|Hn| = [qn+1 + (−1)n][qn − (−1)n]/(q2 − 1).
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14.4.4 Partitions and cyclic projectivities

14.4.46 Definition A spread S of PG(n, q) by r-spaces is a set of r-spaces which partitions PG(n, q);
that is, every point of PG(n, q) lies in exactly one r-space of S. Hence any two r-spaces
of S are disjoint.

14.4.47 Theorem [1510, Chapter 4] The following are equivalent:

1. there exists a spread S of r-spaces of PG(n, q);

2. θ(r, q) | θ(n, q);
3. (r + 1) | (n+ 1).

14.4.48 Remark Spreads of PG(2r+1, q) by r-spaces have been much studied, particularly for their
application to non-Desarguesian planes. The latter are considered in more detail in Section
14.3.

14.4.49 Definition Since Fq is a subfield of Fqk for k ∈ N\{0}, so PG(n, q) is naturally embedded
in PG(n, qk) once the coordinate frame is fixed. Any PG(n, q) embedded in PG(n, qk)
is a subgeometry of PG(n, qk).

14.4.50 Theorem [1510, Chapter 4] If s(n, q, qk) is the number of subgeometries PG(n, q) embedded
in PG(n, qk), then

s(n, q, qk) = |PGL(n+ 1, qk)|/|PGL(n+ 1, q)|

= qn(n+1)(k−1)/2
n+1∏
i=2

[(qki − 1)/(qi − 1)].

14.4.51 Corollary [1510, Chapter 4] On the line PG(1, qk),

1. s(1, q, qk) = qk−1(q2k − 1)/(q2 − 1);

2. s(1, q, q2) = q(q2 + 1).

14.4.52 Corollary [1510, Chapter 4] In the plane PG(2, q2),

s(2, q, q2) = q3(q2 + 1)(q3 + 1).

14.4.53 Theorem [1510, Chapter 4] The following are equivalent:

1. there exists a partition of PG(n, qk) into subgeometries PG(n, q);

2. θ(n, q) | θ(n, qk);

3. (k, n+ 1) = 1.

14.4.54 Corollary [1510, Chapter 4] The line PG(1, qk) can be partitioned into sublines PG(1, q) if
and only if k is odd.

14.4.55 Corollary [1510, Chapter 4] The plane PG(2, qk) can be partitioned into subplanes PG(2, q)
if and only if (k, 3) = 1.

14.4.56 Corollary [1510, Chapter 4] The plane PG(2, q2) can be partitioned into q2−q+1 subplanes
PG(2, q).



Combinatorial 583

14.4.57 Definition A projectivity α which permutes the θ(n) points of PG(n, q) in a single cycle
is a cyclic projectivity; it is a Singer cycle and the group it generates a Singer group.

14.4.58 Theorem [1510, Chapter 4] A projectivity α of PG(n, q) is cyclic if and only if the charac-
teristic polynomial of an associated matrix is subprimitive; that is, the smallest power m of
a characteristic root that lies in Fq is m = θ(n).

14.4.59 Corollary [1510, Chapter 4] A cyclic projectivity permutes the hyperplanes of PG(n, q) in
a single cycle.

14.4.60 Corollary [1510, Chapter 4] The number of cyclic projectivities in PG(n, q) is given by

σ(n, q) = qn(n+1)/2
n∏
i=1

(qi − 1)ϕ(θ(n))/(n+ 1),

where ϕ is the Euler function.

14.4.61 Corollary [1510, Chapter 4] The number of conjugacy classes of PGL(n + 1, q) consisting
of cyclic projectivities is ϕ(θ(n))/(n+ 1).

14.4.62 Corollary [1510, Chapter 4] In PGL(n + 1, q) there is just one conjugacy class of Singer
groups.

14.4.63 Theorem [1510, Chapter 4] If (k, n+ 1) = 1 and α is a projectivity of PG(n, qk) which acts
as a cyclic projectivity on some PG(n, q) embedded in PG(n, qk), then, letting

u = (qk(n+1) − 1)(q − 1)/[(qk − 1)(qn+1 − 1)],

1. there exists a cyclic projectivity ρ of PG(n, qk) such that ρu = α;

2. every orbit of α is a subgeometry PG(n, q);

3. if γ is any cyclic projectivity of PG(n, qk), then the orbits of γu are subgeometries
PG(n, q).

14.4.64 Theorem [1510, Chapter 4] If (k, n+1) = 1, then the number of projectivities α of PG(n, qk)
that act cyclically on at least one PG(n, q) of PG(n, qk) is

qkn(n+1)/2
n∏
i=1

(qki − 1)ϕ(θ(n, q))/(n+ 1).

14.4.5 k-Arcs

14.4.65 Definition

1. A k-arc in PG(n, q), n ≥ 2, is a set K of k points, with k ≥ n+ 1, such that no
n+ 1 of its points lie in a hyperplane.

2. An arc K is complete if it is not properly contained in a larger arc.

3. Otherwise, if K∪{P} is an arc for some point P of PG(n, q), the point P extends
K.
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14.4.66 Definition A normal rational curve in PG(n, q), n ≥ 2, is any set of points of PG(n, q)
which is projectively equivalent to

{P(tn, tn−1, . . . , t, 1) | t ∈ Fq} ∪ {P(1, 0, . . . , 0, 0)}.

14.4.67 Remark [1515, Chapter 27] Any normal rational curve contains q + 1 points. For n = 2,
it is a non-singular conic; for n = 3, it is a twisted cubic. Any (n + 3)-arc in PG(n, q) is
contained in a unique normal rational curve of this space.

14.4.68 Problem (The three problems of Segre)

I. For given n and q, what is the maximum value of k such that a k-arc exists in
PG(n, q)?

II. For what values of n and q with q > n + 1 is every (q + 1)-arc of PG(n, q) a
normal rational curve?

III. For given n and q with q > n+ 1, what are the values of k such that each k-arc
of PG(n, q) is contained in a normal rational curve of this space?

14.4.69 Remark For a survey of solutions to Problems I, II, III, see [1512, 1513] and [1511, Chapter
13].

14.4.70 Theorem [1510, Chapter 8] Let K be a k-arc of PG(2, q). Then

1. k ≤ q + 2;

2. for q odd, k ≤ q + 1;

3. any non-singular conic of PG(2, q) is a (q + 1)-arc;

4. each (q + 1)-arc of PG(2, q), q even, extends to a (q + 2)-arc.

14.4.71 Definition

1. The (q + 1)-arcs of PG(2, q) are ovals.

2. The (q + 2)-arcs of PG(2, q), q even, are complete ovals or hyperovals.

14.4.72 Theorem [1510, Chapter 8] In PG(2, q), q odd, every oval is a non-singular conic.

14.4.73 Remark Theorem 14.4.72 is a celebrated result due to Segre [2575]. For more details on k-
arcs in PG(2, q), ovals and hyperovals see [1510, Chapters 8–10]. The fundamental Theorem
14.4.76, also due to Segre [2577], relates k-arcs of PG(2, q) to plane algebraic curves.

14.4.74 Definition Let K be a k-arc of PG(2, q).

1. A tangent of K is a line of PG(2, q) meeting K in a unique point.

2. A secant of K is a line meeting K in two points.

14.4.75 Remark At each point, K has t = q + 2− k tangents; the total number of tangents is tk.

14.4.76 Theorem [1510, Chapter 10]

1. Let K be a k-arc in PG(2, q), with q even. Then the tk tangents of K belong to
an algebraic envelope Γt of class t, that is, the dual of a plane algebraic curve of
order t, with the following properties:
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a. Γt is unique if k > (q + 2)/2;

b. Γt contains no secant of K and so no pencil with vertex P in K, where a
pencil is the set of lines through a point;

c. if ∆P is the pencil of lines with vertex P in K and ` is a tangent at P , then
the intersection multiplicity of ∆P and Γt at ` is one.

2. Let K be a k-arc in PG(2, q), with q odd. Then the tk tangents of K belong to
an algebraic envelope Γ2t of class 2t with the following properties:

a. Γ2t is unique if k > (2q + 4)/3;

b. Γ2t contains no secant of K and so no pencil with vertex P in K;

c. if ∆P is the pencil with vertex P in K and ` is a tangent at P, then the
intersection multiplicity of ∆P and Γ2t at ` is two;

d. Γ2t may contain components of multiplicity at most two, but does not consist
entirely of double components.

14.4.77 Corollary [1510, Chapter 10]

1. If q is even and k > (q + 2)/2, then K is contained in a unique complete arc of
PG(2, q).

2. If q is odd and k > (2q + 4)/3, then K is contained in a unique complete arc of
PG(2, q).

14.4.78 Remark

1. For a survey on k-arcs in PG(n, q), n > 2, see [1512, 1513].

2. For q odd, the main results were obtained by induction and projection of the
k-arc K from one of its points P onto a hyperplane not containing P ; see Thas
[2794] and [1515, Chapter 27].

3. For any q, a theorem of Bruen, Thas, and Blokhuis [434] relates k-arcs in PG(3, q)
to dual algebraic surfaces. For q even, this result enables estimates to be made
for the three problems of Segre. A generalisation by Blokhuis, Bruen, and Thas
[324] now follows.

14.4.79 Theorem [1515, Chapter 27] Let K = {P1, P2, . . . , Pk} be a k-arc of PG(n, q). For distinct
i1, i2, . . . , in−1 ∈ {1, 2, . . . , k}, let Z{i1,i2,...,in−1} be the set of t = q + n − k hyperplanes
through the (n− 2)-dimensional subspace Πn−2, generated by Pi1 , Pi2 , . . . , Pin−1

, that con-
tains no other point of K.

1. a. For q even, there exists a dual algebraic hypersurface Φt of class t in PG(n, q)
which contains the hyperplanes of each set Z{i1,i2,...,in−1}.

b. This dual hypersurface is unique when k > (q + 2n− 2)/2.

2. a. For q odd, there exists a dual algebraic hypersurface Φ2t of class 2t in
PG(n, q) which contains the hyperplanes of each set Z{i1,i2,...,in−1}.

b. The intersection multiplicity of Φ2t and the pencil of hyperplanes with vertex
Πn−2 at each hyperplane of Z{i1,i2,...,in−1} is two.

c. This dual hypersurface is unique when k > (2q + 3n− 2)/3.

14.4.80 Corollary [1515, Chapter 27]

1. If q is even and k > (q + 2n− 2)/2, then a k-arc K of PG(n, q) is contained in a
unique complete arc.
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2. If q is odd and k > (2q + 3n− 2)/3, then a k-arc K of PG(n, q) is contained in a
unique complete arc.

14.4.81 Theorem (The duality principle for k-arcs) [1515, Chapter 27] A k-arc of PG(n, q), with
n ≥ 2 and k ≥ n+ 4, exists if and only if a k-arc of PG(k − n− 2, q) exists.

14.4.82 Corollary [1515, Chapter 27] In PG(q − 2, q), q even and q ≥ 4, there exist (q + 2)-arcs.

14.4.83 Conjecture [1511, Chapter 13]

1. If K is a k-arc in PG(n, q), with q − 1 ≥ n ≥ 2, then k ≤ q + 1 for q odd and
k ≤ q + 2 for q even.

2. In PG(n, q), with q ≥ n ≥ 2 and q even, there exist (q + 2)-arcs if and only if
n ∈ {2, q − 2}.

14.4.6 k-Arcs and linear MDS codes

14.4.84 Definition

1. Let C be a code of length k over an alphabet A of size q with q ≥ 2. In other
words, C is a set of (code)words, where each word is an ordered k-tuple over A.

2. For a given m with 2 ≤ m ≤ k, impose the following condition: no two words
in C agree in as many as m positions. Then |C| ≤ qm. If |C| = qm, then C is a
maximum distance separable (MDS) code.

14.4.85 Remark MacWilliams and Sloane [1991, Chapter 11] introduce the chapter on MDS codes
as “one of the most fascinating in all of coding theory.”

14.4.86 Definition

1. The (Hamming) distance between two codewords

X = (x1, . . . , xk) and Y = (y1, . . . , yk)

is the number of indices i for which xi 6= yi; it is denoted d(X,Y ).

2. The minimum distance of a code C, with |C| > 1, is

d(C) = min{d(X,Y ) | X,Y ∈ C, X 6= Y }.

14.4.87 Theorem [2849, Chapter 5] For an MDS code, d(C) = k −m+ 1; see Section 15.1.

14.4.88 Remark One of the main problems concerning MDS codes is to maximize d(C), and so k,
for given m and q. Another problem is to determine the structure of C in the optimal case.

14.4.89 Theorem [434] For an MDS code, k ≤ q +m− 1.

14.4.90 Remark For m = 2, the MDS code C gives a set of q2 codewords of length k, no two
of which agree in more than one position. This is equivalent to the existence of a net of
order q and degree k; see also Section 14.1. It follows that k ≤ q + 1, the case of equality
corresponding to an affine plane of order q; see Section 14.3. Theorem 14.4.89 follows by an
inductive argument.
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14.4.91 Remark

1. The case m = 3 and k = q + 2 is equivalent to the existence of an affine plane
of order q, with q even, containing an appropriate system of (q + 2)-arcs. For all
known examples the plane is an affine plane AG(2, q) with q = 2h; see Willems
and Thas [2979].

2. For m = 4 and k = q+ 3, it has been shown that either q = 2 or 36 divides q; no
example other than for q = 2 is known to exist; see Bruen and Silverman [431].

14.4.92 Remark Henceforth, only linear MDS codes are considered; that is C is an m-dimensional
subspace of the vector space V (k, q), which is Fkq with the usual addition and scalar multi-
plication.

14.4.93 Theorem [1511, Chapter 13] For m ≥ 3, linear MDS codes and arcs are equivalent objects.

14.4.94 Remark Let C be an m-dimensional subspace of V (k, q) and let G be an m× k generator
matrix for C; that is, the rows of G are a basis for C. Then C is MDS if and only if any
m columns of G are linearly independent; this property is preserved under multiplication
of the columns by non-zero scalars. So consider the columns of G as points P1, . . . , Pk of
PG(m−1, q). It follows that C is MDS if and only if {P1, . . . , Pk} is a k-arc of PG(m−1, q).
This gives the relation between linear MDS codes and arcs.

14.4.95 Theorem [1511, Chapter 13] For 2 ≤ m ≤ k − 2, the dual of a linear MDS code is again a
linear MDS code.

14.4.96 Remark For 3 ≤ m ≤ k − 3, Theorem 14.4.95 is the translation of Theorem 14.4.81 from
geometry to coding theory.

14.4.7 k-Caps

14.4.97 Definition

1. In PG(n, q), n ≥ 3, a set K of k points no three of which are collinear is a k-cap.

2. A k-cap is complete if it is not contained in a (k + 1)-cap.

3. A line of PG(n, q) is a secant, tangent, or external line as it meets K in 2, 1 or
0 points.

14.4.98 Theorem [1509, Chapter 16]

1. For any k-cap K in PG(3, q) with q 6= 2, the cardinality k satisfies k ≤ q2 + 1.

2. In PG(3, 2), a k-cap satisfies k ≤ 8; an 8-cap is the complement of a plane.

14.4.99 Definition A (q2 + 1)-cap of PG(3, q), q 6= 2 is an ovoid; the ovoids of PG(3, 2) are its
elliptic quadrics.

14.4.100 Theorem [1509, Chapter 16] At each point P of an ovoid O of PG(3, q), there is a unique
tangent plane π such that π ∩ O = {P}.

14.4.101 Theorem [1509, Chapter 16]

1. Apart from the tangent planes, every plane meets an ovoid O in a (q + 1)-arc.

2. When q is even, the (q2 + 1)(q + 1) tangents of O are the totally isotropic lines
of a symplectic polarity α of PG(3, q), that is, the lines ` for which `α = `.



588 Handbook of Finite Fields

14.4.102 Theorem [1509, Chapter 16] In PG(3, q), q odd, every ovoid is an elliptic quadric.

14.4.103 Remark Theorem 14.4.102 is a celebrated result, due independently to Barlotti [202] and
Panella [2358]. Both proofs rely on Theorem 14.4.72.

14.4.104 Theorem [421] In PG(3, q), q even, every ovoid containing at least one conic section is an
elliptic quadric.

14.4.105 Theorem [1509, Chapter 16] In PG(3, q), let W (q) be the incidence structure formed by
all the points and the totally isotropic lines of a symplectic polarity α. Then W (q) admits
a polarity α′ if and only if q = 22e+1; in that case, the absolute points of α′, namely the
points lying in their image lines, form an ovoid of PG(3, q). Such an ovoid is an elliptic
quadric if and only if q = 2.

14.4.106 Definition For q = 22e+1, with e ≥ 1, the ovoids in Theorem 14.4.105 are Tits ovoids.

14.4.107 Theorem [1509, Chapter 16] With q = 22e+1, the canonical form of a Tits ovoid is

O = {P(1, z, y, x) | z = xy + xσ+2 + yσ} ∪ {P(0, 1, 0, 0)},

where σ is the automorphism t 7→ t2
e+1

of Fq.

14.4.108 Theorem [1509, Chapter 16] For q = 22e+1, e ≥ 1, the group of all projectivities of PG(3, q)
fixing the Tits ovoid O is the Suzuki group Sz(q), which acts doubly transitively on O.

14.4.109 Remark The case q = 4 is the same as q odd; that is, an ovoid of PG(3, 4) is an elliptic
quadric; see Barlotti [202] or [1509, Chapter 16]. For q = 8, Segre [2576] found an ovoid
other than an elliptic quadric; Fellegara [1050] showed that this example is a Tits ovoid. She
also showed, using a computer program, that every ovoid in PG(3, 8) is either an elliptic
quadric or a Tits ovoid. O’Keefe and Penttila [2313, 2314] showed, also using a computer
program, that in PG(3, 16) every ovoid is an elliptic quadric. O’Keefe, Penttila, and Royle
[2315], also using a computer program, showed that in PG(3, 32) every ovoid is an elliptic
quadric or a Tits ovoid.

14.4.110 Definition Let O be an ovoid of PG(3, q) and let B be the set of all intersections π ∩ O,
with π a non-tangent plane of O. Then the incidence structure formed by the triple
I(O) = (O,B,∈) is a 3 − (q2 + 1, q + 1, 1) design. A 3 − (n2 + 1, n + 1, 1) design
I = (P,B,∈) is an inversive plane of order n and the elements of B are circles; the
inversive planes arising from ovoids are egglike.

14.4.111 Theorem [807, Chapter 6] Every inversive plane of even order is egglike.

14.4.112 Definition If the ovoid O is an elliptic quadric, then the inversive plane I(O), and any
inversive plane isomorphic to it, is classical or Miquelian.

14.4.113 Remark By Theorem 14.4.102, an egglike inversive plane of odd order is Miquelian. For
odd order, no other inversive planes are known.

14.4.114 Definition Let I be an inversive plane of order n. For any point P of I, the points of I
other than P , together with the circles containing P with P removed, form a 2−(n2, n, 1)
design, that is, an affine plane of order n. This plane is denoted IP and is the internal
plane or derived plane of I at P .
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14.4.115 Remark [807, Chapter 6] For an egglike inversive plane I(O) of order q, each internal plane
is Desarguesian, that is, the affine plane AG(2, q) over Fq.

14.4.116 Theorem [2795] Let I be an inversive plane of odd order n. If, for at least one point P of
I, the internal plane IP is Desarguesian, then I is Miquelian.

14.4.117 Remark Up to isomorphism, there is a unique inversive plane of order n for the values
n = 2, 3, 4, 5, 7; see Chen [608], Denniston [821, 822], Witt [2997]. As a corollary of Theorem
14.4.116 and the uniqueness of the projective plane of order n for n = 3, 5, 7, a computer-free
proof of the uniqueness of the inversive plane of order n is obtained for these n.

14.4.118 Remark For more information about designs, see Section 14.5. For more information about
projective spaces, see [1509, 1510, 1515] and [1511, Chapter 13].

See Also

§12.5 For results on curves which impinge on k-arcs.
§14.2 For a technique to resolve problems on blocking sets.
§14.3 For other aspects of Desarguesian planes.

References Cited: [202, 324, 421, 431, 434, 608, 807, 821, 822, 1050, 1509, 1510, 1511,
1512, 1513, 1515, 1560, 1991, 2313, 2314, 2315, 2358, 2575, 2576, 2577, 2794, 2795, 2849,
2979, 2997]

14.5 Block designs

Charles J. Colbourn, Arizona State University

Jeffrey H. Dinitz, University of Vermont

14.5.1 Basics

14.5.1 Definition A balanced incomplete block design (BIBD) is a pair (V,B) where V is a v-set
and B is a collection of b k-subsets of V (blocks) such that each element of V is contained
in exactly r blocks and any 2-subset of V is contained in exactly λ blocks. The numbers
v, b, r, k, and λ are parameters of the BIBD. Its order is v; its replication number is r;
its blocksize is k; and its index is λ.

14.5.2 Proposition Trivial necessary conditions for the existence of a BIBD(v, b, r, k, λ) are

1. vr = bk, and

2. r(k − 1) = λ(v − 1).

Parameter sets that satisfy conditions 1 and 2 are admissible.

14.5.3 Remark The three parameters v, k, and λ determine the remaining two as r = λ(v−1)
k−1 and

b = vr
k . Hence one often writes (v, k, λ) design to denote a BIBD(v, b, r, k, λ).
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14.5.4 Example The unique (6, 3, 2) design and the unique (7, 3, 1) design have blocks shown below
as columns:

0000011122 0001123

1123423433 1242534

2345554545 3654656

14.5.5 Definition A BIBD (V,B) with parameters v, b, r, k, λ is

simple if it has no repeated blocks;
complete or full if it is simple and contains

(
v
k

)
blocks;

decomposable if B can be partitioned into two nonempty collections B1

and B2 so that (V,Bi) is a (v, k, λi) design for i = 1, 2;
Hadamard if v = 4n− 1, k = 2n− 1, and λ = n− 1 for some integer

n ≥ 2;
m-multiple if v, bm ,

r
m , k,

λ
m are the parameters of a BIBD;

nontrivial if 3 ≤ k < v;
quasi-symmetric if every two distinct blocks intersect in either µ1 or µ2

elements;
resolvable (an RBIBD) if there exists a partition R of its set of blocks B into

parallel classes, each of which in turn partitions the set
V (R is a resolution);

a Steiner 2-design
S(2, k, v)

if λ = 1;

a Steiner triple system
STS(v)

if k = 3 and λ = 1;

symmetric if v = b, or equivalently k = r;
a triple system TS(v, λ) if k = 3.

14.5.2 Triple systems

14.5.6 Remark A Steiner triple system of order v can exist only when v− 1 is even because every
element occurs with v − 1 others, and in each block in which it occurs it appears with two
other elements. Moreover, every block contains three pairs and hence

(
v
2

)
must be a multiple

of 3. Thus, it is necessary that v ≡ 1, 3 (mod 6). This condition was shown to be sufficient
in 1847.

14.5.7 Theorem [1741] A Steiner triple system of order v exists if and only if v ≡ 1, 3 (mod 6).

14.5.8 Theorem [708] A TS(v, λ) exists if and only if v 6= 2 and λ ≡ 0 (mod gcd(v − 2, 6)).

14.5.9 Remark Existence theorems such as Theorems 14.5.7 and 14.5.8 are typically established by
a combination of direct constructions to make designs for specific values of v, and recursive
constructions to make solutions for large values of v from solutions with smaller values
of v. Finite fields are most often used in providing direct constructions, both to provide
ingredients for recursive constructions, and to produce solutions with specific properties.
Examples for triple systems are developed to demonstrate these; see [708].

14.5.10 Construction [2222] Let p be a prime, n ≥ 1, and pn ≡ 1 (mod 6). Then there is an
STS(pn). To construct one, let Fpn be a finite field on a set X of size pn = 6t+ 1 with 0 as
its zero element, and ω a primitive root of unity. Then

{{ωi + j, ω2t+i + j, ω4t+i + j} : 0 ≤ i < t, j ∈ X}
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(with computations in Fpn) is the set of blocks of an STS(pn) on X.

14.5.11 Remark In order to verify Construction 14.5.10, consider two distinct elements x, y ∈ Fpn .
Let d = x − y (arithmetic in Fpn). Now since d 6= 0 and ω2t − 1 6= 0, d can be uniquely
written in the form (ω2t− 1)ω2jtωi for j ∈ {0, 1, 2} and 0 ≤ i < 2t. Since ω3t = −1, if i ≥ t,
we may write

−d = y − x = (ω2t − 1)ω2(j+1)tωi−t.

Thus we suppose without loss of generality that d = x−y and i < t. Then {x, y} appears in
the triple {ωi, ω2t+i, ω4t+i}+ (x−ω2(j+1)t+i). Consequently, every pair of distinct elements
in Fpn appears in at least one of the triples defined. Because the total number of pairs in

the triples defined is precisely
(
pn

2

)
, every pair occurs in exactly one triple.

14.5.12 Definition Two BIBDs (V1, B1), (V2, B2) are isomorphic if there exists a bijection α :
V1 → V2 such that B1α = B2. An automorphism is an isomorphism of a design with
itself. The set of all automorphisms of a design forms a group, the (full) automorphism
group. An automorphism group is any subgroup of the full automorphism group.

14.5.13 Remark If (V,B) is a BIBD(v, b, r, k, λ) with automorphism group G, the action of G
partitions B into classes (orbits). A set of orbit representatives is a set of starter blocks or
base blocks. Applying the action of G to a set of base blocks yields a design, the development.

14.5.14 Remark In Construction 14.5.10, we can treat D = {{ωi, ω2t+i, ω4t+i} : 0 ≤ i < t} as the
base or starter triples of the design. Their development is the result of applying the action
of the elementary abelian group of order pn to the base triples. The verification requires
that for every difference d ∈ Fpn \ {0}, there is exactly one way to choose x, y ∈ D ∈ D so
that d = x− y, with arithmetic in the elementary abelian group of order pn.

14.5.15 Construction [807] Let p be a prime, n ≥ 1, and pn ≡ 7 (mod 12). Let Fpn be a finite field
on a set X of size pn = 6t+ 1 = 12s+ 7 with 0 as its zero element and ω a primitive root
of unity. Then

{{ω2i + j, ω2t+2i + j, ω4t+2i + j} : 0 ≤ i < t, j ∈ X}
forms the blocks of an STS(pn) on X. (These are the Netto triple systems.)

14.5.16 Remark The Netto triple systems provide examples of STS(v)s that admit 2-homogeneous
automorphism groups but (for v > 7) do not admit 2-transitive groups. We give another
construction of the Netto triple systems. Let

Γ = {a2xσ + b : a, b ∈ Fpn , σ ∈ Aut(Fpn)}.

Let ε be a primitive sixth root of unity in Fpn . Then the orbit of {0, 1, ε} under the action
of Γ is the Netto triple system of order pn. This illustrates one of the principal reasons for
using large automorphism groups, and in particular for using the additive and multiplicative
structure of the finite field – a single triple represents the entire triple system.

14.5.17 Construction [1459] Let p = 2t+ 1 be an odd prime. Let ω be a primitive root of unity in
Zp satisfying ω ≡ 1 (mod 3). Then

{{ωi + j, ω2t+i + j, ω4t+i + j} : 0 ≤ i < t, j ∈ Z3p} ∪ {{j, j + p, j + 2p} : j ∈ Zp}

(with computations modulo 3p) is the set of blocks of an STS(3p).
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14.5.18 Definition A set of blocks is a partial parallel class (PPC) if no two blocks in the set share
an element. A PPC is an almost parallel class if it contains v−1

3 blocks; when it contains
v
3 blocks, it is a parallel class or resolution class. A partition of all blocks of a TS(v, λ)
into parallel classes is a resolution and the STS is resolvable. An STS(v) together with
a resolution of its blocks is a Kirkman triple system, KTS(v).

14.5.19 Remark In Construction 14.5.17, the triples {{j, j+p, j+2p} : j ∈ Zp} form a parallel class.
Indeed we can say much more in certain cases. The method of “pure and mixed differences”
[356] is applied, using a set of elements Fq × X, for X a finite set; a pure(x) difference is
the difference d = a− b associated with the pair {(a, x), (b, x)} and a mixed(x,y) difference
is the difference d = a− b associated with the pair {(a, x), (b, y)}.

14.5.20 Construction [2440] If q = pα ≡ 1 (mod 6) is a prime power, then there exists a KTS(3q).
Let t = (q − 1)/6. To construct a KTS(3q), take as elements Fq × {1, 2, 3}, writing ai for
(a, i). Let ω be a primitive element in Fq, and let B consist of triples:

1. C = {01, 02, 03};
2. Bij = {ωij , ωi+2t

j , ωi+4t
j }, 0 ≤ i < t, j ∈ {1, 2, 3};

3. Ai = {ωi1, ωi+2t
2 , ωi+4t

3 }, 0 ≤ i < t.

Each of the (nonzero) pure and mixed differences occurs exactly once in triples of B, and
thus B is the set of starter triples for an STS(3q). This STS(3q) is resolvable. Indeed,
R0 = C ∪ {Bij : 0 ≤ i < t, j ∈ {1, 2, 3}} ∪ {Ajt+i : j ∈ {1, 3, 5}, 0 ≤ i < t} forms a parallel
class; when developed modulo 6t + 1, it yields a further 6t parallel classes. Each Ai, when
developed modulo 6t+ 1, also yields a parallel class; taking those parallel classes only from
Ajt+i with j ∈ {0, 2, 4} and 0 ≤ i < t} thus yields a further 3t parallel classes, for a total
of 9t+ 1 forming the resolution.

14.5.21 Construction [2440] If q = pα ≡ 1 (mod 6) is a prime power, then there exists a KTS(2q+1).
Let t = (q− 1)/6. To construct a KTS(2q+ 1), take as elements (Fq ×{1, 2})∪ {∞}. Let ω
be a primitive element of Fq, and let m satisfy 2ωm = ωt + 1. Let B consist of triples

1. C = {01, 02,∞};
2. Bi = {ωi1, ωi+t1 , ωi+m2 }, 0 ≤ i < t, 2t ≤ i < 3t, or 4t ≤ i < 5t;

3. Ai = {ωi+m2 , ωi+m+3t
2 , ωi+m+5t

2 }, 0 ≤ i < t.

Every pure and every mixed difference occurs exactly once and hence B is a set of starter
triples for an STS(2q+ 1). But B itself forms a parallel class, whose development modulo q
yields the required q parallel classes for the KTS(2q + 1).

14.5.3 Difference families and balanced incomplete block designs

14.5.22 Definition Let B = {b1, ..., bk} be a subset of an additive group G. The G-stabilizer of B
is the subgroup GB of G consisting of all elements g ∈ G such that B + g = B. B is
full or short according to whether GB is or is not trivial. The G-orbit of B is the set
OrbGB of all distinct right translates of B, namely, OrbGB = {B + s | s ∈ S} where S
is a complete system of representatives for the right cosets of GB in G.

14.5.23 Definition The multiset ∆B = {bi − bj | i, j = 1, . . . , k, i 6= j} is the list of differences
from B. The multiplicity in ∆B of an element g ∈ G is of the form µg|GB | for some
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integer µg. The list of partial differences from B is the multiset ∂B where each g ∈ G
appears exactly µg times. (∆B = ∂B if and only if B is a full block.)

14.5.24 Definition Let G be a group of order v. A collection {B1, ..., Bt} of k-subsets of G forms a
(v, k, λ) difference family (or difference system) if every nonidentity element of G occurs
λ times in ∂B1 ∪ · · · ∪ ∂Bt. The sets Bi are base blocks. A difference family having at
least one short block is partial.

14.5.25 Remark

1. All definitions given can be extended to a multiplicative group by replacing B+g
with B · g and bi − bj with bib

−1
j .

2. If t = 1, then B1 is a (v, k, λ) difference set; see Section 14.6.

3. If {B1, . . . , Bt} is a (v, k, λ) difference family over G, OrbG(B1)∪ · · · ∪OrbG(Bt)
is the collection of blocks of a BIBD(v, k, λ) admitting G as a sharply point-
transitive automorphism group. This BIBD is cyclic (abelian, nonabelian, dihe-
dral, and so on) if the group G has the respective property. In this case the
difference family is a cyclic (abelian, nonabelian, dihedral, respectively) difference
family.

4. A BIBD(v, k, λ) with an automorphism group G acting sharply transitively on the
points is (up to isomorphism) generated by a suitable (v, k, λ) difference family.

5. Every short block of a (v, k, 1) difference family over an abelian group G is a
coset of a suitable subgroup of G.

14.5.26 Theorem [261] The set of order p subgroups of Fpn forms a (pn, p, 1) difference family
generating the point-line design associated with the affine geometry AG(n, p).

14.5.27 Definition

1. C = {c1, . . . , ck} is a multiple of B = {b1, . . . , bk} if, for some w, ci = w · bi for
all i.

2. w is a multiplier of order n of B = {b1, . . . , bk} if wn = 1 but wi 6= 1 for
0 < i < n, and for some g ∈ G, B = w·B+g = {w·b1+g, w·b2+g, . . . , w·bk+g}.

3. w is a multiplier of a difference family D if, for each base block B ∈ D, there
exists C ∈ D and g ∈ G for which w ·B + g = C.

4. If q is a prime power and D is a (q, k, λ) difference family over Fq in which one
base block, B, has a multiplier of order k or k− 1 and all other base blocks are
multiples of B, then D is radical.

14.5.28 Theorem [5] Suppose q ≡ 7 (mod 12) is a prime power and there exists a cube root of
unity ω in Fq such that x = ω − 1 is a primitive root. Then the following base blocks form
a (7q,4,1) difference family over Z7 × Fq:

1. {(0,0), (0, (x − 1)x2t−1), (0,ω(x − 1)x2t−1), (0,ω2(x − 1)x2t−1)} for 1 ≤ t ≤
(q − 7)/12,

2. {(0,0), (1, x2t), (2, ωx2t), (4, ω2x2t)} for 1 ≤ t ≤ (q − 3)/2, x2t 6= ω, and

3. {(0,0), (2t, ωt), (2t, x · ωt), (2t+2, 0)} for 0 ≤ t ≤ 2.

14.5.29 Remark The (7q,4,1) difference families are obtainable by Theorem 14.5.28 for q = 7, 19,
31, 43, 67, 79, 103, 127, 151, 163, 199, 211, 367, 379, 439, 463, 487, 571, but not for q =
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139, 223, 271, 283, 307, 331, 523, 547. A more general construction for (7q,4,1) difference
families with q a prime power ≡ 7 (mod 12) can be found in [5].

14.5.30 Theorem [2986] Suppose q is a prime power, and λ(q − 1) ≡ 0 (mod k(k − 1)). Then a
(q, k, λ) difference family over Fq exists if

1. λ is a multiple of k/2 or (k − 1)/2;

2. λ ≥ k(k − 1); or

3. q >
(
k
2

)k(k−1)
.

14.5.31 Theorem [459] Suppose q is an odd prime power. Then there exists a (q, k, λ) radical
difference family if either:

1. λ is a multiple of k/2 and q ≡ 1 (mod k − 1), or

2. λ is a multiple of (k − 1)/2 and q ≡ 1 (mod k).

14.5.32 Remark For radical difference families with λ = 1, the multiplier must have odd order (that
is, order k if k is odd, or order k − 1 if k is even).

14.5.33 Theorem [459] Let q = 12t+ 1 be a prime power and 2e be the largest power of 2 dividing
t. Then a (q, 4, 1) radical difference family in Fq exists if and only if −3 is not a 2e+2-th
power in Fq. (This condition holds for q = 13, 25, 73, 97, 109, 121, 169, 181, 193, 229, 241,
277, 289, 313, 337, 409, 421, 433, 457, 529, 541, 577, 601, 625, 673, 709, 733, 757, 769, 829,
841.)

14.5.34 Theorem [459] Let q = 20t + 1 be a prime power, and let 2e be the largest power of 2
dividing t. Then a (q, 5, 1) radical difference family in Fq exists if and only if (11 + 5

√
5)/2

is not a 2e+1-th power in Fq. (This condition holds for q = 41, 61, 81, 241, 281, 401, 421,
601, 641, 661, 701, 761, 821, 881.)

14.5.35 Remark In [460], necessary and sufficient conditions are given for a (q, k, 1) radical difference
family with k ∈ {6, 7} to exist over Fq; a sufficient condition is also given for k ≥ 8.

14.5.36 Theorem [460, 1356, 2986] Among others, (q, k, 1) radical difference families exist for the
following values of q and k:

k = 6 q ∈ {181, 211, 241, 631, 691, 1531, 1831, 1861, 2791, 2851, 3061};
k = 7 q ∈ {337, 421, 463, 883, 1723, 3067, 3319, 3823, 3907, 4621, 4957,

5167, 5419, 5881, 6133, 8233, 8527, 8821, 9619, 9787, 9829};
k = 8 q ∈ {449, 1009, 3137, 3697, 6217, 6329, 8233, 9869};
k = 9 q ∈ {73, 1153, 1873, 2017, 6481, 7489, 7561, 8359}.

14.5.37 Theorem [1268] If there exists a (p, k, 1) radical difference family with p a prime and k odd,
there exists a cyclic RBIBD(kp, k, 1) whose resolution is invariant under the action of Zkp.

14.5.4 Nested designs

14.5.38 Theorem [708] Let p be a prime, n ≥ 1, pn ≡ 1 (mod 6), and ω be a primitive root of Fpn ,
pn = 6t+ 1. Let S = {ω0, ω2t, ω4t}, and Si = ωiS.

1. For 0 ≤ c < t, the development of {0}∪Sc under the addition and multiplication
of Fpn forms a (pn, 4, 2) design in which the omission of the first element in each
block yields an STS(pn).

2. For 0 ≤ c < d < t, the development of Sc ∪ Sd under the addition and multipli-
cation of Fpn forms a (pn, 6, 5) design.
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14.5.39 Remark The STSs in Theorem 14.5.38 Part 1 have been called nested Steiner triple systems,
but the standard statistical notion of nested design is different – see Definition 14.5.40 and
[2159].

14.5.40 Definition If the blocks of a BIBD (V,D1) with v symbols in b1 blocks of size k1 are
each partitioned into sub-blocks of size k2, and the b2 = b1k1/k2 sub-blocks them-
selves constitute a BIBD (V,D2), then the system of blocks, sub-blocks, and symbols
is a nested balanced incomplete block design (nested BIBD or NBIBD) with parameters
(v, b1, b2, r, k1, k2), r denoting the common replication. Also (V,D1) and (V,D2) are the
component BIBDs of the NBIBD.

14.5.41 Remark A resolvable BIBD (RBIBD) (V,D) is a nested block design (V,D1,D2) where the
blocks of D1, of size k1 = v, are the resolution classes of D, and D2 = D.

14.5.42 Remark Nested block designs may have more than two blocking systems and consequently
more than one level of nesting. A doubly nested block design is a system (V,D1,D2,D3)
where both (V,D1,D2) and (V,D2,D3) are nested block designs. A resolvable NBIBD is a
doubly nested block design.

14.5.43 Definition A multiply nested BIBD (MNBIBD) is a nested block design (V,D1,D2, . . . ,Ds)
with parameters (v, b1, . . . , bs, r, k1, . . . , ks) for which the systems (V,Dj ,Dj+1) are
NBIBDs for j = 1, . . . , s− 1.

14.5.44 Theorem [2159] Let v be a prime power of the form v = a0a1a2 · · · an + 1 (a0 ≥ 1, an ≥ 1
and ai ≥ 2 for 1 ≤ i ≤ n − 1 are integers). Then there is an MNBIBD with n component
designs having k1 = ua1a2 · · · an, k2 = ua2a3 · · · an, . . . , kn = uan, and with a0v blocks of
size k1, for any integer u with 1 ≤ u ≤ a0 and u > 1 if an = 1. If integer t ≥ 2 is chosen so
that 2 ≤ tu ≤ a0, then there is an MNBIBD with n+ 1 component designs, with the same
number of big blocks but of size k0 = tk1, and with its n other block sizes being k1, . . . , kn
as given. Moreover, if a0 is even and ai is odd for i ≥ 1, then MNBIBDs can be constructed
with the same block sizes but with a0v/2 blocks of size k1.

14.5.45 Definition A nested row-column design is a system (V,D1,D2,D3) for which (1) each
of (V,D1,D2) and (V,D1,D3) is a nested block design, (2) each block of D1 may be
displayed as a k2 × k3 row-column array, one member of the block at each position in
the array, so that the columns are the D2 sub-blocks in that block, and the rows are the
D3 sub-blocks in that block.

14.5.46 Definition A (completely balanced) balanced incomplete block design with nested rows and
columns, BIBRC(v, b1, k2, k3), is a nested row-column design (V,D1,D2,D3) for which
each of (V,D1,D2) and (V,D1,D3) is a NBIBD.

14.5.47 Theorem [2159] If v = mpq + 1 is a prime power and p and q are relatively prime, then
initial nesting blocks for a BIBRC(v,mv, sp, tq) are Al = xl−1L⊗M for l = 1, . . . ,m, where
Ls×t = (xi+j−2)i,j , Mp×q = (x[(i−1)q+(j−1)p]m)i,j , s and t are integers with st ≤ m, and x
is a primitive element of Fv. (Here ⊗ is the Kronecker product.) If m is even and pq is odd,
A1, . . . , Am/2 are intial nesting blocks for BIBRC(v,mv/2, sp, tq);

14.5.48 Theorem [2159] Write xui = 1−x2mi where x is a primitive element of Fv and v = 4tm+1
is a prime power. Let A be the addition table with row margin (x0, x2m, . . . , x(4t−2)m) and
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column margin (xm, x3m, . . . , x(4t−1)m), and set Al = xl−1A. If ui − uj 6≡ m (mod 2m) for
i, j = 1, . . . , t, then A1, . . . , Am are initial nesting blocks for BIBRC(v,mv, 2t, 2t). Including
0 in each margin for A, if further ui 6≡ m (mod 2m) for i = 1, . . . , t, then A1, . . . , Am are
initial nesting blocks for BIBRC(v,mv, 2t+ 1, 2t+ 1).

14.5.5 Pairwise balanced designs

14.5.49 Definition Let K be a subset of positive integers and let λ be a positive integer. A pairwise
balanced design (PBD(v,K, λ) or (K,λ)-PBD) of order v with block sizes from K is a
pair (V,B), where V is a finite set (the point set) of cardinality v and B is a family
of subsets (blocks) of V that satisfy (1) if B ∈ B, then |B| ∈ K and (2) every pair of
distinct elements of V occurs in exactly λ blocks of B. The integer λ is the index of the
PBD. The notations PBD(v,K) and K-PBD of order v are often used when λ = 1.

14.5.50 Example A PBD(10, {3, 4}) is given below where the blocks are listed columnwise.

1 1 1 2 2 2 3 3 3 4 4 4
2 5 8 5 6 7 5 6 7 5 6 7
3 6 9 8 9 10 10 8 9 9 10 8
4 7 10

14.5.51 Remark Many constructions of pairwise balanced designs employ sub-structures in balanced
incomplete block designs. In a (v, k, λ)-design (V,B), useful sub-structures include those
specified by a set S ⊂ V so that for every B ∈ B, |B ∩ S| ∈ L; then setting K = {k − ` :
` ∈ L}, a (|V \ S|,K, λ)-PBD arises by removing all points of S. When the BIBD is made
by a finite field construction, such sub-structures may arise from algebraic properties of the
field. Other useful sub-structures arise from the presence of parallel classes; when a parallel
class of blocks is present, a new element can be added and adjoined to each block in the
parallel class to increase the size of some blocks by one. Example 14.5.50 is produced in
this way from a (9,3,1)-design. This can be applied to more than one parallel class, when
present [706, §IV].

14.5.6 Group divisible designs

14.5.52 Definition Let K and G be sets of positive integers and let λ be a positive integer. A
group divisible design of index λ and order v ((K,λ)-GDD) is a triple (V,G,B), where
V is a finite set of cardinality v, G is a partition of V into parts (groups) whose sizes lie
in G, and B is a family of subsets (blocks) of V that satisfy (1) if B ∈ B then |B| ∈ K,
(2) every pair of distinct elements of V occurs in exactly λ blocks or one group, but not
both, and (3) |G| > 1. If v = a1g1 +a2g2 + · · ·+asgs, and if there are ai groups of size gi,
i = 1, 2, . . . , s, then the (K,λ)-GDD is of type ga1

1 ga2
2 . . . gass . This is exponential notation

for the group type. Alternatively, if the GDD has groups G1, G2, . . . , Gt, then the list
T = [|Gi| : i = 1, 2, . . . , t] is the type of the GDD when more convenient. If K = {k},
then the (K,λ)-GDD is a (k, λ)-GDD. If λ = 1, the GDD is a K-GDD. Furthermore, a
({k}, 1)-GDD is a k-GDD.

14.5.53 Definition Let H be a subgroup of order h of a group G of order v. A collection {B1, ..., Bt}
of k-subsets of G forms a (v, h, k, λ) difference family over G and relative to H if ∂B1 ∪
· · · ∪ ∂Bt covers each element of G−H exactly λ times and covers no element in H.
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14.5.54 Remark

1. A (v, 1, k, λ) difference family is a (v, k, λ) difference family.

2. If {B1, . . . , Bt} is a (v, h, k, λ) difference family over G and relative to H, then
OrbG(B1) ∪ · · · ∪ OrbG(Bt) is the collection of blocks of a (k, λ) GDD of type
hv/h where the groups are the right cosets of H in G. This GDD admits G as a
sharply point-transitive automorphism group.

3. A (k, λ) GDD of type hv/h with an automorphism group G acting sharply tran-
sitively on the points is, up to isomorphisms, generated by a suitable (v, h, k, λ)
difference family.

4. If {B1, . . . , Bt} is a (v, k, k, λ) difference family over G and relative to H, then
{B1, . . . , Bt} ∪ {H, . . . ,H︸ ︷︷ ︸

λ times

} is a (v, k, λ) difference family.

14.5.55 Theorem [4, 1357] Suppose q ≡ 1 (mod k−1) is a prime power. Then a (kq, k, k, 1) relative
difference family over Fk × Fq exists if one of the following holds:

1. k ∈ {3, 5} (for k = 5, the initial block B can be taken as {(0, 0), (1, 1), (1,−1),
(4, x), (4,−x)} where x is any nonsquare in Fq such that exactly one of x−1, x+1
is a square);

2. k = 7 and q 6= 19;

3. k = 9 and q 6∈ {17, 25, 41, 97, 113};
4. k = 11, q < 1202, q is prime, and q 6∈ [30,192], [240,312] or [490,492].

14.5.56 Theorem [461]

1. Let q = 12t + 1 be a prime power, and let 3e be the largest power of 3 dividing
t. If, in Fq, 3 and 2 +

√
3 are both 3e-th powers but not 3e+1-th powers and 6 is

not a 3e+1-th power, then a (13q, 13, 13, 1) relative difference family exists.

2. If p and q are odd prime powers with q > p, then a (pq, p, p, (p − 1)/2) relative
difference family exists. If further p ≡ 1 (mod 4) and q ≡ 1 (mod p− 1), then a
(pq, p, p, (p− 1)/4) relative difference family exists.

14.5.7 t-designs

14.5.57 Definition A t-(v, k, λ) design, a t-design in short, is a pair (X,B) where X is a v-set
of points and B is a collection of k-subsets of X (blocks) with the property that every
t-subset of X is contained in exactly λ blocks. The parameter λ is the index of the
design.

14.5.58 Example Let q be a prime power and n > 0 be an integer. Then G = PGL(2, qn) acts
sharply 3-transitively on X = Fqn ∪ {∞}. If S ⊆ X is the natural inclusion of Fq ∪ {∞},
then the orbit of S under G is a 3-(qn + 1, q + 1, 1) design. These designs are spherical
geometries; when n = 2, they are inversive planes or Möbius planes.

14.5.59 Theorem [1559] Let B be a subgroup of the multiplicative group of nonzero elements of
Fq. Then the orbit of S = B ∪ {0,∞} under the action of PGL(2, q) is the block set of one
of the designs:
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1. 3-(qn + 1, q + 1, 1) design where q is a prime power and n ≥ 2 (a spherical
geometry);

2. 3-(q + 1, k + 1, k(k + 1)/2) design if (k − 1)|(q − 1), k6 |q, and k 6∈ {3, 5};
3. 3-(q + 1, 4, 3) design for q ≡ 1, 5 (mod 6);

4. 3-(q + 1, 6, 5) design for q ≡ 1, 9, 13, 17 (mod 20).

14.5.8 Packing and covering

14.5.60 Remark Packings and coverings relax the conditions on block designs, and have been ex-
tensively studied; see [2106] for a more detailed exposition.

14.5.61 Definition Let v ≥ k ≥ t. A t-(v, k, λ) covering is a pair (X,B), where X is a v-set of
elements (points) and B is a collection of k-subsets (blocks) of X, such that every t-subset
of points occurs in at least λ blocks in B. Repeated blocks in B are permitted.

14.5.62 Theorem (Schönheim bound) [2106] Cλ(v, k, t) ≥ dv Cλ(v − 1, k − 1, t− 1)/ke. Iterating
this bound yields Cλ(v, k, t) ≥ Lλ(v, k, t), where

Lλ(v, k, t) =
⌈
v
k

⌈
v−1
k−1 . . .

⌈
λ(v−t+1)
k−t+1

⌉⌉⌉
.

14.5.63 Definition Let v ≥ k ≥ t. A t-(v, k, λ) packing is a pair (X,B), where X is a v-set of
elements (points) and B is a collection of k-subsets of X (blocks), such that every t-
subset of points occurs in at most λ blocks in B. If λ > 1, then B is allowed to contain
repeated blocks.

14.5.64 Remark A t-(v, k, 1) packing with b blocks is equivalent to a binary code of length v, size b,
constant weight k, and minimum Hamming distance at least 2(k − t+ 1); see Section 15.1.

14.5.65 Theorem (First Johnson bound) [2106] Dλ(v, k, t) ≤
⌊
vDλ(v−1,k−1,t−1)

k

⌋
. Iterating this

bound yields Dλ(v, k, t) ≤ Uλ(v, k, t), where

Uλ(v, k, t) =
⌊
v
k

⌊
v−1
k−1 . . .

⌊
λ(v−t+1)
k−t+1

⌋⌋⌋
.

Further, if λ(v−1) ≡ 0 (mod k−1) and δ(k−1)
2 > λ δ(δ−1)

2 , where δ = λv(v−1)
k−1 −kUλ(v, k, 2),

then Dλ(v, k, 2) ≤ Uλ(v, k, 2)− 1.

14.5.66 Theorem (Second Johnson bound) [2106] Suppose d = D1(v, k, t) = qv + r, where 0 ≤ r ≤
v − 1. Then q(q − 1)v + 2qr ≤ (t− 1)d(d− 1), and hence D1(v, k, t) ≤

⌊
v(k+1−t)
k2−v(t−1)

⌋
.
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14.6 Difference sets

Alexander Pott, Otto-von-Guericke-Universität Magdeburg

14.6.1 Basics

14.6.1 Definition Let G be an additively written group of order v. A k-subset D of G is a
(v, k, λ;n)-difference set of order n = k− λ if every nonzero element of G has exactly λ
representations as a difference d−d′ with elements from D. The difference set is abelian,
cyclic, etc., if the group G has the respective property. The redundant parameter n is
sometimes omitted, therefore the notion of (v, k, λ)-difference sets is also used.

14.6.2 Example

1. The group G itself and G\{g} for an arbitrary g ∈ G are (v, v, v, 0)- and (v, v −
1, v − 2; 1)-difference sets.

2. The set {1, 3, 4, 5, 9} is a cyclic (11, 5, 2; 3)-difference set in the group (Z/11Z,+).
These are the squares modulo 11.

3. The set {1, 2, 4} ⊂ Z/7Z is a cyclic (7, 3, 1; 2)-difference set.

4. The set {(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0)} ⊂ Z/4Z × Z/4Z is a (16, 6, 2; 4)
difference set.
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5. There is a non-abelian example with the same parameters: Let G = Q × Z/2Z,
where Q = {±1,±i,±j,±k} is the quaternion group, whose generators sat-
isfy i2 = j2 = k2 = 1, ij = jk = ki = −1. Then the set D =
{(1, 0), (i, 0), (j, 0), (k, 0), (1, 1), (−1, 1)} is a non-abelian (16, 6, 2; 4)-difference
set.

14.6.3 Remark A thorough investigation of difference sets is contained in [261], see also the tables
in [262]. A short summary, including a list of small examples, is contained in [706]. Classical
textbooks are [211] and [1842]. A recent book including a modern treatment of necessary
conditions for the existence of difference sets is [2546].

14.6.4 Remark The complement of a (v, k, λ;n)-difference set is again a difference set but with
parameters (v, v − k, v − 2k + λ;n). Therefore, we may assume k ≤ v/2 (the case k = v/2
is actually impossible).

14.6.5 Remark Many constructions of difference sets are closely related to the connection between
the additive and the multiplicative group of a finite field:

1. The set of nonzero squares in a field Fq, q ≡ 3 (mod 4), which is a multiplicative
subgroup, is a difference set in the additive group of the field, see Theorem 14.6.38.
Case 2 in Example 14.6.2 is such a difference set in (F11,+).

2. The set of elements of trace 0 in F2n , which is an additive subgroup, forms a
difference set in the multiplicative group of F2n ; see Theorem 14.6.22. Case 3 in
Example 14.6.2 is such a difference set in (F∗8, ·) ∼= Z/7Z.

14.6.6 Lemma The parameters v, k and λ of a difference set satisfy

λ · (v − 1) = k · (k − 1).

14.6.7 Remark Lemma 14.6.6 can be proved by counting differences. It also follows from Theorem
14.6.9 which shows that difference sets are the same objects as symmetric designs with a
sharply transitive (regular) automorphism group. We refer the reader to Section 14.5 for the
definition of symmetric designs and to [261] for a proof of the important Theorem 14.6.9.

14.6.8 Definition The development of a difference set D is the incidence structure dev(D) whose
points are the elements of G and whose blocks are the translates g+D := {g+d : d ∈ D}.

14.6.9 Theorem [262] The existence of a (v, k, λ;n)-difference set is equivalent to the existence of
a symmetric (v, k, λ)-design D admitting G as a point regular automorphism group; i.e., for
any two points P and Q, there is a unique group element g which maps P to Q. The design
D is isomorphic with dev(D).

14.6.10 Remark Necessary conditions on the parameters v, k and λ of a symmetric design are also
necessary conditions for the parameters of a difference set. In particular, the following two
theorems hold. We emphasize that these are necessary conditions for symmetric designs,
even if the designs are not constructed from difference sets.

14.6.11 Theorem [2566] If D is a (v, k, λ;n) difference set with v even, then n = u2 is a square.

14.6.12 Theorem [429, 631] If D is a (v, k, λ;n) difference set with v odd, then the equation nx2 +
(−1)(v−1)/2λy2 = z2 must have an integral solution (x, y, z) 6= (0, 0, 0).

14.6.13 Example Not all symmetric designs can be constructed from difference sets. There are,
for instance, no difference sets with parameters (25, 9, 3; 6) or (31, 10, 3; 7), but symmetric
designs with these parameters exist, see the tables in [262].
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14.6.14 Remark The main problem about difference sets is to give necessary and sufficient con-
ditions for their existence. These conditions sometimes depend only on the parameters
(v, k, λ;n), sometimes also on the structure of the ambient group G. Another problem is to
classify all (v, k, λ;n)-difference sets up to equivalence or isomorphism. In many nonexis-
tence theorems, the exponent of a group plays an important role.

14.6.15 Definition The exponent exp(G) of a (multiplicatively written) finite group G is the small-
est integer v∗ such that gv

∗
= 1.

14.6.16 Remark There are many necessary conditions that the parameters of a difference set have
to satisfy. An important condition is Theorem 14.6.62. Many more restrictions are in [2546].

14.6.17 Definition Two difference sets D1 (in G1) and D2 (in G2) are equivalent if there is a group
isomorphism ϕ between G1 and G2 such that Dϕ

1 = {dϕ : d ∈ D1} = g + D2 for a
suitable g ∈ G2. The difference sets are isomorphic if the designs dev(D1) and dev(D2)
are isomorphic.

14.6.18 Remark Equivalent difference sets yield isomorphic designs, but a design may give rise to
several inequivalent difference sets, as the following example shows.

14.6.19 Example The following three difference sets in Z/4Z × Z/4Z with parameters (16, 6, 2; 4)
are pairwise inequivalent, but the designs are all isomorphic:

D1 = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 2), (2, 3)},
D2 = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 3), (3, 2)},
D3 = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 2), (2, 3)}.

14.6.20 Definition Some types of (v, k, λ;n)-difference sets have special names. A difference
set with λ = 1 is planar. The parameters can be written in terms of the order n as
(n2 + n+ 1, n+ 1, 1;n). The corresponding design is a projective plane. Difference sets
with v = 4n are Hadamard difference sets, in which case n = u2 must be a square, and
the parameters are (4u2, 2u2−u, u2−u;u2). Difference sets with v = 4n−1, hence with
parameters (4n− 1, 2n− 1, n− 1;n), are of Paley type. Both Hadamard and Paley type
difference sets are closely related to Hadamard matrices; see Constructions 14.6.44 and

14.6.52. The parameters
(
qn−1
q−1 ,

qn−1−1
q−1 , q

n−2−1
q−1 ; qn−2

)
are the Singer parameters; see

Theorem 14.6.22.

14.6.21 Remark The parameters of a symmetric design, hence also the parameters of a (v, k, λ;n)-
difference set satisfy 4n− 1 ≤ v ≤ n2 + n+ 1. The extremal cases are Paley type difference
sets (v = 4n− 1) and planar difference sets.

14.6.2 Difference sets in cyclic groups

14.6.22 Theorem [2674] Let α be a generator of the multiplicative group of Fqn , where q is a
prime power. Then the set of integers {i : 0 ≤ i < (qn − 1)/(q − 1),Tr (αi) = 0} modulo
(qn − 1)/(q − 1) form a (cyclic) difference set with Singer parameters(

qn − 1

q − 1
,
qn−1 − 1

q − 1
,
qn−2 − 1

q − 1
; qn−2

)
.

These difference sets are Singer difference sets.
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14.6.23 Remark

1. If q = 2, the Singer difference set is simply the set of nonzero elements in an
additive subgroup of order 2n−1, interpreted as a subset of the multiplicative
group of F2n . These difference sets are of Paley type.

2. In the general case, a Singer difference set can be viewed as follows. Let U :=
{β ∈ F∗qn : Tr (β) = 0}. This is a subgroup of the additive group of Fqn fixed by
multiplication with elements from Fq, hence it is a hyperplane of the vector space
Fnq . The Singer difference set is the image of this hyperplane under the canonical
projection F∗qn → F∗qn/F∗q .

3. The design corresponding to a Singer difference set is the classical point-
hyperplane design of the projective geometry PG(n− 1, q).

14.6.24 Conjecture If n = 3, the Singer parameters are (q2 +q+1, q+1, 1; q). It is conjectured that
the only abelian difference sets (up to equivalence) with these parameters are the Singer
difference sets. Moreover, it is conjectured that planar difference sets exist only if the order
q is a prime power. This holds for all orders q ≤ 2, 000, 000; see [1326].

14.6.25 Construction The construction of Singer difference sets is easy if a primitive polynomial
(see Section 4.1) f(x) = xn +

∑n
i=1 aix

n−i of degree n in Fqn is known. Consider the
recurrence relation γm = −∑n

i=1 aiγm−i. Take arbitrary initial values, for instance γ0 =
1, γ1 = γ2 = · · · = γn−1 = 0. Then the set of integers {0 ≤ i < (qn − 1)/(q − 1) : γi = 0}
is a Singer difference set. For instance, x4 + x3 + 2 is a primitive polynomial over F3. The
recurrence relation γm = 2γm−1 + γm−4 yields the sequence

10001212201112222020211201021002212022002000 . . .

which gives the cyclic (40, 13, 4; 9)-difference set

{1, 2, 3, 9, 17, 19, 24, 26, 29, 30, 35, 38, 39}.

14.6.26 Remark In general, there are many difference sets with Singer parameters inequivalent to
Singer difference sets (Theorems 14.6.27 and 14.6.29). There are even non-abelian difference
sets with Singer parameters; see Example 14.6.70.

14.6.27 Theorem [1324] Let D be an arbitrary cyclic difference set with parameters(
qs−1
q−1 ,

qs−1−1
q−1 , q

s−2−1
q−1 ; qs−2

)
in a group G. Let G be embedded into F∗qn/F∗q which is possible

if s|n. Let α be a primitive element in Fqn . Then the set of integers {0 ≤ i < (qn−1)(q−1) :
Tr Fqn/Fqs (αi) ∈ D} is a difference set with classical Singer parameters. The difference sets
are Gordon-Mills-Welch difference sets corresponding to D. Note that different embeddings
of the same difference set D may result in inequivalent difference sets [211].

14.6.28 Remark If D is a Singer difference set, the above construction may be reformulated as
follows: if s divides n and if r is relatively prime to qs− 1, then the set of integers {0 ≤ i <
(qn − 1)/(q − 1) : Tr Fqs/Fq [(Tr Fqn/Fqs (αi))r] = 0} is a Gordon-Mills-Welch difference set.

14.6.29 Theorem [862, 864] Let α be a generator of the multiplicative group of F2n , and let t < n/2
be an integer relatively prime to n, and k = 4t−2t+1. Then the set D = {(x+1)k+xk+1 :
x ∈ F2n , x 6= 0, 1} ⊆ F∗2n is a Dillon-Dobbertin difference set with parameters (2n−1, 2n−1−
1, 2n−2 − 1; 2n−2). If n = 3t± 1, then the set D = F∗2n \ {(x+ 1)k + xk : x ∈ F2n} ⊆ F∗2n is
a difference set with parameters (2n − 1, 2n−1 − 1, 2n−2 − 1; 2n−2).

14.6.30 Remark The series of Gordon-Mills-Welch difference sets [1324] and Dillon-Dobbertin dif-
ference sets [862, 864] show that the number of inequivalent difference sets grows rapidly. In
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these two series, inequivalent difference sets are in general also non-isomorphic; see [1676]
for the Gordon-Mills-Welch case and [905] for the Dillon-Dobbertin case.

14.6.31 Construction [1303] Cyclic difference sets can be used to construct binary sequences with
2-level autocorrelation function. Let α be the generator of the cyclic group Z/vZ, and let D
be a (v, k, λ;n) difference set in Z/vZ. Define a sequence (ai) by ai = 1 if αi ∈ D, otherwise

ai = 0. This sequence has period v, and Ct(a) :=
∑n−1
i=0 (−1)ai+ai+t = v − 4(k − λ) for

t = 1, . . . , v − 1, which are the off-phase autocorrelation coefficients; see also Section 10.3.

14.6.32 Remark Cyclic Paley type difference sets yield sequences with constant off-phase autocor-
relation −1. These sequences (difference sets) have numerous applications since the autocor-
relation is small (in absolute value) [1303]. It is conjectured that no sequences with constant
off-phase autocorrelation 0 exist if v > 4; see Remark 14.6.45.

14.6.33 Conjecture (Ryser’s Conjecture) [1842, 1909] If gcd(v, n) 6= 1, then there is no cyclic
(v, k, λ;n) difference set in a cyclic group. A strengthening of this conjecture is due to
Lander: if D is a (v, k, λ;n)-difference set in an abelian group of order v, and p is a prime
dividing v and n, then the Sylow p-subgroup of G is not cyclic.

14.6.34 Theorem [1907] Lander’s conjecture is true for all abelian difference sets of order n = pk,
where p > 3 is prime.

14.6.35 Remark

1. The smallest open case for Lander’s conjecture is a cyclic (465, 145, 45; 100) dif-
ference set.

2. More restrictions on putative counterexamples to Lander’s conjecture are con-
tained in [1909].

14.6.36 Theorem [116] Let R = {a ∈ F∗3m : a = x + x6 has 4 solutions with x ∈ F3m} with
m > 1. Then the set ρ(R) is a difference set with Singer parameters ((3m − 1)/2, (3m−1 −
1)/2, (3m−2 − 1)/2; 3m−2), where ρ is the canonical epimorphism F∗3m → F∗3m/F∗3.

14.6.37 Theorem [1477] Let q = 3e, e ≥ 1, m = 3k, d = q2k − qk + 1. If R = {x ∈ Fqm :
Tr Fqm/Fq (x + xd) = 1}, then ρ(R) is a difference set with parameters ((qm − 1)/(q −
1), qm−1, qm−1 − qm−2; qm−2), where ρ is the canonical epimorphism F∗qm → F∗q .

14.6.3 Difference sets in the additive groups of finite fields

14.6.38 Theorem [262] The following subsets of Fq are difference sets in the additive group of
Fq. They are cyclotomic difference sets. Some of these difference sets may have Singer
parameters.

1. F(2)
q := {x2 : x ∈ Fq\{0}}, q ≡ 3 (mod 4) (quadratic residues, Paley difference

sets);

2. F(4)
q := {x4 : x ∈ Fq\{0}}, q = 4t2 + 1, t odd;

3. F(4)
q ∪ {0}, q = 4t2 + 9, t odd;

4. F(8)
q = {x8 : x ∈ Fq\{0}}, q = 8t2 + 1 = 64u2 + 9, t, u odd;

5. F(8)
q ∪ {0}, q = 8t2 + 49 = 64u2 + 441, t odd, u even;

6. H(q) = {xi : x ∈ Fq\{0}, i ≡ 0, 1 or 3 (mod 6)}, q = 4t2 + 27, q ≡ 1 (mod 6)
(Hall difference sets).

14.6.39 Remark The proofs of the statements in Theorem 14.6.38 use cyclotomic numbers [2725].
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14.6.40 Theorem Let q and q+2 be prime powers. Then the set D = {(x, y) : x, y are both nonzero
squares or both non-squares or y = 0} is a twin prime power difference set with parameters(

q2 + 2q,
q2 + 2q − 1

2
,
q2 + 2q − 3

4
;
q2 + 2q + 1

4

)
in the group (Fq,+)× (Fq+2,+); see [2725].

14.6.41 Definition A difference set D in the group G is skew symmetric if D is of Paley type and
{0, d,−d : d ∈ D} = G, hence D ∩ −D = ∅.

14.6.42 Theorem The following sets are skew symmetric difference sets in the additive group of Fq,
q ≡ 3 (mod 4):

1. {x2 : x ∈ Fq, x 6= 0} (Paley difference sets);

2. {x10 ± x6 − x2 : x ∈ Fq, x 6= 0} where q = 3h, h odd [874];

3. {x4a+6 ± x2a − x2 : x ∈ Fq, x 6= 0} where q = 3h, h odd, a = 3
h+1

2 [871].

14.6.43 Remark A large class of skew Hadamard difference sets in elementary abelian groups of
order q3 (q prime power) has been recently constructed [2210].

14.6.4 Difference sets and Hadamard matrices

14.6.44 Construction A Hadamard difference set D in a group G of order 4u2 (see Definition
14.6.20) gives rise to a Hadamard matrix (Section 14.5) as follows: Label the rows and
columns of a matrix H = (hx,y) by the elements of G, and put hx,y = 1 if x − y ∈ D,
otherwise hx,y = −1. This matrix is a Hadamard matrix, see Section 14.5.

14.6.45 Remark A special case of Rysers’s Conjecture 14.6.33 is that there are no cyclic Hadamard
difference sets with v > 4 (if v = 4, there is a trivial cyclic (4, 1, 0; 1)-difference set). This is
also known as the circulant Hadamard matrix conjecture. The smallest open case for which
one cannot prove the nonexistence of a cyclic Hadamard difference set with v = 4u2 so far
is u = 11715 = 3 · 5 · 11 · 71; see [1910] and also [2168] for the connection to the Barker
sequence conjecture (Section 10.3).

14.6.46 Remark [262] Hadamard difference sets in elementary abelian groups are equivalent to bent
functions (Section 9.3). The bent function is the characteristic function of the Hadamard
difference set. The following theorem gives an explicit construction.

14.6.47 Theorem The set

{(x1, . . . , x2m) ∈ F 2m
2 : x1x2 + x3x4 + · · ·+ x2m−1x2m = 1} ⊂ F2m

2

is a Hadamard difference set with parameters (22m, 22m−1 − 2m−1, 22m−2 − 2m−1; 22m−2).

14.6.48 Remark There are several other constructions of difference sets with these parameters, also
in other groups. Two major construction methods are the Maiorana-McFarland method
(Sections 9.1 and 9.3) and the use of partial spreads (Section 9.3).

14.6.49 Theorem [781, 1803, 2830] An abelian Hadamard difference set in a group G of order 22m+2

exists if and only if exp(G) ≤ 2m+2.

14.6.50 Remark In the following theorem, we combine knowledge about the existence of abelian
Hadamard difference sets. Many authors contributed to this theorem.
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14.6.51 Theorem [261] Let G ∼= H × EA(w2) be an abelian group of order 4u2 with u = 2a3bw2

where w is the product of not necessarily distinct primes p ≡ 3 (mod 4) and EA(w2) denotes
the group of order w2 which is the direct product of groups of prime order. If H is of type
(2a1)(2a2) · · · (2as)(3b1)2 · · · (3br )2 with

∑
ai = 2a+2 (a ≥ 0, ai ≤ a+2),

∑
bi = 2b (b ≥ 0),

then G contains a Hadamard difference set of order u2.

14.6.52 Construction [262] Difference sets with parameters (4n−1, 2n−1, n−1;n) (hence of Paley
type) in G can be used to construct Hadamard matrices: Label the rows and columns of a
matrix H by the elements of G∪ {∞}. The matrix H = (hu,v) such that hu,v = 1 if u =∞
or v =∞ or u− v ∈ D is a Hadamard matrix of order 4n.

14.6.53 Theorem For the following orders n, Paley type difference sets exist in groups of order
v = 4n− 1:

1. 4n− 1 is a prime power (Theorem 14.6.38);

2. 4n−1 is the product q(q+2) of two prime powers q and q+2 (Theorem 14.6.40);

3. 4n− 1 = 2m − 1 (Theorem 14.6.22).

14.6.54 Problem It is an open question whether Paley type difference sets exist for other values.

14.6.5 Further families of difference sets

14.6.55 Theorem [2051] Let q be a prime power and d a positive integer. Let G be a group of
order v = qd+1(qd + · · ·+ q2 + q + 2) which contains an elementary abelian subgroup E of
order qd+1 in its center. View E as the additive group of Fd+1

q . Put r = (qd+1 − 1)/(q − 1)

and let H1, . . . ,Hr be the hyperplanes of order qd of E. If g0, . . . , gr are distinct coset
representatives of E in G, then D = (g1 +H1)∪ (g2 +H2)∪ · · · ∪ (gr +Hr) is a McFarland
difference set with parameters(

qd+1(1 + qd+1−1
q−1 ), qd · qd+1−1

q−1 , qd · qd−1
q−1 ; q2d

)
.

14.6.56 Remark

1. If q = 2, the McFarland construction gives Hadamard difference sets.

2. If q = 2 and G is elementary abelian, this construction is known as the Maiorana-
McFarland construction of bent functions; see Section 9.3.

14.6.57 Theorem [609, 782] Let q be a prime power, and let t be any positive integer. Difference
sets with parameters(

4q2t q
2t − 1

q2 − 1
, q2t−1 2q2t + q − 1

q + 1
, q2t−1(q − 1)

q2t−1 + 1

q + 1
; q4t−2

)
exist in abelian groups G in the following cases:

1. q = 3f , the Sylow 3-subgroup of G is elementary abelian;

2. q = p2f , p odd, the Sylow p-subgroup of G is elementary abelian;

3. q = 2f , the Sylow 2-subgroup of G has rank ≥ 2f + 1;

4. q = 2, exp(G) ≤ 4.

If t = 1, these difference sets are Hadamard difference sets.
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14.6.6 Difference sets and character sums

14.6.58 Remark The existence of difference sets is closely related to character sums. Most necessary
conditions on the existence of difference sets are derived from character sums and number
theoretic conditions.

14.6.59 Theorem [262, 2830] LetD be a (v, k, λ;n) difference set inG, and let χ be a homomorphism
from G into the multiplicative group of a field. If χ(g) = 1 for all g ∈ G (in which case the
homomorphism is denoted χ0), then

∑
g∈D χ0(d) = k. If χ 6= χ0, then(∑

d∈D

χ(d)

)
·
(∑
d∈D

χ(d−1)

)
= n.

14.6.60 Remark Theorem 14.6.59 is very useful if χ is complex-valued. In this case, the sum χ(D) :=∑
d∈D χ(d) is an element in the ring Z[ζv∗ ], where ζv∗ = e2πi/v∗ is a primitive v∗-th root of

unity, and v∗ is the exponent of G.

14.6.61 Remark If χ is complex-valued, Theorem 14.6.59 may be also viewed as an equation about
the ideal generated by χ(D): For χ 6= χ0, we have (χ(D))(χ(D)) = (n), where (·) denotes
an ideal generated in Z[ζv∗ ] and ( ) is complex conjugation. Using results from algebraic
number theory, many necessary conditions can be obtained, for instance Theorem 14.6.62.

14.6.62 Theorem [2830] Let D be an abelian (v, k, λ;n) difference set in G, and let w be a divisor
of v. If p is prime, p|n and pj ≡ −1 (mod w), then an integer i exists such that p2i|n, but
p2i+1 is not a divisor of n. If w is the exponent v∗ of G, then p does not divide n.

14.6.63 Example [262, 1842] There is no (40, 13, 4; 9)-difference set in Z/2Z×Z/2Z×Z/2Z×Z/5Z
(use v∗ = 10 and p = 3 in Theorem 14.6.62). Using a different (though similar) theorem,
one can also rule out the existence of a (40, 13, 4; 9)-difference set in Z/2Z× Z/4Z× Z/5Z.
Note that a cyclic difference set with these parameters exists (Construction 14.6.25).

14.6.7 Multipliers

14.6.64 Definition Let D be a difference set in G. Then ϕ ∈ Aut(G) is a multiplier of D if
Dϕ := {ϕ(D) : d ∈ D} = g+D for some g ∈ G. IfG is abelian and ϕ is the automorphism
that maps h to t · h, then t is a numerical multiplier.

14.6.65 Theorem If ϕ is a multiplier of the difference set D, then there is at least one translate
g +D of D which is fixed by ϕ. If D is abelian and gcd(v, k) = 1, then there is a translate
fixed by all multipliers [261].

14.6.66 Remark

1. Multipliers play an important role, in particular in the theory of abelian difference
sets.

2. The content of a multiplier theorem is the assertion that certain automorphisms
(integers) have to be (numerical) multipliers of an abelian difference set depend-
ing only on the parameters v, k, and λ. Theorem 14.6.67 is the first multiplier
theorem [261].

14.6.67 Theorem Let D be an abelian (v, k, λ;n)-difference set. If p is a prime which satisfies
gcd(p, v) = 1, p|n and p > λ, then p is a numerical multiplier.
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14.6.68 Conjecture Every prime divisor p of n which is relatively prime to v is a multiplier of a
(v, k, λ;n)-difference set, i.e., the condition p > λ in Theorem 14.6.67 is not necessary.

14.6.69 Remark

1. Multipliers are quite useful in constructing difference sets and in proofs of nonex-
istence.

2. Several attempts have been made to weaken the assumption “p > λ” in Theorem
14.6.67 (second multiplier theorem, McFarland’s multiplier theorem) [261].

14.6.70 Example Multipliers may be used to construct non-abelian difference sets: The set D =
{3, 6, 7, 12, 14} is a (21, 5, 1; 4)-difference set in (Z/21Z,+) with multiplier 4. Denote the
automorphism x 7→ x + 3 by a, and the automorphism x 7→ 4x + 1 by b. Then G =
〈a, b : a7 = b3 = 1, b−1ab = a4〉 acts regularly on the points of dev(D). A difference set D′

in G corresponding to this action is D′ = {a, a2, a4, a4b, a5b}.

See Also

§9.2 Relative difference sets are a generalization of difference sets. An important class
of relative difference sets can be described by planar functions (PN functions).

§9.3 Bent functions are equivalent to elementary abelian Hadamard difference sets.
§10.3 Cyclic difference sets are binary sequences with two-level autocorrelation function.
§14.5 Difference sets are an important tool to construct combinatorial designs.

References Cited: [116, 211, 261, 262, 429, 609, 631, 706, 781, 782, 862, 864, 871, 874, 905,
1303, 1324, 1326, 1477, 1676, 1803, 1842, 1907, 1909, 1910, 2051, 2168, 2210, 2546, 2566,
2674, 2725, 2830]

14.7 Other combinatorial structures

Jeffrey H. Dinitz, University of Vermont

Charles J. Colbourn, Arizona State University

14.7.1 Association schemes

14.7.1 Definition Let d denote a positive integer, and let X be a nonempty finite set. A d-class
symmetric association scheme on X is a sequence R0, R1, . . . , Rd of nonempty subsets
of the Cartesian product X ×X, satisfying

1. R0 = {(x, x) | x ∈ X},
2. X ×X = R0 ∪R1 ∪ · · · ∪Rd and Ri ∩Rj = ∅ for i 6= j,

3. for all i ∈ {0, 1, . . . , d}, RTi = Ri where RTi := {(y, x) | (x, y) ∈ Ri},
4. for all integers h, i, j ∈ {0, 1, . . . , d}, and for all x, y ∈ X such that (x, y) ∈ Rh,

the number phij := |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| depends only on h, i, j,
and not on x or y.
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14.7.2 Example The Hamming scheme H(n, q) has the set Fn of all words of length n over an
alphabet F of q symbols as its vertex set. Two words are i-th associates if and only if the
Hamming distance between them is i. Generally the alphabet F is F2, but other finite fields
are also used.

14.7.3 Example The cyclotomic schemes are obtained as follows. Let q be a prime power and k a
divisor of q−1. Let C1 be the subgroup of the multiplicative subgroup of Fq of index k, and
let Ci, i = 1, 2, . . . , k be the cosets of C1 (the cyclotomic classes). The points of the scheme
are the elements of Fq, and two points x, y are i-th associates if x− y ∈ Ci (zero associates
if x − y = 0). In order for this to be an association scheme one must have −1 ∈ C1 or
equivalently 2k must divide q − 1 if q is odd.

14.7.2 Costas arrays

14.7.4 Definition A Costas array of order n is an n×n array of dots and blanks that satisfies:

1. There are n dots and n(n − 1) blanks, with exactly one dot in each row and
column.

2. All the segments between pairs of dots differ in length or in slope.

C(n) denotes the number of distinct n× n Costas arrays.

14.7.5 Construction (Welch construction) Let p be prime and α be a primitive element in the
field Fp. Let n = p − 1. A Costas array of order n is obtained by placing a dot at (i, j) if
and only if i = αj , for a ≤ j < n+ a, a a nonnegative integer, and i = 1, . . . , n.

14.7.6 Construction [1301] Let α and β be primitive elements in the field Fq for q a prime power.
Let n = q − 2. Costas arrays of order n are obtained by

1. Lempel construction: Put a dot at (i, j) if and only if αi + αj = 1, 1 ≤ i, j ≤ n.

2. Golomb construction: Put a dot at (i, j) if and only if αi + βj = 1, 1 ≤ i, j ≤ n.

14.7.7 Remark Using Constructions 14.7.5 and 14.7.6, C(p− 1) > 1 and C(q − 2) > 1. Also, if a
corner dot is present in a Costas array of order n, it can be removed along with its row and
column to obtain a Costas array of order n− 1.

14.7.8 Theorem [1304] If q > 2 is a prime power, then there exist primitive elements α and β in
Fq such that α+ β = 1.

14.7.9 Corollary Removing the corner dot at (1, 1) in the Costas array of order q − 2 from Con-
struction 14.7.6 Part 2 yields C(q − 3) ≥ 1.

14.7.10 Example If there exist primitive elements α and β satisfying the conditions stated, then a
Costas array of order n can be obtained by removing one or more corner dots.

Conditions n
α1 = 2 q − 3

α1 + β1 = 1 and α2 + β2 = 1 q − 4
α2 + α1 = 1 q − 4

α1 + β1 = 1 and α2 + β−1 = 1 q − 4
and necessarily α−1 + β2 = 1 q − 5
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14.7.11 Remark All Costas arrays of order 28 are accounted for by the Golomb and Welch con-
struction methods [918], making 28 the first order (larger than 5) for which no sporadic
Costas array exists.

14.7.12 Remark For n ≥ 30, n 6∈ {31, 53}, the only orders for which Costas arrays are known are
orders n = p − 1 or n = q − 2 or orders for which some algebraic condition exists that
guarantees corner dots whose removal leaves a smaller Costas array.

14.7.13 Remark The properties of a Costas array make it an ideal discrete waveform for Doppler
sonar. Having one dot in each row and column minimizes reverberation. Distinct segments
between pairs of dots give it a thumbtack ambiguity function because, shifted left-right in
time and up-down in frequency, copies of the pattern can only agree with the original in
one dot, no dots, or all n dots at once. Thus, the spike of the thumbtack makes a sharp
distinction between the actual shift and all the near misses. See [916] for a survey on Costas
arrays and http://www.costasarrays.org/ for up-to-date information on Costas arrays.

14.7.3 Conference matrices

14.7.14 Definition A conference matrix of order n is an n×n (0,±1)-matrix C with zero diagonal
satisfying CCT = (n − 1)I. A conference matrix is normalized if all entries in its first
row and first column are 1 (except the (1,1) entry which is 0). A square matrix A
is symmetric if A = AT and skew-symmetric if A = −AT . The core of a normalized
conference matrix C consists of all the rows and columns of C except the first row and
column.

14.7.15 Theorem [2851, page 360] If there exists a conference matrix of order n, then n is even;
furthermore, if n ≡ 2 (mod 4), then, for any prime p ≡ 3 (mod 4), the highest power of p
dividing n− 1 is even.

14.7.16 Theorem [2345] Let q be an odd prime power.

1. If q ≡ 1 (mod 4), then there is a symmetric conference matrix of order q + 1.

2. If q ≡ 3 (mod 4), then there is a skew-symmetric conference matrix of order q+1.

14.7.17 Construction In the construction for Theorem 14.7.16, let q be an odd prime power and
let χ denote the quadratic character on the finite field Fq (i.e., χ(x) = 0 if x = 0, χ(x) = 1
if x is a square and χ(x) = −1 if x is a nonsquare). Number the elements of Fq : 0 =
a0, a1, . . . , aq−1 and define a q × q matrix Q by qi,j := χ(ai − aj) for 0 ≤ i, j < q − 1. It
follows that Q is symmetric if q ≡ 1 (mod 4) and skew-symmetric if q ≡ 3 (mod 4). Define
the (q + 1)× (q + 1) matrix C by

0 1 1 · · · 1
±1
... Q
±1


where the terms ±1 are +1 when q ≡ 1 (mod 4) and −1 when q ≡ 3 (mod 4). It follows that
C is a conference matrix of order q + 1. In the special case when q is prime, Q is circulant.

14.7.18 Lemma 1. If C is a skew-symmetric conference matrix, then I + C is a Hadamard matrix.
2. If C is a symmetric conference matrix of order n, then(

I + C −I + C
−I + C −I − C

)
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is a Hadamard matrix of order 2n.

14.7.19 Remark Theorem 14.7.20 follows from Theorem 14.7.16 and Lemma 14.7.18.

14.7.20 Theorem If q is a power of an odd prime, then a Hadamard matrix of order q + 1 exists if
q ≡ 3 (mod 4), and a Hadamard matrix of order 2(q + 1) exists if q ≡ 1 (mod 4).

14.7.21 Construction Let A be a (0,±1)-matrix of order n and B a ±1-matrix of order n such

that AB = BA and AAT + BBT = (2n − 1)I. Then the matrix C =

(
A B
BT −AT

)
is a

conference matrix of order 2n.

14.7.22 Definition When A and B are circulant matrices, the conference matrix C in Construction
14.7.21 is constructible from two circulant matrices or for short, two circulants type.

14.7.23 Theorem [1289, 2831, 2975] If q ≡ 1 (mod 4) is a prime power, then there is a symmetric
conference matrix C of order q + 1 of two circulants type.

14.7.24 Theorem [2023] There is a symmetric conference matrix of order q2(q + 2) + 1 whenever q
is a prime power, q ≡ 3 (mod 4), and q + 3 is the order of a conference matrix.

14.7.4 Covering arrays

14.7.25 Definition A covering array CAλ(N ; t, k, v) is an N × k array containing v different sym-
bols. In every N × t subarray, each t-tuple occurs at least λ times. Then t is the strength
of the coverage of interactions, k is the number of components (degree), λ is the index,
and v is the number of symbols for each component (order). Only the case when λ = 1
is treated; the subscript is then omitted in the notation.

14.7.26 Definition The size of a covering array is the covering array number CAN(t, k, v). The
covering array is optimal if it has the minimum possible number of rows.

14.7.27 Construction [1457] Let q be a prime power and q ≥ s ≥ 2. Over the finite field Fq, let
F = {f1, . . . , fqs} be the set of all polynomials of degree less than s. Let A be a subset of
Fq ∪{∞}. Define an qs×|A| array in which the entry in cell (j, a) is fj(a) when a ∈ Fq, and
is the coefficient of the term of degree s − 1 when a = ∞. The result is a CA(qs; s, |A|, q).
Because every t-tuple is covered exactly once, it is in fact an orthogonal array of index one
and strength s.

14.7.28 Remark Covering arrays are typically constructed by a combination of computational,
direct, and recursive constructions [705]. Finite fields arise most frequently in the direct
construction of covering arrays. One example is the use of permutation vectors to construct
covering arrays [2612]. A second, outlined next, uses Weil’s theorem and character theoretic
arguments to establish that certain cyclotomic matrices form covering arrays.

14.7.29 Construction [704] Let ω be a primitive element of Fq, with q ≡ 1 (mod v). For each
q and ω, form a cyclotomic vector xq,v,ω = (xi : i ∈ Fq) ∈ Fqq by setting x0 = 0 and

xi ≡ j (mod v) when i = ωj for i ∈ F?q . Choosing a different primitive element of Fq can
lead to the same vector xq,v,ω, or, for some number m that is coprime to v, to a vector
in which each element is multiplied by m and reduced modulo v. For our purposes, the
vectors produced are equivalent, so henceforth let xq,v denote any vector so obtained. From
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xq,v = (xi : i ∈ Fq), form a q × q matrix Aq,v = (aij) with rows and columns indexed by
Fq, by setting aij = xj−i (computing the subscript in Fq).

14.7.30 Theorem [704] When q > t2v2t, Aq,v from Construction 14.7.29 is a covering array of
strength t.

14.7.5 Hall triple systems

14.7.31 Definition [1404] A Hall triple system (HTS) is a pair (S,L) where S is a set of elements
(points) and L a set of lines satisfying:

1. every line is a 3-subset of S,

2. any two distinct points lie in exactly one line, and

3. for any two intersecting lines, the smallest subsystem containing them is iso-
morphic to the affine plane of nine points, AG(2,3).

14.7.32 Example Let S be some (n + 1)-dimensional vector space over F3, with n ≥ 3. Let
{e0, e1, . . . , en} be a basis for S. For any two points x =

∑
αiei and y =

∑
βiei set

z = x ◦ y when x + y + z = (α1 − β1)(α2β3 − α3β2)e0. This defines a binary operation on
S. One either has x = y = z, or the three points x, y, z are pairwise distinct. The 3-subsets
of the form {x, y, z} such that z = x ◦ y provide S with a structure of an HTS. This HTS
is referred to as H(n).

14.7.33 Example Any affine space AG(n, 3) over F3 with the usual lines may be viewed as an HTS.
Such an HTS is an affine HTS.

14.7.34 Theorem [1403, 3037] The cardinality of any HTS is 3m for some integer m ≥ 2. Nonaffine
HTS of order 3m exist for any m ≥ 4 and do not exist for m ∈ {2, 3}.

14.7.35 Remark When m > 3, the existence of a nonaffine HTS of order 3m is provided by H(m−1)
in Example 14.7.32. For the orders 34 and 35, there is a unique nonaffine HTS, namely, H(3)
and H(4), respectively.

14.7.6 Ordered designs and perpendicular arrays

14.7.36 Definition An ordered design ODλ(t, k, v) is a k × λ ·
(
v
t

)
· t! array with v entries such

that

1. each column has k distinct entries, and

2. each tuple of t rows contains each column tuple of t distinct entries precisely λ
times.

14.7.37 Definition A perpendicular array PAλ(t, k, v) is a k × λ ·
(
v
t

)
array with v entries such

that

1. each column has k distinct entries, and

2. each set of t rows contains each set of t distinct entries as a column precisely λ
times.
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14.7.38 Definition For 0 ≤ s ≤ t, a PAλ(t, k, v) is an s-PAλ(t, k, v) if, for each w ≤ t and
u ≤ min(s, w), the following holds. Let E1, E2 be disjoint sets of entries, E1 ∩ E2 = ∅
with |E1 |= u and |E2 |= w − u. Then the number of columns containing E1 ∪ E2 and
having E2 in a given set U of w−u rows is a constant, independent of the choice of E1,
E2, and U . Authentication perpendicular arrays (APA) are 1-PA.

14.7.39 Definition A set S ⊆ Sn of permutations is (uniformly) t-homogeneous if it is an
APAλ(t, n, n); it is t-transitive if it is an ODλ(t, n, n).

14.7.40 Theorem [275] Permutation groups yield special cases of t-transitive or t-homogeneous sets.

1. The groups PGL2(q), q a prime power, form OD1(3, q + 1, q + 1); the groups
PSL2(q), q ≡ 3 (mod 4) are APA3(3, q + 1, q + 1). The special cases of this last
family when the prime power q ≡ 3, 11 (mod 12) form the only known infinite
family of APAλ(t, n, n) with t > 2 and minimal λ.

2. The groups AGL1(q), (q a prime power), of order q · (q− 1) form an OD1(2, q, q);
the groups ASL1(q), (q a prime power ≡ 3 (mod 4)) of order q · (q − 1)/2 form
APA1(2, q, q).

14.7.41 Definition Let q ≡ 3 (mod 4) be a prime power, k odd. An APAV(q, k) (V stands for
vector) is a tuple (x1, . . . , xk) where xi ∈ Fq and such that for each i the xi − xj , j 6= i
are evenly distributed on squares and nonsquares [1262].

14.7.42 Remark An APAV(q, k) implies the existence of APA1(2, k, q). In [606] a theorem on char-
acter sums based on the Hasse–Weil inequality is used to prove existence of an APAV(q, k)
when q is large enough with respect to k.

14.7.43 Theorem [606] The following exist, for a prime power q with q ≡ 3 (mod 4),

1. APAV(q, 7) for q ≥ 7, q 6∈ {11, 19},
2. APAV(q, 9) for q ≥ 19,

3. APAV(q, 11) for q ≥ 11, q 6∈ {19, 27},
4. APAV(q, 13) for q ≥ 13, q 6∈ {19, 23, 31}, and

5. APAV(q, 15) for q ≥ 31.

14.7.7 Perfect hash families

14.7.44 Definition Let n, q, t, and s be positive integers and suppose (to avoid trivialities) that
n > q ≥ t ≥ 2. Let V be a set of cardinality n and let W be a set of cardinality q. A
function f : V →W separates a subset X of V if f is an injection when restricted to X.
An (n, q, t)-perfect hash family of size s is a collection F = {f1, f2, . . . , fs} of functions
from V to W with property that for all sets X ⊆ V such that |X| = t, at least one
of the functions f1, f2, . . . , fs separates X. The notation PHF(s;n, q, t) is used for an
(n, q, t)-perfect hash family of size s. A perfect hash family is optimal if s is as small as
possible, given n, q, t.

14.7.45 Theorem A PHF(s;n, q, t) is equivalent to an s × n array A of elements from a q-set F ,
such that, for any t columns of A, there exists a row of A, say r, such that the entries in
the t given columns of row r of A are distinct.
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14.7.46 Theorem [2721] Suppose that there exists a q-ary code C of length K, with N codewords,
having minimum distance D. Then there exists a PHF(N ;K, q, t), where (N −D)

(
t
2

)
< N .

14.7.47 Corollary [2721] Suppose N and v are given, with v a prime power and N ≤ v + 1. Then

there exists a PHF(N ; vdN/(t2)e, v, t) based on a Reed–Solomon code.

14.7.48 Theorem [2853] A PHF((i+ 1)2; vi+1, v, 3) exists whenever v is a prime power, v ≥ 3, and
i ≥ 1. A PHF( 5

6 (2i3 + 3i2 + i) + i+ 1; vi+1, v, 4) exists whenever v is a prime power, v ≥ 4,
and i ≥ 1.

14.7.49 Theorem [2721] For any prime power q and for any positive integers n,m, i such that n ≥ m
and 2 ≤ i ≤ qn, there exists a PHF(qn; qm+(i−1)n, qm, t) when

(
t
2

)
< qm

i−1 .

14.7.50 Definition A PHF(N ; qs, q, t) is linear if it is an N×qs array with rows indexed by elements
of Fq ∪{∞} and columns indexed by the polynomials of degree less than s over Fq; each
entry of the array is the evaluation of the polynomial corresponding to the column on
the row index, when that index is in Fq; otherwise it is the coefficient of the term of
degree s− 1 in the polynomial.

14.7.51 Remark In a linear PHF, columns correspond to polynomials of degree less than s over Fq.
It follows directly that two columns agree in at most s − 1 entries, and hence that if the
linear PHF has more than (s− 1)

(
t
2

)
rows, it has strength at least t. By judicious selection

of the particular rows (i.e., a subset A of Fq ∪ {∞}), fewer rows can often be employed.
The key observation, developed in [206, 302, 707], is that when A is chosen properly, a
system of equations over Fq for each set of t chosen columns never admits a solution. This
is developed in an algebraic setting in [302], in a geometric setting in [206], and in a graph-
theoretic setting in [707]. The results to follow all employ this basic strategy.

14.7.52 Theorem [302] Let s ≥ 2 and t ≥ 2. When q is a sufficiently large prime power, there is an
optimal linear PHF(s(t− 1); qs, q, t).

14.7.53 Theorem [206, 207, 302]

1. An optimal linear PHF(6; q2, q, 4) exists if and only if q ≥ 11 is a prime power
and q 6= 13.

2. An optimal linear PHF(6; q3, q, 3) exists if and only if q ≥ 11 is a prime power.

14.7.54 Theorem [707] Let p be a prime.

1. A PHF(9; p4, p, 3) exists when p ≥ 17.

2. A PHF(8; p4, p, 3) exists when p ≥ 19.

3. A PHF(12; p3, p, 4) exists when p ≥ 17.

4. A PHF(11; p3, p, 4) exists when p ≥ 29.

5. A PHF(10; p3, p, 4) exists when p ≥ 251 and p 6∈ {257, 263}.
6. A PHF(10; p2, p, 5) exists when p ≥ 19.

7. A PHF(9; p2, p, 5) exists when p ≥ 41.

8. A PHF(8; p2, p, 5) exists when p ≥ 241 and p 6∈ {251, 257}.
9. A PHF(15; p2, p, 6) exists when p ≥ 29.

10. A PHF(14; p2, p, 6) exists when p ≥ 41.

11. A PHF(13; p2, p, 6) exists when p ≥ 73.



614 Handbook of Finite Fields

14.7.8 Room squares and starters

14.7.55 Definition A starter in the odd order abelian group G (written additively), where |G| = g
is a set of unordered pairs S = {{si, ti} : 1 ≤ i ≤ (g − 1)/2} that satisfies:

1. {si : 1 ≤ i ≤ (g − 1)/2} ∪ {ti : 1 ≤ i ≤ (g − 1)/2} = G\{0}, and

2. {±(si − ti) : 1 ≤ i ≤ (g − 1)/2} = G\{0}.

14.7.56 Definition A strong starter is a starter S = {{si, ti}} in the abelian group G with the
additional property that si + ti = sj + tj implies i = j, and for any i, si + ti 6= 0.

14.7.57 Definition A skew starter is a starter S = {{si, ti}} in the abelian group G with the
additional property that si + ti = ±(sj + tj) implies i = j, and for any i, si + ti 6= 0.

14.7.58 Example A strong starter in Z17 is

{9, 10}, {3, 5}, {13, 16}, {11, 15}, {1, 6}, {2, 8}, {7, 14}, {4, 12}.

14.7.59 Definition Let S = {{si, ti} : 1 ≤ i ≤ (g − 1)/2} and T = {{ui, vi} : 1 ≤ i ≤ (g − 1)/2}
be two starters in G. Without loss of generality, assume that si − ti = ui − vi, for all i.
Then S and T are orthogonal starters if ui − si = uj − sj implies i = j, and if ui 6= si
for all i.

14.7.60 Definition Let q be a prime power that can be written in the form q = 2kt + 1, where
t > 1 is odd and let ω be a primitive element in the field Fq. Then define

1. C0 to be the multiplicative subgroup of Fq\{0} of order t,

2. Ci = ωiC0, 0 ≤ i ≤ 2k − 1 to be the cosets of C0 (cyclotomic classes), and

3. ∆ = 2k−1, H = ∪∆−1
i=0 Ci and Cai = (1/(a− 1))Ci.

14.7.61 Theorem [2198] Let T = {{x, ω∆x} : x ∈ H}. Then T is a skew starter (the Mullin–Nemeth
starter) in the additive subgroup of Fq.

14.7.62 Theorem [897] For each a ∈ C∆, let Sa = {{x, ax} : x ∈ ∪∆−1
i=0 C

a
i }. Then for any a ∈ C∆,

Sa is a strong starter in the additive group of Fq. Further, Sa and Sb are orthogonal if
a, b ∈ C∆ with a 6= b. Hence, the set {Sa|a ∈ C∆} is a set of t pairwise orthogonal starters
of order q.

14.7.63 Theorem [623] Let p = 22n be a Fermat prime with n ≥ 2. There exists a strong starter in
the additive group of Fp.

14.7.64 Remark [1537] No strong starter in the additive groups of F3, F5, or F9 exists.

14.7.65 Definition Let G be an additive abelian group of order g, and let H be a subgroup of
order h of G, where g − h is even. A Room frame starter in G\H is a set of unordered
pairs S = {{si, ti} : 1 ≤ i ≤ (g − h)/2} such that

1. {si : 1 ≤ i ≤ (g − h)/2} ∪ {ti : 1 ≤ i ≤ (g − h)/2} = G\H, and

2. {±(si − ti) : 1 ≤ i ≤ (g − h)/2} = G\H.
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14.7.66 Remark A starter is the special case of a frame starter when H = {0}. The concepts of
strong, skew, and orthogonal for Room frame starters are as for starters replacing {0} by
H and (g − 1)/2 by (g − h)/2.

14.7.67 Theorem [898] Let q ≡ 1 (mod 4) be a prime power such that q = 2kt+ 1, where t > 1 is
odd. Then there exist t orthogonal Room frame starters in (Fq × (Z2)n)\({0} × (Z2)n) for
all n ≥ 1.

14.7.68 Theorem [93] If p ≡ 1 (mod 6) is a prime and p ≥ 19, then there exist three orthogonal
frame starters in (Fp × (Z3))\({0} × (Z3)).

14.7.69 Definition Let S be a set of n+1 elements (symbols). A Room square of side n (on symbol
set S), RS(n), is an n× n array, F , that satisfies the following properties:

1. every cell of F either is empty or contains an unordered pair of symbols from
S,

2. each symbol of S occurs once in each row and column of F ,

3. every unordered pair of symbols occurs in precisely one cell of F .

14.7.70 Definition A Room square of side n is standardized (with respect to the symbol ∞) if the
cell (i, i) contains the pair {∞, i}.

14.7.71 Definition A standardized Room square of side n is skew if for every pair of cells (i, j)
and (j, i) (with i 6= j) exactly one is filled.

14.7.72 Definition A standardized Room square of side n is cyclic if S = Zn∪{∞} and if whenever
{a, b} occurs in the cell (i, j), then {a + 1, b + 1} occurs in cell (i + 1, j + 1) where all
arithmetic is performed in Zn (and ∞+ 1 =∞).

14.7.73 Example Below are skew Room squares of sides 7 and 9; the Room square of side 7 is cyclic.

∞1 49 37 28 56
∞0 15 46 23 89 ∞2 57 34 16
34 ∞1 26 50 58 ∞3 69 24 17
61 45 ∞2 30 36 78 ∞4 19 25

02 56 ∞3 41 79 12 ∞5 38 46
52 13 60 ∞4 45 ∞6 18 39 27

63 24 01 ∞5 26 59 13 ∞7 48
04 35 12 ∞6 67 14 29 ∞8 35

23 15 68 47 ∞9

14.7.74 Theorem [899] The existence of d pairwise orthogonal starters in an abelian group of order
n implies the existence of a Room d-cube of side n.

14.7.75 Remark Construction 14.7.77 is used to establish Theorem 14.7.74 when d = 2. It is easily
extended when d > 2.
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14.7.76 Definition An adder for the starter S = {{si, ti} : 1 ≤ i ≤ (g − 1)/2} is an ordered set
AS = {a1, a2, . . . , a(g−1)/2} of (g− 1)/2 distinct nonzero elements from G such that the
set T = {{si + ai, ti + ai} : 1 ≤ i ≤ (g − 1)/2} is also a starter in the group G.

14.7.77 Construction Let S = {{si, ti} : 1 ≤ i ≤ (n− 1)/2} and T = {{ui, vi} : 1 ≤ i ≤ (n− 1)/2}
be two orthogonal starters in G (usually Zn), (n odd) with AS = {ai : 1 ≤ i ≤ (n−1)/2} the
associated adder. Let R be an n× n array indexed by the elements of G. Each {si, ti} ∈ S
is placed in the first row in cell R(0,−ai). This is cycled so that the pair {si + x, ti + x} is
in the cell R(x,−ai + x), where all arithmetic is performed in G. Finally, for each x ∈ G,
place the pair {∞, x} in cell R(x, x). Then R is a Room square of side n.

14.7.78 Remark Construction 14.7.77 in conjunction with Theorem 14.7.61 yields skew Room
squares of prime power orders q ≡ 3 (mod 4). This is useful in proving Theorem 14.7.79.

14.7.79 Theorem [899] A (skew) Room square of side n exists if and only if n is odd and n 6∈ {3, 5}.
14.7.80 Theorem [1932] A cyclic skew Room square of side n exists if n =

∏
pi
αi where each pi is

a non-Fermat prime or if n = pq with p, q distinct Fermat primes.

14.7.81 Definition If {S1, . . . , Sn} is a partition of a set S, an {S1, . . . , Sn}-Room frame is an
|S| × |S| array, F , indexed by S, satisfying:

1. every cell of F either is empty or contains an unordered pair of symbols of S,

2. the subarrays Si × Si are empty, for 1 ≤ i ≤ n (these subarrays are holes),

3. each symbol x 6∈ Si occurs once in row (or column) s for any s ∈ Si, and

4. the pairs occurring in F are those {s, t}, where (s, t) ∈ (S × S)\⋃ni=1(Si × Si).
The type of a Room frame F is the multiset {|Si| : 1 ≤ i ≤ n}. An “exponential”
notation is used to describe types; a Room frame has type t1

u1t2
u2 · · · tkuk if there are

ui Sjs of cardinality ti, 1 ≤ i ≤ k.

14.7.82 Remark Theorem 14.7.83 gives the connection between frame starters and Room frames.
The construction for a Room frame from a pair of orthogonal frame starters is a general-
ization of Construction 14.7.77.

14.7.83 Theorem [898] Suppose a pair of orthogonal frame starters in G\H exists, where |G| = g
and |H| = h. Then there exists a Room frame of type hg/h.

14.7.84 Remark Theorems 14.7.67 and 14.7.68 in conjunction with Theorem 14.7.83 yield Corollary
14.7.85. Theorem 14.7.86 details the existence of Room frames of type tu.

14.7.85 Corollary a) Let q ≡ 1 (mod 4) be a prime power such that q = 2kt + 1, where t > 1 is
odd. Then there exist a Room frame of type (2n)q for all n ≥ 1. b) If p ≡ 1 (mod 6) is a
prime and p ≥ 19, then there exists a Room frame of type 3p.

14.7.86 Theorem (Existence theorems for uniform Room frames) [706, §VI.50] and [900]

1. There does not exist a Room frame of type tu if any of the following conditions
hold: (i) u = 2 or 3; (ii) u = 4 and t = 2; (iii) u = 5 and t = 1; (iv) t(u − 1) is
odd.

2. Suppose t and u are positive integers, u ≥ 4 and (t, u) 6= (1, 5), (2, 4). Then there
exists a uniform Room frame of type tu if and only if t(u− 1) is even.
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14.7.9 Strongly regular graphs

14.7.87 Definition A strongly regular graph with parameters (v, k, λ, µ) is a finite graph on v
vertices, without loops or multiple edges, regular of degree k (with 0 < k < v − 1, so
that there are both edges and nonedges), and such that any two distinct vertices have
λ common neighbors when they are adjacent, and µ common neighbors when they are
nonadjacent.

14.7.88 Remark There are many constructions for strongly regular graphs. Example 14.7.89 gives
several that use finite fields. For a table of the existence of strongly regular graphs with
v ≤ 280 see [706, pp. 852–866].

14.7.89 Example [419]

1. Paley(q): For prime powers q = 4t+ 1, the graph with vertex set Fq where two
vertices are adjacent when they differ by a square. This strongly regular graph
has parameters (q, 1

2q − 1, 1
4 (q − 5), 1

4 (q − 1)).

2. van Lint–Schrijver(u): a graph constructed by the cyclotomic construction in
[2850], by taking the union of u classes.

3. An−1,2(q) or
[
n
2

]
q
: the graph on the lines in PG(n − 1, q), adjacent when they

have a point in common.

4. Bilin2×d(q): the graph on the 2× d matrices over Fq, adjacent when their differ-
ence has rank 1.

5. Oε2d(q): the graph on the isotropic points on a nondegenerate quadric in PG(2d−
1, q), where two points are joined when the connecting line is totally singular.

6. Sp2d(q): the graph on the points of PG(2d− 1, q) provided with a nondegenerate
symplectic form, where two points are joined when the connecting line is totally
isotropic.

7. Ud(q): the graph on the isotropic points of PG(d− 1, q2) provided with a nonde-
generate Hermitian form, where two points are joined when the connecting line
is totally isotropic.

8. Affine difference sets [479]: Let V be an n-dimensional vector space over Fq and
let X be a set of directions (a subset of the projective space PV ). Two vectors
are adjacent when the line joining them has a direction in X. Then v = qn and
k = (q−1)|X|. This graph is strongly regular if and only if there are two integers
w1, w2 such that all hyperplanes of PV miss either w1 or w2 points of X. If this
is the case, then r = k − qw1, s = k − qw2 (assuming w1 < w2), and hence
µ = k + (k − qw1)(k − qw2), λ = k − 1 + (k − qw1 + 1)(k − qw2 + 1).

14.7.10 Whist tournaments

14.7.90 Definition A whist tournament Wh(4n) for 4n players is a schedule of games each involving
two players opposing two others, such that

1. the games are arranged into 4n− 1 rounds, each of n games;

2. each player plays in exactly one game in each round;

3. each player partners every other player exactly once;

4. each player opposes every other player exactly twice.
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14.7.91 Definition Each game is denoted by an ordered 4-tuple (a, b, c, d) in which the pairs {a, c},
{b, d} are partner pairs; {a, c} is a partner pair of the first kind, and {b, d} is a partner
pair of the second kind. The other pairs are opponent pairs; in particular {a, b}, {c, d}
are opponent pairs of the first kind, and {a, d}, {b, c} are opponent pairs of the second
kind.

14.7.92 Definition A whist tournament Wh(4n+ 1) for 4n+ 1 players is defined as for 4n, except
that Conditions 1, 2 are replaced by

1′. the games are arranged into 4n+ 1 rounds each of n games;

2′. each player plays in one game in each of 4n rounds, but does not play in the
remaining round.

14.7.93 Definition A Wh(4n) is Z-cyclic if the players are ∞, 0, 1, . . . , 4n − 2 and each round
is obtained from the previous one by adding 1 modulo 4n − 1 to each non-∞ entry.
A Wh(4n + 1) is Z-cyclic if the players are 0, 1, . . . , 4n and the rounds are similarly
developed modulo 4n+ 1.

14.7.94 Theorem [167] If p = 4n + 1 is prime and w is a primitive root of p, then the games
(wi, wi+n, wi+2n, wi+3n), 0 ≤ i ≤ n− 1, form the initial round of Z-cyclic Wh(4n+ 1).

14.7.95 Theorem Let P denote any product of primes p with each p ≡ 1 (mod 4), and let q, r
denote primes with both q, r ≡ 3 (mod 4).
A Z-cyclic Wh(4n) is known to exist when:

1. 4n ≤ 132 (see [7, 98]);

2. 4n = 2α(α ≥ 2) (see [100]);

3. 4n = qP + 1, q ∈ {3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127} (see
[7]);

4. 4n = 3P + 1 (see [100]);

5. 4n = 32m+1 + 1, m ≥ 0 (see [101]);

6. 4n = qr2P + 1, q and r distinct, q < 60, r < 100 (see [7]).

A Z-cyclic Wh(4n+ 1) is known to exist when:

1. 4n+ 1 = P or r2P and r ≤ 100 (see [7, 102]);

2. 4n+ 1 ≤ 149 (see [7]);

3. 4n+ 1 = 32m or 32mP (see [101]);

4. 4n+ 1 = 3sP , s ∈ {7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47} (see [7]).

14.7.96 Definition A triplewhist tournament TWh(v) is a Wh(v) with Condition 4 replaced by
(4′′) each player has every other player once as an opponent of the first kind and once
as an opponent of the second kind.

14.7.97 Theorem A TWh(4n + 1) exists for all n ≥ 5, and possibly for n = 4. A TWh(4n) exists
for all n ≥ 1 except for n = 3; see [7, 1965].

14.7.98 Theorem A Z-cyclic TWh(4n+ 1) exists when:

1. 4n+ 1 is a prime p ≡ 1 (mod 4), p ≥ 29 (see [462]);
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2. 4n+ 1 = q2 where q is prime, q ≡ 3 (mod 4), 7 ≤ q ≤ 83 (see [6]);

3. 4n+ 1 = 5n or 13n (n ≥ 2) (see [6]);

4. 4n+ 1 is the product of any values in the above three items (see [102]).

14.7.99 Theorem A Z-cyclic TWh(4n) exists when:

1. 4n = qP + 1, where P denotes any product of primes p with each p ≡ 1 (mod 4)
and q ∈ {3, 7, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131} (see [7]);

2. 4n = 2n (n ≥ 2) (see [100]);

3. 4n = 3m + 1 (m odd) (see [101]).

See Also

§14.1 For latin squares, MOLS, and transversal designs.
§14.3 For affine and projective planes.
§14.4 For projective spaces.
§14.5 For block designs.
§14.6 For difference sets.

[99] Textbook on combinatorial designs.
[261] Advanced textbook on combinatorial designs.
[262] Another advanced textbook on combinatorial designs.
[706] For association schemes (§VI.1), Costas arrays (§VI.9), conference matrices

(§V.6), covering arrays (§VI.10), Hadamard designs and matrices(§V.1);
Hall triple systems (§VI.28), ordered designs and perpendicular arrays
(§VI.38), perfect hash families (§VI.43), Room squares (§VI.50),
strongly regular graphs (§VII.11), whist tournaments (§VI.64).

[2719] Another textbook on combinatorial designs.
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14.8 (t,m, s)-nets and (t, s)-sequences

Harald Niederreiter, KFUPM

14.8.1 (t,m, s)-nets

14.8.1 Remark The theory of (t,m, s)-nets and (t, s)-sequences is significant for quasi-Monte Carlo
methods in scientific computing (see the books [839] and [2248] and the recent survey
article [2259]). For both (t,m, s)-nets and (t, s)-sequences, the idea is to sample the s-
dimensional unit cube [0, 1]s in a uniform and equitable manner. In a nutshell, (t,m, s)-nets
are finite samples (or point sets) and (t, s)-sequences are infinite sequences with special
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uniformity properties. The definition of a (t,m, s)-net (see Definition 14.8.2 below) has
a priori no connection with finite fields, but it turns out that most of the interesting
constructions of (t,m, s)-nets use finite fields as a tool. By a point set we mean a multiset
in the sense of combinatorics, i.e., a set in which multiplicities of elements are allowed and
taken into account.

14.8.2 Definition [2236, 2690] For integers b ≥ 2 and 0 ≤ t ≤ m and a given dimension s ≥ 1, a
(t,m, s)-net in base b is a point set P consisting of bm points in [0, 1]s such that every
subinterval of [0, 1]s of volume bt−m which has the form

s∏
i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s contains exactly bt points of P .

14.8.3 Remark It is easily seen that a (t,m, s)-net in base b is also a (u,m, s)-net in base b for all
integers u with t ≤ u ≤ m. Any point set consisting of bm points in [0, 1)s is a (t,m, s)-net in
base b with t = m. Smaller values of t mean stronger uniformity properties of a (t,m, s)-net
in base b. The number t is the quality parameter of a (t,m, s)-net in base b.

14.8.4 Definition A (t,m, s)-net P in base b is a strict (t,m, s)-net in base b if t is the least
integer u such that P is a (u,m, s)-net in base b.

14.8.5 Example Let s = 2 and let b ≥ 2 and m ≥ 1 be given integers. For any integer n with
0 ≤ n < bm, let n =

∑m−1
r=0 ar(n)br with ar(n) ∈ Zb = {0, 1, . . . , b − 1} be the digit

expansion of n in base b and put φb(n) =
∑m−1
r=0 ar(n)b−r−1. Then the point set consisting

of the points (nb−m, φb(n)) ∈ [0, 1]2, n = 0, 1, . . . , bm − 1, is a (0,m, 2)-net in base b. This
point set is the Hammersley net in base b.

14.8.6 Example Let b ≥ 2, s ≥ 1, and t ≥ 0 be given integers. Then the point set consisting of
the points (nb−1, . . . , nb−1) ∈ [0, 1]s, n = 0, 1, . . . , b − 1, each taken with multiplicity bt, is
a (t, t+ 1, s)-net in base b.

14.8.7 Remark According to Remark 14.8.3 and Example 14.8.6, a (t,m, s)-net in base b always
exists for m = t and m = t + 1. For m ≥ t + 2 there are combinatorial obstructions to
the general existence of (t,m, s)-nets in base b. This was first observed in [2236]. Later, a
combinatorial equivalence between (t,m, s)-nets in base b and ordered orthogonal arrays as
defined in Definition 14.8.8 below was established.

14.8.8 Definition Let b, s, k, T, λ be positive integers with b ≥ 2 and sT ≥ k. An ordered orthog-
onal array OOAb(s, k, T, λ) is a (λbk) × (sT ) matrix with entries from Zb and column
labels (i, j) for 1 ≤ i ≤ s and 1 ≤ j ≤ T such that, for any integers 0 ≤ d1, . . . , ds ≤ T
with

∑s
i=1 di = k, the (λbk)×k submatrix obtained by restricting to the columns (i, j),

1 ≤ j ≤ di, 1 ≤ i ≤ s, contains among its rows every element of Zkb with the same
frequency λ.

14.8.9 Theorem [1873, 2183] Let b ≥ 2, s ≥ 2, k ≥ 2, and t ≥ 0 be integers. Then there exists a
(t, t+k, s)-net in base b if and only if there exists an ordered orthogonal array OOAb(s, k, k−
1, bt).

14.8.10 Corollary [2236] There exists a (0, 2, s)-net in base b if and only if there exist s−2 mutually
orthogonal latin squares of order b.
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14.8.11 Corollary [2236] For m ≥ 2, a (0,m, s)-net in base b can exist only if s ≤M(b) + 2, where
M(b) is the maximum cardinality of a set of mutually orthogonal latin squares of order b.
In particular, if m ≥ 2, then a necessary condition for the existence of a (0,m, s)-net in
base b is s ≤ b+ 1.

14.8.12 Remark The equivalence between nets and ordered orthogonal arrays enunciated in The-
orem 14.8.9, when combined with extensions of standard parameter bounds for orthogonal
arrays to the case of ordered orthogonal arrays, leads to lower bounds on the quality pa-
rameter for nets. Examples of such bounds are the linear programming bound [2008], the
Rao bound [2007], and the dual Plotkin bound [271, 2009]. Extensive numerical data on
these bounds are available at http://mint.sbg.ac.at.

14.8.2 Digital (t,m, s)-nets

14.8.13 Remark Most of the known constructions of nets are based on the digital method which
goes back to [2236]. In order to describe the digital method for the construction of (t,m, s)-
nets in base b, we need the following ingredients. First of all, let integers b ≥ 2, m ≥ 1, and
s ≥ 1 be given. Then we choose:

1. a commutative ring R with identity and of cardinality b;

2. bijections η
(i)
j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;

3. m×m matrices C(1), . . . , C(s) over R.

Now let r ∈ Rm be an m-tuple of elements of R and define

π
(i)
j (r) = η

(i)
j (c

(i)
j · r) ∈ Zb for 1 ≤ i ≤ s, 1 ≤ j ≤ m,

where c
(i)
j is the j-th row of the matrix C(i) and · denotes the standard inner product. Next

we put

π(i)(r) =
m∑
j=1

π
(i)
j (r)b−j ∈ [0, 1] for 1 ≤ i ≤ s

and
P (r) = (π(1)(r), . . . , π(s)(r)) ∈ [0, 1]s.

By letting r range over all bm elements of Rm, we arrive at a point set P consisting of bm

points in [0, 1]s.

14.8.14 Definition If the point set P constructed in Remark 14.8.13 forms a (t,m, s)-net in base b,
then P is a digital (t,m, s)-net in base b. If we want to emphasize that the construction
uses the ring R, then we speak also of a digital (t,m, s)-net over R. If P is a strict
(t,m, s)-net in base b, then P is a digital strict (t,m, s)-net in base b (or over R).

14.8.15 Remark The matrices C(1), . . . , C(s) in Remark 14.8.13 are generating matrices of the
digital net. The quality parameter t of the digital net depends only on the generating
matrices. For a convenient algebraic condition on the generating matrices to guarantee a
certain value of t, we refer to Theorem 4.26 in [2248]. In the important case where the ring
R is a finite field, an even simpler condition is given in Theorem 14.8.18 below.

14.8.16 Example Let s = 2 and let b ≥ 2 and m ≥ 1 be given integers. Choose R = Zb and let the

bijections η
(i)
j in Remark 14.8.13 be identity maps. Let C(1) be the m×m identity matrix

over Zb and let C(2) = (ci,j)1≤i,j≤m be the m×m antidiagonal matrix over Zb with ci,j = 1
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if i + j = m + 1 and ci,j = 0 otherwise. Then the Hammersley net in Example 14.8.5 is
easily seen to be a digital (0,m, 2)-net over Zb with generating matrices C(1) and C(2).

14.8.17 Definition Let C(1), . . . , C(s) be m×m matrices over the finite field Fq and for 1 ≤ i ≤ s
and 1 ≤ j ≤ m let c

(i)
j denote the j-th row of the matrix C(i). Then %(C(1), . . . , C(s))

is defined to be the largest nonnegative integer d such that, for any integers 0 ≤
d1, . . . , ds ≤ m with

∑s
i=1 di = d, the vectors c

(i)
j , 1 ≤ j ≤ di, 1 ≤ i ≤ s, are lin-

early independent over Fq (this property is assumed to be vacuously satisfied for d = 0).

14.8.18 Theorem [2236] The point set P constructed in Remark 14.8.13 with R = Fq and m ×m
generating matrices C(1), . . . , C(s) over Fq is a digital strict (t,m, s)-net over Fq with t =
m− %(C(1), . . . , C(s)).

14.8.19 Example Let s = 2, let b = p be a prime, and let the m ×m matrices C(1) and C(2) over
Fp be as in Example 14.8.16. Then it is easily seen that %(C(1), C(2)) = m. Using Theorem
14.8.18, this shows again that the Hammersley net in base b = p is a digital (0,m, 2)-net
over Fp.

14.8.20 Remark The equivalence between nets and ordered orthogonal arrays stated in Theorem
14.8.9 has an analog for digital nets. The special family of linear ordered orthogonal arrays
was introduced in [276] and it was shown that these arrays correspond to digital nets.

14.8.21 Remark There is a very useful duality theory for digital nets which facilitates many con-
structions of good digital nets. A crucial ingredient is the weight function Vm on Fmsq
introduced in Definition 14.8.22 below. The main result of this duality theory is Theorem
14.8.26 below.

14.8.22 Definition Let m ≥ 1 and s ≥ 1 be integers. Put vm(a) = 0 if a = 0 ∈ Fmq , and
for a = (a1, . . . , am) ∈ Fmq with a 6= 0 let vm(a) be the largest value of j such that
aj 6= 0. Write a vector A ∈ Fmsq as the concatenation of s vectors of length m, i.e.,

A = (a(1), . . . ,a(s)) ∈ Fmsq with a(i) ∈ Fmq for 1 ≤ i ≤ s. Then the NRT weight of A is
defined by

Vm(A) =
s∑
i=1

vm(a(i)).

14.8.23 Remark The NRT weight is named after the work of Niederreiter [2234] and Rosenbloom
and Tsfasman [2483]. The NRT space is Fmsq with the metric dm(A,B) = Vm(A −B) for
A,B ∈ Fmsq . For m = 1 the NRT space reduces to the Hamming space in coding theory.

14.8.24 Definition The minimum distance δm(N ) of a nonzero Fq-linear subspace N of Fmsq is
given by

δm(N ) = min
A∈N\{0}

Vm(A).

14.8.25 Remark Let the m×m matrices C(1), . . . , C(s) over Fq be generating matrices of a digital
net P . Set up an m × ms matrix M over Fq as follows: for 1 ≤ j ≤ m, the j-th row of
M is obtained by concatenating the transposes of the j-th columns of C(1), . . . , C(s). Let
M⊆ Fmsq be the row space of M and let M⊥ be its dual space, i.e.,

M⊥ = {A ∈ Fmsq : A ·M = 0 for all M ∈M},
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where · is the standard inner product in Fmsq .

14.8.26 Theorem [2267] Let m ≥ 1 and s ≥ 2 be integers. Then the point set P in Remark 14.8.25
is a digital strict (t,m, s)-net over Fq with t = m+ 1− δm(M⊥).

14.8.27 Corollary [2267] Let m ≥ 1 and s ≥ 2 be integers. Then from any Fq-linear subspace N
of Fmsq with dim(N ) ≥ ms −m we can construct a digital strict (t,m, s)-net over Fq with
t = m+ 1− δm(N ).

14.8.28 Remark There are digital nets for which a property analogous to that in Definition 14.8.2
holds for a wider range of subintervals of [0, 1]s. Such generalized digital nets were introduced
in [835] and are also studied in detail in Chapter 15 of [839].

14.8.29 Remark There is a generalization of the digital method which can be viewed as a nonlinear
analog of the construction in Remark 14.8.13. For simplicity we consider only the case where
R = Fq (see [2258] for a general ring R). Compared to Remark 14.8.13, the only change is

that instead of linear forms c
(i)
j · r we now use polynomial functions, that is, for 1 ≤ i ≤ s

and 1 ≤ j ≤ m we choose polynomials f
(i)
j over Fq in m variables and then we replace c

(i)
j ·r

by f
(i)
j (r) for r ∈ Fmq . The following criterion uses the concept of permutation polynomial

in several variables (see Section 8.2).

14.8.30 Theorem [2258] The point set constructed in Remark 14.8.29 is a (t,m, s)-net in base q

if and only if, for any integers d1, . . . , ds ≥ 0 with
∑s
i=1 di = m − t, the polynomials f

(i)
j ,

1 ≤ j ≤ di, 1 ≤ i ≤ s, have the property that all of their nontrivial linear combinations
with coefficients from Fq are permutation polynomials over Fq in m variables.

14.8.3 Constructions of (t,m, s)-nets

14.8.31 Remark A general principle for the construction of (t,m, s)-nets with s ≥ 2 is based on the
use of Proposition 14.8.50 below in conjunction with the constructions of (t, s−1)-sequences
in Subsection 14.8.6. In the present subsection, we describe constructions of (t,m, s)-nets
that are not derived from this principle. One of the first constructions of this type was that
of polynomial lattices in [2247]. Choose f ∈ Fq[x] with deg(f) = m ≥ 1 and an s-tuple
g = (g1, . . . , gs) ∈ Fq[x]s with deg(gi) < m for 1 ≤ i ≤ s. Consider the Laurent series
expansions

gi(x)

f(x)
=
∞∑
k=1

u
(i)
k x−k ∈ Fq((x−1)) for 1 ≤ i ≤ s.

Then for 1 ≤ i ≤ s the generating matrix C(i) = (cj,r) is the Hankel matrix given by

cj,r = u
(i)
j+r ∈ Fq for 1 ≤ j ≤ m, 0 ≤ r ≤ m − 1. The bijections η

(i)
j in Remark 14.8.13 are

chosen arbitrarily. The resulting digital net over Fq is denoted by P (g, f).

14.8.32 Definition Let s ≥ 2 and let f and g be as in Remark 14.8.31. Then the figure of merit
%(g, f) is defined by

%(g, f) = s− 1 + min
s∑
i=1

deg(hi),

where the minimum is over all nonzero s-tuples (h1, . . . , hs) ∈ Fq[x]s with deg(hi) < m
for 1 ≤ i ≤ s and f dividing

∑s
i=1 higi. Here we use the convention deg(0) = −1.

14.8.33 Theorem [2247] For s ≥ 2, the point set P (g, f) in Remark 14.8.31 is a digital strict
(t,m, s)-net over Fq with t = m− %(g, f).
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14.8.34 Remark It is clear from Theorem 14.8.33 that in order to obtain a good (t,m, s)-net by this
construction, i.e., a net with a small value of t, we need to find g and f with a large figure of
merit %(g, f). A systematic method for the explicit construction of good polynomial lattices
is the component-by-component algorithm in [836]; see also Chapter 10 in [839].

14.8.35 Remark Several constructions of digital nets are based on Corollary 14.8.27. A powerful
construction of this type uses algebraic function fields (see Section 12.1 for background on
algebraic function fields). We present only a simple version of this construction; more refined
versions can be found in [2261]. Let F be an algebraic function field (of one variable) with
full constant field Fq, that is, Fq is algebraically closed in F . Let N(F ) denote the number
of rational places of F . For a given dimension s ≥ 2, we assume that N(F ) ≥ s and let
P1, . . . , Ps be s distinct rational places of F . Let G be a divisor of F . For each i = 1, . . . , s,
let ti ∈ F be a prime element at Pi and let ni ∈ Z be the coefficient of Pi in G. For f in the
Riemann-Roch space L(G) and a given integer m ≥ 1, let θ(i)(f) ∈ Fmq be the vector whose

coordinates are, in descending order, the coefficients of tji , j = −ni + m − 1,−ni + m −
2, . . . ,−ni, in the local expansion of f at Pi. Now define the Fq-linear map θ : L(G)→ Fmsq
by

θ(f) = (θ(1)(f), . . . , θ(s)(f)) for all f ∈ L(G).

A digital net over Fq is then obtained by applying Corollary 14.8.27 with N being the image
of the map θ. A suitable choice of the divisor G leads to the following result.

14.8.36 Theorem [2261] Let s ≥ 2 be an integer and let F be an algebraic function field with full
constant field Fq, genus g ≥ 1, and N(F ) ≥ s. If k and m are integers with 0 ≤ k ≤ g − 1
and m ≥ max(1, g− k− 1), then there exists a digital (g− k− 1,m, s)-net over Fq provided
that (

s+m+ k − g
s− 1

)
Ak(F ) < h(F ),

where Ak(F ) is the number of positive divisors of F of degree k and h(F ) is the divisor
class number of F .

14.8.37 Example Let q = 9 and let F be the Hermitian function field over F9, that is, F = F9(x, y)
with y3 + y = x4. Then g = 3, N(F ) = 28, and h(F ) = 4096. We apply Theorem 14.8.36
with s = 28, k = 0, m = 5, and we obtain a digital (2, 5, 28)-net over F9. The value t = 2 is
the currently best value of the quality parameter for a (t, 5, 28)-net in base 9, according to
the website http://mint.sbg.ac.at which contains an extensive database for parameters
of (t,m, s)-nets.

14.8.38 Remark Another construction based on Corollary 14.8.27 was introduced in [2255]. For
integers m ≥ 1 and s ≥ 2, consider the Fq-linear space P = {f ∈ Fqm [x] : deg(f) < s}.
Fix α ∈ Fqm and define the Fq-linear subspace Pα = {f ∈ P : f(α) = 0} of P. Set up a
map τ : P → Fmsq as follows. Write f ∈ P explicitly as f(x) =

∑s
i=1 γix

i−1 with γi ∈ Fqm
for 1 ≤ i ≤ s. For each i = 1, . . . , s, choose an ordered basis Bi of Fqm over Fq and let
ci(f) ∈ Fmq be the coordinate vector of γi with respect to Bi. Then define

τ(f) = (c1(f), . . . , cs(f)) ∈ Fmsq for all f ∈ P.

A digital net over Fq is now obtained by applying Corollary 14.8.27 with N being the image
of the subspace Pα under τ . The resulting digital net is a cyclic digital net over Fq relative
to the bases B1, . . . , Bs.

14.8.39 Remark A generalization of the construction in Remark 14.8.38 was presented in [2398].
For integers m ≥ 1 and s ≥ 2, consider Q = Fsqm as a vector space over Fq. Fix α ∈ Q with
α 6= 0 and put Qα = {β ∈ Q : α · β = 0}. Then Qα is an Fq-linear subspace of Q. Let
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σ : Q → Fmsq be an isomorphism between vector spaces over Fq. A digital net over Fq is now
obtained by applying Corollary 14.8.27 with N being the image of the subspace Qα under
σ. The resulting digital net is a hyperplane net over Fq. Detailed information on hyperplane
nets and cyclic digital nets can be found in Chapter 11 of [839].

14.8.40 Theorem [1874] Given a linear code over Fq with length n, dimension k, and minimum
distance d ≥ 3, we can construct a digital (n − k − d + 1, n − k, s)-net over Fq with s =
b(n− 1)/hc if d = 2h+ 2 is even and s = bn/hc if d = 2h+ 1 is odd.

14.8.41 Remark Further applications of coding theory to the construction of digital nets are dis-
cussed in the survey articles [2251] and [2256]. We specifically mention some principles of
combining several digital nets to obtain a new digital net that are inspired by coding theory.
For instance, the well-known Kronecker-product construction in coding theory has an analog
for digital nets [276]. The following result is an analog of the matrix-product construction
of linear codes.

14.8.42 Theorem [2263] Let h be an integer with 2 ≤ h ≤ q. If for k = 1, . . . , h a digital
(tk,mk, sk)-net over Fq is given and if s1 ≤ s2 ≤ · · · ≤ sh, then we can construct a digital

(t,
∑h
k=1mk,

∑h
k=1 sk)-net over Fq with

t = 1 +
h∑
k=1

mk − min
1≤k≤h

(h− k + 1)(mk − tk + 1).

14.8.43 Proposition Given a (t,m, s)-net in base b, we can construct:

1. a (t, u, s)-net in base b for t ≤ u ≤ m;

2. a (t,m, r)-net in base b for 1 ≤ r ≤ s;
3. a (t+ u,m+ u, s)-net in base b for any integer u ≥ 0.

14.8.44 Remark A result of the type appearing in Proposition 14.8.43 is called a propagation rule
for nets. There are also propagation rules for digital nets, in the sense that the input net and
the output net are both digital nets. Furthermore, there are propagation rules that involve
a base change, typically moving from a base b to a base that is a power bk with k ≥ 2 or
vice versa. A detailed discussion of propagation rules is presented in Chapter 9 of [839].

14.8.4 (t, s)-sequences and (T, s)-sequences

14.8.45 Remark There is an analog of (t,m, s)-nets for sequences of points in [0, 1]s, given in
Definition 14.8.46 below. First we need some notation. For an integer b ≥ 2 and a real
number x ∈ [0, 1], let x =

∑∞
j=1 yjb

−j with all yj ∈ Zb be a b-adic expansion of x, where the
case yj = b − 1 for all sufficiently large j is allowed. For any integer m ≥ 1, we define the
truncation [x]b,m =

∑m
j=1 yjb

−j . Note that this truncation operates on the expansion of x
and not on x itself, since it may yield different results depending on which b-adic expansion
of x is used. If x = (x(1), . . . , x(s)) ∈ [0, 1]s and the x(i), 1 ≤ i ≤ s, are given by prescribed
b-adic expansions, then we define

[x]b,m = ([x(1)]b,m, . . . , [x
(s)]b,m).

14.8.46 Definition [2236, 2690] Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. A sequence x0,x1, . . . of
points in [0, 1]s is a (t, s)-sequence in base b if for all integers k ≥ 0 and m > t the points
[xn]b,m with kbm ≤ n < (k + 1)bm form a (t,m, s)-net in base b. Here the coordinates
of all points xn, n = 0, 1, . . ., are given by prescribed b-adic expansions.
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14.8.47 Remark It is easily seen that a (t, s)-sequence in base b is also a (u, s)-sequence in base b for
all integers u ≥ t. Smaller values of t mean stronger uniformity properties of a (t, s)-sequence
in base b. The number t is the quality parameter of a (t, s)-sequence in base b.

14.8.48 Definition A (t, s)-sequence S in base b is a strict (t, s)-sequence in base b if t is the least
integer u such that S is a (u, s)-sequence in base b.

14.8.49 Example Let s = 1 and let b ≥ 2 be an integer. For n = 0, 1, . . ., let n =
∑∞
r=0 ar(n)br with

all ar(n) ∈ Zb and ar(n) = 0 for all sufficiently large r be the digit expansion of n in base
b. Put φb(n) =

∑∞
r=0 ar(n)b−r−1. Then the sequence φb(0), φb(1), . . . is a (0, 1)-sequence in

base b. This sequence is the van der Corput sequence in base b.

14.8.50 Proposition [2236] Given a (t, s)-sequence in base b, we can construct a (t,m, s+ 1)-net in
base b for any integer m ≥ t.

14.8.51 Remark The following result is obtained by combining Corollary 14.8.11 and Proposition
14.8.50.

14.8.52 Corollary [2236] A (0, s)-sequence in base b can exist only if s ≤ M(b) + 1. In particular,
a necessary condition for the existence of a (0, s)-sequence in base b is s ≤ b.

14.8.53 Remark It was shown in [2238] that for any integers b ≥ 2 and s ≥ 1 there exists a (t, s)-
sequence in base b for some value of t. Therefore it is meaningful to define tb(s) as the least
value of t for which there exists a (t, s)-sequence in base b.

14.8.54 Theorem [2283, 2565] For any integers b ≥ 2 and s ≥ 1, we have

tb(s) ≥
s

b− 1
− cb log(s+ 1)

with a constant cb > 0 depending only on b.

14.8.55 Definition [1858] Let b ≥ 2 and s ≥ 1 be integers and let N0 denote the set of nonnegative
integers. Let T : N→ N0 be a function with T(m) ≤ m for all m ∈ N. Then a sequence
x0,x1, . . . of points in [0, 1]s is a (T, s)-sequence in base b if for all k ∈ N0 and m ∈ N,
the points [xn]b,m with kbm ≤ n < (k + 1)bm form a (T(m),m, s)-net in base b. Here
the coordinates of all points xn, n = 0, 1, . . ., are given by prescribed b-adic expansions.
A (T, s)-sequence S in base b is a strict (T, s)-sequence in base b if there is no function
U : N → N0 with U(m) ≤ m for all m ∈ N and U(m) < T(m) for at least one m ∈ N
such that S is a (U, s)-sequence in base b.

14.8.56 Remark If the function T in Definition 14.8.55 is such that for some integer t ≥ 0 we have
T(m) = m for m ≤ t and T(m) = t for m > t, then the concept of a (T, s)-sequence in
base b reduces to that of a (t, s)-sequence in base b.

14.8.5 Digital (t, s)-sequences and digital (T, s)-sequences

14.8.57 Remark There is an analog of the digital method in Remark 14.8.13 for the construction
of sequences. Let integers b ≥ 2 and s ≥ 1 be given. Then we choose:

1. a commutative ring R with identity and of cardinality b;

2. bijections ψr : Zb → R for r = 0, 1, . . ., with ψr(0) = 0 for all sufficiently large r;

3. bijections η
(i)
j : R→ Zb for 1 ≤ i ≤ s and j ≥ 1;

4. ∞×∞ matrices C(1), . . . , C(s) over R.
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For n = 0, 1, . . ., let n =
∑∞
r=0 ar(n)br with all ar(n) ∈ Zb and ar(n) = 0 for all sufficiently

large r be the digit expansion of n in base b. We put n = (ψr(ar(n)))∞r=0 ∈ R∞. Next we
define

y
(i)
n,j = η

(i)
j (c

(i)
j · n) ∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1,

where c
(i)
j is the j-th row of the matrix C(i). Note that the inner product c

(i)
j ·n is meaningful

since n has only finitely many nonzero coordinates. Then we put

x(i)
n =

∞∑
j=1

y
(i)
n,jb
−j for n ≥ 0 and 1 ≤ i ≤ s.

Finally, we define the sequence S consisting of the points

xn = (x(1)
n , . . . , x(s)

n ) ∈ [0, 1]s for n = 0, 1, . . . .

14.8.58 Definition If the sequence S constructed in Remark 14.8.57 forms a (t, s)-sequence in
base b, then S is a digital (t, s)-sequence in base b. If we want to emphasize that the
construction uses the ring R, then we speak also of a digital (t, s)-sequence over R. If S
is a strict (t, s)-sequence in base b, then S is a digital strict (t, s)-sequence in base b (or
over R).

14.8.59 Definition If the sequence S constructed in Remark 14.8.57 forms a (strict) (T, s)-sequence
in base b, then S is a digital (strict) (T, s)-sequence in base b (or over R).

14.8.60 Remark The matrices C(1), . . . , C(s) in Remark 14.8.57 are generating matrices of the
digital sequence. The value of t for a digital (t, s)-sequence and the function T for a digital
(T, s)-sequence depend only on the generating matrices. For the determination of t in the
general case, we refer to Theorem 4.35 in [2248]. For the case R = Fq, see Theorem 14.8.62
below.

14.8.61 Example Let s = 1 and let b ≥ 2 be an integer. Choose R = Zb and let the bijections

ψr and η
(i)
j in Remark 14.8.57 be identity maps. Let C(1) be the ∞×∞ identity matrix

over Zb. Then the van der Corput sequence in Example 14.8.49 is easily seen to be a digital
(0, 1)-sequence over Zb with generating matrix C(1).

14.8.62 Theorem Let S be the sequence constructed in Remark 14.8.57 with R = Fq and ∞×∞
generating matrices C(1), . . . , C(s) over Fq. For 1 ≤ i ≤ s and m ∈ N, let C

(i)
m denote the

left upper m×m submatrix of C(i). Then S is a digital strict (T, s)-sequence over Fq with

T(m) = m− %(C
(1)
m , . . . , C

(s)
m ) for all m ∈ N, where %(C

(1)
m , . . . , C

(s)
m ) is given by Definition

14.8.17.

14.8.63 Remark It was shown in [2238] that for any prime power q and any integer s ≥ 1, there
exists a digital (t, s)-sequence over Fq for some value of t. In analogy with tb(s) in Remark
14.8.53, we define dq(s) as the least value of t for which there exists a digital (t, s)-sequence
over Fq. It is trivial that tq(s) ≤ dq(s), and so Theorem 14.8.54 provides also a lower bound
on dq(s).

14.8.64 Problem With the previous notation, it is an open problem whether we can ever have
tq(s) < dq(s).

14.8.65 Remark An analog of the duality theory for digital nets described in Subsection 14.8.2 was
developed in [838] for the case of digital (T, s)-sequences. Let the weight function vm on
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Fmq be as in Definition 14.8.22. For A = (a(1), . . . ,a(s)) ∈ Fmsq with a(i) ∈ Fmq for 1 ≤ i ≤ s,
we put

Um(A) = max
1≤i≤s

vm(a(i)).

14.8.66 Definition Let s ≥ 2 be an integer. For each integer m ≥ 1, let Nm be an Fq-linear
subspace of Fmsq with dim(Nm) ≥ ms − m. Let Nm+1,m be the projection of the set

{A ∈ Nm+1 : Um+1(A) ≤ m}, where A = (a(1), . . . ,a(s)) with all a(i) ∈ Fm+1
q , on the

first m coordinates of each a(i) for 1 ≤ i ≤ s. Suppose that Nm+1,m is an Fq-linear
subspace of Nm with dim(Nm+1,m) ≥ dim(Nm) − 1 for all m ≥ 1. Then the sequence
(Nm)m≥1 of spaces is a dual space chain over Fq.

14.8.67 Theorem [838] Let s ≥ 2 be an integer. Then from any dual space chain (Nm)m≥1 over Fq
we can construct a digital strict (T, s)-sequence over Fq with T(m) = m+ 1− δm(Nm) for
all m ≥ 1.

14.8.68 Remark In analogy with the generalized digital nets mentioned in Remark 14.8.28, there are
generalized digital sequences as introduced in [835] and also studied in Chapter 15 of [839].

14.8.69 Remark The nonlinear digital method described in Remark 14.8.29 can be used also for
the construction of (t, s)-sequences [2258].

14.8.6 Constructions of (t, s)-sequences and (T, s)-sequences

14.8.70 Remark A general family of digital (t, s)-sequences is formed by Niederreiter sequences
[2238]. We describe only the simplest case of this construction. For a given dimension s ≥ 1,
let p1, . . . , ps ∈ Fq[x] be pairwise coprime polynomials over Fq. Let ei = deg(pi) ≥ 1 for
1 ≤ i ≤ s. For 1 ≤ i ≤ s and integers u ≥ 1 and 0 ≤ k < ei, consider the Laurent series
expansion

xk

pi(x)u
=

∞∑
r=0

a(i)(u, k, r)x−r−1 ∈ Fq((x−1)).

Then define c
(i)
j,r = a(i)(Q+1, k, r) ∈ Fq for 1 ≤ i ≤ s, j ≥ 1, and r ≥ 0, where j−1 = Qei+k

with integers Q = Q(i, j) and k = k(i, j) satisfying 0 ≤ k < ei. The generating matrices of

the Niederreiter sequence are now given by C(i) = (c
(i)
j,r)j≥1,r≥0 for 1 ≤ i ≤ s. The bijections

ψr and η
(i)
j in Remark 14.8.57 are chosen arbitrarily.

14.8.71 Theorem [837, 2238] The Niederreiter sequence based on the pairwise coprime non-
constant polynomials p1, . . . , ps ∈ Fq[x] is a digital strict (t, s)-sequence over Fq with
t =

∑s
i=1(deg(pi)− 1).

14.8.72 Remark If q is a prime, 1 ≤ s ≤ q, and pi(x) = x − i + 1 ∈ Fq[x] for 1 ≤ i ≤ s, then
we obtain the digital (0, s)-sequences over Fq called Faure sequences [1045]. An analogous
construction of digital (0, s)-sequences over Fq for arbitrary prime powers q and dimensions
1 ≤ s ≤ q was given in [2236]. Note that in view of Corollary 14.8.52, s ≤ q is also a
necessary condition for the existence of a (0, s)-sequence in base q. If q = 2, s ≥ 1 is an
arbitrary dimension, p1(x) = x ∈ F2[x], and p2, . . . , ps are distinct primitive polynomials
over F2, then we obtain Sobol’ sequences [2690].

14.8.73 Remark The construction of Niederreiter sequences in Remark 14.8.70 is optimized by
letting p1, . . . , ps be s distinct monic irreducible polynomials over Fq of least degrees. If
with this choice we put Tq(s) =

∑s
i=1(deg(pi) − 1), then for fixed q the quantity Tq(s) is

of the order of magnitude s log s as s → ∞. Let U(s) denote the least value of t that is
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known to be achievable by Sobol’ sequences for given s. Then T2(s) = U(s) for 1 ≤ s ≤ 7
and T2(s) < U(s) for all s ≥ 8.

14.8.74 Remark Substantial improvements on the construction of Niederreiter sequences in Remark
14.8.70 can be obtained by using tools from the theory of algebraic function fields over
finite fields (see Section 12.1 for this theory). This leads to the family of Niederreiter-Xing
sequences [2282, 3018]. Let F be an algebraic function field with full constant field Fq and
genus g. Assume that F contains at least one rational place P∞ and let D be a divisor of F
with deg(D) = 2g and P∞ /∈ supp(D). Furthermore, we choose s distinct places P1, . . . , Ps
of F with Pi 6= P∞ for 1 ≤ i ≤ s. There exist integers 0 = n0 < n1 < · · · < ng ≤ 2g such
that

`(D − nuP∞) = `(D − (nu + 1)P∞) + 1 for 0 ≤ u ≤ g.

We choose

wu ∈ L(D − nuP∞) \ L(D − (nu + 1)P∞) for 0 ≤ u ≤ g.

For each i = 1, . . . , s, we consider the chain L(D) ⊂ L(D + Pi) ⊂ L(D + 2Pi) ⊂ · · · of
vector spaces over Fq. By starting from the basis {w0, w1, . . . , wg} of L(D) and successively
adding basis vectors at each step of the chain, we obtain for each n ≥ 1 a basis

{w0, w1, . . . , wg, f
(i)
1 , f

(i)
2 , . . . , f

(i)
n deg(Pi)

}

of L(D + nPi). For a prime element z at P∞ and for r = 0, 1, . . ., we put zr = zr if

r /∈ {n0, n1, . . . , ng} and zr = wu if r = nu for some u ∈ {0, 1, . . . , g}. Each f
(i)
j with

1 ≤ i ≤ s and j ≥ 1 has then a local expansion at P∞ of the form f
(i)
j =

∑∞
r=0 a

(i)
j,rzr

with all a
(i)
j,r ∈ Fq. Let c

(i)
j be the sequence obtained from the sequence a

(i)
j,r, r = 0, 1, . . .,

by deleting the terms with r = nu for some u ∈ {0, 1, . . . , g}. For 1 ≤ i ≤ s, the generating

matrix C(i) of the Niederreiter-Xing sequence is now the matrix whose j-th row is c
(i)
j for

j ≥ 1. The bijections ψr and η
(i)
j in Remark 14.8.57 are chosen arbitrarily.

14.8.75 Theorem [3018] Let F be an algebraic function field with full constant field Fq and genus
g which contains at least one rational place P∞. Let D be a divisor of F with deg(D) = 2g
and P∞ /∈ supp(D) and let P1, . . . , Ps be distinct places of F with Pi 6= P∞ for 1 ≤ i ≤ s.
Then the corresponding Niederreiter-Xing sequence is a digital (t, s)-sequence over Fq with
t = g +

∑s
i=1(deg(Pi)− 1).

14.8.76 Corollary [2282] For every prime power q and every dimension s ≥ 1, there exists a digital
(Vq(s), s)-sequence over Fq, where Vq(s) = min {g ≥ 0 : Nq(g) ≥ s + 1} and Nq(g) is the
maximum number of rational places that an algebraic function field with full constant field
Fq and genus g can have.

14.8.77 Remark It was shown in [2282] that Vq(s) = O(s) as s→∞. Since tq(s) ≤ dq(s) ≤ Vq(s) by
Remark 14.8.63 and Corollary 14.8.76, we obtain tq(s) = O(s) and dq(s) = O(s) as s→∞.
In view of Theorem 14.8.54, these asymptotic bounds are best possible.

14.8.78 Remark The only improvements on Niederreiter-Xing sequences were obtained, in some
special cases, in the more recent paper [2266]. For instance, let q be an arbitrary prime
power and let s = q+1. Then tq(q+1) = dq(q+1) = 1. On the other hand, the construction
in [2266] yields a digital (T, q + 1)-sequence over Fq with T(m) = 0 for even m ≥ 2 and
T(m) = 1 for odd m ≥ 1.
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14.9 Applications and weights of multiples of primitive and
other polynomials

Brett Stevens, Carleton University

14.9.1 Applications where weights of multiples of a base polynomial
are relevant

14.9.1 Remark The performance of several applications of polynomials, frequently primitive, de-
pend on the weights of multiples of the base polynomial. Many of these applications are
discussed in this Handbook.

14.9.1.1 Applications from other Handbook sections

14.9.2 Remark The multiples of a polynomial f with weight w influence the statistical bias of the
linear feedback shift register sequence generated from f . Fewer multiples with a given weight,
w reduces the w-th moment of the Hamming weight [1622, 1944]. For more information on
bias and randomness of linear feedback shift register sequences see Section 10.2.

14.9.3 Remark In Section 15.1 the use of primitive polynomials f , to generate cyclic redundancy
check codes is discussed. The undetectable error patterns of these codes are precisely those
whose errors correspond to multiples of f . This has the consequences that burst errors of
length up to deg(f) are always detectable and that to understand how many arbitrary errors
can be detected requires having knowledge of the weights of multiples of f .

14.9.4 Remark In Section 15.4, turbo codes are discussed. Turbo codes use feedback polynomials
that are often primitive. The bit error rate (BER) of the turbo code’s interleaver design
depends on the weights of polynomials divisible by the feedback polynomial [2513].

14.9.5 Remark Low weight multiples of a public polynomial compromise the private key for the
T CHo cryptosystem and its security therefore rests on the difficulty of finding low weight
multiples [146, 1491]. The weight of polynomials and their multiples is important in linear
feedback shift register cryptanalysis and certain attacks depend on the sparsity of the feed-
back polynomial or one of its multiples [2074]. Chapter 16 discusses the many connections
between finite fields and cryptography.
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14.9.1.2 Application of polynomials to the construction of orthogonal arrays

14.9.6 Remark We present a discussion of applications of polynomials and the weights of their
multiples to the construction and strength of orthogonal arrays.

14.9.7 Definition An orthogonal array of size N , with k constraints (or k factors or of degree
k), s levels (or of order s), and strength t, denoted OA(N, k, s, t), is a k × N array
(sometimes N × k) with entries from a set of s ≥ 2 symbols, having the property that
in every t ×N submatrix, every t × 1 column vector appears the same number λ = N

st

of times. The parameter λ is the index of the orthogonal array. An OA(N, k, s, t) is also
denoted by OAλ(t, k, s).

14.9.8 Remark From the definition, an orthogonal array of strength t is also an orthogonal array
of strength t′ for all 1 ≤ t′ ≤ t.

14.9.9 Theorem [357, 1457] Let C be a linear code over Fq with words of length n. Then the
n × |C| array formed with the words of C as the columns is a (linear) orthogonal array of
maximal strength t if and only if C⊥, its dual code, has minimum weight t+ 1.

14.9.10 Remark The half of Theorem 14.9.9 that gives the strength of the orthogonal array from
the minimum weight of the dual code was known as early as 1947 [1457, 1727]. Delsarte was
able to generalize Theorem 14.9.9 to the case where the code and the orthogonal array are
not required to be linear [801]. We can extend Theorem 14.9.9 and exactly determine the
number of times each vector appears in any (t+ 1)× n submatrix of the orthogonal array.

14.9.11 Theorem [2204] Let C be a linear code of length n over Fq and assume that the words
of C form the columns of an orthogonal array of strength t. Then for any t + 1-subset
T = {i1, . . . it} ⊂ {1, . . . , n} and for any t + 1-tuple b ∈ Ft+1

q , the number of times that b

appears as a column of the (t+ 1)× n submatrix determined by T , λTb (C), is

λTb (C) =

 |C|/q
t if there is no u ∈ C⊥ with support T ;

|C|/qt−1 if there exists a u ∈ C⊥ with support T and uij = bj for ij ∈ T ;
0 otherwise.

14.9.12 Theorem [2204] Let f be a primitive polynomial of degree m over Fq and let Cfn be the
set of all subintervals of the shift-register sequence with length n generated by f , together
with the zero vector of length n. The dual code of Cfn is given by

(Cfn)⊥ = {(b1, . . . , bn) :
n−1∑
i=0

bi+1x
i is divisible by f}.

14.9.13 Remark [2204] Munemasa only proves Theorem 14.9.12 over F2 but the proof works more
generally for any finite field.

14.9.14 Remark [2354] The primitivity condition in Theorem 14.9.12 can be substantially relaxed
to polynomials with distinct roots.

14.9.15 Remark The combined effect of Theorems 14.9.9 and 14.9.12 is that to know the strength
of the orthogonal array derived from a polynomial f , and its shift register sequences, it is
essential to know about the weights of multiples of f .
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14.9.1.3 Application of polynomials to a card trick

14.9.16 Remark Although the weight of multiples of primitive f = x5 + x2 + 1 ∈ F2[x] is not
relevant to this application to a card trick, the low weight of f itself facilitates the mental
arithmetic so we include this application in this subsection.

14.9.17 Remark The polynomial f(x) = x5 + x2 + 1 ∈ F2[x] is primitive and generates the binary
shift register sequence with the property that ak+5 = ak + ak+2

0000100101100111110001101110101.

14.9.18 Remark The set of cards from a standard deck which contains the Ace, 2, 3, 4, 5, 6, and
7 of each suit and the 8 of spades, clubs, and hearts can be encoded uniquely with the
non-zero binary words of length 5. The first digit encodes the cards color, 0 for red and
1 for black. The second digit encodes whether the suit is major or minor in bridge: 0 for
clubs or diamonds; 1 for hearts or spades. The remaining three digits encode the value of
the card via the last three digits in the binary representation of the card’s value: 000 for 8,
001 for Ace, 010 for 2, 011 for 3, 100 for 4, 101 for 5, 110 for 6, and 111 for 7. This encoding
has the property that the first digit in a card’s code corresponds to the color of that card.
Other encodings have the required properties as well [833].

14.9.19 Remark Using the shift register sequence from Remark 14.9.17 and the card encoding from
Remark 14.9.18 we obtain the following sequence of cards:

A♦, 2♦, 4♦, A♥, 2♣, 5♦, 3♥, 6♣, 4♥, A♠, 3♣, 7♦, 7♥, 7♠, 6♠, 4♠,
8♠, A♣, 3♦, 6♦, 5♥, 3♠, 7♣, 6♥, 5♠, 2♠, 5♣, 2♥, 4♣, 8♥, 8♣

14.9.20 Remark A deck of these 31 cards arranged in this order looks upon casual inspection to
be randomly ordered. The deck can be cut arbitrarily many times (since the shift register
sequence is cyclic) before removing five cards in sequence from the top of the deck. With
the knowledge which cards are black, the identity of all five chosen cards can be determined
[832].

14.9.21 Remark Due to the low weight of primitive f = x5 + x2 + 1, the encoding scheme and
the generating polynomial are simple enough to be quickly calculated mentally which is
important for the appearance of the trick [832].

14.9.22 Remark Much can be done to augment the impression this trick makes on an audience.
For ideas see [832, 833, 2169]. Two sets of these 31 cards with identical backs can be placed
in this order repeated to give the impression of a more normal sized deck.

14.9.23 Remark The 8♦, corresponding to the binary string 00000, can be added to the deck be-
tween the 8♣ and A♦. This deviation from the linear shift register can simply be memorized
ad-hoc or a new, nonlinear shift register sequence memorized:

ak+5 = (1 + ak+1 · ak+2 · ak+3 · ak+4)(ak + ak+2) + (ak · ak+1 · ak+2 · ak+3 · ak+4),

where ai is the complement of ai.

14.9.24 Remark For other mathematical card tricks see [218, 832, 833, 2169].

14.9.25 Remark The applications discussed in Remarks 14.9.2 through 14.9.15 strongly motivate
researching the distributions and patterns of weights of multiples of polynomials f over
finite fields. Subsection 14.9.2 gives a summary of the knowledge in this area to date.
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14.9.2 Weights of multiples of polynomials

14.9.26 Remark Polynomials in F2[x] which have large weight or large degree will sometimes be
given in hexadecimal notation. For example the polynomial

f = x8 + x7 + x6 + x5 + x+ 1 = 1x8 + 1x7 + 1x6 + 1x5 + 0x4 + 0x3 + 0x2 + 1x1 + 1x0

is 111100011 in binary notation and, grouping these from the right into fours, is 1E3 in
hexadecimal notation. The use of the two notations for polynomials will always be clear
in the context. Be aware that some authors in the literature denote binary polynomials in
hexidecimal after deleting the rightmost 1, since most polynomials used in applications have
a constant term 1, so it can be assumed present in many contexts.

14.9.27 Definition The set of polynomials of degree d in Fq[x] is denoted by Pq,d. For f ∈ F[x],
the dual code of length n, (Cfn)⊥, defined in Theorem 14.9.12 can be identified with all
polynomials divisible by f of degree less than n. The minimum weight of a polynomial
from this set is denoted by d((Cfn)⊥). This is also the minimum weight of the code
(Cfn)⊥.

14.9.28 Remark We begin with some general bounds on d((Cfn)⊥), followed by results for polyno-
mials f of specific degree and end with results for polynomials f of specific weights.

14.9.2.1 General bounds on d((Cfn)⊥)

14.9.29 Proposition An application of Theorem 14.9.12 with bounds on the period of polynomials
gives that if f ∈ Pq,m, then d((Cfn)⊥) = 2 for all n ≥ qm − 1.

14.9.30 Theorem [2083] Let f ∈ P2,m and 0 ≤ t ≤ (m − 1)/2. Let n1(t) be the smallest positive
integer such that

t+1∑
j=0

(
n1(t)

j

)
> 2m.

Set n2(0) = ∞ and for t > 0, let n2(t) = 2b(m−1)/tc − 1. If n1(t) < n2(t), then for all
n1(t) ≤ n ≤ n2(t), d((Cfn)⊥) ≤ 2t + 2. In other words, for such n, there will always be a
multiple of f of weight less than 2t+ 3 and degree less than n.

14.9.31 Theorem [2083] Let e = b(m − 1)/tc and n2(t) = 2e − 1. Let α be a primitive element in
F2e and M (i)(x) be the minimal polynomial of αi. Let

g = lcm{M (i)(x)|0 ≤ i ≤ 2t},

then d((Cg2e−1)⊥) ≥ 2t + 2 and the BCH code (see Section 15.1) generated by g can be
truncated to a code meeting the bound in Theorem 14.9.30 for any admissible n1(t) ≤ n ≤
n2(t).

14.9.32 Proposition [2083] In Theorem 14.9.30, n1(t) ≤ t + 2m/(t+1)(t + 1)!1/(t+1), and whenever
m > (t+ 1)2 + t(t+ 1) log2(t+ 1), we have n1(t) < n2(t).

14.9.33 Theorem [1591] If f ∈ P2,m is primitive and if g = xn + xk + 1 is the trinomial multiple of
f with minimum degree then

n ≤ 2m + 2

3
.

14.9.34 Proposition If x+ 1 is a factor of f ∈ F2[x] then f does not divide any polynomials of odd
weight.
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14.9.35 Lemma [558] Let f ∈ F2[x] have simple roots, period n and suppose (1 + x) is a factor of

f . If d((Cfn)⊥) = d then d((C
(x+1)f
n+1 )⊥) = d and d((C

(x+1)f
j )⊥) = 4 for n+ 2 ≤ j ≤ 2n.

14.9.36 Theorem [1591] Let f ∈ F2[x] be an irreducible polynomial with period ρ. Then f divides
a trinomial if and only if gcd(xρ + 1, (x+ 1)ρ + 1) 6= 1.

14.9.37 Theorem [1591] If f ∈ P2,m is primitive and if g = xn + xk + 1 is a trinomial divisible by
f then n and k belong to the same-length cyclotomic coset modulo 2m − 1.

14.9.38 Theorem [1591] All primitive f ∈ P2,m divide some 4-nomial of degree no bigger than⌊
1 +
√

1 + 4.2m+1

2

⌋
.

14.9.39 Theorem [1591] For a given t ≥ 2 and s ≥ 1, if m is such that

1.548m − 1 ≥ (t− 1)

(
ms + 1

t

)
then there exists at least one primitive polynomial of degree m which does not divide any
t-nomial of degree less than or equal to ms.

14.9.40 Theorem [1994] Let f ∈ P2,m be a primitive t-nomial. Then there exists a primitive
g ∈ P2,m which divides some t-nomial of degree sm (s odd) when gcd(s, 2m − 1) = 1.
Moreover g = gcd(f(xs), x2m−1 − 1) is such a polynomial.

14.9.41 Remark The previous results give information about multiples of f that can have small
degree relative to the period of f . The following gives information about multiples of f that
have relatively large degree.

14.9.42 Remark Let f ∈ Fq[x] be primitive of degree m. Let n = qm − 1 and T2 be the set of
binomials of the form xi − xj , satisfying 0 ≤ i < j with i ≡ j (mod n). Let Ti be the
set of all linear combinations of binomials from T2 which have weight i. Finally define

µ : Fq[x]→ Fq[x] by µ(
∑d
i=0 aix

i) =
∑d
i=0 aix

i (mod n).

14.9.43 Theorem [2513] Suppose that g is a polynomial of weight w and write

g = g1 + g2

where g1 ∈ Ti, g2 ∈ Fq[x] has weight j, no two exponents of g2 are congruent modulo n,
and the terms of g1 and g2 are disjoint (i.e., w = i+ j). Then g is divisible by f if and only
if µ(g2) is divisible by f .

14.9.44 Remark In [2513], Theorem 14.9.43 is only stated and proved over F2. It is true for all
finite fields Fq.

14.9.45 Remark Using the fact that f divides xn
′
+ a, with n′ = (qm − 1)/(q − 1) for some unique

a ∈ Fq, and letting T being the set of corresponding binomials, Theorem 14.9.43 can be
further generalized with an increase in the complexity of the statement.

14.9.46 Remark There have also been some interesting results on enumeration and probability of
multiples with given weights. We discuss this next.

14.9.47 Theorem [1591] Given t ≥ 2 and s ≥ 1, if m is such that φ(2m − 1) > (t− 1)
(
ms+1
t

)
, then

the probability that a randomly chosen primitive polynomial of degree m does not divide
any t-nomial of degree less than or equal to ms is at least

1− (t− 1)(
(
ms+1
t

)
φ(2m − 1)

,
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where φ denotes Euler’s function.

14.9.48 Theorem [1591] There exist primitive polynomials of degree m which divide a trinomial of
degree 3m and a 4-nomial of degree less than 6m.

14.9.49 Theorem [1362] Let Nm,t denote the number of t-nomial multiples with degree no more
than 2m − 2 of a primitive polynomial of degree m. Then Nm,2 = Nm,1 = 0 and

Nm,t =

(
2m−2
t−2

)
−Nm,t−1 − t−1

t−2 (2m − t+ 1)Nm,t−2

t− 1
.

14.9.50 Remark See [1362] for discussion and results for solving this recurrence, and [1834] for an
alternative presentation.

14.9.51 Theorem [1362] Given any primitive polynomial of degree m, the sum of the degrees of all
its t-nomial multiples is

t− 1

t
(2m − 1)Nm,t.

14.9.52 Theorem [1362] Given any primitive polynomial f of degree m, the average degree of its
t-nomial multiples with degree no more than 2m−2 is equal to the average of the maximum
of all the distinct (t− 1)-tuples from 1 to 2m − 2.

14.9.53 Theorem [1362] Given a primitive polynomial f of degree m, under the assumption that
t-nomial multiples of f are distributed as (t − 1)-tuples, there exists a t-nomial multiple g
of f such that the degree of g is less than or equal to

2
m
t−1 +log2(t−1)+1.

14.9.54 Remark The assumption in Theorem 14.9.53 is motivated by Theorem 14.9.52 and empirical
evidence. See [1362] for precise definition of the assumption and detailed discussion.

14.9.55 Remark Theorem 14.9.53 implies that it is highly likely to get a trinomial multiple with
degree no more than 2m/2+2. This is in contrast to the bound of (2m + 2)/3 from Theo-
rem 14.9.33. In general Theorem 14.9.53 suggests that to avoid sparse multiples, f must be
picked with very large degree.

14.9.56 Remark In [1994], Maitra, Gupta, and Venkateswarlu extend this enumerative and proba-
bilistic analysis to include the product of primitive polynomials.

14.9.2.2 Bounds on d((Cfn)⊥) for polynomials of specific degree

14.9.57 Proposition The bounds on weights of multiples of all polynomials from degree 4 to degree
16 and degrees 24 and 32 in F2[x] are given in Table 14.9.2.2. For degrees 4 ≤ m ≤ 16,
Koopman and Chakravarty exhaustively searched all polynomials of degree m and all their
multiples of degrees m + 8 ≤ n ≤ m + 2048 [1793]. The m = 16 results are from the
theoretical work of Merkey and Posner [2083] and exhaustive searches by Castagnoli, Ganz,
and Graber [559]. The bounds on weights of multiples of degree 24 polynomials, which are
less complete than those for smaller m, are the work of Merkey and Posner [2083] and
searches by Castagnoli, Ganz, and Graber [559] and Ray and Koopman [2439]. In all cases
for m = 24 polynomials attaining the bounds are reported to be known although the specific
polynomials have not been published [559, 2083, 2439]. The even more incomplete results
for m = 32 are reported in [559, 2083].

14.9.58 Example Table 14.9.2.2 gives bounds that apply to every polynomial with the given degree.
To aid the reading of Table 14.9.2.2, we give an example from it. The information from the
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deg(f) degree range of mul-
tiples of f

upper bound
on d(Cfn)⊥

polynomial (in hexadecimal no-
tation) attaining the bound

4 12 ≤ n ≤ 15 3 f = 13
5 13 ≤ n ≤ 15 4 f = 2B

16 ≤ n ≤ 31 3 f = 25
6 14 ≤ n ≤ 31 4 f = 59

32 ≤ n ≤ 63 3 f = 43
7 15 ≤ n ≤ 63 4 f = B7

64 ≤ n ≤ 127 3 f = 91
8 16 ≤ n ≤ 17 5 f = 139

18 ≤ n ≤ 127 4 f = 12F
128 ≤ n ≤ 255 3 f = 14D

9 n = 17 6 f = 13C
18 ≤ n ≤ 22 5 f = 30B
23 ≤ n ≤ 255 4 f = 297
256 ≤ n ≤ 511 3 f = 2CF

10 18 ≤ n ≤ 22 6 f = 51D
23 ≤ n ≤ 31 5 f = 573
32 ≤ n ≤ 511 4 f = 633
512 ≤ n ≤ 1023 3 f = 64F

11 19 ≤ n ≤ 23 7 f = AE1
24 ≤ n ≤ 33 6 f = A65
34 ≤ n ≤ 36 5 f = BAF
37 ≤ n ≤ 1023 4 f = B07
1024 ≤ n ≤ 2047 3 f = C9B

12 20 ≤ n ≤ 23 8 f = 149F
24 ≤ n ≤ 39 6 f = 1683
40 ≤ n ≤ 65 5 f = 11F1
66 ≤ n ≤ 2047 4 f = 180F
2048 ≤ n ≤ 2060 3 f = 16EB

13 21 ≤ n ≤ 24 8 f = 216F
n = 25 7 f = 254B
26 ≤ n ≤ 65 6 f = 3213
66 ≤ n ≤ 2061 4 f = 2055

14 22 ≤ n ≤ 25 8 f = 46E3
26 ≤ n ≤ 27 7 f = 5153
28 ≤ n ≤ 71 6 f = 6E57
72 ≤ n ≤ 127 5 f = 425B
128 ≤ n ≤ 2062 4 f = 43D1

15 23 ≤ n ≤ 27 8 f = C617
28 ≤ n ≤ 31 7 f = B7AB
32 ≤ n ≤ 129 6 f = AE75
128 ≤ n ≤ 191 5 f = D51B
192 ≤ n ≤ 2063 4 f = 92ED

16 n = 18 12 f = 15BED
19 ≤ n ≤ 21 10 f = 1D22F
n = 22 9 f = 18F57
23 ≤ n ≤ 31 8 f = 11FB7
32 ≤ n ≤ 35 7 f = 126B5
36 ≤ n ≤ 151 6 f = 13D65
152 ≤ n ≤ 257 5 f = 15935
258 ≤ n ≤ 32767 4 f = 1A2EB
32768 ≤ n ≤ 65535 3 f = 1002D

24 18 ≤ n ≤ 47 12
48 ≤ n ≤ 50 10
51 ≤ n ≤ 63 9
64 ≤ n ≤ 129 8
130 ≤ n ≤ 255 7
466 ≤ n ≤ 211 − 1 6
5793 ≤ n ≤ 223 − 1 4

32 n = 18 12
568 ≤ n ≤ 210 − 1 8
2954 ≤ n ≤ 215 − 1 6
92682 ≤ n ≤ 231 − 1 4

Table 14.9.1 Bounds on weights of multiples of degree n polynomials for 4 ≤ n ≤ 16.
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minimum distance
f standard d(Cfn)⊥: 12 11 10 9 8 7

13D65 IEC TC57 after 1990 ranges of n: [17,20] [21,22]
1F29F ranges of n: 17 [18,22]
15B93 IEC TC57 before 1990 ranges of n: [17,19] [20,25]
15935 ranges of n: [17,19] [20,24] [25,26]
16F63 IEEE WG77.1 ranges of n: 17 18 [19,29]
1A2EB ranges of n: [17,18] [19,27]
1011B ranges of n:
1A097 IBM SDLC ranges of n: [17,24]
11021 CRC-CCITT ranges of n:
18005 CRC-ANSI ranges of n:

minimum distance
f standard d(Cfn)⊥: 6 5 4 2

13D65 IEC TC57 after 1990 ranges of n: [23,151] [151,∞]
1F29F ranges of n: [23,130] [131,258] [259,∞]
15B93 IEC TC57 before 1990 ranges of n: [26,128] [129,254] [255,∞]
15935 ranges of n: [27,51] [52,257] [258,∞]
16F63 IEEE WG77.1 ranges of n: 30 [31,255] [256,∞]
1A2EB ranges of n: [28,109] [110,32767] [32768,∞]
1011B ranges of n: [17,115] [116,28658] [28659,∞]
1A097 IBM SDLC ranges of n: [25,83] [84,32766] [32767,∞]
11021 CRC-CCITT ranges of n: [17,32767] [32768,∞]
18005 CRC-ANSI ranges of n: [17,32767] [32768,∞]

Table 14.9.2 Distance profiles of specific degree 16 polynomials.

third line of the section for polynomials of degree 11, indicates that for every binary degree
11 polynomial f ∈ P2,11, there exists multiples of f which have degrees 34, 35, and 36 and
weight less than or equal to 5. The polynomial cited in the last column, f(x) = BAF =
x11 +x9 +x8 +x7 +x5 +x3 +x2 +x+1, meets this bound tightly; that is, all of its multiples
of degree 34, 35, or 36 have weight 5 or above.

14.9.59 Remark In Table 14.9.2.2, three of the degree 16 polynomials meeting the bounds are
known to be unique. For d(Cfn)⊥ = 6, f = 13D65 and for d(Cfn)⊥ = 4, f = 1A2EB are the
unique tight polynomials, up to reciprocal. For d(Cfn)⊥ = 5, f = 15935 is unique [559].

14.9.60 Remark In contrast to Table 14.9.2.2, Tables 14.9.2 through 14.9.4 give the distance dis-
tributions of multiples of a few, specific polynomials for degrees 16, 24, and 32.

14.9.61 Remark [559] Table 14.9.2 gives the distance profiles of ten specific polynomials in P2,16

found by Castagnoli, Ganz, and Graber. They exhaustively searched all degree 16 poly-
nomials for those with optimum profiles. The polynomial f = 1F29F is the unique poly-
nomial with d(Cf130)⊥ = 6 and d(Cf258)⊥ = 4. Up to reciprocal, f = 1011B is the unique

polynomial with d(Cf28658)⊥ = 4 and d(Cf115)⊥ = 6. The authors of [559] suggest that
any cyclic redundancy check polynomials of degree 16 should be chosen only from the list
{13D65, 1F29F, 15935, 1A2EB, 1011B}.

14.9.62 Example The third polynomial in Table 14.9.2 gives the distance distribution for the poly-
nomial f(x) = 15B93 = x16 +x14 +x12 +x11 +x9 +x8 +x7 +x4 +x+1, which was the IEC
TC57 standard cyclic redundancy check polynomial until 1990. All its multiples of degrees
17–19 have weight 10 or more. All its multiples of degrees 20–25 have weight 8 or more. All
its multiples of degrees 26–128 have weight 6 or more. All its multiples of degree 129–254
have weight 5 or more. All its multiples of degrees 255 and higher have weight at least 2.
For each degree there exist specific multiples that attain these lower bounds; for example
there is a degree 17 multiple of f with weight 10.

14.9.63 Remark Table 14.9.3 gives the distance distribution for some specific polynomials of de-
gree 24. All were constructed via the generalized BCH code method: multiplying together
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minimum distance
f d(Cfn)⊥: 16 15 14 12 11 10 9 ref.

1323009 ranges of n: [558, 2083]
1401607 ranges of n: [558, 2083]
1805101 ranges of n: [2083]

15D6DCB ranges of n: 25 26 [27,36] [558]
17B01BD ranges of n: [25,26] [27,41] [558]
131FF19 ranges of n: 25 [26,33] [558]
15BC4F5 ranges of n: [25,26] [27,28] [29,31] [32,33] [34,35] [558]
1328B63 ranges of n: [25,30] [31,36] [558]

minimum distance
f d(Cfn)⊥: 8 7 6 5 4 2 ref.

1323009 ranges of n: [25,68] [69,2048] [2049,4094] [4095,∞] [558, 2083]
1401607 ranges of n: [25,55] [56,2048] [2049,4094] [4095,∞] [558, 2083]
1805101 ranges of n: [25,1023] [2083]

15D6DCB ranges of n: [37,83] [84,2050] [2051,4098] [4099,∞] [558]
17B01BD ranges of n: [42,95] [96,2048] [2049,4094] [4095,∞] [558]
131FF19 ranges of n: [34,37] [38,252] [253,4097] [4098,∞] [558]
15BC4F5 ranges of n: [36,41] [42,47] [78,217] [218,4095] [4096,∞] [558]
1328B63 ranges of n: [37,61] [62,846] [847,23 − 1] [223,∞] [558]

Table 14.9.3 Distance profiles of specific degree 24 polynomials.

minimal polynomials of elements from F2e and small factors, x and x + 1 [558, 2083]. For
discussion of BCH codes, see Section 15.1.

14.9.64 Remark Table 14.9.4 gives the distance distribution for some specific polynomials of degree
32. All were obtained via the generalized BCH code method: multiplying together minimal
polynomials of elements from F2e and small factors, x and x+ 1 [558, 2083].

14.9.65 Remark For the third polynomial in Table 14.9.4, used in many standards, Jain [1590]
has determined and published many of the minimum degree polynomials that establish the
ranges given in Table 14.9.4. The actual polynomials are given in Table 14.9.5. Jain has
determined all the polynomials that f divides which have the pattern of at most three
burst errors of length 4 each and several other specific patterns of errors.

14.9.66 Remark Koopman has performed an exhaustive search over all f ∈ P2,32 for 40 ≤ n ≤
131104. His primary concern was finding cyclic redundancy check polynomials which were
simultaneously good at typical Ethernet maximum transmission unit (MTU) lengths, n =
12112, and much longer lengths n ≥ 64, 000, so although his search has in principle solved
the d(Cfn)⊥ problem for all n in this range he did not specifically publish these, rather he
highlights the last three polynomials given in Table 14.9.4 and compares them to the others
[1792]. Discussion of the benefits and costs of using these various polynomials in different
scenarios appear in [558, 1590, 1792, 2083].

14.9.2.3 Bounds on d((Cfn)⊥) for polynomials of specific weight

14.9.67 Remark We now present divisibility results that are organized by the weight of the base
polynomial.

14.9.68 Theorem [2204] Let f(x) = xm + xl + 1 be a trinomial over F2 such that gcd(m, l) = 1. If
g is a trinomial multiple of f of degree at most 2m, then

1. g(x) = xdeg g−mf(x);

2. g(x) = f(x)2;

3. g(x) = x5 + x4 + 1 = (x2 + x+ 1)(x3 + x+ 1) or; its reciprocal,
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minimum distance
f d(Cfn)⊥: 20 18 17 16 15 14 13 12 11 10 9 8 ref.

1404098E2 ranges of n: [33,78] [79,1023] [558, 2083]
10884C912 ranges of n: [33,79] [80,1023] [558, 2083]

104C11DB7∗ ranges of n: [33,42] [43,44] [45,53] [54,66] [67,89] [90,123] [558, 1590]
1F1922815 ranges of n: [33,44] [45,48] [49,98] [99,1024] [558]

1F4ACFB13 ranges of n: 33 [34,35] 36 37 [38,43] [44,56] [57,306] [558]
1A833982B ranges of n: [33,35] [36,49] [50,53] [54,59] [60,90] [558]
1572D7285 ranges of n: [33,34] 35 [36,38] [39,52] [53,68] [69,80] [81,110] [558]
11EDC6F41 ranges of n: 33 [34,38] [39,40] [41,52] [53,79] [80,209] [558]
1741B8CD7 ranges of n: [40,48] [49,50] [51,184] [1792]
132583499 ranges of n: [40,48] [49,58] [59,166] [1792]
120044009 ranges of n: [1792]
100210801 ranges of n: [1792]

minimum distance
f d(Cfn)⊥: 7 6 5 4 3 2 ref.

1404098E2 ranges of n: [1024,∞] [558, 2083]
10884C912 ranges of n: [1024,∞] [558, 2083]

104C11DB7∗ ranges of n: [124, 203] [204,300] [301,3006] [3007,91639] [91640,232 − 1] [232,∞] [558, 1590]
1F1922815 ranges of n: [1025,2046] [2047,∞] [558]

1F4ACFB13 ranges of n: [307,32768] [32769,65534] [65535,∞] [558]
1A833982B ranges of n: [91,113] [114,1092] [1093,65537] [65538,∞] [558]
1572D7285 ranges of n: [111,266] [267,1029] [1030,65535] [65536,∞] [558]
11EDC6F41 ranges of n: [210,5275] [5276,231 − 1] [231,∞] [558]
1741B8CD7 ranges of n: [185,16392] [16393,114695] [114696,∞] [1792]
132583499 ranges of n: [167,32769] [32770,65538] [65539,∞] [1792]
120044009 ranges of n: [40,32770] [32771,65538] [65539,∞] [1792]
100210801 ranges of n: [40,65537] [65538,∞] [1792]

Table 14.9.4 Distance profiles of degree 32 polynomials.
∗The third polynomial f = 104C11DB7 is used in the FDDI, IEEE 802, AUTODIN-II standards.

t smallest degree t-nomial divisible by f
3 x91639 + x41678 + 1
4 x3006 + x2846 + x2215 + 1
5 x300 + x155 + x117 + x89 + 1
6 x203 + x196 + x123 + x85 + x79 + 1
7 x123 + x120 + x80 + x74 + x58 + x46 + 1
8 x89 + x88 + x41 + x36 + x16 + x3 + x2 + 1
9 x66 + x57 + x37 + x32 + x31 + x16 + x7 + x5 + 1

10 x53 + x38 + x36 + x33 + x30 + x27 + x26 + x7 + x3 + 1
11 x44 + x43 + x41 + x37 + x35 + x32 + x31 + x16 + x7 + x5 + 1
12 x42 + x30 + x26 + x24 + x21 + x18 + x13 + x8 + x7 + x5 + x3 + 1
13 x42 + x40 + x37 + x35 + x33 + x29 + x28 + x20 + x18 + x15 + x6 + x1 + 1.

Table 14.9.5 Smallest t-nomial divisors of f = 104C11DB7.
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4. g(x) = x5 + x+ 1 = (x2 + x+ 1)(x3 + x2 + 1).

14.9.69 Theorem [826] Let f(x) = xm + xl + xk + xj + 1 be a pentanomial over F2 such that
gcd(m, l, k, j) = 1. If g is a trinomial of degree at most 2m divisible by f , with g = fh,
then

1. f is one of the twenty-five polynomials given in Table 14.9.6 with the correspond-
ing h;

2. m ≡ 1 (mod 3) and f, g, h are as follows

f(x) = 1 + x+ x2 + xm−3 + xm

= (1 + x+ x2)(1 + xm−3 + xm−2),

h(x) = (1 + x) + (x3 + x4) + · · ·+ (xm−7 + xm−6) + xm−4,

f(x)h(x) = g(x) = 1 + x2m−6 + x2m−4; or

3. f is the reciprocal of one of the polynomials listed in the previous items.

No. f(x) h(x) type
1 x5 + x4 + x3 + x2 + 1 x3 + x2 + 1 p
2 x5 + x3 + x2 + x+ 1 x3 + x+ 1 p
3 x5 + x3 + x2 + x+ 1 x4 + x+ 1 p
4 x5 + x4 + x3 + x+ 1 x2 + x+ 1 p
5 x6 + x5 + x4 + x3 + 1 x4 + x3 + 1 r
6 x6 + x4 + x2 + x+ 1 x3 + x+ 1 i
7 x6 + x4 + x3 + x+ 1 x2 + x+ 1 p
8 x6 + x5 + x2 + x+ 1 x5 + x4 + x3 + x+ 1 p
9 x6 + x5 + x3 + x+ 1 x2 + x+ 1 r
10 x7 + x4 + x2 + x+ 1 x3 + x+ 1 r
11 x7 + x4 + x3 + x2 + 1 x3 + x2 + 1 p
12 x7 + x5 + x2 + x+ 1 x7 + x6 + x5 + x4 + x3 + x+ 1 p
13 x7 + x5 + x3 + x2 + 1 x5 + x4 + x3 + x2 + 1 r
14 x8 + x5 + x3 + x+ 1 x5 + x4 + x2 + x+ 1 p
15 x8 + x5 + x3 + x2 + 1 x8 + x7 + x5 + x4 + x3 + x2 + 1 p
16 x8 + x6 + x3 + x+ 1 x6 + x4 + x2 + x+ 1 r
17 x8 + x7 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r
18 x9 + x6 + x5 + x2 + 1 x8 + x5 + x4 + x2 + 1 i
19 x9 + x7 + x4 + x3 + 1 x8 + x6 + x4 + x3 + 1 i
20 x9 + x8 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r
21 x10 + x4 + x3 + x2 + 1 x8 + x7 + x4 + x2 + 1 i
22 x10 + x7 + x2 + x+ 1 x6 + x4 + x3 + x+ 1 r
23 x11 + x7 + x6 + x2 + 1 x8 + x7 + x4 + x2 + 1 r
24 x13 + x10 + x2 + x+ 1 x9 + x7 + x6 + x4 + x3 + x+ 1 r
25 x13 + x10 + x9 + x2 + 1 x12 + x9 + x8 + x6 + x4 + x2 + 1 p

Table 14.9.6 Table of pentanomials which divide trinomials: “p” in type indicates that the given

polynomial f is primitive, “i” indicates that f is irreducible, and “r” indicates that f is reducible.

14.9.70 Remark All primitive polynomials satisfy the gcd condition of Theorems 14.9.68
and 14.9.69, and thus, in particular, Theorems 14.9.68 and 14.9.69 hold for all primitive
trinomials and pentanomials over F2.
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14.9.71 Corollary If f(x) = xm+xl+xk+xj +1 is primitive over F2 and not one of the exceptions
given in Table 14.9.6 or their reciprocals, then, for m < n ≤ 2m,

1. Cfn is an orthogonal array of strength at least 3; or equivalently,

2. (Cfn)⊥, the dual code of Cfn , has minimum weight at least 4;

3. the cyclic redundancy check code derived from f , of length n, can detect all errors
in three or fewer positions;

4. the bias from the third moment of the Hamming weight in the linear feedback
shift register sequence generated from f is small.

14.9.72 Theorem [826] Let F be any field and f, g, h ∈ F[x], fh = g, w(f) = n > 1 and w(g) = m.
If there exists an f0 ∈ F[x] such that f(x) = f0(xk) for k > 1 then there exist gi ∈ F[x],
w(gi) = mi for 0 ≤ i < k such that

g(x) =
k−1∑
i=0

gi(x
k)xi (14.9.1)

m =

k−1∑
i=0

mi and mi 6= 1. (14.9.2)

14.9.73 Remark Theorem 14.9.72 can be used to simplify the analysis of multiples of f . An example
used in [2354] is given in Corollary 14.9.74 and was used in the proofs of Theorems 14.9.75
and 14.9.76.

14.9.74 Corollary [826] Let F be any field and f, g, h ∈ F[x], fh = g, w(f) = n and w(g) ≤ 3. If
there exists f0 ∈ F[x] such that f(x) = f0(xk) for k > 1 then there exists g0 ∈ F[x] such
that g(x) = g0(xk).

14.9.75 Theorem [826] Let f(x) = a + bxk + xm (a, b 6= 0) be a monic trinomial over F3. If
g(x) = c + xn (c 6= 0) is a monic binomial over F3 with degree at most 3m divisible by f
with g = fh, then f and g are as given in Table 14.9.7.

Case f(x) g(x)

1.1 1 + bxm/2 + xm −b+ x3m/2

1.2 −1 + bxm/2 + xm 1 + x2m

1.3 1 + bxm/2 + xm −1 + x3m

1.4 a+ xm/3 + xm −1 + x8m/3

1.5 b+ bx2m/3 + xm −1 + x8m/3

Table 14.9.7 Polynomials over F3 such that g = fh for monic trinomial f and monic binomial g.

14.9.76 Theorem [826] Let f(x) = a + bxk + xm (a, b 6= 0) be a monic trinomial over F3. If
g(x) = c+ dxl +xn (c, d 6= 0) is a monic trinomial over F3 with degree at most 3m divisible
by f with g = fh, then

1. g = f3;

2. f and g are as in the Table 14.9.8;

3. f and g are reciprocals of polynomials listed in Table 14.9.8.
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Case f(x) g(x)

1.1 −1 + bxm/2 + xm 1− bxm/2 + x3m

1.2 1 + bxm/2 + xm b+ xm/2 + x5m/2

1.3 −1 + bxm/2 + xm b− bxm + x5m/2

1.4 −1 + bxm/2 + xm −b− x3m/2 + x5m/2

1.5 1 + bxm/2 + xm b+ bx4m/2 + x5m/2

1.6 1 + bxm/2 + xm 1 + xm + x2m

1.7 −1 + bxm/2 + xm b+ xm + x3m/2

1.8 −1 + bxm/2 + xm −b− bxm + x3m/2

1.9 a− xm/3 + xm −a− xm/3 + x3m

1.10 a− xm/3 + xm 1 + x2m/3 + x8m/3

1.11 a+ xm/3 + xm a+ ax2m/3 + x7m/3

1.12 a− xm/3 + xm a− ax4m/3 + x7m/3

1.13 a− xm/3 + xm −a+ x5m/3 + x7m/3

1.14 a+ xm/3 + xm 1 + ax5m/3 + x2m

1.15 a− xm/3 + xm a+ ax4m/3 + x5m/3

1.16 −1 + bxm/4 + xm −b+ bx6m/4 + x11m/4

1.17 1 + bxm/4 + xm 1 + bx9m/4 + x10m/4

Table 14.9.8 Table of polynomials such that g = fh with f and g monic trinomials over F3.

See Also

§2.2 For tables of primitives of various kinds and weights.
§3.4 For results on the weights of irreducible polynomials.
§4.3 For results on the weights of primitive polynomials.
§10.2 For discussion on bias and randomness of linear feedback shift register sequences.
§14.1 For results of latin squares which are strongly related to orthogonal arrays.
§14.5 For a discussion of block designs, which include orthogonal arrays.
§15.1 Uses primitive polynomials to generate cyclic redundancy check and BCH codes.
§15.4 For results on turbo codes.
§17.3 For more discussion of applications of finite fields and polynomials.
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14.10 Ramanujan and expander graphs

M. Ram Murty, Queen’s University

Sebastian M. Cioabă, University of Delaware

In the last two decades, the theory of Ramanujan graphs has gained prominence primarily for
two reasons. First, from a practical viewpoint, they resolve an extremal problem in commu-
nication network theory (see for example [269, 1535]). Second, from a more aesthetic view-
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point, they fuse diverse branches of pure mathematics, namely, number theory, representa-
tion theory, and algebraic geometry. The purpose of this survey is to unify some of the recent
developments and expose certain open problems in the area. This survey is an expanded
version of [2208] and is by no means an exhaustive one and demonstrates a highly number-
theoretic bias. For other surveys, we refer the reader to [1535, 1922, 1967, 1968, 2525, 2837].
For a more up-to-date survey highlighting the connection between graph theory and auto-
morphic representations, we refer the reader to Li’s recent survey article [1924].

14.10.1 Graphs, adjacency matrices, and eigenvalues

14.10.1 Definition A graph X is a pair (V,E) consisting of a vertex set V = V (X) and an edge set
E = E(X) which is a multiset of unordered pairs of (not necessarily distinct) vertices.
Each edge consists of two vertices that are called its endpoints. A loop is an edge whose
endpoints are equal. Multiple edges are edges having the same pair of endpoints. A
simple graph is a graph having no loops nor multiple edges. If a graph has loops or
multiple edges, we will call it a multigraph. When two vertices u and v are endpoints
of an edge, they are adjacent and write u ∼ v to indicate this fact. A directed graph Y
is a pair (W,F ) consisting of a set of vertices W and a multiset F of ordered pairs of
vertices which are called arcs.

14.10.2 Remark All the graphs in this chapter are undirected unless stated explicitly otherwise.

14.10.3 Definition The degree of a vertex v of a graph X, denoted by deg(v), is the number of
edges incident with v, where we count a loop with multiplicity 1. A graph X is k-regular
if every vertex has degree k.

14.10.4 Proposition (Handshaking Lemma) For any simple graph X,
∑
v∈V (X) deg(v) = 2|E(X)|.

If X is a k-regular graph with n vertices, then |E(X)| = kn/2.

14.10.5 Definition An adjacency matrix A = A(X) of a graph X with n vertices is an n×n matrix
with rows and columns indexed by the vertices of X, where the (x, y)-th entry equals
the number of edges between vertex x and vertex y. As X is an undirected graph with n
vertices, the matrix A(X) is symmetric and therefore, its eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn
are real. The multiset of eigenvalues of X is the spectrum of X.

14.10.6 Remark We remark that the adjacency matrix defined above depends on the labeling of the
vertices of X. Different labelings of the vertices of a graph X may possibly yield different
adjacency matrices. However, all these adjacency matrices are similar to each other (by
permutation matrices) and thus, their spectrum is the same.

14.10.7 Remark One can define an adjacency matrix of a directed graph Y = (W,A) similarly. Given
a labeling of the vertices W of Y , the (x, y)-th entry of the adjacency matrix corresponding
to this labeling equals the number of arcs from x to y. Adjacency matrices of directed graphs
may be non-symmetric.

14.10.8 Example The spectrum of the complete graph Kn on n vertices is (n− 1)(1), (−1)(n−1),
where the exponent signifies the multiplicity of the respective eigenvalue. The Petersen
graph has spectrum 3(1), 1(5),−2(4).

14.10.9 Theorem Let X be a graph on n vertices with maximum degree ∆ and average degree d.
Then d ≤ λ1 ≤ ∆ and |λi| ≤ ∆ for every 2 ≤ i ≤ n.
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14.10.10 Definition For a multigraph X, a walk of length r from x to y is a sequence x =
v0, v1, . . . , vr = y of vertices of X such that vivi+1 is an edge of X for any i =
0, 1, . . . , r − 1. The length of this walk is r. A closed walk is a walk where the start-
ing vertex x is the same as the last vertex y.

14.10.11 Definition A path is a walk with no repeated vertices. A cycle is a closed walk with no
repeated vertices except the starting vertex.

14.10.12 Remark A word of caution must be inserted here. In graph theory literature, the distinction
between a walk and a path is as we have defined it above. However, in number theory circles,
the finer distinction is not made and one uses the word “path” to mean a “walk”; see for
example, [2523, 2789].

14.10.13 Definition A graph X is connected if for every two distinct vertices x and y, there is a
path from x to y.

14.10.14 Proposition For every graphX with adjacency matrix A and any integer r ≥ 1, the (x, y)-th
entry of Ar equals the number of walks of length r between x and y.

14.10.15 Proposition The number of closed walks of length r in a graph X with n vertices equals
λr1 + λr2 + · · ·+ λrn.

14.10.16 Definition An independent set in a graph X is a subset of vertices that are pairwise non-
adjacent. A graph X is bipartite if its vertex set can be partitioned into two independent
sets A and B; X is complete bipartite and denoted by K|A|,|B| if it contains all the edges
between A and B.

14.10.17 Proposition A graph is bipartite if and only if it does not contain any cycles of odd length.

14.10.18 Theorem If X is a k-regular and connected graph with n vertices, then λ1 = k and the
multiplicity of k is 1 with the eigenspace of k spanned by the all 1 vector of dimension n.
If X is a k-regular and connected graph, then X is bipartite if and only if λn = −k.

14.10.19 Definition If X is a k-regular and connected graph, then the eigenvalue k of X is trivial.
All other eigenvalues of X are non-trivial. Let λ(X) = max |λi|, where the maximum is
taken over all non-trivial eigenvalues of X. The parameter λ(X) is the second eigenvalue
of X by some authors. The second largest eigenvalue of X is λ2(X) and λ(X) ≥ λ2(X).

14.10.20 Definition The distance d(x, y) between two distinct vertices x and y of a connected graph
X is the length of a shortest path between x and y. The diameter D of a connected
graph X is the maximum of d(x, y), where the maximum is taken over all pairs of distinct
vertices x 6= y of X.

14.10.21 Remark When k ≥ 3, if X is a k-regular and connected graph with n vertices and diameter

D, then n ≤ 1 + k + k(k − 1) + · · · + k(k − 1)D−1 = 1 + k · (k−1)D−1
k−2 and consequently,

D ≥ logk−1

(
(n−1)(k−2)

k + 1
)
> log(n−1)

log(k−1) −
log(k/(k−2))

log(k−1) . Thus, the diameter of any connected

k-regular graph is at least logarithmic in the order of the graph. The next theorem implies
that when the non-trivial eigenvalues of a k-regular connected graph are small, then the
above inequality is tight up to a multiplicative constant.



Combinatorial 645

14.10.22 Theorem [637] If X is a connected non-bipartite k-regular graph with n vertices and di-
ameter D, then:

D ≤ log(n− 1)

log(k/λ(X))
+ 1.

14.10.23 Remark Kahale [1641] obtained an upper bound on the minimum distance between i subsets
of the same size of a regular graph in terms of the i-th largest eigenvalue in absolute
value. Kahale also constructed examples of k-regular graphs on n vertices having λ(X) =
(1+o(1))2

√
k − 1 and D = 2(1+o(1)) logk−1 n showing the previous result is asymptotically

best possible. Here the o(1) term tends to 0 as n goes to infinity.

14.10.24 Remark A similar result can be derived for k-regular bipartite graphs; if X is a bipartite
k-regular and connected graph of diameter D, we have (see Quenell [2433])

D ≤ log(n− 2)/2

log(k/λ′(X))
+ 2,

where λ′(X) is the maximum absolute value of the eigenvalues of X that are not k nor −k.

14.10.25 Remark Chung, Faber, and Manteuffel [638] and independently, Van Dam and
Haemers [2839] obtained slight improvements of the previous diameter bounds.

14.10.26 Definition The chromatic number χ(X) of a graph X is the minimum number of colors
that can be assigned to the vertices of a graph such that any two adjacent vertices
have different colors. The largest order of an independent set of vertices of X is the
independence number of X and is denoted by α(X).

14.10.27 Remark The chromatic number of X is the minimum number of independent sets that

partition the vertex set of X and consequently, χ(X) ≥ |V (X)|
α(X) .

14.10.28 Theorem [1287] If X is a k-regular non-empty graph, then

α(X) ≤ n(−λn)

k − λn
and so

χ(X) ≥ 1 +
k

−λn
.

14.10.29 Remark An immediate consequence of the previous result is that α(X) ≤ nλ(X)
k+λ(X) and

χ(X) ≥ 1 + k
λ(X) for any non-bipartite connected k-regular graph X. These facts show that

a good upper bound for the absolute values of the non-trivial eigenvalues of a regular graph
will yield non-trivial bounds for the independence and chromatic number.

14.10.30 Remark The following theorem shows that the eigenvalues of a regular graph are closely
related to its edge distribution.

14.10.31 Theorem [81] If X is a k-regular connected graph with eigenvalues k = λ1 > λ2 ≥ · · · ≥
λn ≥ −k, let λ := max(|λ2|, |λn|). For S, T ⊂ V (X), denote by e(S, T ) the number of edges
with one endpoint in S and another in T . Then for all S, T ⊂ V (X)∣∣∣∣e(S, T )− k|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
< λ

√
|S||T |.

14.10.32 Remark The previous theorem states that k-regular graphs X with small non-trivial eigen-
values (compared to k) have their edges uniformly distributed (similar to random k-regular
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graphs). Such graphs are called pseudorandom graphs and are important in many situations
(see Krivelevich-Sudakov’s survey [1807]). Bilu and Linial [282] have obtained a converse of
the previous result of Alon and Chung.

14.10.2 Ramanujan graphs

14.10.33 Definition A k-regular connected multigraph X is a Ramanujan multigraph if |λi| ≤
2
√
k − 1 for every eigenvalue λi 6= k. A Ramanujan graph is a Ramanujan multigraph

having no loops nor multiple edges.

14.10.34 Remark We mention that the definition of a Ramanujan graph used by other authors
is slightly weaker. For example, Sarnak in [2525] calls a k-regular graph Ramanujan if
λ2(X) ≤ 2

√
k − 1.

14.10.35 Example The complete graph Kn is an (n−1)-regular Ramanujan graph as its eigenvalues
are (n − 1)(1), (−1)(n−1), where the exponents denote the multiplicities of the eigenvalues.
The complete bipartite graph Kn,n has eigenvalues n(1), 0(2n−2),−n(1) and is an n-regular
Ramanujan graph.

14.10.36 Remark In [80, p.95], Alon announced a proof with Boppana of the fact that for any
k-regular graph X of order n, λ2(X) ≥ 2

√
k − 1 − O((logk n)−1), where the constant in

the O term depends only on k. Many researchers refer to this result as the Alon-Boppana
Theorem. Other researchers refer to the following statement proved by Nilli (pseudonym
for Alon) in [2289] as the Alon-Boppana Theorem.

14.10.37 Theorem [2289] If X is a k-regular and connected graph with diameter D ≥ 2b+ 2, then

λ2(X) ≥ 2
√
k − 1− 2

√
k − 1− 1

b+ 1
.

14.10.38 Remark The Alon-Boppana Theorem and Remark 14.10.21 imply that if (Xi)i≥1 is a
sequence of k-regular and connected graphs with limi→+∞ |V (Xi)| = +∞, then

lim inf
i→∞

λ2(Xi) ≥ 2
√
k − 1.

14.10.39 Remark The best lower bound for the second largest eigenvalue λ2(X) of a k-regular graph
of diameter D is due to Friedman [1126] who showed that

λ2(X) ≥ 2
√
k − 1 cos θk,t ≥ 2

√
k − 1 cos

π

t+ 1
(14.10.1)

where t is the largest integer such that D ≥ 2t and θk,t ∈
[
π
t+5 ,

π
t+1

]
is the smallest positive

solution of the equation k
2k−2 = sin(t+1)θ cos θ

sin tθ . The number 2
√
k − 1 cos θk,t is the largest

eigenvalue of the k-regular tree Tk,t of depth t; this tree has a root vertex x and exactly
k(k − 1)i−1 vertices at distance i from x for each 1 ≤ i ≤ t. Friedman used analytic tools
involving Dirichlet and Neumann eigenvalues for graphs with boundaries to prove (14.10.1).
Later, Nilli [2290] gave an elementary proof of a slightly weaker bound.

14.10.40 Remark We outline here an elementary proof of the inequality λ2(X) ≥ 2
√
k − 1 cos π

t+1 for
every connected k-regular graph X of diameter D ≥ 2t+2. The first ingredient of the proof
is that the largest eigenvalue of any subgraph induced by a ball of radius t of X is larger
than the largest eigenvalue of Tk,t. The second is that if u and v are vertices at distance at
least 2t+2 in X, then the subgraph induced by the vertices at distance at most t from u or v
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has exactly two components X(u) and X(v). By Cauchy eigenvalue interlacing, the second
largest eigenvalue of X is greater than the minimum of the largest eigenvalue of X(u) and
X(v) which by the previous argument is at least 2

√
k − 1 cos θk,t ≥ 2

√
k − 1 cos π

t+1 .

14.10.41 Remark At this point, it is worth stating that Friedman [1126] (see also Nilli [2290]) proved
the stronger statement that if X is a k-regular graphs containing a subset of r points each
of distance at least 2t from one another, then λr(X) ≥ 2

√
k − 1 cos θk,t ≥ 2

√
k − 1 cos π

t+1 .
This implies that the r-th largest eigenvalue λr(X) of any connected k-regular graph X is

at least 2
√
k − 1

(
1− π2

2f2 +O(f−4)
)

, where f =
logk−1(n/r)

2 .

14.10.42 Remark One might wonder if the behavior of the negative eigenvalues of a connected k-
regular graph X is similar to the behavior of the negatives of the positive eigenvalues of X.
If X is bipartite, then the spectrum of X is symmetric with respect to 0 and this settles the
previous question. In general, it turns out that additional conditions are needed in order to
obtain similar results for the negative eigenvalues. This is because there are regular graphs
with increasing order whose eigenvalues are bounded from below by an absolute constant.
For example, the eigenvalues of a line graph are at least −2. It turns out that the number
of odd cycles plays a role in the behavior of the negative eigenvalues of regular graphs. The
odd girth of a graph X is the smallest length of a cycle of odd length.

14.10.43 Theorem [1126, 2290] If X is a connected k-regular graph of order n with a subset of r
points each of distance at least 2t from one another, and odd girth at least 2t, then

λn−r(X) ≤ −2
√
k − 1 cos θk,t = −2

√
k − 1 cos

π

t+ 1
. (14.10.2)

14.10.44 Corollary [1923] If (Xi)i≥0 is a sequence of k-regular graphs of increasing orders such that
the odd girth of Xi tends to infinity as i → ∞, then lim supi→∞ µl(Xi) ≤ −2

√
k − 1, for

each l ≥ 1, where µl(X) denotes the l-th smallest eigenvalue of X.

14.10.45 Theorem [646, 648] For an integer r ≥ 3, let cr(X) denote the number of cycles of length
r of a graph X. If (Xi)i≥0 is a sequence of k-regular graphs of increasing orders such that

limi→∞
c2r+1(Xi)
|V (Xi)| = 0 for each r ≥ 1, then lim supi→∞ µl(Xi) ≤ −2

√
k − 1, for each l ≥ 1.

14.10.46 Remark The difficulty of constructing infinite families of Ramanujan graphs is also illus-
trated by the following result of Serre.

14.10.47 Theorem [2594] For any ε > 0, there exists a positive constant c = c(ε, k) such that
for every k-regular graph X on n vertices, the number of eigenvalues λi of X such that
λi > (2− ε)

√
k − 1 is at least c · n.

14.10.48 Remark Different short and elementary proofs of Serre’s theorem were found indepen-
dently by Nilli [2290] and Cioabă [646, 648]. Nilli’s proof is similar to Friedman’s argument
from [1126] while Cioabă’s proof uses the fact that the trace of Al is the number of closed
walks of length l. See also [646, 648] for a similar theorem to Theorem 14.10.47 for the small-
est eigenvalues of regular graphs. These proofs, as well as extensions of the Alon-Bopanna
theorem (see recent work of Mohar [2118]) rely on the notion of the universal cover of a
graph; see Definitions 14.10.108 and 14.10.109, and Theorem 14.10.110 for more details.

14.10.49 Remark The idea behind all the proofs of Serre’s theorem indicated above is that the
universal cover of a finite k-regular graph is the rooted infinite k-regular tree Tk. This implies
that the number of closed walks of even length starting at some vertex of a finite k-regular
graph is at least the number of closed walks of the same length starting at the root of the
infinite k-regular tree. The number 2

√
k − 1 is the spectral radius of the adjacency operator

of the infinite k-regular tree (for more details see [1126, 1535]). In some circumstances, the
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lower bound for the second eigenvalue of a k-regular graph can be improved beyond 2
√
k − 1

[1927, 2118].

14.10.50 Remark Greenberg and Lubotzky (see Chapter 4 of [1967] or [646, 647] for a short ele-
mentary proof) extended the Alon-Bopanna bound to any family of general graphs with
isomorphic universal cover. If (Xi)i≥1 is a family of finite connected graphs with universal

cover X̃ and ρ is the spectral radius of the adjacency operator of X̃, then lim inf λ2(Xi) ≥ ρ
as i → +∞. For extensions of Alon-Boppana theorem and Serre’s theorem for irregular
graphs, see [646, 647, 1534, 2118].

14.10.51 Remark The notion of Ramanujan graph has been extended to hypergraphs and studied in
this setting. Again, these notions lead to the use of the Ramanujan conjecture formulated
for higher GLn in the Langlands program.

14.10.52 Definition A hypergraph X = (V,E) is a pair consisting of a vertex set V and a set of
hyperedges E consisting of subsets of V . If all the edges are of the same size r, X is an r-
uniform hypergraph or r-graph. In the familiar setting of a graph, an edge is viewed as a
2-element subset of V and is thus a 2-uniform hypergraph. One class of hypergraphs that
are studied are the (k, r)-regular hypergraphs in which each edge contains r elements and
each vertex is contained in k edges. For an ordinary graph, r = 2 and this generalizes the
notion of a k-regular graph. In this special setting, the adjacency matrix A is a |V |× |V |
matrix with zero diagonal entries and the (i, j)-th entry is the number of hyperedges
that contain {i, j}.

14.10.53 Remark One can show easily that k(r − 1) is an eigenvalue of A and this is the trivial
eigenvalue. With this definition in place, a Ramanujan hypergraph is defined as a finite
connected (k, r)-regular hypergraph such that every eigenvalue λ of A with |λ| 6= k(r − 1)
satisfies

|λ− (r − 2)| ≤ 2
√

(k − 1)(r − 1).

We refer the reader to the important work of Li [1925] for further details.

14.10.3 Expander graphs

14.10.54 Definition For any subset A of vertices of a graph X, the edge boundary of A, denoted
∂A, is

∂A = {xy ∈ E(X) : x ∈ A, y /∈ A}.
That is, the edge boundary of A consists of edges with one endpoint in A and another
outside A.

14.10.55 Definition The edge-expansion constant of X, denoted by h(X), is defined as

h(X) = min

{ |∂A|
|A| : A ⊂ X, |A| ≤ |V (X)|

2

}
.

14.10.56 Definition A family of k-regular graphs (Xi)i≥1 with |V (Xi)| increasing with i, is a family
of expanders if there exists a positive absolute constant c such that h(Xi) > c for every
i ≥ 1.
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14.10.57 Remark Informally, a family of k-regular expanders is a family of sparse (k fixed and
|V (Xi)| → +∞ as i → +∞ imply that the number of edges of Xi is linear in its number
of vertices), but highly connected graphs (h(Xi) > c means that in order to disconnect Xi,
one must remove many edges).

14.10.58 Example [2005] Let Xm denote the following 8-regular graph on m2 vertices. The vertex
set of Xm is Z/mZ× Z/mZ. The neighbors of a vertex (x, y) are (x± y, y), (x, y ± x), (x±
y + 1, y), (x, y ± x+ 1). The family (Xm)m≥4 is the first explicit family of expanders. Mar-
gulis [2005] proved that (Xm)m≥4 are expanders using representation theory. Margulis [2005]
used the fact that the group SL3(Z) has Kazhdan property T. Groups having this property
or the weaker property τ can be used to construct infinite families of constant-degree Cay-
ley graphs expanders. We refer the reader to [1535, 1967, 1968] for nice descriptions and
explanations of these properties and their relation to expanders.

14.10.59 Remark Expander graphs play an important role in computer science, mathematics, and
the theory of communication networks; see [269, 1535]. These graphs arise in questions about
designing networks that connect many users while using only a small number of switches.

14.10.60 Theorem [80, 2117] If X is a connected k-regular graph, then√
k2 − λ2

2 ≥ h(X) ≥ k − λ2

2
.

14.10.61 Remark The previous theorem shows that constructing an infinite family of k-regular
expanders (Xi)i≥1 is equivalent to constructing an infinite family of k-regular graphs (Xi)i≥1

such that k − λ2(Xi) is bounded away from zero.

14.10.4 Cayley graphs

14.10.62 Definition Let G be a group written in multiplicative notation and let S be a subset of
elements of G that is closed under taking inverses and does not contain the identity. The
Cayley graph of G with respect to S (denoted by X(G,S)) is the graph whose vertex set
is G where x ∼ y if and only if x−1y ∈ S. If G is abelian, then it is common to use the
additive notation in the definition of X(G,S): x ∼ y if and only if y − x ∈ S.

14.10.63 Remark In general, if S is an arbitrary multiset of G, denote by X(G,S) the directed graph
with vertex set G and arc set {(x, y) : x−1y ∈ S}. If S is inverse-closed and does not contain
the identity, then this graph is undirected and has no loops.

14.10.64 Theorem Let G be a finite abelian group and S a symmetric subset of G of size k. The
eigenvalues of the adjacency matrix of X(G,S) are given by

λχ =
∑
s∈S

χ(s)

where χ ranges over all irreducible characters of G.

14.10.65 Remark For each irreducible character of G, let vχ denote the column vector (χ(g) : g ∈ G).
The proof of Theorem 14.10.64 follows by showing that vχ is an eigenvector of the adjacency
matrix of X(G,S) corresponding to eigenvalue λχ =

∑
s∈S χ(s).

14.10.66 Remark Notice that for the trivial character χ = 1, we have λ1 = k. If we have for all
χ 6= 1 ∣∣∣∣∣∑

s∈S
χ(s)

∣∣∣∣∣ < k
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then the graph is connected by our earlier remarks. Thus, to construct Ramanujan graphs,
we require ∣∣∣∣∣∑

s∈S
χ(s)

∣∣∣∣∣ ≤ 2
√
k − 1

for every non-trivial irreducible character χ of G. This is the strategy employed in many of
the explicit constructions of Ramanujan graphs.

14.10.67 Example A simple example can be given using Gauss sums. If p ≡ 1 (mod 4) is a prime,
let G = Z/pZ and S = {x2 : x ∈ Z/pZ} be the multiset of squares. The multigraph X(G,S)
is easily seen to be Ramanujan in view of the fact (see for example [2207, p. 81])∣∣∣∣∣∣

∑
x∈Z/pZ

e2πiax2/p

∣∣∣∣∣∣ =
√
p

for any a 6= 0. By our convention in the computation of degree of a vertex, we see that
X(G,S) is a p-regular graph.; see [1807] for other related examples.

14.10.68 Example When q ≡ 1 (mod 4) is a prime power, the Paley graph of order q is the Cayley
graph X(G,S) of the additive group of a finite field G = Fq with respect to the set S of
non-zero squares. This simple and undirected graph has q vertices, is connected and regular

of degree q−1
2 and its non-trivial eigenvalues are

−1−√q
2 and

−1+
√
q

2 , each of multiplicity
q−1

2 . The Paley graph is Ramanujan when q ≥ 9.

14.10.69 Remark The proof of Theorem 14.10.64 is reminiscent of the Dedekind determinant formula
in number theory. This formula computes detA, where A is the matrix whose (i, j)-th
entry is f(ij−1) for any function f defined on the finite abelian group G of order n. The
determinant is ∏

χ

∑
g∈G

f(g)χ(g)

 .

14.10.70 Definition Let G be an abelian group written in the additive notation and S ⊂ G. The
sum graph of G with respect to S (denoted by Y (G,S)) has G as vertex set and x ∼ y
if and only if x+ y ∈ S.

14.10.71 Theorem [1922, p. 197] Let G be an abelian group. The eigenvalues of Y (G,S) are given
as follows. For each irreducible character χ of G, define

eχ =
∑
s∈S

χ(s).

If eχ = 0, then vχ and vχ−1 are both eigenvectors with eigenvalues 0. If eχ 6= 0, then

|eχ|vχ ± eχvχ−1

are two eigenvectors with eigenvalues ±|eχ|.
14.10.72 Example Using Theorem 14.10.71, Li [1921] constructed Ramanujan graphs in the following

way. Let Fq denote the finite field of q elements. Let G = Fq2 and take for S the elements of
G of norm 1. This is a symmetric subset of G and the Cayley graph X(G,S) turns out to
be Ramanujan. The latter is a consequence of a theorem of Weil estimating Kloosterman
sums [2589].
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14.10.73 Theorem [2208] Let G = Fq be a finite field of q = pm elements and f(x) a polynomial
with coefficients in Fq and of degree 2 or 3. Let S be the multiset

{f(x) : x ∈ Fq}.

Suppose S is symmetric. Then X(G,S) is a Ramanujan graph if the degree of f is 2 and is
almost Ramanujan if the degree of f is 3.

14.10.74 Remark The required character sum estimates in Theorem 14.10.73 come from Weil’s proof
of the Riemann hypothesis for the zeta functions of curves over finite fields. In particular,
we have for all a ∈ Fq, a 6= 0,∣∣∣∣∣∣

∑
x∈Fq

exp(2πitrFq/Fp(af(x))/p)

∣∣∣∣∣∣ ≤ (deg f − 1)
√
q

provided f is not identically zero; see [1922, p. 94]. In particular, if f has degree 3, we get
the estimate of 2

√
q for the exponential sum. For example, if u ∈ Z/pZ and we take

S = {x3 + ux : x ∈ Z/pZ},

then S is symmetric and, according to our convention, X(G,S) is a p-regular graph. In
addition, it is an almost Ramanujan graph since∣∣∣∣∣∣

∑
x∈Z/pZ

exp(2πia(x3 + ux)/p)

∣∣∣∣∣∣ ≤ 2
√
p

by virtue of the Riemann hypothesis for curves (proved by Weil).

14.10.75 Remark We observe that even though there are many constructions of Ramanujan graphs
that are abelian Cayley graphs, it is actually impossible to construct an infinite family of
constant-degree abelian Cayley graphs that are Ramanujan. There are several proofs of this
fact in the literature, see [83, 645, 1128]. Friedman, Murty, and Tillich [1128] proved that if
X is a k-regular abelian Cayley graph of order n, then λ2(X) ≥ k− cn−4/k, where c is some
absolute positive constant. Cioabă [645] proved that for fixed k ≥ 3 and ε > 0, there is a
positive constant C = C(ε, k) such that any k-regular abelian Cayley graph on n vertices
has at least Cn eigenvalues that are larger than k − ε.

14.10.76 Remark Lubotzky and Weiss [1970] proved the stronger result that it is impossible to
construct infinite families of constant-degree expanders that are Cayley graphs of solvable
groups of bounded derived length.

14.10.77 Remark The eigenvalues of Cayley graphs can be calculated even in the case of non-abelian
groups. This is essentially contained in a paper by Diaconis and Shahshahani [834]. Using
their results, one can easily generalize the Dedekind determinant formula as follows (and
which does not seem to be widely known). Let G be a finite group and f a class function
on G. Then the determinant of the matrix A whose rows (and columns) are indexed by the
elements of G and whose (i, j)-th entry f(i−1j) is given by

∏
χ

 1

χ(1)

∑
g∈G

f(g)χ(g)

χ(1)

where the product is taken over the distinct irreducible characters of G.
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14.10.78 Theorem [834] Let G be a finite group and S a symmetric subset which is stable under
conjugation. The eigenvalues of the Cayley graph X(G,S) are given by

λχ =
1

χ(1)

∑
s∈S

χ(s)

as χ ranges over all irreducible characters of G. Moreover, the multiplicity of λχ is χ(1)2.

14.10.79 Remark We remark that the λχ in the above theorem need not be all distinct. For example,
if there is a non-trivial character χ which is trivial on S, then the multiplicity of the
eigenvalue |S| is at least 1 + χ(1)2. We refer the reader to Babai [156] for a more detailed
proof of the above result in a slightly more general context.

14.10.80 Remark The intriguing question of what groups can be used to construct infinite families of
constant-degree Cayley graphs expanders was formulated as a conjecture by Babai, Kantor,
and Lubotzky [157] in 1989.

14.10.81 Conjecture [157] Let (Gi)i≥0 be a family of non-abelian simple groups. There exist gener-
ating sets Si of constant size such that (X(Gi, Si))i≥0 form a family of expanders.

14.10.82 Remark As a supporting fact of this conjecture, we mention the result of Babai, Kantor,
and Lubotzky [157] who proved constructively that any simple non-abelian group G contains
a set S of at most 7 generators such that the diameter of the Cayley graph X(G,S) is at
most c log |G|, where c > 0 is some absolute constant.

14.10.83 Remark The previous conjecture of Babai, Kantor, and Lubotzky is true and its recent
resolution has been possible due to the effort of several researchers. We refer the reader
to the works of Kassabov, Lubotzky, and Nikolov [1693], Breuillard, Green, and Tao [411],
and the recent survey by Lubotzky [1968] for a thorough account of the solution of this
conjecture.

14.10.5 Explicit constructions of Ramanujan graphs

14.10.84 Definition Let X be a graph. A non-backtracking walk of length r in X is a sequence
x0, x1, . . . , xr of vertices of X such that xi is adjacent to xi+1 for each 0 ≤ i ≤ r−1 and
xi−1 6= xi+1 for each 1 ≤ i ≤ r− 1. For r ∈ N, define the matrix Ar as follows: Ar(x, y)
equals the number of non-backtracking walks of length r that start at x and end at y.

14.10.85 Proposition If X is a k-regular graph with n vertices and adjacency matrix A, then

1. A0 = In, A1 = A;

2. A2 = A2
1 − kIn;

3. Ar+1 = A1Ar − (k − 1)Ar−1 for every r ≥ 2.

14.10.86 Proposition [780, 1969] Let Um denote the Chebychev polynomial of the second kind

defined by expressing sin(m+1)θ
sin θ as a polynomial of degree m in cos θ:

Um(cos θ) =
sin(m+ 1)θ

sin θ
.

Then
bm2 c∑
r=0

Am−2r = (k − 1)
m
2 Um

(
A

2
√
k − 1

)
.
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14.10.87 Definition A graph X is vertex-transitive if the automorphism group of X acts transitively
on its vertex set which means that for any x, y ∈ V (X) there exists an automorphism
σ of X such that σ(x) = y.

14.10.88 Proposition [780, 1969] If X is a k-regular graph with n vertices and eigenvalues k = λ1 ≥
λ2 ≥ · · · ≥ λn, then

∑
x∈V

b l2 c∑
r=0

(Al−2r)(x, x) = (k − 1)
l
2

n∑
j=1

sin(l + 1)θj
sin θj

.

where cos θj =
λj

2
√
k−1

for each 1 ≤ j ≤ n. If X is vertex-transitive of degree k, then

(Aj)(x, x) = (Aj)(y, y) for any j and x, y ∈ V (X) and thus,

n

b l2 c∑
r=0

(Al−2r)(x, x) = (k − 1)
l
2

n∑
j=1

sin(l + 1)θj
sin θj

.

for every vertex x ∈ V (X).

14.10.89 Remark Note that θ1 = i log
√
k − 1 as λ1 = k and θn = π+ i log

√
k − 1 if λn = −k. Also,

it is important to observe that θj is real if |λj | = |2
√
k − 1 cos θj | ≤ 2

√
k − 1; otherwise,

θj = iIm(θj) is purely imaginary if λj > 2
√
k − 1 and θj = π + iIm(θj) if λj < 2

√
k − 1.

14.10.90 Remark The general idea of using quaternions (see Lubotzky, Phillips, and Sarnak [1969]
or Margulis [2006]) to construct infinite families of k-regular Ramanujan graphs can be
summarized in the following two steps:

1. The first step consists of constructing the infinite k-regular tree Tk as the free
group of some group G of quaternions integers with some suitable set of k gener-
ators Sk. Thus, Tk will be identified with the Cayley graph X(G,Sk).

2. Finite k-regular graphs are constructed from the infinite k-regular tree Tk by
taking suitable finite quotients of it. More precisely, by choosing appropriate
normal subgroups H of G of finite index, one can construct finite k-regular graphs
which are the Cayley graphs of the quotient group G/H with the set of generators
being formed by the cosets of the form αH where α ∈ Sk.

14.10.91 Construction [1969, 2006] Let p and q be unequal primes p, q ≡ 1 (mod 4). Let u be an
integer so that u2 ≡ −1 (mod q). By a classical formula of Jacobi, we know that there are
8(p + 1) solutions v = (a, b, c, d) such that a2 + b2 + c2 + d2 = p. Among these, there are
exactly p+ 1 with a > 0 and b, c, d even, as is easily shown. To each such v we associate the
matrix

ṽ =

(
a+ ub c+ ud
−c+ ud a− ub

)
which gives p + 1 matrices in PGL2(Z/qZ). We let S be the set of these matrices ṽ and
define

Xp,q =

X(PGL2(Z/qZ), S), if
(
p
q

)
= −1,

X(PSL2(Z/qZ), S), if
(
p
q

)
= 1,

(14.10.3)

where
(
p
q

)
is the Legendre symbol that equals 1 if p is a square modulo q and −1 if p is

not a square modulo q. In [1969], it is shown that the Cayley graphs Xp,q are Ramanujan
graphs. As we vary q, we get an infinite family of such graphs, all (p+ 1)-regular.
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14.10.92 Remark The integer quaternion algebra is

H(Z) = {a0 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ Z},

where i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i,ki = −ik = j. If α =
a0 + a1i + a2j + a3k, then α = a0 − a1i − a2j − a3k and N(α) = αα = a2

0 + a2
1 + a2

2 + a2
3.

The units of H(Z) are ±1,±i,±j,±k. Let p be a prime with p ≡ 1 (mod 4). By Jacobi’s
Theorem, there are 8(p + 1) integer quaternions α = a0 + a1i + a2j + a3k in H(Z) such
that N(α) = p. As p ≡ 1 (mod 4), only one of the integers ai will be odd. Let S be the
set of those p + 1 elements of H(Z) such that N(α) = p, a0 > 0 is odd and a1, a2, a3 even
(this last fact is denoted by α ≡ 1 (mod 2) from now on). As N(α) = N(α), the set S
consists of s = p+1

2 conjugate pairs S = {α1, α1, . . . , αs, αs}. A reduced word of length m
with letters in S is defined to be a word of length m in the elements of S which does not
contain subwords of the form αjαj nor αjαj .

14.10.93 Construction (Different construction of the graphs Xp,q) Define Λ′(2) = {α : α ∈ Z, α ≡ 1
(mod 2), N(α) = pl, l ∈ Z}. As N(αβ) = N(α)N(β) and the properties of quaternion
multiplication, it follows that Λ′(2) is closed under multiplication. Define α ∼ β for α, β ∈
Λ′(2) whenever ±pv1α = pv2β for some v1, v2 ∈ Z. This is an equivalence relation and
[α] will denote the equivalence class of α ∈ Λ′(2). The set of equivalence classes Λ(2) =
{[α] : α ∈ Λ′(2)} forms a group with the multiplication [α][β] = [αβ] and [α][α] = [1]. One
of the key observations at this point is that, by previous results, the group Λ(2) is free
on [α1], [α2], . . . , [αs]. This means that the Cayley graph of Λ(2) with respect to the set
[S] = {[α1], [α1], . . . , [αs], [αs]} will be the infinite (p+ 1)-regular tree.

For m coprime with p, let

Λ(2m) = {[α] : α = a0 + a1i + a2j + a3k ∈ Λ′(2), 2m|aj , 1 ≤ j ≤ 3}.

It can be shown that Λ(2m) is a normal subgroup of Λ(2) of finite index. Let q be a prime.
The graphs Xp,q and the Cayley graph of Λ(2)/Λ(2q) with respect to the set of generators
α1Λ(2q), α1Λ(2q), . . . , αsΛ(2q), αsΛ(2q) are isomorphic as shown by the next result.

14.10.94 Proposition Let φ : Λ(2)→ PGL (2,Z/qZ) defined as follows:

φ([a0 + a1i + a2j + a3k]) =

[
a0 + ua1 a2 + ua3

−a2 + ua3 a0 − ua1

]
where u2 ≡ −1 (mod q). Then φ is a group homomorphism whose kernel is Λ(2q) and whose

image is PGL (2,Z/qZ) if
(
p
q

)
= −1 and PSL (2,Z/qZ) if

(
p
q

)
= 1.

14.10.95 Definition Let Q = Q(x0, x1, x2, x3) denote the quadratic form

Q(x0, x1, x2, x3) = x2
0 + (2q)2x2

1 + (2q)2x2
2 + (2q)2x2

3.

Denote by rQ(n) the number of integer solutions of Q(x0, x1, x2, x3) = n which is the
same as the number of α = a0+a1i+a2j+a3k ∈ H(Z) such that 2q|α−a0 and N(α) = n.

14.10.96 Remark Estimating rQ(n) is an important and difficult problem in number theory. Ac-
cording to [1969], there is no simple explicit formula for rQ(n) as Jacobi’s formula because
of additional cusp forms that appear at the higher level. The Ramanujan conjecture for
weight 2 cusp forms and its proof by Eichler and Igusa yields a good approximation for
rQ(n). More precisely, if p is a prime and l ≥ 0, then

rQ(pl) = C(pl) +Oε(p
l
2 +ε)
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for any ε > 0 as l→∞. Here

C(pl) =


2
∑
d|pl d = 2p

l+1−1
p−1 if

(
p
q

)
= 1,

4
∑
d|pl d = 4p

l+1−1
p−1 if

(
p
q

)
= −1 and l even ,

0 if
(
p
q

)
= −1 and l odd.

14.10.97 Remark The number theoretic facts above and the connection between the eigenvalues and
the number of closed nonbacktracking walks in a regular graph were used by Lubotzky,
Phillips, and Sarnak to prove the following result.

14.10.98 Theorem [1969, 2006] The graphs Xp,q are Ramanujan.

14.10.99 Remark If
(
q
p

)
= −1, then Xp,q is bipartite of high girth; its girth is at least 4 logp q −

logp 4 ≈ 4
3 logp |V (Xp,q)|. If

(
q
p

)
= 1, then Xp,q also has high girth; its girth is at least

2 logp q ≈ 2
3 logp |V (Xp,q)|. From the results of Hoffman, it also follows that these graphs

have large chromatic number (at least 1 + p+1
2
√
p ).

14.10.100 Remark Morgenstern [2160] generalized Lubotzky, Phillips, and Sarnak’s construction and
constructed infinite families of (q + 1)-regular Ramanujan graphs for every prime power q.

14.10.6 Combinatorial constructions of expanders

14.10.101 Construction Reingold, Vadhan, and Wigderson [2448] introduced a new graph product
called the zig-zag product which they used to construct infinite families of constant-degree
expanders.

14.10.102 Definition Let X be a k-regular graph with vertex set [n] = {1, . . . , n}. Suppose the edges
incident to each vertex of X are labeled from 1 to k in some arbitrary, but fixed way.
The rotation map RotX : [n] × [k] → [n] × [k] is defined as follows: RotX(u, i) = (v, j)
if the i-th edge incident to u is the j-th edge incident to v.

14.10.103 Definition Let G1 be a D1-regular graph with vertex set [N1] with rotation map RotG1

and G2 be a D2-regular graph with vertex set [D1] with rotation map RotG2 . The zig-zag
product G1zG2 is the D2

2-regular graph with vertex set [N1]× [D1] whose rotation map
RotG1zG2

is:

1. let (k′, i′) = RotG2(k, i);

2. let (w, l′) = RotG1
(v, k′);

3. let (l, j′) = RotG2
(l′, j);

4. define RotG1zG2((v, k), (i, j)) = ((w, l), (i′, j′)).

14.10.104 Definition A graph G is an (n, d, λ)-graph if G has n vertices, is d-regular, and the absolute
value of any non-trivial eigenvalue of G is at most λd.

14.10.105 Theorem [2448] If G1 is an (N1, D1, µ1)-graph and G2 is an (D1, D2, µ2)-graph, then G1zG2

is an (N1D1, D
2
2, µ1 + µ2 + µ2

2)-graph.

14.10.106 Construction Using the previous theorem, Reingold, Vadhan, and Wigderson [2448] con-
structed infinite families of constant-degree expanders.
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14.10.107 Construction Bilu and Linial [282] have used graph lifts to construct infinite families of d-

regular graphs whose non-trivial eigenvalues have absolute value at most C
√
d log3 d, where

C is some positive absolute constant. We outline their method below.

14.10.108 Definition Given two graphs G1 and G2, a graph homomorphism from G1 to G2 is a
function f : V (G1)→ V (G2) which preserves adjacency, namely if xy is an edge of G1,
then f(x)f(y) is an edge of G2; the function f is a graph isomorphism if it is bijective
and preserves both adjacency and non-adjacency, namely xy is an edge of G1 if and only
if f(x)f(y) is an edge of G2.

14.10.109 Definition A surjective homomorphism f : V (G1) → V (G2) is a covering map (see [282,
1126]) if for each vertex x of G1, the restriction of f to x and its neighbors is bijective.
Given a graphG, a cover ofG is a pair (H, f), where f : V (H)→ V (G) is a covering map.
If in addition G is connected and finite and H is finite, then for each vertex y ∈ V (G),
the preimage f−1(y) has the same cardinality. If |f−1(y)| = t for each y ∈ V (G), then
(H, f) is a t-cover or H is a t-lift of G.

14.10.110 Remark For every finite graph G, there is a universal cover or a largest cover G̃ which is
an infinite tree whose vertices can be identified with the set of nonbacktracking walks from
a fixed vertex x ∈ V (G). For example, the universal cover of any finite k-regular graph is
the infinite k-regular tree Tk.

14.10.111 Remark An important property of a t-cover (H, f) of a finite graph G is that the graph H
inherits the eigenvalues of G. This is because the vertex set of H can be thought as V (G)×
{1, . . . , t} with the preimage (also called the fiber of y) f−1(y) = {x : x ∈ V (H), f(x) =
y} = {(y, i) : 1 ≤ i ≤ t}. The edges of H are related to the edges of G as follows: each fiber
f−1(y) induces an independent set in H; if yz ∈ E(G), then the subgraph of H induced
by f−1(y) ∪ f−1(z) = {(y, i), (z, i) : 1 ≤ i ≤ t} is a perfect matching (meaning that there
exists a permutation σ ∈ St such that (y, i) is adjacent to (z, σ(i)) for each 1 ≤ i ≤ t); if
yz /∈ E(G), then there are no edges between f−1(y) and f−1(z). The partition of the vertex
set of H as V (H) = ∪y∈V (G)f

−1(y) is equitable (see [1287]) and its quotient matrix is the
same as the adjacency matrix of G. This implies the eigenvalues of A(G) are the eigenvalues
of A(H). These eigenvalues of A(H) are old and the remaining eigenvalues of A(H) are new.

14.10.112 Remark In the case of a 2-lift, the new eigenvalues can be interpreted as eigenvalues of a
signed adjacency matrix as follows. If H is a 2-lift of G, then for each edge yz of G, the
subgraph induced by f−1(y) ∪ f−1(z) = {(y, 0), (y, 1), (z, 0), (z, 1)} in H has either (y, 0)
adjacent to (z, 0) and (y, 1) adjacent to (z, 1) (in which case set s(y, z) = s(z, y) = 1) or
(y, 0) adjacent to (z, 1) and (y, 1) adjacent to (z, 0) (in which case set s(y, z) = s(z, y)− 1).
Let s(y, z) = 0 for all other y, z ∈ V (G). The symmetric {0,−1, 1} matrix As whose (y, z)-th
entry is s(y, z) is the signed adjacency matrix of the G with respect to the cover H. It is
known that the eigenvalues of H are union of the eigenvalues of the adjacency matrix of
G and the eigenvalues of the signed adjacency matrix of G. Bilu and Linial [282] proved
that every graph G with maximum degree d has a signed adjacency matrix (which can be

found efficiently) whose eigenvalues have absolute value at most C
√
d log3 d where C is

some positive absolute constant.

14.10.113 Construction Bilu and Linial’s idea to construct almost Ramanujan graphs is the following:
start with a k-regular Ramanujan graph G0 (for example, the complete graph Kk+1) and
then construct a 2-lift of Gi (denoted by Gi+1) such that the new eigenvalues of Gi+1 are
small in absolute value for i ≥ 0. Bilu and Linial [282] prove that every k-regular graph G
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has a 2-lift H such that the new eigenvalues of H have absolute value at most C
√
k log3 k

where C is some positive absolute constant. In this way the sequence of k-regular graphs

Gi has non-trivial eigenvalues bounded from above by C
√
k log3 k.

14.10.114 Remark Bilu and Linial [282] make the following conjecture which if true, would imply the
existence of infinite sequences of k-regular Ramanujan graphs for every k ≥ 3.

14.10.115 Conjecture [282] Every k-regular graph has a signed adjacency matrix whose eigenvalues
have absolute value at most 2

√
k − 1.

14.10.116 Construction A different combinatorial construction of almost Ramanujan graphs was
proposed by de la Harpe and Musitelli [786], and independently by Cioabă and Murty [646,
649]. The idea of these constructions is that perturbing Ramanujan graphs by adding or
removing perfect matchings will yield graphs with small non-trivial eigenvalues. The linear
algebraic reason for this fact follows from a theorem of Weyl which bounds the eigenvalues of
a sum of two Hermitian matrices in terms of the eigenvalues of the summands. De la Harpe
and Musitelli [786] note that adding a perfect matching to any 6-regular Ramanujan graph
will yield a 7-regular graph whose 2nd largest eigenvalue is at most 2

√
5 + 1 ∼= 5.47 which

is larger than the Ramanujan bound of 2
√

6 ∼= 4.89, but strictly less than 7. Cioabă and
Murty [646, 649] use known results regarding gaps between consecutive primes to observe
that by adding or removing perfect matching from Ramanujan graphs, one can construct
k-regular almost Ramanujan graphs for almost all k. More precisely, their result is that
given ε > 0, for almost all k ≥ 3, one can construct infinite families of k-regular graphs
whose 2nd largest eigenvalue is at most (2 + ε)

√
k − 1.

14.10.117 Remark The following conjecture was made in [646]; if true, this conjecture would imply
the existence of infinite families of k-regular Ramanujan graphs for any k ≥ 3.

14.10.118 Conjecture [646] Let X be a k-regular Ramanujan graph with an even number of vertices.
Then there exists a perfect matching P with V (P ) = V (X) such that the (k + 1)-regular
graph obtained from the union of the edges of X and P is Ramanujan.

14.10.119 Remark In a recent outstanding work, Friedman [1127] solved a long-standing conjecture
of Alon from the 1980s and proved that almost all regular graphs are almost Ramanujan.

14.10.120 Theorem [1127] Given ε > 0 and k ≥ 3, the probability that a random k-regular graph
on n vertices has all non-trivial eigenvalues at most (2 + ε)

√
k − 1 goes to 1 as n goes to

infinity.

14.10.7 Zeta functions of graphs

14.10.121 Definition A walk in a graph X is non-backtracking if no edge is traversed and then
immediately backtracked upon. A non-backtracking walk whose endpoints are equal is a
closed geodesic. If γ is a closed geodesic, we denote by γr the closed geodesic obtained by
repeating the walk γ r times. A walk is tailless if it is non-backtracking under any cyclic
permutation of vertices. A closed geodesic which is not the power of another one and
is tailless is a prime geodesic. We define an equivalence relation on the closed geodesics
as follows: (x0, ..., xn) and (y0, ..., ym) are equivalent if and only if m = n and there
is a d such that yi = xi+d for all i (and the subscripts are interpreted modulo n). An
equivalence class of a prime geodesic is a prime geodesic cycle.
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14.10.122 Definition Let X be a k-regular graph and denote q = k − 1. The Ihara zeta function is

ZX(s) =
∏
p

(
1− q−s`(p)

)−1

where the product is over all prime geodesic cycles p and `(p) is the length of p.

14.10.123 Theorem [1568] For g = (q − 1)|X|/2, we have

ZX(s) = (1− u2)−g det(I −Au+ qu2I)−1, u = q−s.

Moreover, ZX(s) satisfies the Riemann hypothesis’ (that is, all the singular points in the
region 0 < <(s) < 1 lie on Re(s) = 1/2) if and only if X is a Ramanujan graph.

14.10.124 Remark Hashimoto [1441], as well as Stark and Terras [2701] have defined a zeta function
for an arbitrary graph and established its rationality. The definition of this zeta function is
simple enough. Let Nr be the number of closed walks γ of length r so that neither γ nor γ2

have backtracking. Then, the zeta function of the graph X is defined as

ZX(t) = exp

( ∞∑
r=1

Nrt
r

r

)
.

This definition is very similar to the zeta function of an algebraic variety.

14.10.125 Remark It would be interesting to interpret the singularities of ZX(t) in terms of properties
of the graph. For instance, these zeta functions have a pole at t = 1 and Hashimoto [1441]
has shown that the residue at t = 1 is related to the number of spanning trees of the
graph X. Thus, this number is the graph-theoretic analogue of the class number of an
algebraic number field. These constructions raise the intriguing question of whether there
is a generalization of the notion of a graph to that of a “supergraph” whose zeta function
would (in some cases) coincide with those higher dimensional zeta functions of varieties.
Work in this direction has started [1926].

See Also

§6.1, §6.2 For details on Gauss sums and other character sums.
§12.7 For discussions on zeta functions and L-functions of curves.
§15.1, §15.3 For details on algebraic, LDPC, and expander codes.
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780, 786, 834, 1126, 1127, 1128, 1287, 1441, 1534, 1535, 1568, 1641, 1693, 1807, 1921, 1922,
1923, 1924, 1925, 1926, 1927, 1967, 1968, 1969, 1970, 2005, 2006, 2117, 2118, 2160, 2207,
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15.1 Basic coding properties and bounds

Ian Blake, University of British Columbia

W. Cary Huffman, Loyola University Chicago

15.1.1 Channel models and error correction

15.1.1 Definition A discrete memoryless channel (DMC) is a set of possible inputs
{u1, u2, . . . , uK} and outputs {v1, v2, . . . , vL} and probabilities pij such that if the in-
put on a given channel use is ui, then the probability that the channel output is vj is
P (vj | ui) = pij , and the channel behavior is independent from one usage to the next.
Note that

L∑
j=1

pij = 1 for 1 ≤ i ≤ K.

Thus for a given input vector x = (x1, x2, . . . , xn) and output vector y = (y1, y2, . . . , yn)

P (y | x) =
n∏
i=1

P (yi | xi).

659
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15.1.2 Example A channel with two inputs {0, 1} and two outputs {0, 1} is a binary symmetric
channel (BSC) if p00 = p11 = 1− p, p01 = p10 = p; p is the crossover probability.

15.1.3 Example A channel with two inputs {0, 1} and three outputs {0, E, 1} is a binary erasure
channel (BEC) if p00 = p11 = 1 − ε, p0E = p1E = ε, and p01 = p10 = 0. An erasure in the
received word is a position containing the symbol E.

15.1.4 Remark There are many other types of channels, including q-ary channels (q inputs), burst
noise channels, and the additive white Gaussian noise (AWGN) channel, which is a contin-
uous channel that adds white Gaussian noise to the transmitted signal.

15.1.5 Definition A code is a subset of Fnq , the set of n-tuples over the finite field Fq of order q.
Elements (vectors) of Fnq are denoted by boldface lowercase letters.

15.1.6 Definition For x ∈ Fnq , denote by ω(x) the Hamming weight of x as the number of nonzero
coordinate positions of x. For x, y ∈ Fnq , denote by d(x,y) the Hamming distance
between x and y as the number of coordinate positions where x and y differ.

15.1.7 Remark Note that d(x,y) = ω(x− y).

15.1.8 Definition A code C is an (n,M, d)q code if it has M distinct codewords of length n over
the finite field Fq such that the minimum distance between any two distinct codewords
is d where

d = min
c1,c2∈C
c1 6=c2

d(c1, c2).

The rate r of such a code is the ratio of the number of information symbols transmitted
per codeword to the number of symbols per codeword, assuming the codewords are
chosen equally likely, i.e., r = logq(M)/n.

15.1.9 Remark An important problem of coding theory is to design codes that have a large min-
imum distance for a given code size (or large size for a given minimum distance) and to
have encoding and decoding algorithms that can be implemented efficiently. Many types of
encoders and decoders are considered in the literature.

15.1.10 Remark Unless specified otherwise, a received word is the sum of a codeword transmitted
over a discrete memoryless channel and an error word. All such words are vectors over a
finite field.

15.1.11 Definition A maximum likelihood decoder (MLD) [1164] is one that, on receiving a word of
channel output symbols r, chooses the codeword ĉ ∈ C that maximizes the probability
of r being received, i.e., maximizes the conditional probability P (r | c):

ĉ = arg max
c∈C

P (r | c).

15.1.12 Definition A maximum a posteriori (MAP) decoder [1164] is one that, on receiving the
channel output word r, chooses the codeword ĉ ∈ C that maximizes the a posteriori
probability P (c | r), i.e.,

ĉ = arg max
c∈C

P (c | r).
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15.1.13 Definition A minimum distance decoder [1164] is one that, on receiving the word r, chooses
a codeword ĉ ∈ C that is at minimum distance from r, i.e.,

ĉ = arg min
c∈C

d(c, r).

A bounded distance decoder attempts to find the codeword, if it exists, within distance
b(d− 1)/2c of the received word.

15.1.14 Remark The output from these decoders may not be unique. In this case, in an equally
likely scenario, the decoder chooses one of the codewords satisfying the criteria. In the case
of choosing codewords equally likely, MAP is equivalent to MLD.

15.1.15 Lemma On a BSC with crossover probability p < 1/2, the minimum distance decoder is
equivalent to the MLD [304, 1943, 2389].

15.1.16 Remark If C is an (n,M, d)q code, one may think of the codewords being surrounded with
“spheres” of radius e = b(d− 1)/2c, i.e. the set of q-ary n-tuples at distance e or less from
the center. The spheres are then nonintersecting.

15.1.17 Lemma If C is an (n,M, d)q code and a codeword c is transmitted and word r is received,
with r errors and s erasures, then c is the unique codeword in C closest to the received r
provided that 2r + s < d.

15.1.18 Remark Shannon [2608] showed that with every discrete memoryless channel with a finite
number of input and output symbols, one may define the notion of channel capacity in bits
per channel use. His celebrated channel coding theorem and its converse then state there
exists a code that allows essentially error-free transfer of data over the channel as long as
the rate does not exceed channel capacity. Conversely, he showed that such transmission is
not possible if the channel rate exceeds capacity. More specifically, Gallager [1164] showed
that if C is the channel capacity, there is an error-rate exponent function E(R) that is
positive for rates 0 ≤ R < C and zero elsewhere, and there exists a code of rate R < C and
length n > N for which the probability Pw of word error on the channel satisfies

Pw < exp(−NE(R)) for 0 ≤ R < C.

The importance of the result is that there exists a sequence of codes of increasing lengths
n > N and of rates less than the channel capacity for which the probability of word error,
after maximum likelihood decoding, decreases exponentially to zero.

15.1.19 Remark Algebraic coding theory arose in response to the challenge of the Shannon the-
orems to define codes, as well as efficient encoding and decoding algorithms, that achieve
asymptotically low error rate at code rates arbitrarily close to capacity. There are numerous
excellent books available on the subject. The following were particularly useful references in
preparing this section: [231, 304, 311, 1558, 1639, 1943, 1945, 1991, 2047, 2136, 2389, 2390,
2405, 2484, 2511, 2849].

15.1.2 Linear codes

15.1.20 Definition A linear code C of length n over Fq is a subspace of Fnq . If the dimension of C is
k and the minimum distance is d, it is referred to as an (n, k, d)q code and the number
of codewords is M = qk.

15.1.21 Remark The anomaly in notation from the nonlinear case with a designation of (n,M, d)q
code, where the number of codewords is M , will be clear from the context.
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15.1.22 Remark To determine the minimum distance of a nonlinear (n,M, d)q code C will in general

require a search over the distances between all
(
M
2

)
pairs of codewords. For a linear code

this can be reduced to determining the weight of a minimum weight codeword since

d = min
x,y∈C
x6=y

d(x,y) = min
x∈C
x6=0

w(x).

15.1.23 Definition The scalar (or inner) product of two vectors u = (u1, u2, . . . , un), v =
(v1, v2, . . . , vn) from Fnq is

(u,v) = u1v1 + u2v2 + · · ·+ unvn ∈ Fq.

If (u,v) = 0, the vectors are orthogonal.

15.1.24 Definition For a linear code C ⊆ Fnq , the orthogonal code or dual code to C is defined as

C⊥ = {v ∈ Fnq | (v, c) = 0 for all c ∈ C}.

15.1.25 Theorem If C is a linear code of dimension k in Fnq , then C⊥ is a linear code of dimension
n− k in Fnq .

15.1.26 Definition Let C be a linear code in Fnq . If C ⊆ C⊥, the code C is self-orthogonal. If C = C⊥,
C is self-dual.

15.1.27 Remark In Rn, the only vector orthogonal to itself is the zero vector. So nonzero linear
subspaces of Rn cannot be self-orthogonal. However, the situation is markedly different when
considering subspaces of vector spaces over fields of prime characteristic; in that case, self-
orthogonal and self-dual subspaces do exist. For example, C = {(0, 0), (1, 1)} is a self-dual
(2, 1, 2)2 code in F2

2.

15.1.28 Remark If C is a self-dual code, its dimension is n/2 and its length n is even.

15.1.29 Definition For C an (n, k, d)q linear code, a k × n matrix G is a generator matrix of C if
its row space equals C. Similarly an (n − k) × n matrix H is a parity check matrix for
C if its row space equals C⊥.

15.1.30 Remark Note that some authors use the term parity cheek matrix only for the binary case,
as in this case the inner product of a codeword and row of the matrix involves an even
number of ones in the sum. We retain the term parity check matrix for all sizes of fields.

15.1.31 Remark As any codeword of C is orthogonal to any word in C⊥, it follows that

GHT = [0] (the k × (n− k) all zero matrix),

where superscript T denotes matrix transpose. Thus c ∈ C if and only ifHcT = 0T where
0 is the zero row vector of length n− k.

15.1.32 Remark By using elementary row operations (which preserve the row space of a matrix)
and possibly coordinate position permutations, any generator matrix of a code C can be
put in the form

G = [Ik | A] ,
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where Ik is the k×k identity matrix and A is a k× (n−k) matrix over Fq. A corresponding
parity check matrix is one in the form

H =
[
−AT | In−k

]
.

15.1.33 Definition Generator and parity check matrices of a code C in the form of Remark 15.1.32
are in systematic form.

15.1.34 Remark Some authors (e.g. [1558]) refer to the form of matrices in Remark 15.1.32 as being
in standard form and reserve “systematic” for any form where the information bits appear
explicitly in the codewords.

15.1.35 Remark From the definitions it is clear that a parity check matrix of a linear code C is a
generator matrix of the code C⊥, and a generator matrix of C is a parity check matrix of
the code C⊥.

15.1.36 Remark If C is an (n, k, d)q code with parity check matrix H, then c ∈ C if and only
if HcT = 0T . Thus if c is a minimum weight codeword, then HcT = 0T implies a linear
combination of d columns of H is the all zero vector. It follows that C has minimum distance
d if every subset of d − 1 columns of H is linearly independent, and there is a dependent
set of d columns.

15.1.37 Lemma In an (n, k, d)q code C, any d−1 columns of a parity check matrix for C are linearly
independent, and there is at least one set of d columns that is dependent.

15.1.38 Definition Let C be an (n,M, d)q code and let Ai (resp. Bi, if C is linear) be the number
of codewords in C (resp. C⊥, which exists if C is linear) of weight i. Define the weight
enumerators of these codes as

WC(x, y) =
n∑
i=0

Aix
n−iyi and WC⊥(x, y) =

n∑
i=0

Bix
n−iyi.

The sequence {A0, A1, . . . , An} (resp. {B0, B1, . . . , Bn}) is the weight distribution of the
code C (resp. C⊥).

15.1.39 Theorem (MacWilliams identities) [304, 1558, 2849] Let WC(x, y) (resp. WC⊥(x, y)) be the
weight enumerator of an (n, k, d)q linear code C (resp. of the (n, n− k, d′)q dual code C⊥).
Then

WC⊥(x, y) =
1

qk
WC(x+ (q − 1)y, x− y). (15.1.1)

15.1.40 Remark An alternative version of the MacWilliams identities is obtained by expanding the
terms in (15.1.1) to obtain

n−j∑
i=0

(
n− i
j

)
Ai = qk−j

j∑
i=0

(
n− i
n− j

)
Bi for 0 ≤ j ≤ n.

15.1.41 Remark In [801] Delsarte proposed an interesting method to examine code properties and
in particular their combinatorial aspects. It gives fundamental insight to the problem. Only
a brief look at this approach will be given.
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15.1.42 Definition [801] For positive integers n and λ the Krawtchouk polynomial Pk(x) is the
polynomial of degree k over the rational numbers

Pk(x) =
k∑
j=0

(−1)jλk−j
(
x

j

)(
n− x
k − j

)
for 0 ≤ k ≤ n

where (
x

j

)
= x(x− 1)(x− 2) · · · (x− j + 1)/j!.

These polynomials form a set of orthogonal polynomials and have many interesting
properties such as

1.
∑n
i=0

(
n
i

)
Pk(i)P`(i) = δkl

(
n
k

)
,

2.
∑n
i=0 P`(i)Pi(k) = δkl(λ+ 1)k,

3.
∑n
k=0

(
n−k
n−j
)
Pk(x) = (λ+ 1)j

(
n−x
j

)
.

Later, when required, the parameter λ will be specified.

15.1.43 Definition [801] Let A = (A0, A1, . . . , An) be an (n + 1)-tuple of rational numbers. The
MacWilliams transform of A is given by A′ = (A′0, A

′
1, . . . , A

′
n) where

A′k =

n∑
i=0

AiPk(i) for 0 ≤ k ≤ n.

15.1.44 Remark If the (i, k) entry of a matrix P is defined as Pk(i), 0 ≤ i, k ≤ n, the MacWilliams
transform can be expressed as A′ = AP .

15.1.45 Remark It can be shown that (A′)′ = (λ + 1)nA for any (n + 1)-tuple A. Likewise
P 2 = (λ+ 1)nIn+1.

15.1.46 Definition [801] Let C be an (n,M, d)q code. Define the distance distribution of C as

Ai(C) =
1

M
|{(x,y) ∈ C2 | (x,y) = i}| for 0 ≤ i ≤ n,

i.e., the average number of codewords at distance i from a fixed codeword. In the case
C is linear, this is just the weight distribution of C.

15.1.47 Definition [801] Define an (n + 1)-tuple A as positive if A0 = 1, Ai ≥ 0, and A′i ≥ 0 for
0 ≤ i ≤ n.

15.1.48 Remark The following lemma gives motivation for the appearance of Krawtchouk polyno-
mials.

15.1.49 Lemma [801] Let Wk be the set of vectors of weight k in Fnq , and let u be a vector of weight
j in Fnq . Then with λ = q − 1 ∑

x∈Wk

(u,x) = Pk(j).

15.1.50 Lemma [801] The distance distribution of any code over Fq is a positive (n + 1)-tuple for
λ = q − 1.



Algebraic coding theory 665

15.1.51 Definition Let A(C) be the distance distribution of an (n,M, d)q code C, and define the
four fundamental parameters of C (where the parameter of the Krawtchouk polynomials
is λ = q − 1) as

1. d = d(A(C)) is the minimum distance,

2. s = s(A(C)) is the number of nonzero distances (of C),
3. d′ = d(A′(C)) is the dual distance,

4. s′ = s(A′(C)) is the external distance.

In the case the code C is linear, A′(C) is a constant multiple of the weight distribution
of C⊥.

15.1.52 Remark It is important to note these four parameters are defined for any code C. The
parameter d′ is the smallest i such that A′i 6= 0, i > 0. The parameter s′ is the number
of nonzero entries in the set {A′1, i = 1, . . . , n}. In the case the code is linear, the four
parameters are the minimum distance and number of nonzero codeword weights of C and
the dual code C⊥, respectively. The following three theorems from [801] (the first theorem
was first proved by MacWilliams) are representative of the effectiveness of this approach.

15.1.53 Theorem [801] Let A be an (n + 1)-tuple with A0 6= 0 and let A′ be its MacWilliams
transform. Then s′ ≥ b(d− 1)/2c.

15.1.54 Definition A code C over Fq is distance invariant if the weight distribution of c + C is
the same for all c ∈ C, i.e., the number of codewords in C at distance i from c ∈ C is
independent of c.

15.1.55 Remark A linear code over Fq is automatically distance invariant because c + C = C for all
c ∈ C.

15.1.56 Theorem [801] Let C be a code for which s ≤ d′. Then C is distance invariant.

15.1.57 Remark The following theorem justifies the name external distance given to the parameter
s′.

15.1.58 Theorem [801] Let C be a code with external distance s′. Then each point of Fnq is at
distance at most s′ from at least one codeword.

15.1.2.1 Standard array decoding of linear codes

15.1.59 Definition Let C be an (n, k, d)q code. An encoding is an injective mapping from the set
Fkq of all messages to the set C of codewords. A minimum distance decoding is a map
from the set Fnq of all possible received vectors to the set C which sends the received
vector r to a codeword closest to r. The codeword is unique if the number of errors in
transmission is at most e =

⌊
d−1

2

⌋
.

15.1.60 Remark A particular decoding algorithm that works for any linear code over Fq is the
coset or standard array decoding algorithm. It is generally too inefficient for practical con-
sideration. Since a linear (n, k, d)q code C is a vector subspace of Fnq , it can be viewed as
an (additive) subgroup of Fnq . Thus Fnq can be decomposed into the cosets of C. Such a
decomposition can be used to derive a decoding algorithm.
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15.1.61 Definition Let C be a linear (n, k, d)q code. A coset of C with representative u ∈ Fnq is the
set u+C = {u+c | c ∈ C}. For u1, u2 ∈ Fnq , as sets u1 +C and u2 +C are either disjoint
or identical. Since C is closed under addition, it follows that u + C equals u + c + C if
c ∈ C. There are qn−k distinct cosets of C in Fnq .

15.1.62 Definition The standard array for an (n, k, d)q code C is a qn−k × qk array of vectors of
Fnq formed in the following manner:

1. In the first row of the array, place the codewords of C in some ordering, with
the all-zero codeword first.

2. Choose a vector u1 of minimum weight in Fnq \ C and add this to each vector in
the first row to form the second row.

3. Choose a vector u2 of minimum weight in Fnq \ {C ∪ {u1 + C}} and add this to
each vector in the first row to form the third row.

4. Continue the process until the vectors of Fnq are exhausted.

Vectors in the first column of the array are coset leaders. Every vector of Fnq appears
exactly once in the array.

15.1.63 Remark To determine a codeword closest to a received word r ∈ Fnq proceed as follows:

1. Locate the received word r in the standard array.

2. If the coset containing r has coset leader e, decode r to the codeword r− e.

This procedure is referred to as standard array decoding. The coset leaders are in fact the
set of correctable error patterns. If e =

⌊
d−1

2

⌋
, then every vector of weight less than or equal

to e will appear as a coset leader. The coset leaders of weight greater than e are then not
“complete.”

15.1.64 Lemma The standard array decoding algorithm of Remark 15.1.63 finds a codeword ĉ in
C at minimum distance from the received word r. This codeword is the transmitted one if
at most e =

⌊
d−1

2

⌋
errors were made in transmission.

15.1.65 Remark In what follows a large number of codes are introduced. For notation, where
appropriate, a linear code of length n over Fq that has some parameter (or set of parameters)
m will be denoted ABCn,q(m) for some sequence of Roman letters ABC, descriptive for
that particular code. The duplication of notation with (n,M, d)q and (n, k, d)q will be clear
from the context.

15.1.66 Remark A useful quantity to define is

πm,q =
qm − 1

q − 1
= qm−1 + qm−2 + · · ·+ 1.

This is the number of nonzero projective m-tuples where scalar multiples are identified.

15.1.2.2 Hamming codes

15.1.67 Definition The m-th order Hamming code over Fq, denoted Hπm,q,q(m), has a parity check
matrix formed by constructing the m×πm,q matrix whose columns are the set of distinct
nonzero projective q-ary m-tuples. The code Hπm,q,q(m) is a (πm,q, πm,q −m, 3)q code.
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15.1.68 Remark The dimension of Hπm,q,q(m) is easy to establish. That the code has minimum
distance 3 is seen by finding some linear combination of three columns of the parity check
matrix that equals zero. That there is no linear combination of two columns equaling zero
follows from the columns being projectively distinct.

15.1.69 Remark The binary Hamming code Hπm,2,2(m) is a (2m − 1, 2m − 1 − m, 3)2 code. The
dual of this code has all nonzero words of weight 2m−1, and hence the weight enumerator
of H⊥πm,2,2(m) is

WH⊥πm,2,2
(x, y) = xn + nx(n−1)/2y(n+1)/2, n = 2m − 1.

Using the MacWilliams identities it is seen that the weight enumerator of Hπm,2,2(m) is

WHπm,2,2
(x, y) = 2−m

(
(x+ y)n + n(x+ y)(n−1)/2(x− y)(n+1)/2

)
.

In a similar manner it can be established that the dual of the code Hπm,q,q(m) over Fq has
all nonzero weights equal to qm−1. The dual codes to Hamming codes are simplex codes.

15.1.2.3 Reed-Muller codes

15.1.70 Remark For vectors u,v ∈ Fn2 define the product as

u⊗ v = (u1v1, u2v2, . . . , unvn).

This is also the coordinate-wise “AND” operation. Similarly the usual coordinate-wise ad-
dition over F2 corresponds to “XOR.”

15.1.71 Definition Define the Reed-Muller generator matrix G(r,m), 0 ≤ r ≤ m, as follows.

1. The zero-th row v0 is all ones.

2. The rows vi, i = 1, 2, . . . ,m, are formed by alternating 2m−i 0’s with 2m−i 1s
to fill the vector of length 2m.

3. The matrix G(r,m) consists of the above m+ 1 rows together with all products
of the vectors vi, i = 1, 2, . . . ,m, taken j at a time for all j ≤ r. G(r,m) is a
(
∑r
j=0

(
m
j

)
)× 2m matrix.

15.1.72 Definition The matrix G(r,m) is a generator matrix for the order r and degree m binary
Reed-Muller code RM2m,2(r,m).

15.1.73 Lemma The parameters of RM2m,2(r,m) for 0 ≤ r ≤ m are

n = 2m, k =

r∑
j=0

(
m

j

)
, d = 2m−r.

The dual of RM2m,2(r,m) is RM2m,2(m− r − 1,m) for 0 ≤ r < m.

15.1.74 Remark That the matrix G(r,m) has linearly independent rows can be established by
showing the 2m × 2m matrix G(m,m) is nonsingular. Equivalently this can be shown by
noting there exists a Boolean function, which can be realized by Boolean operations on the
first m+ 1 rows, that will generate a vector with a single 1 in a given place. The codes are
in fact Euclidean geometry codes discussed later.
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15.1.75 Remark [2849] The generator matrix G(r,m) of RM2m,2(r,m) can be written as

G(r,m) =

[
G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)

]
.

It follows that

RM2m,2(r,m) = {(u,u + v) | u ∈ RM2m−1,2(r,m− 1), v ∈ RM2m−1,2(r − 1,m− 1)}.

The minimum distance of RM2m,2(r,m) can be established using Lemma 15.1.93 below.

15.1.2.4 Subfield and trace codes

15.1.76 Remark Given an (n, k, d)qm code C over Fqm , there are several natural ways to obtain
codes over subfields. Two methods are of particular interest: subfield subcodes and trace
codes, introduced below.

15.1.77 Definition The subfield subcode of an (n, k, d)qm code C is the set of codewords of C with
all elements in Fq, i.e.,

Csfqm|q = {(c1, c2, . . . , cn) ∈ C | ci ∈ Fq for 1 ≤ i ≤ n} = C ∩ Fnq .

15.1.78 Lemma The subfield subcode Csfqm|q obtained from the (n, k, d)qm code C is a linear (n, ≥
mk − (m− 1)n, ≥ d)q code.

15.1.79 Remark The subfield subcode of an (n,M, d)qm nonlinear code is, as in the linear case,
the set of codewords with all coordinates in Fq. The minimum distance of the subfield sub-
code is at least d. In the linear case, the bound on the dimension of the subfield subcode
is obtained from considering the dimension of the subspaces involved. Thus replacing ele-
ments of the parity check matrix of C by m-tuple columns over Fq, the subfield subcode
is the set of n-tuples over Fq orthogonal to all (n − k)m rows and has dimension at least
n− (n− k)m = mk − (m− 1)n.

15.1.80 Definition The trace of an element η ∈ Fqm is defined as

Tr qm|q(η) = η + ηq + · · ·+ ηq
m−1

and is an Fq-linear map from Fqm to Fq; see also Section 2.1.

15.1.81 Definition Given an (n, k, d)qm code C, the trace code of C is defined as

Ctrqm|q = {(Tr qm|q(c1),Tr qm|q(c2), . . . ,Tr qm|q(cn)) | (c1, c2, . . . , cn) ∈ C}.

15.1.82 Lemma The trace code of an (n, k, d)qm code C is an (n,≤ mk,≤ d)q code.

15.1.83 Remark The dimension bound of Lemma 15.1.82 is the trivial one; since the parent code
has (qm)k codewords, the trace code over Fq can have at most qmk codewords. The bound
is achieved if and only if Tr qm|q(c1) 6= Tr qm|q(c2) for any two distinct codewords c1, c2 ∈ C.

15.1.84 Remark The following result, due to Delsarte [802], shows the relation between subfield
subcodes and trace codes.
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15.1.85 Lemma [802] Let C be a linear code over Fqm . Then the dual of the subfield subcode of C
is the trace code of the dual code of C over Fqm , i.e.,(

Csfqm|q
)⊥

=
(
C⊥
)tr
qm|q .

15.1.86 Remark The following commutative diagram may be of value in visualizing these relation-
ships:

C dual−−−−→ C⊥

subfield

y ytrace

Csfqm|q
dual−−−−→

(
Csfqm|q

)⊥
=
(
C⊥
)tr
qm|q .

15.1.2.5 Modifying linear codes

15.1.87 Remark There are many ways of modifying a given code. The definitions given below are
typical, although the terminology is not uniform in the literature.

15.1.88 Definition An (n, k, d)q code C can be modified in the following ways:

1. Expurgation: Certain codewords are deleted (no change of length).

2. Augmentation: The number of codewords is increased (no change of length).

3. Puncturing: The length of the code is reduced by deleting a coordinate position,
generally without reducing the size of the code.

4. Extending: The length of the code is increased without increasing the size of
the code.

5. Shortening: The length and dimension of the code are reduced.

6. Lengthening: The length and dimension of the code are increased.

15.1.89 Example Examples of the above operations on an (n, k, d)q code are given below.

1. If a row of a generator matrix is deleted, the result is an (n, k−1, d′)q code where
d′ ≥ d. Similarly a row could be added to a parity check matrix, which is linearly
independent of the existing rows, to give the same result.

2. A row could be added to a generator matrix that is linearly independent of the
existing rows to give an (n, k + 1, d′)q code where d′ ≤ d.

3. If we delete a coordinate position contained in the nonzero positions of a codeword
of minimum weight (assuming it is not of weight 1), the result is an (n−1, k, d−1)q
code.

4. Adding an overall parity check produces an (n + 1, k, d′)q code where d′ = d or
d + 1 depending on the code structure. For example, if q = 2 and the original
code contains minimum weight codewords of odd weight (in which case half the
words are of odd weight and half of even weight), the extended code has minimum
distance d+1. This is equivalent to adding a column of zeroes to the parity check
matrix and then a row of all ones.

5. If a generator matrix of the code is in systematic form and the first row and
column are deleted, the result is an (n− 1, k − 1, d′)q code where d′ ≥ d.

6. Adding a row to a generator matrix, linearly independent of the existing rows,
and then adding a column gives an (n+ 1, k + 1, d′)q code where d′ ≤ d+ 1.
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15.1.90 Remark The trace code and subfield subcode of the previous subsection may also be thought
of as ways of modifying a given code.

15.1.91 Remark Given two codes, an (n1, k1, d1)q code C1 with generator matrix G1 and an
(n2, k2, d2)q code C2 with generator matrix G2, methods to produce a third code C are
considered.

15.1.92 Remark The following construction proves useful in some situations, such as the construc-
tion of the Reed-Muller codes of Subsection 15.1.2.3, already noted.

15.1.93 Lemma Let Ci be an (n, ki, di)q code, i = 1, 2. Then the code

C = {(u,u + v) | u ∈ C1, v ∈ C2}

is a (2n, k1 + k2, d)q code where d = min{2d1, d2}.

15.1.94 Definition The direct sum code is the (n1 + n2, k1 + k2, d)q code where d = min{d1, d2}
with generator matrix G1 ⊕G2 (block diagonal sum of matrices).

15.1.95 Definition The product code C1⊗C2 is the (n1n2, k1k2, d1d2)q code with generator matrix
G1 ⊗G2, the tensor product of the two component generator matrices.

15.1.96 Remark One can think of the codewords of the product code in the following manner.
Consider an array of k1 × k2 information symbols from Fq. The array is first extended to
a k1 × n2 array by completing each row to codewords in C2. The columns of this array are
completed to an n1 × n2 array by completing each column to a codeword in C1. Notice the
bottom right (n1− k1)× (n2− k2) array consists of checks on checks. The resulting n1×n2

matrices are the codewords of C1⊗C2. The process could have been done by first completing
the columns of the information symbols with codewords in C1 and then completing rows. It
is easily verified the same final array is obtained.

15.1.97 Definition Let C1 be a linear (N,K,D)qm code and C2 a linear (n,m, d)q code. Fix a basis of
Fqm over Fq and represent elements of Fqm as m-tuples over Fq. These m-tuples represent
information positions in C2 which therefore give a one-to-one correspondence between
elements of Fqm and codewords of C2. The concatenated code of C1 by C2 is obtained by
replacing the Fqm -elements of codewords of C1 by codewords of C2 corresponding to the
information m-tuples of the Fqm -elements.

15.1.98 Lemma The concatenated code of C1 by C2 is a linear (nN, kK,≥ dD)q code.

15.1.2.6 Bounds on codes

15.1.99 Remark The central problem of coding theory is to construct codes with as many codewords
as possible for a given minimum distance (or as large a minimum distance as possible for a
given code size), in such a way that the code can be efficiently encoded and decoded. This
section reviews many of the bounds available. While interest is largely in linear codes, a
version of a few of the bounds holds true for nonlinear codes as well. Most of the books
on coding have a treatment similar to the one here. The treatment of bounds in [2849] is
particularly elegant and succinct.
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15.1.100 Definition Define Aq(n, d) to be the size of the largest code of length n over Fq with
minimum distance d, i.e.,

Aq(n, d) = max {M | an (n,M, d)q code exists}.

15.1.101 Definition The sphere of radius r and center x ∈ Fnq is

Sq(r, n,x) = {y ∈ Fnq | d(y,x) ≤ r}.

The cardinality of Sq(r, n,x) is

sq(r, n) = | Sq(r, n,x) |=
r∑
i=0

(
n

i

)
(q − 1)i.

15.1.102 Remark The following bound is a lower bound on the size of a maximal code.

15.1.103 Theorem (Sphere covering bound, Varshamov-Gilbert bound) [2849, 2855]

Aq(n, d) ≥ qn

sq(d− 1, n)
.

15.1.104 Remark Theorem 15.1.103 is shown by surrounding each codeword of a code of maximum
size with a sphere of radius d − 1 and considering the union of such spheres. If the space
is not exhausted, it would be possible to add a word at distance at least d from every
codeword, implying the code was not optimal.

For linear codes a different argument leads to a similar result. For a given n and k, let
r = n− k, and attempt to construct an r × n parity check matrix, with the property that
any d − 1 columns are linearly independent, by adding columns sequentially. The process
may be started with the r×r identity matrix. Suppose j−1 such columns have been found.
A j-th column can be added if

d−2∑
i=1

(
j − 1

i

)
(q − 1)i < qr − 1.

If n is the largest value of j for which this inequality holds, then an (n, k, d)q code exists.
Notice that n is also the smallest value of n for which

d−2∑
i=1

(
n

i

)
(q − 1)i ≥ qn−k − 1,

an expression which can be rewritten as

qk ≥ qn/sq(d− 2, n).

This result can be compared to the result of Theorem 15.1.103 and is also referred to as the
Varshamov-Gilbert bound.

15.1.105 Remark The following bounds are upper bounds on the size of codes. In many cases it is
possible to find codes that meet the bounds with equality.



672 Handbook of Finite Fields

15.1.106 Theorem (Sphere packing bound, Hamming bound) [2849] For a positive integer d with
1 ≤ d ≤ n, let e = bd−1

2 c. Then

Aq(n, d) ≤ qn∑e
i=0

(
n
i

)
(q − 1)i

=
qn

sq(e, n)
.

15.1.107 Remark In an optimal code with Aq(n, d) codewords, it is possible to surround codewords
with nonintersecting spheres of radius e and the bound follows.

15.1.108 Definition A code whose size meets the bound of Theorem 15.1.106 with equality is perfect.

15.1.109 Remark In a perfect code the spheres of radius e around the codewords are nonintersect-
ing and exhaust the space. The Hamming codes, both binary and nonbinary, are perfect
codes. Besides the linear Hamming codes there are nonlinear perfect codes with the same
parameters. The (23, 12, 7)2 binary Golay code and the (11, 6, 5)3 ternary Golay code (to be
discussed later) are perfect. There are also trivial perfect codes: (i) the (n, n, 1)q code (the
complete space), e = 0, (ii) the (n, 1, n)2 binary repetition code for n odd, e = (n − 1)/2,
(iii) a code of length n over Fq consisting of a single codeword, e = n, and (iv) a binary
code of odd length containing only two words c and its complement c + 1, e = (n − 1)/2
[1558, 2810, 2811].

15.1.110 Theorem (Plotkin bound) [2849] If an (n,M, d)q code exists, then

d ≤ nM(q − 1)

(M − 1)q
.

15.1.111 Remark In the following it will be convenient to define θ = (q−1)/q. By rearranging terms
in the above theorem, another expression for the Plotkin bound is

Aq(n, d) ≤
⌊

d

d− θn

⌋
for d > θn.

15.1.112 Theorem (Griesmer bound) [2849] If an (n, k, d)q code exists, then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

15.1.113 Theorem (Singleton bound) [2849] For a positive integer d, 1 ≤ d ≤ n,

Aq(n, d) ≤ qn−d+1.

15.1.114 Remark Puncturing the code on d− 1 nonzero coordinate positions of a minimum weight
codeword implies all remaining codewords are distinct and the Singleton bound follows.

15.1.115 Remark For a linear (n, k, d)q code, the Singleton bound reduces to

d ≤ n− k + 1.

15.1.116 Definition A code (either linear or nonlinear) that meets the Singleton bound with equality
is a maximum distance separable (MDS) code.
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15.1.117 Remark

1. For a linear (n, k, d)q code, the Singleton bound is simply a reflection that every
set of d−1 columns of the parity check matrix (an (n−k)×n matrix) is linearly
independent, and hence the largest value of d− 1 is n− k.

2. The dual of an (n, k, d = n−k+ 1)q MDS code is an (n, n−k, k+1)q MDS code.

3. Important examples of MDS codes are the Reed-Solomon codes discussed in
the next section. Trivial examples include the (n, 1, n)q repetition code and the
(n, n, 1)q full code.

15.1.118 Theorem (Elias bound) [2390, 2849] Assume that r ≤ θn and r2 − 2θnr + θnd > 0. Then

Aq(n, d) ≤ θnd

r2 − 2θnr + θnd
· qn

sq(r, n)
.

15.1.2.7 Asymptotic bounds

15.1.119 Remark It is of interest to consider the constraints on codes and how they are reflected
in the bounds discussed as the length of the code increases to infinity. Notice that for a
linear (n, k, d)q code, the rate is k/n, the ratio of the number of information symbols to
code symbols. Asymptotically as the length increases, this rate is denoted αq(δ) where δ
is the asymptotic normalized distance d/n. The following definition is valid for both linear
and nonlinear codes.

15.1.120 Definition The asymptotic normalized rate is

αq(δ) = lim supn→∞
1

n
logq Aq(n, δn).

15.1.121 Remark To discuss asymptotic versions of the bounds, the following definition of the q-ary
entropy function is needed.

15.1.122 Definition The q-ary entropy function is defined as

Hq(x) =

{
x logq(q − 1)− x logq(x)− (1− x) logq(1− x) for 0 < x ≤ θ,
0 elsewhere.

15.1.123 Remark The work of Delsarte [801] on distance distributions for codes and their
MacWilliams transforms (Definition 15.1.43) suggests the following linear programming
approach to upper bounding the size of M for an (n,M, d)q code [2050, 2849]. Let
A = (A0 = 1, A1, . . . , An) be the distance distribution of a putative (n,M, d)q code, where
A1 = · · · = Ad−1 = 0 and

∑n
i=0Ai = M . The linear program consists of maximizing∑n

i=0Ai subject to A0 = 1, A1 = · · · = Ad−1 = 0, Ai ≥ 0 for i = d, . . . , n, and the
MacWilliams transform constraints

n∑
i=0

AiPk(i) ≥ 0, k = 0, 1, . . . , n.

This bound, often referred to as the linear programming or LP bound, is not very explicit,
but it leads to the following two theorems [2050] which are quite strong upper bounds for
binary codes. Noting that H2(x) = −x log2(x)− (1− x) log2(1− x), define g(x) by

g(x) = H2((1−
√

1− x)/2).
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15.1.124 Theorem [2050] For binary codes, if 0 < δ < 1/2,

α2(δ) ≤ min
0≤u≤1−2δ

{1 + g(u2)− g(u2 + 2δu+ 2δ)}.

15.1.125 Remark The above bound is referred to as the MRRW bound (after the initials of the four
authors of [2050]), and it implies the following one - the bounds are actually the same over
a range of values of δ.

15.1.126 Theorem For binary codes, if 0 < δ < 1/2,

α2(δ) ≤ g((1− 2δ)2).

15.1.127 Remark The following relationship is crucial to considering the asymptotic bounds.

15.1.128 Theorem [1558, 2389, 2849] For 0 ≤ λ ≤ θ, q ≥ 2

lim
n→∞

1

n
logq sq(bλnc, n) = Hq(λ).

15.1.129 Remark The above theorem implies that, asymptotically, sq(r, n) tends to

qnHq(r/n) .

Apart from the MRRW bound, the following asymptotic versions of the bounds follow
directly from their finite counterparts.

15.1.130 Theorem (Asymptotic bounds) [1558, 2390, 2849]

1. Asymptotic Varshamov-Gilbert bound:

αq(δ) ≥ 1−Hq(δ), 0 ≤ δ ≤ θ.
2. Asymptotic Singleton bound:

αq(δ) ≤ 1− δ, 0 ≤ δ ≤ 1.

3. Asymptotic Plotkin bound:

αq(δ) ≤ 1− δ/θ, 0 ≤ δ < θ.

4. Asymptotic Hamming bound:

αq(δ) ≤ 1−Hq(δ/2), 0 ≤ δ ≤ θ.
5. Asymptotic Elias bound:

αq(δ) ≤ 1−Hq(θ −
√
θ(θ − δ)), 0 ≤ δ < θ.

15.1.3 Cyclic codes

15.1.131 Definition Let x = (x0, x1, . . . , xn−1) ∈ Fqn . A cyclic (right) shift of x (with wraparound)
is (xn−1, x0, x1, . . . , xn−2). Let C be a linear code. Then C is a cyclic code if every cyclic
shift of a codeword in C is also a codeword in C.

15.1.132 Remark Some benefits to assuming a code is linear have been seen. Restricting attention
further to cyclic codes allows the formulation of efficient algorithms for the construction,
encoding, and decoding of them. The simple addition of requiring cyclic shifts of codewords
to be codewords introduces a strong algebraic structure into the picture that allows these
benefits.
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15.1.3.1 Algebraic prerequisites

15.1.133 Definition Let R be a commutative ring with identity. A subset I of R is an ideal of R if
for all a, b ∈ I and r ∈ R, then a− b ∈ I and ra ∈ I. The ideal is a principal ideal if it
has a single generator a where I = 〈a〉 = {ra | r ∈ R}. The ring R is an integral domain
if whenever a, b ∈ R and ab = 0, either a = 0 or b = 0. The ring R is a principal ideal
domain (PID) if it is an integral domain and all its ideals are principal. The quotient
ring of R by the ideal I is denoted by R/I with addition and multiplication of cosets
given by (r + I) + (s+ I) = (r + s) + I and (r + I)(s+ I) = rs+ I.

15.1.134 Example The ring Fq[x] is the set of polynomials in the indeterminate x with coefficients
in Fq. The rings Z, Fq[x], and Fq[x]/〈xn − 1〉 are PIDs. In Z the ideal 〈2〉 is {2k | k ∈ Z},
i.e., the set of even integers. In Fq[x]

〈g(x)〉 = {a(x)g(x) | a(x) ∈ Fq[x]}
is the ideal generated by the polynomial g(x).

15.1.135 Remark In the quotient ring Fq[x]/〈xn−1〉, each coset has a unique coset representative that
is either the zero polynomial or has degree less than n. For simplicity, the coset a(x)+〈xn−1〉
with a(x) = a0 + a1x + · · · + an−1x

n−1 will be denoted a(x). Therefore the quotient ring
Fq[x]/〈xn − 1〉 is the set of polynomials

{a0 + a1x+ · · ·+ an−1x
n−1 | ai ∈ Fq, i = 0, 1, . . . , n− 1}

with addition and multiplication modulo xn − 1.
There is a natural map between n-tuples over Fq and polynomials in Fq[x]/〈xn − 1〉,

namely
Fnq −→ Fq[x]/〈xn − 1〉

(a0, a1, . . . , an−1) 7→ a0 + a1x+ · · ·+ an−1x
n−1.

Thus a linear code C can be viewed equivalently as a subspace of Fnq and an Fq-subspace of
Fq[x]/〈xn−1〉. Notice that if (a0, a1, . . . , an−1) 7→ a0 +a1x+ · · ·+an−1x

n−1, then the cyclic
shift (an−1, a0, a1, . . . , an−2) corresponds to the polynomial x(a0 + a1x + · · · + an−1x

n−1)
(mod xn − 1) which gives the reason for interest in the quotient ring Fq[x]/〈xn − 1〉.

15.1.136 Lemma A linear code C is a cyclic code if and only if it is an ideal in Fq[x]/〈xn − 1〉.
15.1.137 Remark Since Fq[x]/〈xn − 1〉 is a PID, every nonzero ideal C has a generator polynomial

g(x), i.e., C = 〈g(x)〉, and one such generator polynomial is the unique monic codeword
polynomial of least degree. It also follows that g(x) divides xn − 1 (written g(x) | (xn − 1))
as otherwise xn−1 = a(x)g(x) + r(x) for some a(x) and r(x) where r(x) has degree strictly
less than that of g(x). Since by definition r(x) would be in C, r(x) nonzero contradicts the
fact that g(x) was of least degree. For g(x) | (xn−1), g(x) generates an ideal in Fq[x]/〈xn−1〉
that is the set of polynomials divisible by g(x). More specifically

〈g(x)〉 = {a(x)g(x) | a(x) ∈ Fq[x], deg a(x) < n− deg g(x)}.
The term generator polynomial of a cyclic code is reserved for the unique monic polynomial
generating the code and dividing xn−1. Thus cyclic codes are determined by factors of xn−1.
Indeed, if gcd(n, q) = 1, xn − 1 factors into distinct irreducible polynomials fi(x) over Fq,
i = 1, 2, . . . , t, and then there are 2t cyclic codes of length n over Fq. If gcd(n, q) 6= 1, xn−1
has repeated irreducible factors. For example if gcd(n, q) = p where Fq has characteristic

p, then n = n1p and xn − 1 = (xn1 − 1)p. More generally, if xn − 1 =
∏t

1=1 f
ei
i (x) is the

factorization, the possible number of cyclic codes is
∏t
i=1(ei + 1); see [1945]. Henceforth it

is assumed that gcd(n, q) = 1.
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15.1.3.2 Properties of cyclic codes

15.1.138 Remark A cyclic (n, k, d)q code C has a generator polynomial g(x) of degree n − k. If
g(x) = g0+g1x+· · ·+gn−kxn−k, the code is viewed equivalently as the ideal of Fq[x]/〈xn−1〉

C = {a(x)g(x) | a(x) ∈ Fq[x], deg a(x) < k}

and the row space of the matrix

G =


g0 g1 g2 · · · gn−k 0 0 · · · 0
0 g0 g1 · · · gn−k−1 gn−k 0 · · · 0
0 0 g0 · · · gn−k−2 gn−k−1 gn−k · · · 0

...
...

0 0 0 · · · g0 g1 g2 · · · gn−k

 , (15.1.2)

i.e., G is a generator matrix for the code C.
15.1.139 Remark As the generator polynomial g(x) | (xn−1), deg g(x) = n−k, there is a polynomial

h(x) = h0 + h1x + · · · + hkx
k such that g(x)h(x) = xn − 1. Since deg h(x) = k and

h(x) | (xn − 1), it generates a cyclic (n, n − k, d′)q code C′ over Fq for some minimum
distance d′. However C′ is not C⊥. Define the reciprocal polynomial h∗(x) = xkh(1/x),
which is the polynomial obtained by reversing the coefficients of h(x). Then (1/h0)h∗(x)
is the generator polynomial of C⊥, which is C′ with coordinates reversed and has the same
parameters as C′. A generator matrix of C⊥ (and parity check matrix of C) is then given by

H =


hk hk−1 hk−2 · · · h0 0 0 · · · 0
0 hk hk−1 · · · h1 h0 0 · · · 0
0 0 hk · · · h2 h1 h0 · · · 0

...
...

0 0 0 · · · hk hk−1 hk−2 · · · h0

 .

15.1.140 Remark Let C be an (n, k, d)q cyclic code with generator polynomial g(x) whose roots are
α1, α2, . . . , αn−k. The roots will in general be in an extension field of Fq, say Fqm where
n | (qm−1). Another way of defining the code is to note that c(x) = a(x)g(x) is a codeword
polynomial if and only if

c(αi) = 0, i = 1, 2, . . . , n− k.
Thus c = (c0, c1, . . . , cn−1) ∈ C if and only if HcT = 0T where

H =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

1 αn−k α2
n−k · · · αn−1

n−k

 .
15.1.141 Remark Let C1 and C2 be cyclic codes with generator polynomials g1(x) and g2(x), respec-

tively. Then C1 ⊆ C2 if and only if g2(x) | g1(x).

15.1.142 Remark In practice there is often a preference to use systematic codes where the informa-
tion symbols appear explicitly in the codeword. To achieve this one might row-reduce the
generator matrix of (15.1.2) (with possible column permutations - see Remark 15.1.32) to
be of the form

G′ = [Ik | A]
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as can be done for any linear code. One could then encode the information word m (of
length k, recalling that the message length is the same as code dimension) as mG′. However
if column permutations are required to obtain G′, the resulting code with generator matrix
G′ may not be cyclic. For an (n, k, d)q cyclic code with generator polynomial g(x) of degree
n− k, one might also do the following encoding. Divide xn−km(x) by g(x), where m(x) is
the information polynomial, to obtain

xn−km(x) = a(x)g(x) + r(x), deg r(x) < n− k.
Thus xn−km(x) − r(x) = a(x)g(x) is a codeword with the k information symbols in the
“high end” and n− k parity check symbols in the “low end.”

15.1.143 Theorem [1558] Let C be a cyclic code of length n over Fq and let v(x) ∈ Fq[x]. Then
C = 〈v(x)〉 if and only if gcd(v(x), xn− 1) = g(x). Equivalently v(x) generates C if and only
if the n-th roots of unity that are zeros of v(x) are precisely the zeros of g(x).

15.1.144 Theorem Let Ci, i = 1, 2, be cyclic codes with generator polynomials gi(x), i = 1, 2. Then
C1 ∩ C2 has generator polynomial lcm(g1(x), g2(x)) and C1 + C2 has generator polynomial
gcd(g1(x), g2(x)).

15.1.3.3 Classes of cyclic codes

15.1.145 Remark The additional constraint of cyclic codes (over linear) allows considerably more
information on the minimum distance of the code to be obtained. The minimal polynomial
over Fq of an element β in some extension field of Fq is the monic irreducible polynomial,
denoted Mβ(x), of least degree in Fq[x] that has β as a zero.

15.1.146 Remark Recall that the q-ary Hamming code Hn,q(m) is a (πm,q, πm,q−m, 3)q code where
n = πm,q = (qm − 1)/(q − 1). When gcd(n, q − 1) = 1, Hn,q(m) can be made cyclic in the
following manner. Let α be a primitive element in Fqm . Then β = αq−1 is a primitive n-th
root of unity. The parity check matrix of Hn,q(m) can be taken as

H =
[
1 β β2 · · · βn−1

]
.

Under the stated conditions the minimal polynomial of β over Fq is of degree m. It remains
to verify that no two columns of H are multiples of each other over Fq to ensure a minimum
distance of 3. Since the dual of this code has all codewords of weight qm−1 the weight
enumerator of the q-ary Hamming code can be obtained via the MacWilliams identities, as
in the binary case. This is an example of the first class of cyclic codes to be considered.

15.1.147 Definition Let n be a positive integer relatively prime to q. For i an integer, the q-
cyclotomic coset modulo n containing i is Ci = {i, iq, . . . , iqr−1} (mod n) where r is the
smallest positive integer such that iqr ≡ i (mod n).

15.1.148 Remark The smallest extension field of Fq that contains a primitive n-th root of unity is
Fqm where m is the size |C1 | of the q-cylotomic coset modulo n containing 1. If β is a
primitive n-th root of unity in Fqm , then the minimal polynomial of βa over Fq is

Mβa(x) =
∏
j∈Ca

(x− βj).

There is a one-to-one correspondence between the monic irreducible factors of xn − 1 and
the q-cyclotomic cosets modulo n. The factorization of xn − 1 into irreducible factors over
Fq is given by

xn − 1 =
∏
s

Mβs(x)
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where s runs through a set of representatives of the distinct q-cyclotomic cosets modulo n.

15.1.149 Definition Let β be a primitive n-th root of unity in an extension field of Fq. Let C be a
cyclic code over Fq of length n with generator polynomial g(x) ∈ Fq[x]. Then there is a
set T ⊆ {0, 1, . . . , n− 1} such that the roots of g(x) are {βt | t ∈ T}. T is a defining set
(with respect to β) of C.

15.1.150 Remark Changing β will change T . For a given β, knowing g(x) is equivalent to knowing T
because g(x) =

∏
t∈T (x−βt). If g(βt) = 0, then g(βtq) = 0 also, implying that T is a union

of q-cyclotomic cosets modulo n. Conversely, any set T ⊆ {0, 1, . . . , n − 1} that is a union
of q-cyclotomic cosets modulo n has the property that

∏
t∈T (x − βt) ∈ Fq[x] and hence is

the defining set of a cyclic code of length n over Fq.

BCH codes:

15.1.151 Definition [359, 1329, 1516, 1558, 2035] The cyclic code BCHn,q(δ) of length n and
designed distance δ has a generator polynomial of the form

g(x) = lcm{Mβa(x),Mβa+1(x), . . . ,Mβa+δ−2(x)}

for some sequence of elements βa, βa+1, . . . , βa+δ−2, where β is a primitive n-th
root of unity in some extension field of Fq. Alternately, BCHn,q(δ) has defining set
Ca ∪ Ca+1 ∪ · · · ∪ Ca+δ−2 relative to β. If n = qm − 1 for some positive integer m, the
code is primitive, and if a = 1, it is narrow sense.

15.1.152 Remark These codes are referred to as BCHn,q(δ) codes, where BCH stands for the
code name (Bose-Chaudhuri-Hocquenghem after the code originators [359, 1516]), and the
subscripts on BCH are the length and field of definition, and δ is the designed distance of
the code. The relationship between the designed distance and the true minimum distance
of BCHn,q(δ) is discussed below.

15.1.153 Remark The reason for requiring the generator polynomial of the BCH code to have a
consecutive sequence of roots derives from properties of Vandermonde matrices as follows.
Let β1, β2, . . . , β` be distinct elements in some extension field of Fq. The determinant of the
matrix 

β1 β2 · · · β`
β2

1 β2
2 · · · β2

`

β3
1 β3

2 · · · β3
`

...
β`1 β`2 · · · β``

 (15.1.3)

is
∏`
i=1 βi times the determinant of the matrix

1 1 · · · 1
β1 β2 · · · β`
β2

1 β2
2 · · · β2

`
...

β`−1
1 β`−1

2 · · · β`−1
`

 . (15.1.4)

The determinant of this matrix is
∏
i>j(βi−βj). If βi = βj for some i 6= j, the determinant

of (15.1.4) is zero and the matrix is singular. If the entries of the second row are distinct,
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the determinant is nonzero and the matrix is nonsingular. The determinant of the matrix
in (15.1.3) is (∏̀

i=1

βi

)∏
i>j

(βi − βj).

15.1.154 Remark To complete the discussion, it is straightforward to find the inverse of a Vander-
monde matrix of the form (15.1.4) in the following manner. Define the polynomials

fi(x) =
`−1∑
j=0

fijx
j =

∏̀
j=1,j 6=i

x− βj
βi − βj

that take on the values of 0 for x = βj , j 6= i and 1 for x = βi. The inverse of the
Vandermonde matrix (15.1.4) is then the matrix [fij ].

15.1.155 Remark To consider the dimension and minimum distance of the BCH code of Definition
15.1.151, note that the parity check matrix may be written in the form

H =


1 βa β2a · · · β(n−1)a

1 βa+1 β2(a+1) · · · β(n−1)(a+1)

...
...

...
...

...
1 βa+δ−2 β2(a+δ−2) · · · β(n−1)(a+δ−2)

 .
The word c ∈ Fnq is in the BCH code if and only if HcT = 0T . Since by the Vandermonde
argument, any δ−1 columns of H are linearly independent, the code has minimum distance
at least δ. In addition, as the entries of H are in Fqm , they can be expressed as column
m-tuples over Fq. Therefore the rank of H over Fq is at most m(δ− 1). Thus the BCH code
of Definition 15.1.151 is an (n,≥ (n−m(δ − 1)),≥ δ)q cyclic code.

15.1.156 Remark There are numerous techniques to improve the bound on the actual minimum
distance of a BCH code, i.e., improve on the lower bound of the designed distance.

Reed-Solomon (RS) codes:

15.1.157 Definition [2447] A q-ary Reed-Solomon code RSq−1,q(k) of dimension k is a BCH code
of length n = q− 1 and designed distance δ = n− k+ 1 = q− k over Fq, i.e., for α ∈ Fq
a primitive element, the code has a generator polynomial of the form

g(x) =
a+δ−2∏
i=a

(x− αi).

15.1.158 Remark The RS code defined above is a (q−1, k, d = q−k)q MDS code. That the minimum
distance d is exactly q−k is shown as follows. By the Singleton bound d ≤ n−k+1 = q−k.
Since a BCH code has minimum distance at least its designed distance δ, d ≥ δ = q − k.
Hence d = q − k. If 1 is not a root of g(x), then the extended narrow sense RS code,
obtained by adding an overall parity check, is a (q, k, d+ 1)q code and hence is also MDS.
With appropriate care one can define RS codes of length less than q − 1.

Notice also that the code defined as

C = {(f(1), f(α), . . . , f(αq−2)) | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}

is the (q−1, k, q−k)q narrow sense RS code, as now outlined. The code C is certainly linear
and k-dimensional as distinct polynomials of degree at most k − 1 cannot produce equal
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vectors in C as otherwise the difference of these polynomials has at least q − 1 > k − 1
roots. Let C1 be the (q − 1, k, q − k)q narrow sense RS code, which has defining set
T = {1, 2, . . . , q − k − 1} relative to α. Since C and C1 have equal dimensions, C = C1 if

C ⊆ C1. Let c(x) =
∑q−2
j=0 f(αj)xj ∈ C for some f(x) =

∑k−1
m=0 fmx

m ∈ Fq[x]. For i ∈ T ,

c(αi) =

q−2∑
j=0

(
k−1∑
m=0

fmα
jm

)
αij =

k−1∑
m=0

fm

q−2∑
j=0

α(i+m)j =
k−1∑
m=0

fm
α(i+m)(q−1) − 1

αi+m − 1

noting that αi+m 6= 1 as 1 ≤ i+m ≤ q − 2. Since α(i+m)(q−1) = (αq−1)i+m = 1, c(αi) = 0
implying c(x) ∈ C1, and so C = C1. Furthermore, in this realization, the extended code
(adding a simple parity check) is realized by adding the coordinate position containing
f(0).

15.1.159 Remark More generally one could define an (n, k, d = n − k + 1)q code C by choosing n
distinct elements α1, α2, . . . , αn in a field Fq and letting

C = {(f(α1), f(α2), . . . , f(αn)) | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

The code is not, in general, cyclic but is MDS.

15.1.160 Definition A set of k column positions of a linear (n, k, d)q code is an information set if
the corresponding columns of a code generator matrix are linearly independent.

15.1.161 Lemma If C is an (n, k, n− k + 1)q MDS code, then C⊥ is an (n, n− k, k + 1)q MDS code.
Any k columns of a generator matrix for an (n, k, d)q MDS code C are linearly independent
and hence these column positions form an information set. Similarly any n− k columns of
the parity check matrix for C are linearly independent and any such set of columns forms
an information set for C⊥.

15.1.162 Remark If Fq has characteristic 2 (q = 2s for some s), then by fixing a basis of Fq over
F2 one could expand the elements of Fq in each coordinate position of each codeword of a
(q− 1, k, q− k)q RS code to obtain an (s(q− 1), sk,≥ (n− k+ 1))2 code that is effective in
correcting burst errors. This is simply a concatenated code with trivial inner code.

15.1.163 Remark It is easy to see that a BCH code can be viewed as a subfield subcode of an RS
code.

15.1.164 Remark [304, 1945, 2484] In order to study the structure of other codes, the notion of
a generalized RS (GRS) code is defined. Let α1, α2, . . . , αn be n ≤ q distinct elements of
Fq and v = (v1, v2, . . . , vn) ∈ (F∗q)n where F∗q = Fq \ {0}. Let k ≤ n. The GRS code
GRSn,q(α,v, k) is defined as

GRSn,q(α,v, k) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) | f(x) ∈ Fq[x], deg f(x) ≤ k − 1}.

15.1.165 Theorem The above code GRSn,q(α,v, k) is an (n, k, n−k+1)q MDS code. Further, there
is a vector w ∈ (F∗q)n such that C⊥ is GRSn,q(α,w, n − k), i.e., the dual of a GRS code

is a GRS code, and the code GRSn,q(α,v, k)⊥ is the code GRSn,q(α,w, n − k) for some
w ∈ (F∗q)n.

15.1.166 Remark The proof of the above theorem is a simple generalization of the RS/BCH ar-
gument. Notice that the vector of nonzero elements v has the effect of multiplying each
coordinate position by a nonzero element which has little effect on code parameters. How-
ever when subfield subcodes are considered, the effect can be more significant.
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15.1.167 Remark A code being MDS is a strong condition. In particular, as the following theorem
shows, its weight enumerator is uniquely determined.

15.1.168 Theorem [2390] If C is an (n, k, d)q MDS code, then its weight distribution {Ai, i =
0, 1, . . . , n} is given by A0 = 1, Ai = 0 for i = 1, 2, . . . , d− 1, and

Ai =

(
n

i

)
(q − 1)

i−d∑
j=0

(−1)j
(
i− 1

j

)
qi−d−j for i = d, d+ 1, . . . , n.

15.1.169 Remark The existence of MDS codes is of interest. Only linear codes are considered here.
As noted, there are the trivial (n, 1, n)q codes (for any alphabet of size q) and parity
check (n, n − 1, 2)q codes for any length n. If one considers the parity check matrix of
a (q − 1, k, q − k)q RS (MDS) code, it is always possible to add columns (1, 0, . . . , 0)T and
(0, 0, . . . , 0, 1)T to obtain a (q + 1, k, q + 2 − k)q code for 2 ≤ k ≤ q − 1. This “doubly
extended” construction also works for BCH codes [2999]. When q is even, it is possible to
obtain a triply extended (q + 2, q − 1, 4)q MDS code and its dual (q + 2, 3, q)q code.

15.1.170 Conjecture [1558] It is postulated that if there is a nontrivial (n, k, n− k + 1)q MDS code
over Fq, then n ≤ q + 1, except when q is even and k = 3 or k = q − 1 in which case
n ≤ q + 2.

15.1.171 Remark Reed-Solomon codes are ubiquitous in communication and storage system stan-
dards of all kinds. Only a few of these are mentioned as examples: digital video broadcast-
ing (DVB) (EN 300-421 (satellite) and 429 (cable)); ADSL (asymmetric digital subscriber
loops) for low rate communications over telephone lines (ANSI T1.413); Internet high speed
(gigabit) optical networks (ITU-T G.795 and G.709 and OC-192); wireless broadband ac-
cess networks (including metropolitan (known commercially as WiMax) and local) in IEEE
802.16 (which is a family of standards covering the many types of networks in such appli-
cations); deep space missions (Voyager and Mariner, among others, although more recent
missions have tended to favor LDPC and turbo codes); satellite communication systems
(IESS 308); two-dimensional bar codes; data storage including CDs, CD-ROMs, DRAMs,
and DVDs and RAID (random arrays of inexpensive disks) systems. In each application the
alphabet size and code parameters are carefully chosen for given “channel” conditions. For
example ordinary music CDs use (32, 28, 5)256 and (28, 24, 5)256 codes with 8 bit symbols,
obtained by shortening a (255, 251, 5)256 Reed-Solomon code, and then cross interleaved in
a clever way to enable the system to withstand bursts of lengths up to 4,000 bits, caused
by a scratch of up 2.5 mm on the disk surface, without replay error. The optical network
standard OC-192 uses symbols from 3 to 12 bits (and RS codes of length up to 4095 symbols
with a maximum of 256 parity symbols).

Duadic codes:

15.1.172 Definition A vector v = (v0, v1, . . . , vn−1) ∈ Fnq is even-like if
∑n−1
i=0 vi = 0; otherwise v

is odd-like. A code C is even-like if all of its codewords are even-like; C is odd-like if it is
not even-like.

15.1.173 Remark The terms even-like and odd-like generalize the notion of even and odd weight for
binary vectors; i.e., if v ∈ Fn2 , v is even-like if and only if v has even weight. If C is a cyclic
code of length n over Fq with defining set T , then C is even-like if and only if 0 ∈ T .

15.1.174 Definition Let S1 and S2 be subsets of {1, 2, . . . , n − 1} that are unions of q-cyclotomic
cosets modulo n. Assume further that S1 ∩ S2 = ∅, S1 ∪ S2 = {1, 2, . . . , n − 1}, and
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that there exists b relatively prime to n such that S2 = {sb (mod n) | s ∈ S1} and
S1 = {sb (mod n) | s ∈ S2}. The pair of sets S1 and S2 form a splitting of n given by b
over Fq. For i ∈ {1, 2}, let Di be the cyclic code of length n over Fq with defining set Si.
The pair D1 and D2 is a pair of odd-like duadic codes. For i ∈ {1, 2}, let Ti = {0} ∪ Si,
and let Ci be the cyclic code of length n over Fq with defining set Ti. The pair C1 and
C2 is a pair of even-like duadic codes.

15.1.175 Remark Binary duadic codes were first defined in [1901]. They were later generalized to
other fields in [2402, 2403, 2506, 2687]. Duadic codes include quadratic residue codes de-
scribed later; quadratic residue codes exist only for prime lengths, but duadic codes can
exist for composite lengths.

15.1.176 Theorem With the notation of Definition 15.1.174, the following hold.

1. Duadic codes of length n over Fq exist if and only if n is odd and q is a square
modulo n.

2. For i ∈ {1, 2}, Ci has dimension (n− 1)/2, and there is a permutation of coordi-
nates that sends C1 to C2.

3. For i ∈ {1, 2}, Ci ⊆ Di, Di has dimension (n+ 1)/2, and there is a permutation
of coordinates that sends D1 to D2.

15.1.177 Remark Part 1 of Theorem 15.1.176 can be used to find precisely the values of n
such that duadic codes of length n exist, in a manner similar to the following. Assume
n = pa1

1 pa2
2 · · · parr where p1, p2, . . . , pr are distinct odd primes. Binary duadic codes exist if

and only if pi ≡ ±1 (mod 8) for 1 ≤ i ≤ r. Duadic codes over F3 exist if and only if pi ≡ ±1
(mod 12) for 1 ≤ i ≤ r. Duadic codes over F4 exist if and only if n is odd.

15.1.178 Remark Much is known about the structure of duadic codes as illustrated by the next two
theorems; see Chapter 6 of [1558].

15.1.179 Theorem Let C be a cyclic (n, (n− 1)/2, d)q code over Fq. Then C is self-orthogonal if and
only if C is an even-like duadic code where −1 gives the splitting of n over Fq. In that case,
if C is one of the duadic pair C1 and C2, C⊥i = Di for i ∈ {1, 2}. Furthermore, if n = p is a
prime with p ≡ −1 (mod 8), every splitting of p over F2 is given by −1 and every binary
duadic code of length p is self-orthogonal.

15.1.180 Theorem Let D1 and D2 be a pair of odd-like binary duadic codes of length n where the
splitting is given by −1 over F2. Then for i ∈ {1, 2},

1. the weight of every even weight codeword of Di is divisible by 4, and the weight
of every odd weight codeword is congruent to n (mod 4); furthermore,

2. the extended codes D̂i are self-dual. In D̂i if n ≡ −1 (mod 8), all codewords have
weights divisible by 4, and if n ≡ 1 (mod 8), all codewords have even weights but
some codewords have weights not divisible by 4.

15.1.181 Remark Quadratic residue codes, considered next, are special cases of duadic codes.

Quadratic residue (QR) codes:

15.1.182 Definition For an odd prime p define R to be the set of integers modulo p where

R = {a2 ∈ Zp | a ∈ Zp and a 6≡ 0 (mod p)}.

The set R is the set of quadratic residues modulo p. The set N of nonzero elements of
Zp that are not in R are the quadratic nonresidues modulo p.
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15.1.183 Remark Clearly |R |= |N |= (p − 1)/2. The sets observe a parity of sorts since a residue
times a residue modulo p is a residue, a residue times a nonresidue is a nonresidue, and
a nonresidue times a nonresidue is a residue. This implies that, whenever q is a quadratic
residue modulo p, the pair of sets R and N form a splitting of p given by any nonresidue
over Fq. For ν a primitive element of Zp (i.e., ν is a generator of the multiplicative group
Z∗p = Zp \ {0}), it is clear that R = {ν2i | i = 1, 2, . . . , (p − 1)/2}, independent of the
primitive element chosen. The theory of quadratic residues is a fundamental part of number
theory.

15.1.184 Definition [311, 2405] Let p be an odd prime and q a prime power with gcd(p, q) = 1.
Assume further that q(p−1)/2 ≡ 1 (mod p); hence q is a quadratic residue modulo p.
Let R and N be the quadratic residues and quadratic nonresidues modulo p. Relative
to a primitive p-th root of unity β in some extension field of Fq, denote by DR and
DN the (p, (p + 1)/2, d)q odd-like duadic codes over Fq with defining sets R and N ,
respectively. Denote by CR and CN the (p, (p− 1)/2, d′)q even-like duadic codes over Fq
with defining sets {0} ∪R and {0} ∪N , respectively. The four codes DR, DN , CR, and
CN are quadratic residue (QR) codes.

15.1.185 Remark Much is known about QR codes and their relatives, their minimum distances,
and automorphism groups. As noted previously, the only two perfect codes with minimum
distance greater than 3 are cosets of two linear Golay codes, which are quadratic residue
codes treated in the next two examples.

15.1.186 Example The binary (23, 12, 7)2 Golay code [2405, 2849]: Let p = 23 and q = 2, and note
that 2 is a quadratic residue modulo 23 as 52 ≡ 2 (mod 23). The smallest extension field of
F2 that contains a primitive 23-rd root of unity is F211 . If α is a primitive element of F211 ,
then β = α89 is a primitive 23-rd root of unity. With the appropriate choice of primitive
element, the polynomial

gR(x) =
∏
r∈R

(x− βr) = x11 + x9 + x7 + x6 + x5 + x+ 1 ∈ F2[x]

generates the (23, 12, d)2 quadratic residue code DR. Theorem 15.1.180 implies d ≡ 3
(mod 4), and the minimum distance d can be determined to be 7. Notice that since∑3
i=0

(
23
i

)
= 211, this code is perfect.

15.1.187 Example The ternary (11, 6, 5)3 Golay code [2405, 2849]: For p = 11 and q = 3, note that
62 ≡ 3 (mod 11), and hence 3 is a quadratic residue modulo 11. The smallest extension field
of F3 containing a primitive 11-th root of unity is F35 , and if α is a primitive root in F35 ,
then β = α22 is a primitive 11-th root of unity. With the appropriate choice of primitive
element,

gR(x) =
∏
r∈R

(x− βr) = x5 + x4 + 2x3 + x2 + 2 ∈ F3[x]

is a generator polynomial of the (11, 6, d)3 quadratic residue code DR; it can be shown that

d = 5. Since
∑2
i=0

(
11
i

)
2i = 35, this code is also perfect. In fact, as noted earlier, this code

and the binary (23, 12, 7)2 Golay code are the only two possible perfect linear codes with
minimum distance greater than 3. This ternary perfect code was actually discovered before
Golay by Virtakallio [1522] in connection with a football pool problem.

15.1.188 Remark It is interesting to note that the Golay codes were discovered very early in the
history of coding [1292] and took only half a page in the Proceedings of the Institute of
Radio Engineers, (IRE, precursor to the IEEE), appearing prior to the paper of Hamming
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[1408]. The original paper of Shannon [2608] actually contained an example of a Hamming
code, prior to the appearance of the Hamming paper. The parameters of the Golay codes
were found by examining Pascal’s triangle for sequential summations along a row that add
to an appropriate power. Once the required relationship was found, Golay was able to find
generator matrices for the two (linear) codes. He also noted that

2∑
i=0

(
90

i

)
= 212

raising the possibility of a (90, 78, 5)2 perfect binary code, but no such code can exist
[2810, 2849].

Alternant codes:

15.1.189 Remark Alternant and GRS codes bear a similar relationship as BCH and RS codes in
that a BCH code of block length qm − 1 over Fq is a subfield subcode of an RS code of this
length over Fqm .

15.1.190 Definition An alternant code An,q(α,v) is the subfield subcode of GRSn,qm(α,v, k), i.e.,

An,q(α,v) = GRSn,qm(α,v, k) |sfqm|q .

15.1.191 Lemma [1991, 2484] If An,q(α,v) = GRSn,qm(α,v, k) |sfqm|q is an (n, k′, d′)q code, then

k′ ≤ k and d′ ≥ n− k + 1.

15.1.192 Remark The class of alternant codes is quite large, containing all narrow sense BCH and
Goppa codes. The duals of alternant codes are also of interest for which we have the following
diagram [802]:

GRSn,qm(α,v, k)
dual−−−−→ GRSn,qm(α,w, n− k)

subfield

y ytrace

An,q(α,v)
dual−−−−→ An,q(α,v)⊥(

= GRSn,qm(α,v, k)sfqm|q

) (
= GRSn,qm(α,w, n− k)trqm|q

)
.

Goppa codes:

15.1.193 Remark [1319, 1320, 2047, 2849] To discuss Goppa codes it is instructive to consider a
natural transition from BCH codes in the following manner. For a variable x and α a
nonzero element in a field, note that

1

1− α−1x
= 1 + α−1x+ α−2x2 + · · ·+ α−(2t−1)x2t−1 + α−2tx2t + α−(2t+1)x2t+1 + · · ·

as can be verified by multiplying each side by (1−α−1x). The effect of taking this equation
modulo x2t is to truncate the series on the right hand side to terms of degree 2t and higher.
Consider the primitive narrow sense BCH code of length n = qm− 1 and designed distance
2t + 1 with defining set C1 ∪ C2 ∪ · · · ∪ C2t relative to α, a primitive element of Fqm . For
convenience denote the nonzero field elements αi as α−1

i . Then c = (c0, c1, . . . , cn−1) is a
codeword of the BCH code if and only if

n−1∑
i=0

ciα
−j
i = 0 for j = 1, 2, . . . , 2t.
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For a received word r = (r0, r1, . . . , rn−1), the sum of a codeword and error word (presumed
of weight not more than t), define the syndromes as

Sj =
n−1∑
i=0

riα
−j
i for j = 1, 2, . . . , 2t,

and define the syndrome polynomial as
∑2t
j=1 Sjx

j−1. Note that in the absence of errors
(the received word is a codeword), this is the zero polynomial. However this polynomial can
be expressed as

S(x) =
2t∑
j=1

Sjx
j−1 =

2t∑
j=1

xj−1

(
n−1∑
i=0

riα
−j
i

)
=
n−1∑
i=0

ri

 2t∑
j=1

α−ji xj−1


=

n−1∑
i=0

ri
1

αi

2t∑
j=1

(α−1
i x)j−1 = −

n−1∑
i=0

ri
x− αi

(mod x2t).

It follows that c = (c0, c1, . . . , cn−1) is a codeword if and only if

n−1∑
i=0

ci
x− αi

≡ 0 (mod x2t).

In this guise the transition from BCH to Goppa codes is more intuitive.

15.1.194 Definition [1945, 2047, 2849] Let g(x) ∈ Fqm [x] be monic and let L = {α0, α1, . . . , αn−1}
be a subset of Fqm such that g(αi) 6= 0 for 0 ≤ i ≤ n − 1. Then (c0, c1, . . . , cn−1) ∈ Fnq
is in the Goppa code Gn,q(L, g) if and only if

n−1∑
i=0

ci
x− αi

≡ 0 (mod g(x)).

The Goppa code is more often denoted Γ(L, g) in the literature, but the notation used
here is consistent with our earlier code designations.

15.1.195 Remark If the Goppa polynomial is irreducible over Fqm , the code is called irreducible. By
choosing the Goppa polynomial as g(x) = xd−1 and L as the set of n-th roots of unity in
Fqm , the Goppa code is a BCH code with designed distance d.

15.1.196 Theorem [2047, 2849] For the Goppa code Gn,q(L, g), where |L|= n and deg g(x) = s, we
have:

1. The minimum distance is bounded by d ≥ s+ 1.

2. The code dimension is bounded by k ≥ n−ms.
15.1.197 Remark [1945, 2047] For any monic polynomial g(x) of degree s such that g(α) 6= 0, it is

clear from previous arguments that

1

x− α ≡ −
1

g(α)

(
g(x)− g(α)

x− α

)
(mod g(x))

is a polynomial of degree less than s. (Note that this follows as x − α is a factor of the
numerator since the numerator has α as a zero.) Thus c is a codeword in Gn,q(L, g) if and
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only if its inner product with(
1

g(α0)

g(x)− g(α0)

(x− α0)
, . . . ,

1

g(αn−1)

g(x)− g(αn−1)

(x− αn−1)

)
is zero. To simplify this expression, let g(x) =

∑s
i=0 gix

i and substitute this into the above
equation. By expanding the fractions and considering like powers of x, one obtains a matrix
which can be row reduced to

h0 h1 · · · hn−1

h0α0 h1α1 · · · hn−1αn−1

...
h0α

s−1
0 h1α

s−1
1 · · · hn−1α

s−1
n−1


where hi = 1/g(αi) for i = 0, 1, . . . , n−1; the Goppa code Gn,q(L, g) is the set of words over
Fq orthogonal to the rows of this matrix. Notice this form of parity check matrix implies
the Goppa code is an alternant code.

15.1.198 Remark To show the class of Goppa codes contains asymptotically good codes, it suffices
to show there exists a sequence of Goppa polynomials, of increasing degrees, for which
the normalized rate and distance approach the Varshamov-Gilbert bound; see Theorem
15.1.130. While not constructive, such an argument shows the class of Goppa codes includes
some asymptotically good codes. The issue is discussed in [2849].

15.1.199 Remark There are many other classes of cyclic codes not discussed here. To round out the
discussion above, the generalized versions of Reed-Muller codes are mentioned, as well as
codes obtained from finite Euclidean and projective geometries [2390] that will be of interest
in discussing majority logic decoding.

Generalized Reed-Muller (GRM) codes:

15.1.200 Remark The binary RM codes are generalized in the following manner. Construct the
(m+1)× (qm−1) matrix over Fq as follows. The first row consists of all ones and is labeled
v0. Among the m-tuples of the qm−1 columns in rows v1 through vm, all nonzero m-tuples
over Fq occur. A simple way of viewing this is to choose row v1 as a pseudo-noise (pn)
sequence over Fq, a sequence generated by a linear feedback shift register whose feedback
coefficients are the coefficients of a primitive polynomial of degree m over Fq. Row vi+1 is
row 1 shifted by i positions for 1 ≤ i ≤ m−1. Let Fq[X1, . . . , Xm]ν = Fq[X]ν denote the set
of polynomials of degree at most ν over Fq in m variables. Define the matrix Gν,m over Fq
whose first row is v0 and whose remaining rows are generated by all monomials in Fq[X]ν
acting on rows v1,v2, . . . ,vm. Let GRMqm−1,q(ν,m) be the code with generator matrix
Gν,m; let GRMqm,q(ν,m) be the extended code obtained from GRMqm−1,q(ν,m) by adding
an overall parity check. The exponent of a monomial is limited to degree at most q − 1 in
any variable since xqi = xi in Fq; thus we only consider values of ν with ν ≤ m(q − 1).

15.1.201 Theorem [805, 1691] The parameters of GRMqm−1,q(ν,m) are

n = qm − 1, k =
ν∑
t=0

m∑
j=0

(−1)j
(
m

j

)(
t− jq +m− 1

t− jq

)
, d = (q − s)qm−r−1 − 1,

where ν = r(q − 1) + s, 0 ≤ s < q − 1, 0 ≤ r ≤ m. The extended code GRMqm,q(ν,m) has
length and minimum distance one greater than the above, with the same dimension. The
dual code to GRMqm,q(ν,m) is GRMqm,q(µ,m) where ν + µ+ 1 = m(q − 1).
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15.1.202 Remark The expression for the code dimension in the previous theorem is the number of
monomials of total degree at most ν. This is also the number of ways of placing ν balls in
m cells, no cell containing more than q − 1 balls. When ν < q, this expression reduces to(
ν+m
m

)
, and the minimum distance is (q − ν)qm−1 − 1.

15.1.203 Remark To show the GRM codes are cyclic requires the following notion. The radix-q
weight of an integer j is defined as

wq(j) = j0 + j1 + · · · where j = j0 + j1q + j2q
2 + · · · with 0 ≤ ji < q.

15.1.204 Theorem Let α be a primitive element of Fqm . Then the code GRMqm−1,q(ν,m), for
ν ≤ m(q − 1), is cyclic with defining set relative to α given by

{j | 0 < j < qm − 1, 0 < wq(j) ≤ m(q − 1)− ν − 1}.

The code is a subcode of the primitive narrow sense BCH code with designed distance
(q − s)qm−r−1 − 1 where ν = r(q − 1) + s as in Theorem 15.1.201.

15.1.205 Remark To discuss projective GRM codes denote by Fq[X0, . . . , Xm]0ν = Fq[X]0ν the set of
homogeneous polynomials in m+ 1 variables of degree at most ν where ν ≤ (m+ 1)(q− 1).
(The difference in the use of X, compared to the nonprojective case, is resolved by context.)
There are πm+1,q projective (m + 1)-tuples, Pmq , which coordinatize the positions of the
projective code. The projective codes are defined as

PGRMπm+1,q,q(ν,m) = {(f(x)) | f(x) ∈ Fq[X]0ν , x ∈ Pmq }.

The basic parameters of the code are given in the following theorem.

15.1.206 Theorem [1827, 2696] The code PGRMπm+1,q,q(ν,m) has the following parameters:

n = πm+1,q =
qm+1 − 1

q − 1
, k =

∑
t=ν (mod q−1)

0<t≤ν

m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jq + 1

t− jq

)
and

d = (q − s)qm−r−1,

where ν − 1 = r(q − 1) + s, 0 ≤ s < q − 1. In the case ν < q these expressions reduce to

n = πm+1,q , k =

(
r +m

m

)
, d = (q − r + 1)qm−1.

Finite geometry codes:

15.1.207 Remark The binary (extended) RM codes have an interesting interpretation in terms of
finite geometries for which some terminology is needed. Denote the n-dimensional projective
geometry over Fq by PG(n, q) and the Euclidean geometry by EG(n, q). (Some authors
denote EG(n, q) by AG(n, q); see Chapter 14.)

15.1.208 Remark [311] Projective geometries are discussed first; see also Section 14.4. Let α denote
a primitive element of Fqn+1 and v = (qn+1 − 1)/(q − 1) = πn+1,q. Then β = αv is a
primitive element of Fq. No two points αj with j = 0, 1, . . . , v − 1 are Fq-multiples of each
other, and hence these first v powers of α can be taken as the points of PG(n, q). Let
αj1 , αj2 , . . . , αjm+1 , m ≥ 1, be m + 1 linearly independent points in PG(n, q), i.e., there is
no linear relationship between them over Fq. The points

{aj1αj1 + aj2α
j2 + · · ·+ ajm+1

αjm+1 | aji ∈ Fq},
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with multiples over Fq identified, give the πm+1,q = (qm+1−1)/(q−1) points of an m-flat in
PG(n, q). The flat is a PG(m, q). In particular, the number of points on a line in PG(n, q) is
q+ 1. In PG(n, q) any two lines intersect in a single point, and the number of lines through
a fixed point in PG(n, q) is given by (qn − 1)/(q − 1).

To construct an EG(n, q) from a PG(n, q), subtract an (n − 1)-flat from PG(n, q). An
(n − 1)-flat can be thought of as the set of points in PG(n, q) orthogonal to a given line.
Alternatively the points of PG(n, q) can be divided into the two groups

S1 = {(1, γ2, . . . , γn+1) | γi ∈ Fq} and S2 = {(0, η2, . . . , ηn+1) | ηj ∈ Fq}.

The points of S2 form an (n − 1)-flat and those of S1 an EG(n, q). The points of this
geometry can be represented as the elements of Fqn . The points of an m-flat in EG(n, q)
through a given point αi is the set of points

{αi + γ1α
j1 + · · ·+ γmα

jm | γj ∈ Fq}

where the αjk ’s are independent. Lines can be parallel in EG(n, q). In EG(2, q) the (q+ 1)q
lines can be divided into q + 1 parallel classes, where the lines in each class are parallel,
each class containing q lines. Lines in different classes intersect. In EG(n, q) there are
qn−1(qn − 1)/(q − 1) lines and (qn − 1)/(q − 1) parallel classes, each class containing qn−1

lines and each line containing q points.

15.1.209 Remark The generator matrix G(r,m) of the r-th order binary Reed-Muller code
RM2m,2(r,m) (Definitions 15.1.71 and 15.1.72) has the following interpretation. The zero-th
row is the incidence vector of the Euclidean space EG(m, 2). Rows 1 through m are inter-
preted as incidence vectors for (m− 1)-flats. The product of two such rows is the incidence
vector of the intersection of two such flats (an (m − 2)-flat) etc. One aim in pursuing this
geometric view for coding is the consideration of codes derived from such finite geometries
and their majority logic decoding. For the remainder of this section assume q = ps for some
prime p, the characteristic of Fq, and integer s.

15.1.210 Definition [1691, 2390] The r-th order Euclidean geometry code of length qm over Fp,
denoted EGqm,p(r), is the largest linear code over Fp that contains in its null space the
incidence vectors of all (r + 1)-flats in EG(m, q).

15.1.211 Remark Note that the incidence vectors are, by definition, binary and so the codes could
be defined over any finite field. However, not choosing the field Fp would complicate the
analysis considerably. It turns out that these codes are in fact extended cyclic codes as the
following theorem shows.

15.1.212 Theorem [304, 1691] Let α be a primitive element of Fqm = Fpsm . Then EGqm,p(r) is the
code obtained by extending the cyclic code whose defining set relative to α is

{j | 0 < j < qm − 1, 0 < max
0≤i<s

wq(jp
i) ≤ (q − 1)(m− r − 1)}.

15.1.213 Definition The r-th order projective geometry code, denoted PG(qm−1)/(q−1),p(r), is the
largest linear code containing the incidence vectors of all r-flats in its null space.

15.1.214 Theorem [1692] Let β ∈ Fqm = Fpsm be a primitive (qm − 1)/(q − 1) root of unity. The
code PG(qm−1)/(q−1),p(r) is a cyclic code whose defining set relative to β is

{j | 0 < j < (qm − 1)/(q − 1), 0 < max
0≤i<s

wq(j(q − 1)pi) ≤ (q − 1)(m− r + 1)}.
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15.1.215 Remark The EG and PG codes are defined as the largest codes having the appropriate
flats in their dual codes. In the binary case, the EG codes are extended PG codes, and
the PG codes can be made cyclic. The codes were investigated extensively in [1691, 1692,
1942, 2966]. Lower bounds on their minimum distances can be obtained from the number
of errors they are capable of correcting with majority logic decoding; see Section 15.1.6.6.
The RM, GRM, EG, and PG codes, as well as many others, can be discussed under a
very general class of polynomial codes [1692].

Justesen codes:

15.1.216 Remark There have been many attempts to explicitly construct codes for which the nor-
malized rate and distance functions do not both tend to zero with increasing block length.
It is known that the class of BCH codes cannot achieve this. While the class of Goppa
codes can be used for such a purpose, the construction is not explicit in that it calls for
the construction of a sequence of suitable polynomials which are known to exist but are
not given [2849]. Justesen [1638] provided the first explicit construction. An outline of that
construction is given. Let N = 2m − 1, and let α be a primitive element in F2m . Let Cm,K
be the (N,K,D)2m RS code given by

{(f(1), f(α), . . . , f(αN−1)) | f(x) ∈ F2m [x], deg f(x) ≤ K − 1}.

Let C′m,K be the (2N,K, 2D)2m code given by

C′m,K = {(a0, a1, . . . , aN−1, a0, αa1, . . . , α
N−1aN−1) | (a0, a1, . . . , aN−1) ∈ Cm,K}.

The Justesen code C′′m,K is found by expanding the components of each codeword, which
are in F2m , into binary m-tuples with respect to some fixed basis.

15.1.217 Theorem [1638] For any given code rate R < 1/2 and given m = 1, 2, . . ., choose Km to be
the smallest integer K such that K/2N ≥ R where N = 2m − 1. The code C′′m,Km is linear
over F2 with length n = 2mN , dimension mKm, rate Km/2N ≥ R, and minimum distance
dn asymptotically bounded by

lim inf
n→∞

dn/n ≥ (1− 2R)H−1(1/2) ∼ 0.11(1− 2R).

15.1.218 Remark The normalized rate and distance of the code for a given rate R are both clearly
nonzero. The construction calls for the expansion of elements of F2m into binary m-tuples
as well as a primitive element α ∈ F2m . To make the procedure entirely constructive (i.e., to
explicitly give such an expansion) an irreducible polynomial of each degree, as the degrees
tend to infinity, is needed. The issue is discussed in [1638] where it is noted that an irreducible

polynomial of the form x2·3` + x3` + 1 can be used, ` = 1, 2, . . .. Given such an irreducible
polynomial for a given degree and known order, a primitive element can be determined.

15.1.4 A spectral approach to coding

15.1.219 Remark Suppose a = (a0, a1, . . . , an−1) 7→ a(x) = a0 + a1x + · · · + an−1x
n−1 ∈ Fq[x] and

n | (qm − 1), i.e., Fqm contains a primitive n-th root of unity α. The Mattson-Solomon
polynomial of a is defined as

A(x) =
n∑
i=1

An−ix
n−i =

n∑
i=1

a(αi)xn−i
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and the correspondence is given by

Ai = a(αn−i)←→ ai =
1

n
A(αi).

The utility of such an approach stems from the following theorem.

15.1.220 Theorem [2849] If the Mattson-Solomon polynomial A of a vector a has r n-th roots of
unity as zeros, then the weight of a must be at least n− r.

15.1.221 Remark This theorem follows as ai = A(αi)/n for 0 ≤ i < n. The theorem allows a
spectral approach to coding to be taken (as for example in [304]) where the correspondence
between weights of vectors and zeros of Mattson-Solomon polynomials can be exploited. The
coefficients of the Mattson-Solomon polynomial A(x) can be viewed as a discrete Fourier
transform of the coefficients of the original polynomial a(x) and hence enjoy many useful
properties, similar to those of a discrete Fourier transform.

15.1.5 Codes and combinatorics

15.1.222 Remark The relationships between codes and certain combinatorial structures are deep
and of great interest. They include connections between codes and association schemes,
difference sets, finite geometries and designs, among many others. Only a basic relationship
between the weight classes of certain codes as incidence vectors for designs will be noted
here. The reader is referred to many chapters in the handbook by Pless et al. [2405] for a
recent view of the subject and to Chapter 14 of this Handbook.

15.1.223 Definition A t-(v, k, λ) design is a pair (P,B) where P is a collection of v distinct points
and B is a collection of subsets of P, called blocks, each of size k, with the property that
any subset of P of size t is contained in exactly λ blocks. The number of blocks of the
design is given by b = λ

(
v
t

)
/
(
k
t

)
.

15.1.224 Remark An interesting technique for obtaining classes of t-designs is to consider the code-
words of fixed weight in a binary code and to determine under what conditions they might
form incidence vectors for the blocks of a t-design. Such investigations have often illumi-
nated the structure of a code and produced interesting classes of designs for combinatorial
use. An important tool in this investigation has been the Assmus-Mattson theorem below.
While quite technical, it is straightforward to apply if sufficient information is known about
the code and its dual. The support of a vector is the list of coordinate positions where the
vector is nonzero. The codewords of some fixed weight hold a design if the supports of the
codewords form a t-design for some t.

15.1.225 Theorem [142] Let C be an (n, k, d)q code with dual code C⊥ having minimum distance
d⊥. If q = 2, let w = n; for q > 2, let w be the largest integer such that

w −
⌊
w + q − 2

q − 1

⌋
< d.

Define w⊥ analogously for C⊥. Suppose {Ai} and {Bi} are the weight distributions for C
and C⊥ respectively. Let s be the number of i with Bi 6= 0 for 0 < i ≤ n− t for some integer
t. Suppose t < d and s ≤ d−t. Then the codewords of weight i in C hold a t-design provided
Ai 6= 0 and d ≤ i ≤ w. The words of weight i in C⊥ hold a t-design provided Bi 6= 0 and
d⊥ ≤ i ≤ min{n− t, w⊥}.
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15.1.226 Example The extended binary (24, 12, 8)2 Golay code (the extension of the quadratic
residue (23, 12, 7)2 code) has weight distribution {A0 = 1, A8 = 759, A12 = 2576, A16 =
759, A24 = 1} and is self-dual. For t = 5, the number of nonzero weights less than 24−5 = 19
is s = 3. Thus the conditions and each weight class of the code satisfies the theorem, i.e.,
each weight class of the code holds a 5-design. In particular the 759 codewords of weight 8
hold a Steiner design (λ = 1), in fact a 5-(24, 8, 1) design, one of the more interesting designs
known. This design is also related to the Leech lattice which leads to a particularly dense
sphere packing in 24-dimensional Euclidean space. This connection is explored in detail in
[2805].

15.1.227 Example In a similar manner, the extended ternary (12, 6, 6)3 Golay code is of interest.
This code has nonzero codewords only of weights 6, 9, and 12, and is self-dual. Taking
t = 5, the number of nonzero code weights less than 12− 5 = 7 is s = 1 and so the weight
classes of the code each hold 5-designs. This code has 264 codewords of weight 6, 440 of
weight 9 and 24 of weight 12.

15.1.228 Remark The above discussion suggests that self-dual codes with few weights and large
distance might be of interest in terms of applying the Assmus-Mattson theorem and such
has been the case. Particular interest is in the case of binary and ternary self-dual codes. If
C is a binary self-dual code, its length is even and every codeword has even weight. If C is a
ternary self-orthogonal code, every weight is divisible by 3. A binary code is even if every
codeword has even weight. A binary code is doubly-even if every weight is divisible by 4.
Formally self-dual codes are those for which WC(x, y) = WC⊥(x, y) and all self-dual codes
are formally self-dual. Many results are known about such codes and a few are touched on
here [1991, 2405].

15.1.229 Lemma [2405] Let C be a code over Fq with every weight divisible by ∆. If q = 2 and ∆ = 4
or if q = 3 and ∆ = 3, then C is self-orthogonal.

15.1.230 Lemma [2405] Binary self-dual doubly-even codes of length n exist if and only if 8 | n.
Ternary self-dual codes exist if and only if 4 | n.

15.1.231 Theorem [2405] Let C be an (n, n/2, d)q code for q = 2 or q = 3.

1. If q = 2 and C is formally self-dual and even, then d ≤ 2bn/8c+ 2.

2. If q = 2 and C is self-dual and doubly-even, then d ≤ 4bn/24c+ 4.

3. If q = 3 and C is self-dual, then d ≤ 3bn/12c+ 3.

15.1.232 Remark Codes which achieve the upper bounds in the above theorem are referred to as
extremal and often have weight classes of codewords that hold designs. The binary and
ternary Golay codes are extremal. The existence of other extremal codes has long been a
matter of interest.

15.1.233 Remark As noted, the work of Delsarte [801, 806] has been influential in the relationship
between codes and combinatorics, particularly t-designs, orthogonal arrays and graphs. The
result below is but one such example.

15.1.234 Theorem [801] Let C be a binary code of minimum distance d and external distance s′, with
d ≥ s′. Then C is distance invariant and the codewords of a given weight hold a t-design
with t = d− s′.
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15.1.6 Decoding

15.1.6.1 Decoding BCH codes

15.1.235 Remark Decoding a primitive narrow sense BCH code is considered. The modifications
needed for a nonnarrow sense or nonprimitive code, as well as for RS and other cyclic codes,
will be clear. Also, in most cases, such errors-only decoding algorithms can be extended
to errors-and-erasures algorithms. Assume the code has length n = qm − 1 and designed
distance d = 2t+1 and every codeword polynomial has roots αi for i = 1, 2, . . . , 2t where α is
a primitive element of Fqm . The development below is fairly standard [231, 304, 1329, 1943,
2136, 2390, 2484]. It is convenient to think of codewords and received words as polynomials.
Assume a codeword polynomial c(x) is sent and the polynomial r(x) = c(x) + e(x) is
received, where e(x) is the error polynomial, assumed to be of weight at most t. If more
than t errors occur, the algorithm may fail. For example, in the extreme case, if a certain set
of d errors occurs, it may happen that an incorrect codeword is received and the algorithm
will assume no errors occurred in transmission.

15.1.6.2 The Peterson-Gorenstein-Zierler decoder

15.1.236 Remark The algorithm discussed in this section was first described by Peterson [2389] for
binary codes and by Gorenstein and Zierler [1329] for nonbinary codes. Denote the i-th
position of a codeword by αi for i = 0, 1, . . . , qm − 2. Assume the actual number of errors
that occurred (unknown) is ν ≤ t = b(d − 1)/2c. Let the errors be in coordinate positions
Xi = αji with error values Yi for i = 1, 2, . . . , ν. Noting that c(αj) = 0 for j = 1, 2, . . . , 2t,
the information of value in the received codeword is from its syndromes evaluated as

Sj = r(αj) = c(αj) + e(αj) = e(αj) =
ν∑
i=1

YiX
j
i for j = 1, 2, . . . , 2t.

In matrix form this is
Y1X1 + Y2X2 + · · · + YνXν

Y1X
2
1 + Y2X

2
2 + · · · + YνX

2
ν

...
Y1X

2t
1 + Y2X

2t
2 + · · · + YνX

2t
ν

 =


S1

S2

...
S2t

 . (15.1.5)

Denote the error locator polynomial by

σ(x) =
ν∏
i=1

(1−Xix) = 1 + σ1x+ · · ·+ σν−1x
ν−1 + σνx

ν ,

i.e., the errors occur at the inverses of the zeros of σ(x). It follows that

Sj+ν + σ1Sj+ν−1 + · · ·+ σνSj = 0 for j = 1, 2, . . . , 2t− ν (15.1.6)

which leads to the matrix equation
S1 S2 · · · Sν−1 Sν
S2 S3 · · · Sν Sν+1

...
Sν Sν+1 · · · S2ν−2 S2ν−1



σν
σν−1

...
σ1

 =


−Sν+1

−Sν+2

...
−S2ν

 .
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Since ν ≤ t, all syndromes are known. If the number of errors made, ν, was known, the
equations could be solved for the coefficients σi and error locations found from the roots of
σ(x). The following lemma suggests a method to find ν.

15.1.237 Lemma The matrix 
S1 S2 · · · S`
S2 S3 · · · S`+1

...
S` S`+1 · · · S2`−1


is nonsingular if ` ≤ ν and singular otherwise.

15.1.238 Remark To find the actual number of errors that occurred in transmission, first form the
matrix in Lemma 15.1.237 for ` = t. If nonsingular, assume t errors occurred. If singular,
set ` to t− 1 and repeat until the matrix is nonsingular. The algorithm is then:

1. Compute the syndromes Si for i = 1, 2, . . . , 2t.

2. Determine the actual number of errors that occurred in transmission from Lemma
15.1.237.

3. Find the error locations by finding the roots of σ(x) (by trying all nonzero field
elements if necessary).

4. Find the error values using (15.1.5).

Several steps of this algorithm are computationally expensive, such as finding successive
determinants. More efficient methods are introduced next.

15.1.239 Remark The above decoding technique is easily generalized to RS, GRS, alternant, and
Goppa codes.

15.1.6.3 Berlekamp-Massey decoding

15.1.240 Remark [231, 2011] Equation (15.1.6) suggests the following interpretation for determining
the error locator polynomial: Given the sequence of 2t syndromes, Si for i = 1, 2, . . . , 2t,
determine the linear feedback shift register of minimum length such that if S1, S2, . . . are
initially loaded into it, it will generate all 2t syndromes. Clearly the feedback coefficients
of such a shift register will be the coefficients of the error locator polynomial. An efficient
algorithm to determine these coefficients was given in Berlekamp [231] and this algorithm
was interpreted in the above manner by Massey [2011]. The details of the development
are intricate and omitted here. The following lemma from [2011] gives the flavor of the
argument. Denote the feedback connection polynomial at the r-th stage by σ(r)(x) and the
length of the register by `r so that the shift register generates S1, S2, . . . , Sr. The lemma
decides on the length of the minimum length register in going from the (r − 1)-st stage to
the r-th stage.

15.1.241 Lemma [2011] Let {`i, σ(i)(x)} be a sequence of minimum-length shift registers such that
(`i, σ

(i)(x)) generates the sequence up to Si, for i = 1, 2, . . . , r − 1. Then if σ(r)(x) 6=
σ(r−1)(x), the length of the r-th shift register is

`r = max{`r−1, r − `r−1}.

15.1.242 Remark Once the length of the shift register for the r-th stage is determined, an efficient
procedure to update the coefficients of σ(r)(x) is known ([304, Theorem 7.4.1], [2390, Theo-
rem 9.10], and [231, Algorithm 7.4]). The final step of the improvements for the Berlekamp-
Massey algorithm involves determining the error values, once their locations are known, due
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to Forney [1090]. Let ω(x) be the error evaluator polynomial given by

ω(x) ≡ S(x)σ(x) (mod x2t). (15.1.7)

This is the key equation for decoding.

15.1.243 Theorem [1090] The error values may be determined by the equations

ω(x) = x
ν∑
i=1

YiXi

∏
j 6=i

(1−Xjx)

and

Yi =
ω(X−1

i )

X−1
i ω′(X−1

i )

where ω′ is the formal derivative of ω.

15.1.244 Remark Once the error locations are known, ω(x) can be used to compute the error values
(rather than invert a ν × ν matrix over Fq). The degree of ω(x) is less than that of σ(x).
Notice that this last step can be omitted for binary codes, since the error values at error
locations are 1.

15.1.6.4 Extended Euclidean algorithm decoding

15.1.245 Remark Sugiyama et al. [2741] showed how the extended Euclidean algorithm (EEA) can be
used to decode Goppa (and hence RS and BCH) codes. The technique was further developed
in [2047]. If F is any field, the EEA is used to determine the greatest common divisor
d(x) ∈ F[x] of two polynomials a(x), b(x) ∈ F[x] and to also determine two polynomials
s(x), t(x) ∈ F[x] such that

s(x)a(x) + t(x)b(x) = d(x).

The application of this algorithm to solving the key equation for decoding will be seen later.
To discuss this, some properties of the algorithm are required. The treatment of [2047] is
followed.

Three sequences of polynomials are derived: {ri(x), si(x), ti(x)} with the initial condi-
tions

r−1(x) = a(x) s−1(x) = 1 t−1(x) = 0
r0(x) = b(x) s0(x) = 0 t0(x) = 1

where it is assumed deg a(x) ≥ deg b(x). The sequence of polynomials {ri(x)} and {qi(x)}
are derived via the equation

ri−2(x) = qi(x)ri−1(x) + ri(x) for i ≥ 1,

where deg ri(x) < deg ri−1(x); thus the degrees of the ri(x)’s are strictly decreasing. Using
the polynomials qi(x), two auxiliary polynomial sequences are defined:

si(x) = si−2(x)− qi(x)si−1(x) and ti(x) = ti−2(x)− qi(x)ti−1(x).

These polynomial sequences have many properties. In particular for i ≥ −1

si(x)a(x) + ti(x)b(x) = ri(x).

Also deg ti(x) + deg ri−1(x) = deg a(x) for all i > 0, and since the degrees of the ri(x)’s
are strictly decreasing, the degrees of the ti(x)’s are strictly increasing and in particular



Algebraic coding theory 695

deg ti(x) + deg ri(x) < deg a(x). If the last nonzero remainder polynomial ri(x) is at step
n, i.e., rn(x) 6= 0 but rn+1(x) = 0, then

d(x) = rn(x) = sn(x)a(x) + tn(x)b(x).

15.1.246 Remark Applying the EEA to the polynomials of the key Equation (15.1.7) with a(x) = x2t

and b(x) = S(x) leads to three sequences of polynomials {ri(x)}, {si(x)}, and {ti(x)}.
The degrees of the ti(x)’s are increasing and those of the ri(x)’s are decreasing. Stopping
the algorithm at the point where deg tj(x) first exceeds deg rj(x) yields the polynomials
σ(x) = tj(x) and ω(x) = rj(x); also

sj(x)x2t + tj(x)S(x) = rj(x).

Interpreting this equation modulo x2t then solves the key Equation (15.1.7).

15.1.6.5 Welch-Berlekamp decoding of GRS codes

15.1.247 Remark The decoding method for GRS codes considered in [2965] relies on forming the
syndrome polynomial where the syndromes are a form of Fourier transform of the received
word. Welch-Berlekamp decoding operates directly on the received word. There are many
variants of the algorithm in the literature and only the basic ideas are given here. For
simplicity we consider C = GRSn,q(x,1, k + 1) where

C = {(f(x1), f(x2), . . . , f(xn)) | f(x) ∈ Fq[x],deg f(x) ≤ k},
with distinct code positions xi in Fq, and let t = b(n− k)/2c. Suppose the codeword corre-
sponding to the polynomial a(x) is sent, i.e., c = (c1, c2, . . . , cn) = (a(x1), a(x2), . . . , a(xn)),
and the word r = (r1, r2, . . . , rn) is received. For decoding, it suffices to determine the code-
word polynomial a(x) from r. Suppose an unknown number e ≤ t of errors has occurred in
transmission and ri = ci + ei for i = 1, 2, . . . , n. Two polynomials D(x), N(x) ∈ Fq[x] are
sought with the properties

a. degD(x) ≤ t,
b. degN(x) ≤ t+ k − 1,
c. N(xi) = riD(xi) for i = 1, 2, . . . , n.

(15.1.8)

15.1.248 Theorem There exist polynomials N(x), D(x) which satisfy the above conditions and can
be efficiently computed. Furthermore, the ratio N(x)/D(x) is the unique polynomial that
gives the closest codeword to r if fewer than t errors were made in transmission.

15.1.249 Remark The thinking behind this theorem is straightforward. Let E = {i | ri 6= ci},
e = |E |, i.e., the (unknown) error positions and their number. The polynomial

D(x) =
∏
j∈E

(x− xj)

is the error locator polynomial, i.e., its zeros are the error locations. The polynomial cor-
responding to the codeword is a(x) = N(x)/D(x). It can be shown that the ratio of any
pair of solutions of the system in Part (c) of (15.1.8), under the conditions given in Part
(a) for D(x) and Part (b) for N(x), gives this polynomial. Note that N(xi) = riD(xi) for
i = 1, 2, . . . , n as follows. If xi ∈ E, N(xi) = 0 = riD(xi) since N(x) = a(x)D(x) and
D(xi) = 0; if xi /∈ E, N(xi) = a(xi)D(xi) = ciD(xi) = riD(xi).

15.1.250 Remark When the code is presented in one of its alternative forms, for example in terms of
a generator polynomial, the Welch-Berlekamp equations above are slightly modified. Such
an approach is given in [578, 2164].
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15.1.6.6 Majority logic decoding

15.1.251 Remark Majority logic decoding involves taking a majority vote on the evaluations of
certain parity check equations. It is a very simple (both to discuss and implement) decoding
technique that is effective when the codes possess certain structure. The Euclidean and
projective geometry codes are perhaps the prime examples, but by no means the only codes
in this class. Early work on this subject is due to Massey [2010].

15.1.252 Definition If a code has J check sums (equations) which each check coordinate position
j and checks other coordinate positions at most once, the checks are orthogonal on
position j.

15.1.253 Lemma If it is possible to construct J parity checks orthogonal on each code coordinate
position, the code can correct bJ/2c errors and has minimum distance at least J + 1.

15.1.254 Definition A set of check sums is orthogonal on a set S if each check sum contains all
coordinate positions of S and checks each coordinate position not in S at most once.

15.1.255 Remark If J checks, orthogonal on a set S, can be constructed, it will be possible to
determine the correct value of the sum of checks on coordinate positions for S if fewer
than J/2 errors occur, by majority vote. Similarly, if checks orthogonal on certain smaller
subsets can be constructed, one may be able to determine correct check sums on those
smaller subsets. Proceeding iteratively until the subsets are of size one will decode the code.
L-step majority logic decoding then proceeds in L steps, in this manner. Decoding to the
full error correcting capability of the code with majority logic decoding may not be possible
for a particular code.

15.1.256 Theorem [1942, 2390, 2966] The code EGqm,p(r) can be (r+1)-step majority logic decoded
up to b(dML − 1)/2c errors where

dML =
qm−r − 1

q − 1

and the minimum distance of the code is at least this large.
The code PG(qm−1)/(q−1),p(r) can be r-step majority logic decoded up to b(dML−1)/2c

errors where

dML =
qm−r+1 − 1

q − 1
+ 1.

15.1.6.7 Generalized minimum distance decoding

15.1.257 Remark In a practical communication scheme, codeword symbols are modulated in a man-
ner suitable for channel transmission in that the bandwidth of the scheme must be within
the bandwidth assigned. The receiver typically observes the demodulated waveform for the
period of transmission for a symbol and makes a decision as to the symbol transmitted.
This decision often has associated with it a reliability or confidence measure as to how
likely the decision made is to being correct. For example if the output of a matched filter
is quantized at the decision time to two levels, this is equivalent to making a hard decision.
If more levels are used, it would correspond to a soft decision. Thus in a hard decision
receiver this soft information is discarded and only the hard decisions on the symbols are
used. This leads to a decrease in the error performance of the system and techniques to
incorporate the soft information on the received symbols to be used in the error control
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process have been investigated. The generalized minimum distance (GMD) technique, due
to Forney [1092], is perhaps the simplest such technique. It is discussed here for binary codes
only. Assume the {0, 1} code has Hamming distance d. The generalization to the nonbinary
case is straightforward.

15.1.258 Remark For the binary case assume the code is over the alphabet {−1,+1} by changing 0s
in the code over F2 to −1 and 1s to +1 and assume d is the minimum Hamming distance
of the code. Assume further the received word is of the form y = (y0, y1, . . . , yn−1) and
define the reliability word r = (r0, r1, . . . , rn−1) where ri represents the reliability of the
i-th symbol. The larger ri is in magnitude (positive or negative), the more reliable the
transmitted symbol is (in the {±1} code). For maximum likelihood decoding this is the log
likelihood ratio of the two possibilities, i.e.,

ri = log
P (yi | 1)

P (yi | 0)
.

Finally, for some T > 0, the vector r′ = (r′0, r
′
1, . . . , r

′
n−1) is formed according to the

equations

r′i =

 +1, ri ≥ T,
ri/T, −T ≤ ri ≤ T,
−1, ri ≤ −T.

Thus r′ is the magnitude limited version of the reliability measure formed on each coordinate
position of the reliability word. The Euclidean distance from r′ to any {±1} codeword c is
then

| r′ |2 −2(r′, c)+ | c |2 .

15.1.259 Theorem [1092] There is at most one codeword c in the binary {±1} linear code with
Hamming distance d from the received word such that

(r′, c) > n− d

where r′ has components in the range [−1,+1].

15.1.260 Remark In the above theorem, the case where all components of r′ are set to +1 if ri > 0
and −1 otherwise corresponds to hard decisions. One could also choose a threshold δ > 0
and set ri to +1 if ri > δ > 0 and −1 if ri < −δ < 0 and 0 otherwise. This corresponds to
the case of errors-and-erasures decoding.

The (n, k, d)2 code is capable of correcting s erasures and r errors if 2r + s < d and
many of the errors-only algorithms can be adapted to errors-and-erasures algorithms. GMD
utilizes the fact that a code is capable of correcting more erasures than errors. For the
received word r′ formulated above, where −1 ≤ r′i ≤ 1, denote by r` the codeword r′

with the least reliable ` positions erased (i.e., the ` positions with smallest | r′i |) and the
remaining positions quantized to hard decision (either +1 or −1).

15.1.261 Theorem [1092, 2390] If (r′, c) > n− d, then at least one of the r` satisfies

(r`, c) > n− d for ` = 0, 1, . . . , d− 1.

15.1.262 Remark Successively increasing the number of erasures (but not beyond (d − 1)/2) and
using errors-and-erasures decoding will find the codeword closest to the quantized received
word r′ under the conditions noted.
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15.1.6.8 List decoding - decoding beyond the minimum distance bound

15.1.263 Remark It is assumed that C is a GRS code, although the results are applicable
to other code classes such as algebraic geometry codes. For simplicity we consider
C = GRSn,q(x,1, k + 1) where

C = {(f(x1), f(x2), . . . , f(xn)) | f(x) ∈ Fq[x],deg f(x) ≤ k},

with distinct code positions xi and code rate (k + 1)/n. For such a code if the number of
errors made in transmission on the channel is at most e = b(d−1)/2c, the bounded distance
decoding algorithm produces the unique correct codeword from the received word r. A list
` decoder with decoding radius τ produces a list of at most ` codewords for any received
word r ∈ Fnq within a radius τ of r. The decoding is successful if the transmitted codeword
is in the list and fails otherwise. The relationship between the decoding radius τ and the
size of the list is of interest.

15.1.264 Remark The list decoding problem is closely related to the following polynomial interpo-
lation problem [2739]; for the Lagrange Interpolation Formula, see Theorem 2.1.131.

15.1.265 Definition The polynomial interpolation problem is defined as follows. For a set of pairs of
elements (xi, yi) ∈ Fq × Fq, the xi distinct, and for positive integers k and τ , determine
a list of all polynomials f(x) ∈ Fq[x] of degree at most k such that

| {i | f(xi) = yi} | ≥ τ.

15.1.266 Remark In other words, the desire is to find the set of all polynomials of degree at most k
for which f(xi) = yi in at least τ out of the n places. The relationship of this problem to
the list decoding problem is immediate.

15.1.267 Remark The technique of Sudan [2739] is to determine a nonzero bivariate polynomial
Q(x, y), of a certain degree, that is zero on the set {(xi, yi) | i = 1, 2, . . . , n} and show that
factors of this polynomial of the form (y−f(x)) with deg f(x) ≤ k correspond to codewords
within the required distance of the received word. In the above formulation we would like
τ to be as small as possible (the number of errors as large as possible). The concept of
weighted degree of Q(x, y) is of interest: the (1, k) degree of a monomial xiyj is i+ jk, and
the (1, k) degree of Q(x, y) is m+ `k where this is the maximum over all monomials xmy`

of Q(x, y). This arises as we need the x-degree of Q(x, y) when a polynomial of degree k in
x is substituted for y.

15.1.268 Remark The algorithm proceeds as follows:

1. Find a nonzero bivariate polynomial Q(x, y) of weighted degree at most m+ `k
(chosen later) such that Q(xi, yi) = 0 for i = 1, 2, . . . , n.

2. Factor Q(x, y) into irreducible factors and output all factors of the form y− f(x)
with deg f(x) ≤ k where f(xi) = yi for at least τ values of i.

The number of variables qab in the linear system
∑`
b=0

∑m+(`−b)k
a=0 qabx

a
i y
b
i = 0 where

i = 1, 2, . . . , n is

(m+ 1)(`+ 1) + k

(
`+ 1

2

)
.

If this quantity is greater than n, the system of n linear equations has a nontrivial solution
since the number of unknowns exceeds the number of equations. The polynomial Q(x, y) is

given by Q(x, y) =
∑`
b=0

∑m+(`−b)k
a=0 qabx

ayb.
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15.1.269 Lemma [2739] If Q(x, y) is as in Part 1 above and f(x) is such that deg f(x) ≤ k with
f(xi) = yi for at least τ values where τ > m+ `k, then y − f(x) divides Q(x, y).

15.1.270 Remark [2739] In the above development if one chooses m = dk/2e − 1 and
` =

√
2(n+ 1)/k − 1, it can be shown that

τ ≥ d
⌈√

2(n+ 1)/k
⌉
−
⌊
k/2
⌋

or τ >
√

2kn.

Thus if fewer than n−
√

2kn ≈ n(1−
√

2R) errors are made in transmission, the transmitted
codeword will be in the list. Notice this implies the results are valid only for fairly low rate
codes.

15.1.271 Remark There are a number of items to be noted.

1. As τ decreases (number of errors increases), the size of the list tends to increase
although not always strictly monotonically. For a given decoding radius there are
estimates of the list size which are not discussed here.

2. A significant improvement in the above bound was achieved by Guruswami and
Sudan [1377] who increased the relative fraction of errors to ∼ 1−

√
R. This was

achieved by allowing the bivariate polynomial Q(x, y) to have zeros of multiplicity
m > 1 and optimizing the results over this parameter. Parvaresh and Vardy [2361]
described a class of codes that could be list-decoded to this radius.

3. Define the entropy function hq(p) = −p logq(p) − (1 − p) logq(1 − p) and note
this is different than the q-ary entropy function of Definition 15.1.122. Denote a
(p, L) list-decodable code as one capable of correcting a fraction p of errors with
a list of size L. One can show [2501] that for code rates R ≤ 1− hq(p)− ε there
exists a (p,O(1/ε))-list decodable code while for R > 1−hq(p)+ε every (p, L)-list
decodable code has L exponential in q.

4. The work is extended in [1376, 1377].

15.1.7 Codes over Z4

15.1.272 Definition A Z4-linear code C of length n is an additive subgroup of Zn4 . Associated to
C are two binary linear codes of length n, the residue code Res(C) = {µ(c) | c ∈ C},
where µ : Z4 → F2 is given by µ(z) = z (mod 2), and the torsion code
Tor(C) = {b ∈ Fn2 | 2b ∈ C}. Let G : Z4 → F2

2 be defined by G(0) = 00, G(1) = 01,
G(2) = 11, and G(3) = 10; G is the Gray map. The binary code G(C) =
{(G(c1),G(c2), . . . ,G(cn)) | (c1, c2, . . . , cn) ∈ C} of length 2n is the Gray image of
C; G(C) may not be linear over F2.

15.1.273 Remark The study of codes over Z4 began in earnest after the publication of [1409]. In that
paper, a relationship, via the Gray map, was discovered between certain families of binary
nonlinear codes and Z4-linear codes. That paper heightened interest in studying codes over
Zr and eventually codes over other rings; see Section 2.1.7.7 for a discussion of Galois rings.

15.1.274 Remark Since a subspace of Fnq is an Fq-submodule of Fnq , a linear code of length n over
Fq can be defined as an Fq-submodule of Fnq . Analogously, a Z4-linear code of length n is
in fact a Z4-submodule of Zn4 . In general, for any ring R, an R-linear code of length n is an
R-submodule of Rn.

15.1.275 Remark Like a linear code over a field, a Z4-linear code C of length n has a k×n generator
matrix G, where k is chosen to be minimal so that the Z4-span of the rows of G is the code
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C. By permuting coordinates, the generator matrix for C can be put in the form

G =

[
Ik1

A B1 + 2B2

O 2Ik2
2C

]
, (15.1.9)

where A, B1, B2, and C are matrices with entries from {0, 1}, Ik1
and Ik2

are k1 × k1 and
k2× k2 identity matrices, and O is the k2× k1 zero matrix. The number of codewords in C,
called the type of C, is 4k12k2 . If C is a Z4-linear code with generator matrix (15.1.9), the
generator matrices for Res(C) and Tor(C) are, respectively,

GRes =
[
Ik1

A B1

]
and GTor =

[
Ik1

A B1

O Ik2
C

]
.

So Res(C) ⊆ Tor(C), Res(C) is an (n, k1, d1)2 code for some d1, and Tor(C) is an
(n, k1 + k2, d2)2 code for some d2 ≤ d1.

15.1.276 Definition Analogous to the scalar product on Fnq , there is a natural scalar product on Zn4
defined by

(x,y) = x1y1 + x2y2 + · · ·+ xnyn (mod 4),

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are in Zn4 . If C is a Z4-linear code of
length n, define C⊥ = {v ∈ Zn4 | (v, c) = 0 for all c ∈ C}, the dual of C. If C ⊆ C⊥, the
code C is self-orthogonal. If C = C⊥, it is self-dual.

15.1.277 Theorem If C is a self-dual Z4-linear code, then Res(C) is doubly-even and
Res(C) = Tor(C)⊥.

15.1.278 Remark If C is a Z4-linear code of type 4k12k2 , then C⊥ is a Z4-linear code of type
4n−k1−k22k2 . Furthermore, if C has generator matrix (15.1.9), C⊥ has generator matrix

G⊥ =

[
−(B1 + 2B2)T − CTAT CT In−k1−k2

2AT 2Ik2
O

]
,

where O is the k2 × (n− k1 − k2) zero matrix.

15.1.279 Definition The concepts of weight and distance in Fnq have analogies in Zn4 .

1. For x ∈ Zn4 and i ∈ Z4, let ni(x) be the number of components of x
equal to i. The Hamming weight ω(x) of x and the Hamming distance
d(x,y) between x and y are defined exactly as in Definition 15.1.6 for Fnq :
ω(x) = n1(x) + n2(x) + n3(x) and d(x,y) = ω(x− y). The Lee weight of
x is ωL(x) = n1(x) + 2n2(x) +n3(x), and the Lee distance between x and
y is dL(x,y) = ωL(x− y).

2. Analogous to Definition 15.1.38, the Hamming weight distribution of a
Z4-linear code C of length n is the sequence {A0, A1, . . . , An} where Ai
is the number of codewords in C of Hamming weight i. The Lee weight
distribution of C is the sequence {L0, L1, . . . , L2n} where Li is the number
of codewords in C of Lee weight i; note that Lee weights in Zn4 range
from 0 to 2n. The minimum Hamming, respectively Lee, weight of C is the
smallest Hamming, respectively Lee, weight of a nonzero codeword of C.
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15.1.280 Theorem The following hold.

1. The Gray map G is a distance preserving map from Zn4 with Lee distance to F2n
2

with Hamming distance.

2. If C is a Z4-linear code, then G(C) is a distance invariant binary code.

3. If C is a Z4-linear code, then the weight distribution of the binary code G(C) is
the same as the Lee weight distribution of C.

4. If C is a Z4-linear code, then G(C) is linear if and only if whenever v and w are
in C, so is 2(v ∗w), where v ∗w is the componentwise product of v and w in Zn4 .

15.1.281 Example Let o8 be the Z4-linear code, called the octacode, with generator matrix

G =


1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

 .
The octacode is self-dual, has type 44, and has minimum Lee weight 6. Res(o8) = Tor(o8) is
equivalent to the [8, 4, 4] extended binary Hamming code. By Part 3 of Theorem 15.1.280,
the Gray image G(o8) is a (16, 256, 6)2 code. By [1093, 2298, 2689], G(o8) is the Nordstrom-
Robinson code, a nonlinear binary code that is the largest possible binary code of length
16 and minimum Hamming distance 6. This (16, 256, 6)2 code is the extension, using an
overall parity check, of a (15, 256, 5)2 code originally defined by Nordstrom and Robinson
in [2298]. The latter code consisted of length 15 binary vectors with the first 8 coordinate
positions arbitrary and the last 7 positions Boolean combinations of the first 8 coordinates.

15.1.282 Remark In 1968, Preparata [2427] defined a family of nonlinear (2m+1, 22m+1−2m−2, 6)2

binary codes when m is odd. These codes have twice as many codewords as a linear
(2m+1, 2m+1− 2m− 3, 6)2 extended binary BCH code. Each Preparata code has the largest
number of codewords of any binary code of its length 2m+1 and minimum distance 6;
see Chapter 17, Section 3 of [1991]. These codes lie between RM2m+1,2(m − 2,m + 1)
and RM2m+1,2(m − 1,m + 1). In 1972, Kerdock [1728] defined a family of nonlinear

(2m+1, 4m+1, 2m − 2(m−1)/2)2 binary codes when m is odd. These codes lie between
RM2m+1,2(1,m + 1) and RM2m+1,2(2,m + 1). Amazingly, the weight distribution of the

(2m+1, 22m+1−2m−2, 6)2 Preparata code is the MacWilliams transform of the weight distribu-
tion of the (2m+1, 4m+1, 2m−2(m−1)/2)2 Kerdock code. When m = 3, both codes are equiv-
alent to the Nordstrom–Robinson code of Example 15.1.281. In [1409], an extended cyclic

Z4-linear code of length 2m and type 4m+1, denoted K̂(m+1), was defined; the Gray image

G(K̂(m+1)) is equivalent, by permuting coordinates, to the (2m+1, 4m+1, 2m−2(m−1)/2)2 bi-

nary code defined by Kerdock. The Lee weight distribution {L0, L1, . . . , L2m+1} of K̂(m+1),

and hence the weight distribution of G(K̂(m+ 1)), is

Li =


1 if i = 0 or i = 2m+1,

2m+1(2m − 1) if i = 2m ± 2(m−1)/2,
2m+2 − 2 if i = 2m,

0 otherwise.

Letting P (m + 1) = K̂(m + 1)⊥, the Gray image G(P (m + 1)), although generally
not the same as the original Preparata code, has the same weight distribution as the
(2m+1, 22m+1−2m−2, 6)2 binary Preparata code; this weight distribution can be obtained by

using the MacWilliams transform on the weight distribution of G(K̂(m + 1)). Preparata’s
original construction begins with a single-error correcting binary BCH code and a double-
error correcting subcode of this code. A linear code is created using a variation of the
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construction in Lemma 15.1.93, and then cosets of this code are adjoined to give a
(2m+1 − 1, 22m+1−2m−2, 5)2 code for m odd. Adding an overall parity check yields a

(2m+1, 22m+1−2m−2, 6)2 code. There is a similar connection [1409] between the nonlinear
binary codes of minimum distance 8 of Goethals [1288] and the nonlinear binary codes of
high minimum distance of Delsarte and Goethals [804].

15.1.8 Conclusion

15.1.283 Remark This section has outlined certain aspects of algebraic coding theory including much
of the early work in the subject. Two books [233, 305] compile and comment on initial
papers from the first 25 years of coding theory that greatly influenced the development of
the discipline. The references cited in this section found in [233] include [359, 1090, 1092,
1292, 1319, 1320, 1329, 1408, 1516, 1638, 2035, 2298, 2447, 2811]. References cited in this
section found in [305] include [359, 1292, 1329, 1408, 1516, 1638, 1942, 2011, 2035, 2298,
2427, 2447, 2855].
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polynomials for cyclic codes.

Chapter 6 Character sums are used for various codes including perfect codes.
§6.3.3.3 Examines the distance properties of the duals of BCH codes.
§6.3.4 Kloosterman sums are used to examine the distance properties of codes.
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15.2 Algebraic-geometry codes

Harald Niederreiter, KFUPM

15.2.1 Classical algebraic-geometry codes

15.2.1 Remark Algebraic-geometry codes constitute a powerful family of codes which were intro-
duced in their classical form by Goppa in the years 1977 to 1982 [1321, 1322, 1323]. Goppa
used the language of algebraic curves over finite fields to define algebraic-geometry codes.
Modern expositions prefer a description in terms of algebraic function fields over finite fields.
In order to be consistent with the recent literature, we follow this practice in the present
section.

15.2.2 Remark We follow the terminology for algebraic function fields in Chapter 12. Let F be an
algebraic function field (of one variable) with full constant field Fq, that is, Fq is algebraically
closed in F . A divisor of F is a finite Z-linear combination of places of F . If P denotes the
set of all places of F , then a divisor G of F can be uniquely written in the form

G =
∑
P∈P

mP P,

where mP ∈ Z for all P ∈ P and mP 6= 0 for only finitely many P ∈ P. The support of G
is the set of all P ∈ P with mP 6= 0. Consequently, the support of G is a finite set. The
degree deg(G) of G is defined by

deg(G) =
∑
P∈P

mP deg(P ),

where deg(P ) denotes the degree of the place P ; see Section 12.1. The divisor G is positive
(written G ≥ 0) if mP ≥ 0 for all P ∈ P. The divisors of F form an abelian group with
respect to addition, where two divisors of F are added by adding the corresponding integer
coefficients in the above unique representation of divisors.

15.2.3 Remark A basic object in the construction of an algebraic-geometry code is a Riemann-
Roch space. For any f ∈ F ∗, the principal divisor div(f) of f is given by

div(f) =
∑
P∈P

νP (f)P,

where νP denotes the normalized discrete valuation of F associated with the place P . Note
that the image of νP as a map is Z ∪ {∞}. If f ∈ F ∗ is given, then νP (f) 6= 0 for at most
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finitely many P ∈ P, and so div(f) is indeed a divisor of F . Given an arbitrary divisor G
of F , we now define the Riemann-Roch space

L(G) = {f ∈ F ∗ : div(f) +G ≥ 0} ∪ {0}.

It is an important fact that L(G) is a finite-dimensional vector space over Fq. We write `(G)
for the dimension of this vector space. The Riemann-Roch theorem (Chapter 12) provides
important information on `(G).

15.2.4 Definition Let n be a positive integer and let q be an arbitrary prime power. Let F be an
algebraic function field with full constant field Fq, genus g, and at least n rational places.
Choose n distinct rational places P1, . . . , Pn of F and a divisor G of F such that none of
the Pi, 1 ≤ i ≤ n, is in the support of G. The algebraic-geometry code C(P1, . . . , Pn;G)
is defined as the image of the Fq-linear map ψ : L(G)→ Fnq given by

ψ(f) = (f(P1), . . . , f(Pn)) for all f ∈ L(G).

15.2.5 Remark Note that νPi(f) ≥ 0 for 1 ≤ i ≤ n and all f ∈ L(G), since Pi is not in the support
of G. Thus, f belongs to the valuation ring OPi of Pi for 1 ≤ i ≤ n, and so the residue
class f(Pi) of f , that is, the image of f under the residue class map of the place Pi, is well
defined. Since Pi is a rational place, that is, a place of degree 1, we can identify f(Pi) with
an element of Fq. Thus, C(P1, . . . , Pn;G) is indeed a subset of Fnq .

15.2.6 Theorem With the notation and assumptions in Definition 15.2.4, suppose that the divisor
G of F satisfies also g ≤ deg(G) < n. Then the algebraic-geometry code C(P1, . . . , Pn;G)
is a linear code over Fq with length n, dimension

k = `(G) ≥ deg(G) + 1− g,

and minimum distance
d ≥ n− deg(G).

Moreover, if deg(G) ≥ 2g − 1, then k = deg(G) + 1− g.

15.2.7 Remark The condition deg(G) < n in Theorem 15.2.6 guarantees that the map ψ in
Definition 15.2.4 is injective. Therefore k = `(G) and the remaining information on k is
obtained from the Riemann-Roch theorem (Chapter 12).

15.2.8 Remark Theorem 15.2.6 implies that k+ d ≥ n+ 1− g. This should be compared with the
Singleton bound k + d ≤ n+ 1 in Section 15.1. Thus, the genus g of F controls, in a sense,
the deviation of k + d from the Singleton bound.

15.2.9 Example Let F = Fq(x) be the rational function field over Fq. Let Fq = {b1, . . . , bq} and
for 1 ≤ i ≤ q let Pi be the rational place x− bi of Fq(x). Put G = (k− 1)P∞, where k is an
integer with 1 ≤ k ≤ q and P∞ denotes the infinite place of Fq(x). Then C(P1, . . . , Pq;G)
is a generalized Reed-Solomon code with length q, dimension k, and minimum distance
q − k + 1. Thus, algebraic-geometry codes can be considered as vast generalizations of
generalized Reed-Solomon codes.

15.2.10 Example Let F be the Hermitian function field over Fq2 , that is, F = Fq2(x, y) with
yq + y = xq+1. Then F has genus g = (q2 − q)/2 and exactly q3 + 1 rational places. Let
Q be the rational place of F lying over the infinite place of Fq2(x) and let P1, . . . , Pn with
n = q3 be the remaining rational places of F . Put G = mQ with an integer m satisfying
q2 − q − 1 ≤ m < q3. Then C(P1, . . . , Pn;G) is a linear code over Fq2 with length n = q3,
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dimension k = m + 1 − (q2 − q)/2, and minimum distance d ≥ q3 −m. Such a code is a
Hermitian code.

15.2.11 Example Take q = 2 and m = 4 in Example 15.2.10, so that G = 4Q. Then the Hermitian
code C(P1, . . . , P8;G) is a linear code over F4 with length 8, dimension 4, and minimum
distance d ≥ 4. It can be shown that actually d = 4. The code C(P1, . . . , P8;G) is optimal
in the sense that there is no linear code over F4 with length 8, dimension 4, and minimum
distance at least 5.

15.2.12 Remark The condition in Definition 15.2.4 that none of the Pi, 1 ≤ i ≤ n, is in the support
of G is a conventional one in the area. However, one can get rid of this condition by replacing
G by the divisor G′ = G−div(u), where u ∈ F is such that νPi(u) is equal to the coefficient
mPi of Pi in G for 1 ≤ i ≤ n. Such an element u exists by the approximation theorem for
valuations. Note that by construction none of the Pi, 1 ≤ i ≤ n, is in the support of G′,
but deg(G′) = deg(G) and `(G′) = `(G). Thus, the linear code C(P1, . . . , Pn;G′) satisfies
the properties stated in Theorem 15.2.6.

15.2.13 Example Let F be the Hermitian function field over F4; see Example 15.2.10. Then F has
genus 1 and exactly 9 rational places. Let P1, . . . , P9 be the rational places of F and choose
a divisor G of F with deg(G) = 4. In view of Remark 15.2.12, if we replace G by a suitable
divisor G′, then we need not check whether the Pi, 1 ≤ i ≤ 9, are in the support of G or not.
Thus, C(P1, . . . , P9;G′) is a linear code over F4 with length 9, dimension 4, and minimum
distance d ≥ 5. It can be shown that actually d = 5. The linear code C(P1, . . . , P9;G′) is
optimal.

15.2.14 Remark The dual codes of algebraic-geometry codes can be described in terms of differen-
tials and residues for algebraic function fields [2714].

15.2.15 Remark Certain algebraic-geometry codes can be constructed without the use of algebraic
geometry or algebraic function fields, but rather by using so-called order domains [92].

15.2.16 Remark There exist efficient decoding algorithms for algebraic-geometry codes. A survey
of such decoding algorithms is presented in [1524], and for a more recent contribution
see [1375].

15.2.17 Remark Interesting codes can be derived not only from algebraic function fields over fi-
nite fields, or equivalently from algebraic curves over finite fields, but also from higher-
dimensional algebraic varieties over finite fields. A rather general approach to the construc-
tion of such codes is described in [1415].

15.2.2 Generalized algebraic-geometry codes

15.2.18 Remark The condition g ≤ deg(G) < n in Theorem 15.2.6 implies that the number N of
rational places of the algebraic function field F must be greater than the genus g of F , in
order for Theorem 15.2.6 to be applicable. However, for small values of q such as q = 2 and
q = 3, the condition N > g can be satisfied only for small values of g. Consequently, for
small values of q the construction of classical algebraic-geometry codes in Definition 15.2.4
can yield good codes only for small lengths. A possible remedy is to devise constructions
that use not only rational places, but also places of higher degree. Such constructions will
be discussed in this subsection.

15.2.19 Remark The construction of NXL codes due to Niederreiter, Xing, and Lam [2285] uses
places of arbitrary degree. We present this construction in the more general form given in
Chapter 5 of [2281]. Let F be an algebraic function field with full constant field Fq and
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genus g. Let G1, . . . , Gr be positive divisors 6= 0 of F with pairwise disjoint supports. Put
n =

∑r
i=1 si, where si = deg(Gi) ≥ 1 for 1 ≤ i ≤ r, and assume that n > g. Let E

be a positive divisor of F for which the support is disjoint from the support of Gi for
1 ≤ i ≤ r. Furthermore, let D be a divisor of F with `(D) = deg(D) + 1 − g, e.g., this
holds if deg(D) ≥ 2g − 1. Assume also that 1 ≤ deg(E − D) ≤ n − g. We observe that
`(D +Gi) = `(D) + si for 1 ≤ i ≤ r. For each i = 1, . . . , r, we choose an Fq-basis

{fi,j + L(D) : 1 ≤ j ≤ si}

of the factor space L(D+Gi)/L(D). The n-dimensional factor space L(D+
∑r
i=1Gi)/L(D)

has then the Fq-basis
{fi,j + L(D) : 1 ≤ j ≤ si, 1 ≤ i ≤ r}

which we order in a lexicographic manner. We note further that every

f ∈ L(D +
r∑
i=1

Gi − E) ⊆ L(D +
r∑
i=1

Gi)

has a unique representation

f =

r∑
i=1

si∑
j=1

ci,j fi,j + u

with all ci,j ∈ Fq and u ∈ L(D).

15.2.20 Definition The NXL code C(G1, . . . , Gr;D,E) is defined as the image of the Fq-linear
map

η : L(D +

r∑
i=1

Gi − E)→ Fnq

given by
η(f) = (c1,1, . . . , c1,s1 , . . . , cr,1, . . . , cr,sr )

for all f ∈ L(D +
∑r
i=1Gi − E), where the ci,j are as in Remark 15.2.19.

15.2.21 Theorem Assume that the hypotheses in Remark 15.2.19 are satisfied and put
m = deg(E −D). Then the NXL code C(G1, . . . , Gr;D,E) is a linear code over Fq with
length n =

∑r
i=1 si, dimension

k = `(D +
r∑
i=1

Gi − E) ≥ n−m− g + 1,

and minimum distance d ≥ d0, where d0 is the least cardinality of a subset R of {1, . . . , r}
for which

∑
i∈R si ≥ m. Moreover, if n−m ≥ 2g − 1, then k = n−m− g + 1.

15.2.22 Example A simple choice for the divisors G1, . . . , Gr in the construction of NXL codes is
to take distinct places P1, . . . , Pr of F . Note that these places need not be rational, but can
have arbitrary degrees. This special case was considered in [2285] and is used also in the
present example. Let q = 3, let F be the rational function field over F3, and put r = 13. For
P1, . . . , P13 we choose four rational places, three places of degree 2, and six places of degree
3 of F . Let D be the zero divisor and E a place of degree 7 of F . Then C(P1, . . . , P13;D,E)
is a linear code over F3 with length 28, dimension k = 22, and minimum distance d ≥ 3.
Hence k + d ≥ 25. By comparison, the best lower bound on k + d for a classical algebraic-
geometry code over F3 of length 28 is obtained by taking g = 15, and then k + d ≥ 14 by
Remark 15.2.8.
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15.2.23 Remark The following construction of XNL codes is due to Xing, Niederreiter, and
Lam [3019]. It is a powerful method of combining data from algebraic function fields over
finite fields with (short) linear codes in order to produce a longer linear code as the output.
We present the slightly more general version of XNL codes in Chapter 5 of [2281].

15.2.24 Definition Let F be an algebraic function field with full constant field Fq. Let P1, . . . , Pr
be distinct places of F which can have arbitrary degrees. Let G be a divisor of F such
that none of the Pi, 1 ≤ i ≤ r, is in the support of G. For each i = 1, . . . , r, let Ci be a
linear code over Fq with length ni, dimension ki ≥ deg(Pi), and minimum distance di,
and let φi be an injective Fq-linear map from the residue class field of Pi into Ci. Put
n =

∑r
i=1 ni. Then the XNL code C(P1, . . . , Pr;G;C1, . . . , Cr) is defined as the image

of the Fq-linear map β : L(G)→ Fnq given by

β(f) = (φ1(f(P1)), . . . , φr(f(Pr))) for all f ∈ L(G),

where on the right-hand side we use concatenation of vectors.

15.2.25 Theorem With the notation and assumptions in Definition 15.2.24, suppose that the divisor
G of F satisfies also g ≤ deg(G) <

∑r
i=1 deg(Pi), where g is the genus of F . Then the

XNL code C(P1, . . . , Pr;G;C1, . . . , Cr) is a linear code over Fq with length n =
∑r
i=1 ni,

dimension
k = `(G) ≥ deg(G) + 1− g,

and minimum distance d ≥ d′, where d′ is the minimum of
∑
i∈M di taken over all subsets

M of {1, . . . , r} for which
∑
i∈M deg(Pi) ≤ deg(G), with M denoting the complement of M

in {1, . . . , r}. Moreover, if deg(G) ≥ 2g − 1, then k = deg(G) + 1− g.

15.2.26 Corollary If in addition deg(Pi) ≥ di for 1 ≤ i ≤ r, then the minimum distance d of the
XNL code C(P1, . . . , Pr;G;C1, . . . , Cr) satisfies

d ≥
r∑
i=1

di − deg(G).

15.2.27 Remark If P1, . . . , Pr are distinct rational places of F and for each i = 1, . . . , r we choose
Ci to be the trivial linear code over Fq with ni = ki = di = 1 and φi the identity map
on Fq, then the construction of XNL codes reduces to that of classical algebraic-geometry
codes. Theorem 15.2.6 is thus a special case of Theorem 15.2.25 and Corollary 15.2.26.

15.2.28 Example Many excellent examples of XNL codes were found in [875] and [3020]. The
following simple example is typical. Let q = 2 and let F = F2(x, y) be the elliptic function
field defined by y2 + y = x+ x−1. We choose r = 6 and let P1, P2, P3, P4 be the four rational
places and P5 and P6 the two places of degree 2 of F . The linear codes Ci have the following
parameters: for 1 ≤ i ≤ 4 we let ni = ki = di = 1 and for i = 5, 6 we let ni = 3, ki = 2,
di = 2. Then for m = deg(G) = 1, . . . , 7 the corresponding XNL code is a linear code over
F2 with parameters n = 10, k = m, and d ≥ 8 −m. The linear codes with m = 2, 3, 4 and
d = 8−m are optimal.

15.2.29 Example Let q = 3 and let F = F3(x, y) be the elliptic function field defined by
y2 = x(x2 + x− 1). We choose r = 9 and let P1, P2, P3, P4, P5, P6 be the six rational places
and P7, P8, P9 the three places of degree 2 of F . The linear codes Ci have the following
parameters: for 1 ≤ i ≤ 6 we let ni = ki = di = 1 and for 7 ≤ i ≤ 9 we let ni = 3, ki = 2,
di = 2. Then for m = deg(G) = 1, . . . , 11 the corresponding XNL code is a linear code over
F3 with parameters n = 15, k = m, and d ≥ 12−m. The linear code with m = 3 and d = 9
is optimal.
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15.2.30 Remark By the same argument as in Remark 15.2.12, the condition in Definition 15.2.24
that none of the Pi, 1 ≤ i ≤ r, is in the support of G can be dropped if we replace G by a
suitable divisor G′.

15.2.31 Remark Decoding algorithms for generalized algebraic-geometry codes can be found
in [1496].

15.2.32 Remark As for classical algebraic-geometry codes (Remark 15.2.14), the dual codes of
XNL codes can be described in terms of differentials and residues for algebraic function
fields [912].

15.2.3 Function-field codes

15.2.33 Remark A very general perspective on the construction of algebraic-geometry codes is that
of function-field codes. A function-field code is a special type of subspace of an algebraic
function field over a finite field from which linear codes can be derived. Function-field codes
were introduced in Chapter 6 of [2280] and studied in detail by Hachenberger, Niederreiter,
and Xing [1396].

15.2.34 Remark Let F be an algebraic function field with full constant field Fq. For a place P of
F , let OP denote the valuation ring of P and let MP be the unique maximal ideal of OP .
For a finite nonempty set Q of places of F , we write

OQ =
⋂
P∈Q
OP , MQ =

⋂
P∈Q

MP .

15.2.35 Definition Let F be an algebraic function field with full constant field Fq and let Q be a
finite nonempty set of places of F . A function-field code (in F with respect to Q) is a
nonzero finite-dimensional Fq-linear subspace V of F which satisfies the two conditions

V ⊆ OQ and V ∩MQ = {0}.

15.2.36 Theorem Let Q be a finite nonempty set of places of F and let G be a divisor of F such
that `(G) ≥ 1, none of the places in Q is in the support of G, and

deg(G) <
∑
P∈Q

deg(P ).

Then the Riemann-Roch space L(G) is a function-field code in F with respect to Q.

15.2.37 Theorem Let Q = {P1, . . . , Pr} be a finite nonempty set of places of F . Let f1, . . . , fk ∈ OQ
be such that the k vectors

(fj(P1), . . . , fj(Pr)) ∈ Fq
r
, 1 ≤ j ≤ k,

are linearly independent over Fq, where Fq is an algebraic closure of Fq. Then the Fq-linear
subspace of F spanned by f1, . . . , fk is a function-field code in F with respect to Q.

15.2.38 Remark For suitable Q and k in Theorem 15.2.37, appropriate elements f1, . . . , fk can be
constructed by the approximation theorem for valuations.

15.2.39 Remark Any nonzero Fq-linear subspace of a function-field code in F with respect to Q is
again a function-field code in F with respect to Q.
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15.2.40 Remark The most powerful method of deriving linear codes from function-field codes is
described in Definition 15.2.41 below and generalizes the construction of XNL codes in
Definition 15.2.24.

15.2.41 Definition Let V be a function-field code in F with respect to Q = {P1, . . . , Pr}, where
P1, . . . , Pr are distinct places of F . For each i = 1, . . . , r, let Ci be a linear code over
Fq with length ni, dimension ki ≥ deg(Pi), and minimum distance di, and let φi be an
injective Fq-linear map from the residue class field of Pi into Ci. Put n =

∑r
i=1 ni and

let the Fq-linear map γ : V → Fnq be given by

γ(f) = (φ1(f(P1)), . . . , φr(f(Pr))) for all f ∈ V,

where on the right-hand side we use concatenation of vectors. Then the linear code
CQ(V ;C1, . . . , Cr) over Fq is defined as the image of V under γ.

15.2.42 Remark The following notation is convenient. For I ⊆ {1, . . . , r} we write I for the com-
plement of I in {1, . . . , r} and Q(I) = {Pi : i ∈ I} ⊆ Q. We put

d′ = min
I

∑
i∈I

di,

where the minimum is extended over all I ⊆ {1, . . . , r} for which V ∩MQ(I) 6= {0}. The last

condition is always assumed to be satisfied for I = {1, . . . , r}. The condition V ∩MQ = {0}
in Definition 15.2.35 implies that d′ ≥ 1.

15.2.43 Theorem The code CQ(V ;C1, . . . , Cr) in Definition 15.2.41 is a linear code over Fq with
length n, dimension k, and minimum distance d, where

n =

r∑
i=1

ni, k = dim(V ), d ≥ d′,

and where d′ is as in Remark 15.2.42.

15.2.44 Definition Let V be a function-field code in F with respect to Q = {P1, . . . , Pr}. For
f ∈ V , the block weight of f (with respect to Q) is defined to be

ϑQ(f) = |{1 ≤ i ≤ r : f(Pi) 6= 0}|.

The number
ϑQ(V ) = min {ϑQ(f) : f ∈ V, f 6= 0}

is the minimum block weight of V (with respect to Q).

15.2.45 Theorem If the notation is arranged in such a way that d1 ≤ d2 ≤ · · · ≤ dr, then the
minimum distance d of the code CQ(V ;C1, . . . , Cr) in Definition 15.2.41 satisfies

d ≥
ϑQ(V )∑
i=1

di,

where ϑQ(V ) is the minimum block weight of V .

15.2.46 Remark The codes CQ(V ;C1, . . . , Cr) derived from function-field codes form a universal
family of linear codes, in the sense that any linear code can be obtained by this construction.
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In fact, as the following theorem from Chapter 6 in [2280] shows, a special family of these
codes suffices to represent any linear code.

15.2.47 Theorem Let C be an arbitrary linear code over Fq with length n and dimension k. Then
there exists an algebraic function field F with full constant field Fq, a set Q of n distinct
rational places of F , and a k-dimensional function-field code V in F with respect to Q such
that C is equal to the code CQ(V ;C1, . . . , Cn), where Ci is the trivial linear code over Fq
of length 1 and dimension 1 for 1 ≤ i ≤ n.

15.2.48 Remark A stronger result than Theorem 15.2.47, according to which an even smaller family
of codes can represent any linear code, was proved in [2380].

15.2.4 Asymptotic bounds

15.2.49 Remark The asymptotic theory of codes studies the set of ordered pairs of asymptotic
relative minimum distances and asymptotic information rates as the length of codes goes
to ∞. This theory considers general (including nonlinear) codes as well as the special case
of linear codes. Algebraic-geometry codes play a decisive role in this theory.

15.2.50 Remark We write n(C) for the length of a code C and d(C) for the minimum distance of
C. Furthermore, we use logq to denote the logarithm to the base q.

15.2.51 Definition For a given prime power q, let Uq (respectively U lin
q ) be the set of all ordered

pairs (δ,R) ∈ [0, 1]2 for which there exists a sequence C1, C2, . . . of general (respectively
linear) codes over Fq such that n(Ci)→∞ as i→∞ and

δ = lim
i→∞

d(Ci)

n(Ci)
, R = lim

i→∞

logq |Ci|
n(Ci)

.

15.2.52 Proposition [2820] There exists a function αq (respectively αlin
q ) on [0, 1] such that

Uq = {(δ,R) : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1}

and
U lin
q = {(δ,R) : 0 ≤ R ≤ αlin

q (δ), 0 ≤ δ ≤ 1}.
15.2.53 Proposition [2820] The functions αq and αlin

q have the following properties:

1. αq(δ) ≥ αlin
q (δ) for 0 ≤ δ ≤ 1;

2. αq and αlin
q are nonincreasing and continuous on [0, 1];

3. αq(0) = αlin
q (0) = 1;

4. αq(δ) = αlin
q (δ) = 0 for (q − 1)/q ≤ δ ≤ 1.

15.2.54 Remark Values of αq(δ) and αlin
q (δ) are not known for 0 < δ < (q − 1)/q. Thus, the best

one can do at present from a practical point of view is to find lower bounds on αq(δ) and
αlin
q (δ) for 0 < δ < (q − 1)/q. Such lower bounds guarantee an asymptotic information rate
R that can be achieved for a given q and a given asymptotic relative minimum distance δ.

15.2.55 Definition For 0 < δ < 1, the q-ary entropy function Hq is defined by (Definition 15.1.122)

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).
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15.2.56 Remark The benchmark bound in the asymptotic theory of codes is the asymptotic Gilbert-
Varshamov bound in Theorem 15.2.57 below which dates from the 1950s.

15.2.57 Theorem For any prime power q, we have

αq(δ) ≥ αlin
q (δ) ≥ RGV(q, δ) := 1−Hq(δ) for 0 < δ < (q − 1)/q.

15.2.58 Theorem [3017] For any prime power q and any real number δ with 0 < δ < (q−1)/q, there
exists a sequence C1, C2, . . . of classical algebraic-geometry codes over Fq with n(Ci)→∞
as i→∞ which yields

αlin
q (δ) ≥ RGV(q, δ).

15.2.59 Remark Since no improvement on Theorem 15.2.57 was obtained for a long time, there was
speculation that maybe αlin

q (δ) = RGV(q, δ) for 0 < δ < (q− 1)/q. However, this conjecture
was disproved by the use of algebraic-geometry codes. The crucial result in this context
is the TVZ bound (named after Tsfasman, Vlăduţ, and Zink [2821]) in Theorem 15.2.60
below. For the formulation of this bound, we need the quantity

A(q) = lim sup
g→∞

Nq(g)

g
,

where q is an arbitrary prime power and Nq(g) is the maximum number of rational places
that an algebraic function field with full constant field Fq and genus g can have. We note
that A(q) > 0 for all prime powers q and that A(q) = q1/2 − 1 if q is a square. The proof of
the TVZ bound uses appropriate sequences of classical algebraic-geometry codes for which
the length goes to ∞.

15.2.60 Theorem [2821] For any prime power q, we have

αq(δ) ≥ αlin
q (δ) ≥ RTVZ(q, δ) := 1− 1

A(q)
− δ for 0 ≤ δ ≤ 1.

15.2.61 Remark The following two theorems show that for certain sufficiently large values of the
prime power q, we can beat the asymptotic Gilbert-Varshamov bound in Theorem 15.2.57
by using suitable sequences of classical algebraic-geometry codes. Both theorems are simple
consequences of the TVZ bound in Theorem 15.2.60 and information about the quantity
A(q) defined in Remark 15.2.59.

15.2.62 Theorem Let q ≥ 49 be the square of a prime power. Then there exists an open subinterval
(δ1, δ2) of (0, (q − 1)/q) containing (q − 1)/(2q − 1) such that

RTVZ(q, δ) > RGV(q, δ) for all δ ∈ (δ1, δ2).

15.2.63 Theorem Let q ≥ 343 be the cube of a prime power. Then there exists an open subinterval
(δ1, δ2) of (0, (q − 1)/q) containing (q − 1)/(2q − 1) such that

RTVZ(q, δ) > RGV(q, δ) for all δ ∈ (δ1, δ2).

15.2.64 Remark More generally, it was shown in [2284] that a result like Theorem 15.2.62 holds for
all sufficiently large composite nonsquare prime powers q. It is not known whether such a
result holds also for all sufficiently large primes q.

15.2.65 Remark If one considers general (i.e., not necessarily linear) codes, then global improve-
ments on the TVZ bound for αq(δ) in Theorem 15.2.60 can be obtained. By a global
improvement we mean an improvement for any q and δ by a positive quantity independent
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of δ. The currently best global improvement on the TVZ bound is the Niederreiter-Özbudak
bound in Theorem 15.2.66 below.

15.2.66 Theorem [2262] For any prime power q, we have

αq(δ) ≥ RNO(q, δ) := 1− 1

A(q)
− δ + logq

(
1 +

1

q3

)
for 0 ≤ δ ≤ 1.

15.2.67 Remark The proof of the Niederreiter-Özbudak bound in [2262] is quite involved. A simpler
proof using a new variant of the construction of algebraic-geometry codes was presented
in [2715], but this proof works only for a slightly restricted range of the parameter δ. The
new construction proceeds as follows. Let n be a positive integer (which will be the length
of the code) and let F be an algebraic function field with full constant field Fq such that
F has at least n + 1 rational places. Choose n + 1 distinct rational places P0, P1, . . . , Pn
of F and put Q = {P1, . . . , Pn}. Furthermore, let m, r, and s be integers with m ≥ 1 and
1 ≤ r ≤ min(n, s). We let G(Q; r, s) be the set of all positive divisors G of F of degree s
such that the support of G is a subset of Q of cardinality r. Next we define

S(mP0;Q; r, s) =
⋃

G∈G(Q;r,s)

{f ∈ L(mP0 +G) : νP0(f) = −m}.

Note that the union above is a disjoint union. A map

φ : S(mP0;Q; r, s)→ Fnq
is now defined in the following way. Take f ∈ S(mP0;Q; r, s) and let G ∈ G(Q; r, s) be the
unique divisor such that f ∈ L(mP0 +G) and νP0

(f) = −m. We define

φ(f) = (c1(f), . . . , cn(f)) ∈ Fnq ,

where for i = 1, . . . , n we put ci(f) = f(Pi) if Pi is not in the support of G and ci(f) = 0
if Pi is in the support of G. The desired code C(mP0;Q; r, s) over Fq is the image of
S(mP0;Q; r, s) under φ. Note that C(mP0;Q; r, s) is in general a nonlinear code. The proof
of the bound αq(δ) ≥ RNO(q, δ) for a restricted range of δ in [2715] is obtained by using a
suitable sequence of codes of this type with increasing length.

15.2.68 Remark Recently, some local improvements on the Niederreiter-Özbudak bound in Theo-
rem 15.2.66 have been obtained, that is, improvements that are valid only for a restricted
range of the parameter δ (this range may depend on the value of q). We refer to the papers
[2264, 2265, 3029] for these improvements, and we note that [2265] contains also improved
lower bounds on αlin

q (δ). An important role in this work is played by distinguished divisors in
the construction of algebraic-geometry codes, that is, divisors G such that L(G−D) = {0}
for a (large) finite family of positive divisors D. The point of a distinguished divisor is that
it yields an improvement on the lower bound for the minimum distance in Theorem 15.2.6.

See Also

§15.1 For general background on coding theory.

References Cited: [92, 875, 912, 1321, 1322, 1323, 1375, 1396, 1415, 1496, 1524, 2262, 2264,
2265, 2280, 2281, 2284, 2285, 2380, 2714, 2715, 2820, 2821, 3017, 3019, 3020, 3029]
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15.3 LDPC and Gallager codes over finite fields

Ian Blake, University of British Columbia

W. Cary Huffman, Loyola University Chicago

15.3.1 Definition [1987] A binary linear code of length n is a Gallager code provided it has an
m× n parity check matrix H where every column has fixed weight c and every row has
weight as close to nc/m as possible. This code will be denoted Galn,2(c,H). If r = nc/m
is an integer and every row of H has weight r, the Gallager code is called regular.

15.3.2 Definition A binary linear code of length n is a low density parity check (LDPC) code
provided it is a regular Gallager code Galn,2(c,H). This code will be denoted by
LDPCn,2(c, r,H) where c is the weight of each column of H and r is the weight of
each row of H.

15.3.3 Remark Note that the m × n matrix H used to define a Gallager or LDPC code C is not
assumed to have independent rows and so is technically not a parity check matrix in the
sense often used. However, H can be row reduced and the zero rows removed to form a
parity check matrix for C with independent rows. Thus the dimension of C is at least n−m.
Generally the column and row weights are chosen to be relatively small compared to n,
and thus the density of 1s in H is low. A natural generalization for Gallager and LDPC
codes is to allow the row weights and column weights of H to both vary, in some controlled
manner. The resulting codes are sometimes termed irregular LDPC codes. Unless specific
parameters are given, for the remainder of this section, the term “LDPC” will refer to either
regular or irregular LDPC codes.

15.3.4 Remark Gallager and LDPC codes were developed by R. G. Gallager in [1162, 1163].
Gallager also presented two iterative decoding algorithms designed to decode these codes of
long length, several thousand bits for example. These algorithms are presented in Remarks
15.3.8 and 15.3.12.

15.3.5 Remark The reason Gallager codes are useful is because they achieve close to optimal
properties. Roughly speaking, for any c ≥ 3 and any λ > 1, there exist Gallager codes
of long enough length and rates up to 1 − 1/λ such that virtually error-free transmission
occurs; the specific codes that achieve this property are dependent upon the characteristics
of the communication channel being used. Additionally, for an appropriate choice of c, there
exist Gallager codes Galn,2(c,H), where H is m × n, of rates arbitrarily close to channel
capacity and c/m arbitrarily small. The precise formulation of these statements can be
found in [1987]. Furthermore, there exist irregular LDPC codes whose performance very
closely approaches the Shannon channel capacity for the binary additive white Gaussian
noise (AWGN) channel [642, 2457]. These codes compare favorably and can even surpass
the performance of turbo codes [1987, 2457].

15.3.6 Remark LDPC codes are part of several standards used in digital television, optical com-
munication, and mobile wireless communication, including DVB-T2, DVB-S2, WiMAX-
IEEE 802.16e, and IEEE 802.11n [1046]. Both the DVB-T2 standard [995], used in digital
television, and the DVB-S2 standard [994], used in a variety of satellite applications, employ
LDPC codes concatenated with BCH codes. In addition, a 2007 paper from the Consulta-
tive Committee for Space Data Systems (CCSDS) outlines the experimental specifications
for the use of LDPC codes for near-Earth and deep space communications [573].
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15.3.7 Remark Gallager and LDPC codes can be defined over other alphabets. Such codes were
examined in Gallager’s original work [1163]; see also [2455]. Only binary codes are considered
here.

15.3.8 Remark Gallager’s first decoding algorithm is an iterative algorithm that involves flipping
bits in the received vector. This algorithm works best on a binary symmetric channel (BSC)
when the code rate is well below channel capacity. Assume that the codeword c is trans-
mitted and y = (y1, y2, . . . , yn) is received using Galn,2(c,H). In the computation of the
syndrome HyT , each received bit yi affects at most c components of that syndrome, as the
i-th bit is in c parity check equations. Let Si denote the set of bits involved in these c parity
check equations. If among all the bits Si involved in these c parity check equations only the
i-th is in error, then the c components of HyT , arising from these c parity check equations,
will equal 1 indicating the parity check equations are not satisfied. Even if there are some
other errors among the bits Si, one expects that several of these c components of HyT will
equal 1. This is the basis of the Gallager Bit-Flipping Decoding Algorithm.

I. Compute HyT and determine the unsatisfied parity check equations, i.e., the
parity check equations where the components of HyT equal 1.

II. For each of the n bits, compute the number of these unsatisfied parity check
equations involving that bit.

III. Flip the bits of y, from 0 to 1 or 1 to 0, that are involved in the largest number
of these unsatisfied parity check equations; call the resulting vector y again.

IV. Iteratively repeat I, II, and III until either HyT = 0T , in which case the received
vector is decoded as this latest y, or until a certain number of iterations is
reached, in which case the received vector is not decoded and a decoding failure
is declared.

15.3.9 Remark In order to describe the second of Gallager’s decoding algorithms, we need the
concept of a Tanner graph [2779], which can be defined for any code.

15.3.10 Definition The Tanner graph is a bipartite graph constructed from an m × n parity
check matrix H for a binary code. The Tanner graph has two types of vertices: variable
and check nodes. There are n variable nodes, one corresponding to each coordinate or
column of H. There are m check nodes, one for each parity check equation or row of H.
The Tanner graph has only edges between variable nodes and check nodes; a given check
node is connected to precisely those variable nodes where there is 1 in the corresponding
column of H. Since a code can have many different parity check matrices, there are many
different Tanner graphs for a code. If the code is Galn,2(c,H), the degree of each variable
node is c; if the code is LDPCn,2(c, r,H), the degree of each variable node is c, and the
degree of each check node is r.

15.3.11 Remark The second of Gallager’s algorithms is an example of an iterative “message pass-
ing” decoding algorithm. Message passing decoding algorithms have the following general
characteristics.

1. Message passing algorithms are performed in iterations, also called rounds.

2. Messages are passed from a variable node to a check node and from a check node
to a variable node along the edges of the Tanner graph of a code. Outgoing mes-
sages sent out from a node along an adjacent edge ε depend on all the incoming
messages to that node except the incoming message along ε.

3. There is an initial passing of messages from the variable nodes to the check nodes
(or perhaps from the check nodes to the variable nodes).
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4. One iteration, or round, consists of passing messages from all check nodes to
all adjacent variable nodes followed by the passing of messages from all variable
nodes to all adjacent check nodes (or perhaps from variable nodes to check nodes
and then back to variable nodes).

5. At the end of each round, a computation is done that will either end the algorithm
or indicate that another iteration should be performed.

6. There is a preset maximum number of rounds that the algorithm will be allowed
to run.

15.3.12 Remark The description of Gallager’s message passing decoding algorithm comes from
[1987] and applies to binary channels in which noise bits are independent, such as the
memoryless BSC or the binary AWGN channel. The algorithm falls in a class of algorithms
called “sum-product algorithms” and is implemented using message passing.

Let C = Galn,2(c,H) where H is an m×n matrix. In the Tanner graph T for C, number
the variable nodes 1, 2, . . . , n and the check nodes 1, 2, . . . ,m. Let V (j) denote the variable
nodes connected to the j-th check node, and let C(k) denote the c check nodes connected
to the k-th variable node.

Suppose the codeword c is transmitted and y = c+e is received where e is the unknown
error vector. Given the syndrome HyT = HeT = zT , the object of the decoder is to compute
the conditional probabilities P (ek = 1 | z) for 1 ≤ k ≤ n. From there, the most likely error
vector and hence most likely codeword can be found. The algorithm is an iterative message
passing algorithm in which each message is a pair of probabilities. For 1 ≤ k ≤ n, the
initial message passed from the variable node k to the check node j ∈ C(k) (in Step I of
the algorithm) is the pair (q0

j,k, q
1
j,k) = (p0

k, p
1
k), where p0

k = P (ek = 0) and p1
k = P (ek = 1)

come directly from the channel statistics. For example, if communication is over a BSC
with crossover probability p, then p0

k = 1 − p and p1
k = p. Each iteration consists of first

passing messages from check nodes to variable nodes (in Step II of the algorithm) and then
passing messages from variable nodes back to check nodes (in Step III of the algorithm).
The message from the check node j to the variable node k for k ∈ V (j) is the pair (r0

j,k, r
1
j,k),

where rej,k for e ∈ {0, 1} is the probability that the j-th check equation is satisfied given
that ek = e and that the other bits ei for i ∈ V (j) \ {k} have probability distribution given
by {q0

j,i, q
1
j,i}. The message from the variable node k to the check node j ∈ C(k) is the pair

(q0
j,k, q

1
j,k), where qej,k for e ∈ {0, 1} is the probability that ek = e given information obtained

from checks C(k) \ {j}. The Gallager Message Passing Sum-Product Decoding Algorithm
for binary Gallager codes is the following.

I. For 1 ≤ k ≤ n, pass the message (q0
j,k, q

1
j,k) = (p0

k, p
1
k) from variable node k to

check node j ∈ C(k).

II. Update the values of rej,k for k ∈ V (j) and e ∈ {0, 1} according to the equation

rej,k =
∑

i∈V (j)\{k}, ei∈{0,1}

P (zj | ek = e, {ei | i ∈ V (j) \ {k}})
∏

i∈V (j)\{k}

qeij,i.

For 1 ≤ j ≤ m, pass the message (r0
j,k, r

1
j,k) from check node j to variable node

k ∈ V (j).

III. Update the values of qej,k for j ∈ C(k) and e ∈ {0, 1} according to the equation

qej,k = αj,kp
e
k

∏
i∈C(k)\{j}

rei,k

where αj,k is chosen so that q0
j,k + q1

j,k = 1. For 1 ≤ k ≤ n, pass the message

(q0
j,k, q

1
j,k) from variable node k to check node j ∈ C(k).



716 Handbook of Finite Fields

After each pass through Step III, compute

qek = pek
∏

j∈C(k)

rej,k

for 1 ≤ k ≤ n and e ∈ {0, 1}. Then for 1 ≤ k ≤ n, set êk = 0 if q0
k > q1

k and êk = 1
if q1

k > q0
k. Let ê = (ê1, ê2, . . . , ên). If H êT = zT , decode by setting e = ê and stop the

algorithm; otherwise repeat Steps II and III unless the predetermined maximum number of
iterations has been reached. If the maximum number of iterations has been reached and if
H êT never equals zT , stop the algorithm and declare a decoding failure.

15.3.13 Remark If the Tanner graph T is without cycles and the algorithm successfully halts, then
the probabilities P (ek = e | z) equal αkq

e
k for 1 ≤ k ≤ n where αk is chosen so that

αkq
0
k + αkq

1
k = 1. If the graph has cycles, αkq

e
k are approximations to P (ek = e | z). In the

end, one does not care exactly what these probabilities are; one only cares about obtaining
a solution to HeT = zT . Thus the algorithm can be used effectively even when there are
long cycles present. The algorithm has been successful for codes of length a few thousand,
say n = 10, 000, particularly with c small, say c = 3. Analysis of the algorithm can be found
in [1987].

15.3.14 Remark In Step II of the algorithm, the conditional probabilities P (zj | ek = e, {ei | i ∈
V (j) \ {k}}) for k ∈ V (j) and e ∈ {0, 1} are required. These probabilities are either 0 or
1. Notice that the j-th check equation is the modulo 2 sum of the values ek for k ∈ V (j).
Thus

P (zj | ek = e, {ei | i ∈ V (j) \ {k}}) =

 1 if zj ≡ e+
∑

i∈V (j)\{k}

ei (mod 2),

0 otherwise.

15.3.15 Remark There is a message passing algorithm for Gallager codes on the binary erasure
channel (BEC). For the BEC, there are two inputs {0, 1} to the channel, three possible
outputs {0, E, 1} from channel transmission, and an associated probability ε. In a BEC an
input symbol x is received as an output symbol y with the following probabilities P (y | x):
P (0 | 1) = P (1 | 0) = 0, P (0 | 0) = P (1 | 1) = 1 − ε, and P (E | 0) = P (E | 1) = ε. So
the output that is received is either an erasure, denoted E, or is the original input symbol;
0 is never received as 1 and 1 is never received as 0. The message passing algorithm for
the BEC, which is described and thoroughly analyzed in [2455], employs the notation from
Remark 15.3.12. Suppose that c is sent and y = (y1, y2, . . . , yn) is received. The messages
on each edge of the Tanner graph are elements of {0, E, 1}. For binary Gallager codes the
Message Passing Decoding Algorithm for a BEC is the following.

I. For 1 ≤ j ≤ m, send E from every check node j to every variable node k ∈ V (j).

II. For 1 ≤ k ≤ n, determine the message to send from the variable node k to
the check node j ∈ C(k) as follows. If yk and all of the incoming messages to
the variable node k from the check nodes i ∈ C(k) \ {j} equal E, the outgoing
message from the variable node k to the check node j ∈ C(k) is E. Otherwise, if
one of yk or the incoming messages to the variable node k from the check nodes
i ∈ C(k) \ {j} equals 0, respectively 1, send 0, respectively 1.

III. For 1 ≤ j ≤ m, determine the message to send from the check node j to the
variable node k ∈ V (j) as follows. If any of the incoming messages to the check
node j from the variable nodes i ∈ V (j) \ {k} is E, the outgoing message from
the check node j to the variable node k ∈ V (j) is E. Otherwise, if none of the
incoming messages to the check node j from the variable nodes i ∈ V (j) \ {k} is



Algebraic coding theory 717

E, the outgoing message from the check node j to the variable node k ∈ V (j) is
the modulo 2 sum of the incoming messages to the check node k from the variable
nodes i ∈ V (j) \ {k}. In addition, if yk = E, update yk to be the value of the
incoming message.

Repeat Steps II and III until all yk’s have been determined, in which case the updated y is
declared to equal the transmitted codeword c, or until the number of iterations has reached
a predetermined value. In the latter case, declare a decoding failure.

15.3.16 Remark In Step II of the algorithm, there is no ambiguity in assigning the value to the
message to be sent. It is not possible for one of yk or the incoming messages to have the
value 0 and another of yk or the incoming messages to have the value 1. In Step III, the
only time the value 0 or 1 is passed as a message from the check node j to the variable node
k is when there is no erasure from any other variable node sent to check node j and hence
the value of the k-th variable is determined uniquely by the j-th parity check equation.

15.3.17 Remark When applying the message passing algorithm of Remark 15.3.15, the iterations
may stabilize so that there are erasures left but no further iteration will remove any of these
remaining erasures. This will occur because of the presence of stopping sets.

15.3.18 Definition Let V be the set of variable nodes in the Tanner graph of Galn,2(c,H). A subset
S of V is a stopping set if all the check nodes connected to a variable node in S are
connected to at least two variable nodes in S.

15.3.19 Theorem [2455] Suppose that a codeword of Galn,2(c,H) is sent over a BEC and that the
received vector has erasures on the set E of variable nodes. Assume that the message passing
decoder of Remark 15.3.15 is allowed to run on the received vector until either all erasures
are corrected or the process fails to make progress. If the algorithm fails to make progress
and erasures remain, then the set of variable nodes that still contain erasures is the unique
maximal stopping set inside E .

15.3.20 Remark So far, the focus of this section has been on decoding Gallager codes. The algo-
rithms are efficient because they take advantage of the sparsity of the parity check matrix
for such codes. One might ask if this sparseness of the parity check matrix can be used
to efficiently encode Gallager codes. The answer is yes, as described in [2455]. Begin with
the m× n parity check matrix H for Galn,2(c,H), which we assume has rank m. By using
row and column permutations, which do not affect the column or row weights, H can be
transformed into an approximate upper triangular form[

T A B
E C D

]
.

The matrix T is an upper triangular (n−k−g)×(n−k−g) matrix with 1s on the diagonal;
A is (n−k− g)× g, B is (n−k− g)×k, and E, C, and D have g rows with the appropriate
number of columns. There is an algorithm with O(n + g2) operations that encodes any
message.

15.3.21 Remark Constructing “good” irregular LDPC codes is an important area of research where
“good” means optimal or near optimal according to some measure. One approach to the
construction of good LDPC codes is to use combinatorial objects, such as finite geome-
tries, permutation matrices, and Latin squares to derive incidence matrices of variable
versus check nodes. The properties of the combinatorial objects typically allow observa-
tions on certain structural properties of the resulting graph. The objects used often give
quasi-cyclic codes which have desirable encoding and decoding properties. As with most
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LDPC code constructions, performance has to be obtained through simulation. The ref-
erences [1801, 1841, 3055, 3061] are representative of this approach. There are numerous
decoding algorithms, some variations of those given here, and their performance analysis
is also an important topic of research. When using iterative decoding, one needs to know
if the algorithm will converge to a codeword and if that codeword is the original codeword
transmitted. The presence of “pseudocodewords” play a role in describing convergence of
an iterative decoder; see [151, 1724, 1778] and the references in these papers. The error
performance of a maximum likelihood decoder is determined by the distance distribution of
the codewords in the code; in the case of an iterative decoder, error performance is deter-
mined by the distribution of pseudocodewords [1724]. There are three common notions of
pseudocodewords: computation tree pseudocodewords, graph cover pseudocodewords, and
linear programming pseudocodewords; see [151] for connections between the three types.
For instance, computation tree pseudocodewords arise as follows [1724]. From the Tanner
graph of an LDPC code, the computation tree can be constructed starting from a fixed
variable root node. The actual structure of the tree is determined by the scheduling used
by the message passing algorithm and the number of iterations used. In general a variable
node from the Tanner graph will appear multiple times in the computation tree, as will
the check nodes. A codeword in the LDPC code will be a binary assignment of variable
nodes in the Tanner graph so that the binary sum of the neighbors of each check node is
0. The same assignment made in the computation tree will also yield, for the neighbors of
each check node, a binary sum equal to 0. However, it is possible to make an assignment of
the variable nodes in the computation tree so that the binary sum of the neighbors of each
check node is 0, but the assignment gave different values to some nodes of the computation
tree that actually represented the same variable node of the Tanner graph. This assignment
of values is a computation tree pseudocodeword.

15.3.22 Remark The special case of linear codes that can be represented by Tanner graphs with no
cycles has been investigated. Such a code can be decoded with maximum likelihood by using
the min-sum algorithm with complexity O(n2). However, it can be shown that such cycle-
free Tanner graphs cannot support good codes, in terms of either trade-off between rate
and minimum distance or performance. Aspects of cycle-free Tanner graphs are explored
further in [996, 1401, 2518].

15.3.23 Remark The analysis of LDPC codes, particularly for finite block lengths, poses challenges.
Interest is in performance under a class of belief propagation decoding algorithms, a subclass
of message passing algorithms, where the messages sent between variable and check nodes
represent the probability or belief a given variable node has a particular value. This usually
involves either likelihoods or log likelihood ratios, conditioned on values received in the pre-
vious round. While such algorithms are suboptimal, they are more efficient than maximum
likelihood algorithms and generally yield good performance. In the first round of decoding,
the message sent from a variable node v to its check neighbors is the log likelihood ratio of
the received data, i.e., the log of the ratio of the probability the sent bit was a 0 to that
it was a 1, given the received value (which may be discrete or continuous). In subsequent
rounds, messages from a check node c to a neighbor variable node v is a log likelihood of
the message arriving at v, involving information sent from all neighbor variable nodes other
than v, in the previous round. After the first round, messages from a variable node v to
a neighbor check node c is a log likelihood of the value of the message sent from v condi-
tioned on values received in the previous round from neighbor check nodes other than c.
The analysis requires evaluation of probability density functions of data received by a node
that involves convolutions on the order of the degree of the node, either check or variable.
It can be shown [2458] that the behavior of these densities is narrowly concentrated around
their expected values and thus it suffices to consider only the expected values of the den-
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sities. The updating formulae for these expected densities, referred to as density evolution,
gives a method of evaluating the performance of the algorithm. The equations assume the
variables involved in the convolutions are independent which is only true to the extent that
the graph, grown out from a given variable node, is a tree to a certain level. At some point
this ceases to be true. However, the analysis given with this assumption yields results which
are accurate for most codes. The technique of density evolution introduced in [2458] has
been a cornerstone of the analysis of LDPC codes.

15.3.24 Remark Many LDPC codes exhibit probability of error behavior that, as the signal to
noise ratio (SNR) is increased, the error curve flattens out rather than continuing as a
typical “waterfall” curve. This is termed an error floor and is an undesirable feature for
applications requiring very small probabilities of error, in the range of 10−12 for many
standards. It is difficult to simulate curves down to such a low value - even with special
hardware, simulations can typically be done only to about 10−9 [2456]. Much effort has
been expended on finding analytical techniques to determine codes whose error floors are
below such levels. The key reference for such work is [2456] where the notion of trapping
sets is introduced. An (a, b) trapping set is a subgraph of the Tanner graph of the code
induced by a set of variable nodes of size a with the property that the subgraph has b
check nodes of odd degree. Although the sizes of the trapping sets are not the only relevant
parameters for predicting error performance of the code [2456], it can be shown they are
a major influence for error floors in performance curves. In particular such floors tend to
be caused by overlapping clusters of fairly small trapping sets. The determination of such
trapping sets tends to be a feasible computational task, either analytically or via simulation
[2456], for many codes of interest. The design of codes without such trapping sets is a major
goal of LDPC coding theorists. Trapping sets can be thought of as an analog of stopping
sets for erasure codes.

References Cited: [151, 573, 642, 994, 995, 996, 1046, 1162, 1163, 1401, 1724, 1778, 1801,
1841, 1987, 2455, 2456, 2457, 2458, 2518, 2779, 3055, 3061]

15.4 Turbo codes over finite fields

Oscar Takeshita, Silvus Technologies

15.4.1 Introduction

15.4.1.1 Historical background

Turbo codes are a class of error control codes that was first introduced by Berrou, Glavieux,
and Thitimajshima in 1993 [251]. Turbo coding was a paradigm shift in the design of error
control codes that enabled them to achieve very good performance.

15.4.1.2 Terminology

15.4.1 Remark Basic coding notation and code properties are covered in Section 15.1 of this
handbook. We shall need to add some terminology in order to properly address turbo
codes.
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15.4.2 Remark In many practical communication systems, we are often interested in encoding
binary (the alphabet is restricted to two symbols) messages of a given manageable length k,
i.e., messages are transmitted in packets of a predetermined size. This is because of a fixed
amount of memory or other hardware limitations. However, the actual amount of data to be
transmitted may be much more than k bits. In this case, long data streams are simply split
into multiple messages and the encoding process is repeated as necessary. Those messages
may be represented by a k-bit vector u. In this section, we work only over F2(= GF (2)).
However, many of these ideas can be considered over general finite fields.

15.4.3 Definition Let u = (u0, u1, u2, . . . , uk−1) be a message vector of length k, where ui ∈ F2.

15.4.4 Example An example of a message of length k = 5:

u = (u0, u1, u2, u3, u4) = (0, 1, 1, 0, 1).

15.4.5 Definition The set of distinct messages of length k is U = Fk2 , where Fk2 is the Cartesian
product of F2 taken k times.

15.4.6 Remark Let t and s be two vectors. One is often interested in chaining them together to
form a single vector r.

15.4.7 Definition Let t = (t0, t1, t2, . . . , tk1−1) and s = (s0, s1, s2, . . . , sk2−1) be two vec-
tors. Define the chained vector r = t|s = (t0, t1, t2, . . . , tk1−1, s0, s1, s2, . . . , sk2−1) =
(r0, r1, r2, . . . , rk1+k2−1).

15.4.8 Remark Order matters with the chaining operator, i.e., t|s is not the same as s|t in general.
The chaining of more than two vectors follows in a similar way.

15.4.9 Example Let three vectors r, s, and t be chained together in this order. Their chaining is
denoted r|s|t.

15.4.10 Definition Let C be an (n, k) linear code. An encoder Ce for C is a one-to-one and onto
function Ce : Fk2 → Fn2 , Ce : u 7→ v, where n ≥ k, u ∈ Fk2 , v ∈ Fn2 , and the set of
codewords C = {v ∈ Fn2 |v = Ce(u)} forms a linear subspace of Fn2 .

15.4.11 Remark A few methods for deriving codes from existing ones are explained in Section 15.1.
The methods therein modify one code in order to derive a new code. Let us denote by the
term compound derivation of a code any technique that derives a new code by combining
two or more codes. An important classical method of compound derivation of a code by
combining two codes is code concatenation [1091].

15.4.12 Definition Let C1 be an (n1, k1) code over Fn1
2 and C2 be an (n2, k2 = n1) code over Fn2

2 .
A classical (n2, k1) concatenated code C3 over Fn2

2 is defined by an encoder function Ce3
generated by the function composition Ce3 = Ce2 ◦ Ce1 ; C1 and C2 are the constituent codes
of C3. Further, C1 is the outer code and C2 the inner code.

15.4.13 Remark In the definition above, the symbols for both C1 and C2 are over the same field
F2. The interested reader may refer to [1091] and learn that when the above codes are
defined with appropriate lengths and symbols over extension fields of different lengths, the
minimum distance of the resulting code C3 is at least the product of the minimum distances
of C1 and C2.
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15.4.14 Remark The above definition of a concatenated code is precisely what is known as a
serially-concatenated turbo code [225]. The novelty in turbo coding is a proper choice of
the constituent codes for the encoder and a decoding method for these codes. The following
type of compound derived code is used to form the classical parallel-concatenated turbo
code.

15.4.15 Definition Let C1 be an (n1, k) code over Fn1
2 and C2 be an (n2, k) code over Fn2

2 . Let
v1 and v2 be the code vectors corresponding to a message vector u for codes C1 and
C2, respectively. An (n2 + n1, k) parallel-concatenated code C3 over Fn2+n1

2 is formed by
vector chaining these code vectors, i.e., encoding a message vector u with C3 produces
v3 = v1|v2. The codes C1 and C2 are the constituent codes of C3.

15.4.16 Remark Several variations of a turbo encoder have been studied, but we focus on the classi-
cal parallel-concatenated version. A parallel-concatenated turbo code, which is a compound
derived code, has a recursive convolutional code as one of its constituent codes. We shall
see that the second constituent code itself is also a compound code derived from a recursive
convolutional code and a permutation code. A permutation code is implemented in practice
with a device called an interleaver.

15.4.2 Convolutional codes

15.4.17 Remark Convolutional codes are a popular type of error control code because of the sim-
plicity of their encoding and the practicality of optimal decoding for many channels. They
have been used in a variety of applications from home wireless networks to deep-space
communication systems. Encoding is performed by polynomial operations over the ring of
polynomials with coefficients over F2. The Viterbi algorithm [2879] is widely used to decode
convolutional codes in practice because it is known to be optimal (maximum likelihood
decoding) for any memoryless channel; see Section 15.1 for a discussion of these concepts.

15.4.2.1 Non-recursive convolutional codes

15.4.18 Remark There are two major classes of convolutional codes: non-recursive convolutional
codes and recursive convolutional codes. Many of the traditional applications use non-
recursive convolutional codes, but turbo codes require recursive convolutional codes for
reasons briefly explained in Section 15.4.5.

15.4.19 Remark In convolutional coding, a message vector u is traditionally represented in poly-
nomial form on the variable D.

15.4.20 Definition The polynomial representation of a message vector u = (u0, u1, u2, . . . , uk−1)
is U(D) = u0 + u1D + u2D

2 + · · ·+ uk−1D
k−1.

15.4.21 Example The polynomial representation of the information vector in Example 15.4.4 is

U(D) = D +D2 +D4.

15.4.22 Definition The set of all polynomials in the polynomial ring on the variable D with
coefficients in F2 and whose degree is smaller than k is denoted F2[D]<k.
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15.4.23 Definition Typically convolutional codes are encoded in “non-recursive” form. The encoder
is defined by a generator matrix G(D) whose entries are polynomials in F2[D]<d, where
dmax = d− 1 is the maximum degree among the polynomials in the matrix.

15.4.24 Example An example generator matrix with dmax = 2 and elements in F2[D]<3 is

G(D) = [g1(D) g2(D)] =
[
1 +D +D2 1 +D2

]
.

15.4.25 Definition The encoding of a message U(D) is performed by multiplying it by the generator
matrix. The resulting matrix V (D) = U(D)G(D) is the codeword in polynomial form.

15.4.26 Remark It is worthwhile noting that the codeword length n of convolutional codes is a
function of the message space F2[D]<k. This means that a generator matrix defines a family
of codes. However, in practice k is chosen to be a fixed value.

15.4.27 Example We illustrate the encoding operation with an example by encoding the message
in Example 15.4.21 with the generator matrix in Example 15.4.24

V (D) = U(D)G(D) = U(D) [g1(D) g2(D)] = [v1(D) v2(D)] .

15.4.28 Remark The encoding operation may be generalized to multi-dimensional message matrices
and generator polynomials. However, many practical systems have a U(D) with a single
message polynomial (M = N = 1) and G(D) is a simple one-by-two matrix (P = 2). This
implies V (D) is typically a one-by-two matrix.

15.4.29 Definition The Hamming weight w(P (D)) of a polynomial P (D) ∈ F2[D]<k is the number
of non-zero monomials in P (D).

15.4.30 Remark The Hamming weight of a vector as defined in Section 15.1 of the corresponding
vector p gives the same value, i.e., w(p) = w(P (D)).

15.4.31 Definition The Hamming weight w(M(D)) of a matrix M(D) whose entries are polyno-
mials in F2[D]<k is the sum of the Hamming weights of each of the polynomials.

15.4.2.2 Distance properties of non-recursive convolutional codes

15.4.32 Remark We examine the non-recursive convolutional code with a fixed maximum degree
dmax = 2 in Example 15.4.24. It is clear that its minimum distance is no larger than the
weight of the generator matrix w(G(D)) = 5 regardless of the length n of the code since, by
letting the message polynomial be U(D) = 1, we obtain a code polynomial V (D) = G(D).
Therefore, a convolutional code with a fixed generator matrix is asymptotically bad.

15.4.33 Remark A message of the form U(D) = Dx, 0 ≤ x < k, generates a code polynomial whose
weight is w(G(D)).

15.4.34 Remark In order to improve the minimum distance of a convolutional code, one may
increase the maximum degree dmax of the generator matrix; however, it is easy to see that
the minimum distance is expected to only increase linearly with dmax. The decoding of
such codes, however, unfortunately becomes exponentially complex in dmax when Viterbi
decoding is used. A typical value for dmax is six to keep decoding complexity manageable.

15.4.35 Theorem Non-recursive convolutional codes C with a fixed generator matrix G(D) are
asymptotically bad.

15.4.36 Theorem Any low-weight message polynomial encoded by a non-recursive convolutional
code C produces a low-weight codeword polynomial.
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15.4.2.3 Recursive convolutional codes

15.4.37 Remark From the definition of encoding, it follows that v1(D) and v2(D) have g1(D) and
g2(D) as their factors, respectively.

15.4.38 Theorem There is a one-to-one and onto mapping between each U(D) and v1(D) as well
as U(D) and v2(D).

15.4.39 Remark We examine v1(D) = U(D)g1(D) more carefully. Let the degree of g1(D) be
dmax = d− 1. We may write v1(D) as

v1(D) = U(D)g1(D) = Dd−1(U ′(D)) + T (D)

for some U ′(D) ∈ F2[D]<k and T (D) ∈ F2[D]<d−1.

15.4.40 Theorem T (D) is the negative of the remainder R(D) of the division of Dd−1(U ′(D)) by
g1(D).

15.4.41 Remark In characteristic two, T (D) = R(D).

15.4.42 Remark We shall now see how a recursive convolutional code may be derived from a non-
recursive convolutional code. The set of codewords turns out to be identical following such
a derivation. The difference is how message vectors are encoded (mapped) into codewords.

15.4.43 Definition Let a generator matrix for a non-recursive convolutional code be
G(D) = [g1(D) g2(D)]. The corresponding generator matrix for an equivalent recursive

convolutional code is GR(D) =
[
1 g2(D)

g1(D)

]
.

15.4.44 Remark We illustrate how to encode a message when using recursive convolutional codes.
While for a non-recursive convolutional code we simply multiplied the message polynomial
by the generator matrix, for a recursive convolutional code there is an additional step.

15.4.45 Remark Let U ′(D) ∈ F2[D]<k be a message to be encoded. We first form a polynomial
Z(D) = Dd−1(U ′(D)) + T (D), where T (D) is the negative of the remainder of the di-
vision of Dd−1(U ′(D)) by g1(D). Naturally, Z(D) is divisible by g1(D) by construction.
Next we simply multiply Z(D) by the generator matrix GR(D). The resulting matrix
V (D) = Z(D)GR(D) is the codeword in polynomial form.

15.4.46 Example We illustrate the encoding operation with an example by encoding the message
U ′(D) = D3 +D4. The remainder of the division of D2U ′(D) = D2(D3 +D4) = D5 +D6 by
g1(D) = 1 +D+D2 is R(D) = D. The polynomial Z(D) = D+D5 +D6 is then multiplied
by the generator matrix GR(D)

V (D) = Z(D)GR(D) = Z(D)

[
1
g2(D)

g1(D)

]
= [v1(D) v2(D)] .

15.4.47 Remark We note that the codeword in vector format is v = v1|v2 = t|u′|v2.

15.4.48 Remark While non-recursive convolutional code encoding involves multiplication of poly-
nomials, recursive convolutional encoding involves long-division.

15.4.2.4 Distance properties of recursive convolutional codes

15.4.49 Remark Recursive convolutional codes are asymptotically bad because the set of codeword
polynomials is identical to an equivalent non-recursive convolutional code.
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15.4.50 Theorem Recursive convolutional codes C with a fixed generator matrix GR(D) are asymp-
totically bad.

15.4.51 Remark Despite the fact that the weight distribution of the codewords in a non-recursive
convolutional code and an equivalent recursive convolutional code are the same, there are
fundamental differences in the relationship between the Hamming weights of the message
vectors and the Hamming weights of the corresponding codewords.

15.4.52 Remark A low-weight message polynomial encoded by a recursive convolutional code C
does not necessarily produce a low-weight codeword polynomial.

15.4.53 Remark A message polynomial of the form U ′(D) = Dx, 0 ≤ x < k, produces codeword
polynomials whose weights are lower bounded by αx for some positive constant α. Compare
this with Remark 15.4.33. This is a fundamental property of recursive convolutional codes
that makes them suitable for turbo coding due to the long-division encoding process.

15.4.3 Permutations and interleavers

15.4.54 Remark Permutations have long been used along with error control codes in the area of
digital communications. Their main use is to reorder the elements of a vector. A device that
permutes the elements of a vector is an interleaver.

15.4.55 Definition A permutation function Π on k letters is a one-to-one and onto function Π :
Zk → Zk, where Zk is the set of integers modulo k.

15.4.56 Definition Let a vector u = (u0, u1, u2, . . . , uk−1) ∈ Fk2 . A permuted version uΠ of u under
the permutation function Π is uΠ = (uΠ(0), uΠ(1), uΠ(2), . . . , uΠ(k−1)).

15.4.57 Definition The design requirements for an interleaver in typical applications are minimal.
A simple block interleaver may in general suffice. A block interleaver writes the elements
of the vector on a matrix row-wise and then reads them back column-wise to permute
the elements of the vector.

15.4.58 Example Let a vector a = (a0, a1, a2, a3, a4, a5). A 2 by 3 block interleaver first writes the
elements of a on a 2 by 3 matrix row-wise:[

a0 a1 a2

a3 a4 a5

]
.

The permuted vector becomes aΠ = (a0, a3, a1, a4, a2, a5) by reading the matrix column-
wise.

15.4.59 Remark Algebraic formulations of interleavers are not only elegant, but an algebraic struc-
ture typically implies efficient implementations. We shall describe next one of the simplest
known permutation functions.

15.4.60 Definition A linear polynomial function (LPF) over Zn is defined by the function
L : Zn → Zn, L : x 7→ f1x+ f0, where f1, f0 ∈ Zn.

15.4.61 Remark Let f1 be co-prime to n over Z. The linear polynomial function function
L : Zn → Zn, L : x 7→ f1x+ f0 is a linear permutation polynomial (LPP).
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15.4.62 Definition A quadratic polynomial function (QPF) over Zn is defined by the function
Q : Zn → Zn, Q : x 7→ f2x

2 + f1x+ f0, where f2, f1, f0 ∈ Zn.

15.4.63 Proposition Let n be a power of 2. Let f1 be odd and f2 even. The QPF function
Q : Zn → Zn,Q : x 7→ f2x

2 + f1x+ f0 is a quadratic permutation polynomial (QPP).

15.4.64 Remark Necessary and sufficient conditions to obtain for QPPs for arbitrary n and other
properties have been investigated in [2742, 2768].

15.4.65 Definition Let Π be a permutation function on k symbols. There is an associated (n, n = k)
permutation code CΠ = {uΠ|u ∈ U}.

15.4.4 Encoding and decoding

15.4.66 Definition We define a parallel-concatenated turbo code CT . Recall Definition 15.4.15.
We must simply specify the constituent codes C1 and C2. Let C1 be an (n, k) recursive

convolutional code with generator matrix GR(D) = [1 g2(D)
g1(D) ], and let C2 be a com-

pound (n − k, k) derived code. The derivation of C2 is in two steps. The first step is
the derivation of an (n2 = n, k1 = k) compound code Cs by the serial concatenation of
an (n1, n1 = k1 = k) permutation outer code CΠ with an (n2 = n, k2 = n1) recursive
convolutional inner code identical to C1. The second step is to puncture the k message
positions of Cs.

15.4.67 Example Let u be a message vector. First we encode u with the recursive convolutional

code C1 and obtain the code vector v(1) = t(1)|u|v(1)
2 . Next we form the code vector for C2.

We first encode u with the permutation code CΠ to obtain uΠ = Π(u). Then uΠ is encoded

with a recursive convolutional code C1 to obtain the code vector v(s) = t(2)|uΠ|v(2)
2 for Cs.

The code vector for C2 becomes v(2) = t(2)|v(2)
2 by puncturing the message symbols uΠ of

Cs. Finally, the code vector for the turbo code becomes v(T) = t(1)|u|v(1)
2 |t(2)|v(2)

2 .

15.4.68 Remark The decoding of turbo codes is performed using iterative algorithms [1398]; for
iterative algorithms see Section 15.1.

15.4.5 Design of turbo codes

15.4.69 Remark We focus on the design of parallel-concatenated turbo codes. Naturally, the design
narrows down to an understanding of the overall turbo code principle and to the selection
of the constituent recursive convolutional codes and an interleaver.

15.4.70 Remark Recall the definition of a linear code C of length n as a linear subspace of Fn2 from
Section 15.1. Let C be a code over Fn2 (not necessarily linear). The Holy Grail design for C
has been to maximize its minimum distance as defined in Section 15.1. For a linear code,
this translates to maximizing its minimum Hamming weight. This task becomes even more
challenging when we require a design for a family of codes that are asymptotically good,
i.e., a family of codes with a fixed code-rate such that the minimum distance to code length
ratio does not vanish as the code length goes to infinity.

15.4.71 Remark The error correction capability of a code is mostly dictated by its minimum dis-
tance, with its weight distribution a secondary factor. In turbo coding, the relationship
between the weight of message vectors and the weight of codeword vectors becomes crucial.
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When an error control code is used, we ultimately need not only a set of codewords C but
an encoder to map messages from U to C and a decoder to map codewords (possibly with
errors) back to messages.

15.4.72 Remark We observe again the codeword of a parallel-concatenated turbo code:

v(T) = t(1)|u|v(1)
2 |t(2)|v(2)

2 . (15.4.1)

The design principles for a turbo code are related to the following question: How do we

minimize the chances of producing simultaneously low weight codewords for C1 (t(1)|u|v(1)
2 )

and C2 (t(2)|v(2)
2 )?

15.4.73 Remark The first design principle is that, since the codeword includes the message vector
u, it is more important to focus on the case when w(u) is small.

15.4.74 Remark The second design principle is, given that w(u) is small, identify a good permuta-
tion function that minimizes the chances of producing simultaneously low weight codewords
for C1 and C2.

15.4.5.1 Design of the recursive convolutional code

15.4.75 Remark The main design parameters of constituent recursive convolutional codes are the
maximum degree dmax of the generator polynomials and the choice of the generator matri-
ces. Surprisingly, it has been found that dmax = 3 or 4 is sufficient to achieve very good
performance with turbo coding. Typically, the polynomial g1(D) is chosen to be a primitive
polynomial.

15.4.76 Remark The reason for choosing g1(D) to be primitive is that it maximizes the degree of
polynomials of the form U(D) = 1+Dτ such that U(D) is divisible by g1(D); this is known
to improve the codeword weight of recursive convolutional codes with respect to message
vectors with w(U(D)) = 2. One of the latest communication systems using turbo codes is
the fourth generation wireless cellular 4G LTE standard.

15.4.77 Example The 4G LTE standard uses the generator matrix with dmax = 3:

GR(D) =

[
1

1 +D +D3

1 +D2 +D3

]
.

15.4.5.2 Design of interleavers

15.4.78 Remark Interleavers or permutation functions have been extensively investigated in turbo
coding applications [252, 725, 755, 767, 911, 1277, 2291, 2513, 2742, 2770, 2771]. Shannon’s
random coding bound theorem [2608] naturally led researchers to experiment with differ-
ent pseudo-random or modified pseudo-random constructions [911]. There were two major
drawbacks to early pseudo-random constructions: first, practical implementation calls for
interleavers that require little storage and computation; and second, pseudo-random con-
structions often generate turbo codes that suffer from a performance deficiency known as
an “error-floor”; see Remark 15.3.24.

15.4.79 Remark Some researchers attempted to use simple interleavers with turbo coding such as
block interleavers. However, a block interleaver has been shown to have too much regu-
larity; it has also been shown that interleavers based on LPPs behave similarly to block
interleavers [2770]. A good compromise between interleaver complexity and turbo code per-
formance can be achieved with QPP interleavers; the second degree polynomial brings a
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“non-linear” feature that is very desirable for turbo coding [2768, 2771]. The simplicity of
QPP interleavers due to their algebraic structure and their very good performance resulted
in them becoming part of the 4G LTE standard.

See Also

§15.1 For discussion of basic coding theory properties.
§15.3 For discussion of LDPC and Gallager codes.

[2495], [2496], For discussions of cycle structure of permutation functions
[2519] over finite fields and their applications to turbo codes.

References Cited: [225, 251, 252, 725, 755, 767, 911, 1091, 1277, 1398, 2291, 2495, 2496,
2513, 2519, 2608, 2742, 2768, 2770, 2771, 2879]

15.5 Raptor codes

Ian Blake, University of British Columbia

W. Cary Huffman, Loyola University Chicago

15.5.1 Remark This section is concerned with coding for the binary erasure channel (BEC) (see
Section 15.1), except for the last subsection which includes comments on the performance of
raptor codes on the binary symmetric channel (BSC). Recall that for the BEC a nonerased
symbol is correct and the goal is to design codes which can be encoded and decoded effi-
ciently. The capacity of the BEC with erasure probability ε is 1− ε. If C is a linear (n, k, d)q
code with parity check matrix H, it is capable of correcting up to d− 1 erasures. If a code-
word c is transmitted and word r received (whose components are in the set {0, 1, E}), the
problem of correcting erasures is the problem of solving a set of linear equations of the form
H ′xT = yT where H ′ is the matrix of columns of the original parity check matrix H of
the code corresponding to erased positions of r, x is a vector of variables corresponding to
the erased positions of r, whose solutions are required, and y the sum of columns of the
parity check matrix corresponding to the positions of r containing 1s. This follows from the
fact that a codeword c satisfies the equation HcT = 0T , the vector of all zeros. The com-
plexity of decoding is that of matrix reduction, assumed to be O(d3) when the maximum
number of erasures d − 1 has occurred (unless a more sophisticated algorithm is used). It
is quite remarkable that the codes in this section achieve essentially linear complexity for
both encoding and decoding while achieving capacity. This is accomplished by constructing
a code by means of a bipartite graph and interpreting the decoding operation as a graph
algorithm. The forerunners of raptor codes are tornado and LT codes, considered in the
following sections. It should be noted that packet loss on the internet, due to traffic con-
ditions or node buffer overflow, give a natural model of an erasure channel and the results
of this section yield an excellent solution for Internet multicast data transmission with no
feedback channel to request missing packets. If a block code is used for such a purpose, to
be effective, one would have to know the erasure probability for effective code design. This
is usually difficult to estimate and is often time varying. The LT and raptor codes described
here are rateless and such an estimate is not required. The tornado codes are block codes,
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unlike LT and raptor codes, which are rateless (fountain) codes. The tornado codes are
considered for the important ideas they introduced that led, in a sense, to the fountain and
LT codes. However tornado codes are block codes while LT and raptor codes are rateless,
having no concept of block length or dimension. All codes considered are binary.

15.5.1 Tornado codes

15.5.2 Remark The most complete description of tornado codes is given in [1975] (although not
referred to as tornado codes there). Earlier work includes the papers [1972, 1974, 1973, 2619].
The paper [1975] has been influential in the last decade of progress on the problem of coding
with irregular bipartite graphs.

15.5.3 Remark Consider a bipartite graph B with k information nodes on the left and βk check
nodes on the right. This is a version of the Tanner graph of a code; see Section 15.3. The
information nodes are associated with information symbols. Since only XOR operations are
used in the encoding, the information symbols can be taken as either bits or strings of
bits of the same length (packets). The manner of choosing edges in the graph is critical to
code performance and is discussed later. Given the graph, the complexity of encoding and
decoding is proportional to the number of edges in the graph. For the bipartite graph B,
denote the associated code by C(B). The decoding is considered next. A codeword consists
of the set of information and check symbols.

15.5.4 Remark Decoding process: For the code C(B) and its associated bipartite graph B, consider
a received vector y, the result of transmitting a codeword through the BEC. The positions
of y contain symbols from the alphabet {0, 1, E} or strings of such symbols. Associate the
received symbols with the appropriate information and check graph nodes. The decoding
proceeds as follows: given the correct value of a check symbol and all but one of the informa-
tion symbol neighbors, set the missing information symbol to the XOR value of the check
and the known information symbols. The process continues until all information nodes are
retrieved or decoding failure. The algorithm is a version of the belief propagation (BP) or
message passing algorithms used for noisy channels.

15.5.5 Remark The success of the decoding procedure of C(B) depends on the existence of check
symbols with the required property to the completion of decoding. Before considering this
condition, the construction of the codes is given. The term tornado derives from the ob-
servation that [470] one can initiate decoding on such graphs as coded symbols arrive, and
the decoder stalls until, typically, the arrival of a single further symbol allows it to proceed
quickly to completion.

15.5.6 Remark The bipartite graph B is constructed randomly as follows. Refer to an edge as
one of degree i on the left (right) if the left (right) node it is connected to has degree
i. The following approach is taken. The graph is to have e edges. Two distributions (to
be discussed later) are defined: a left distribution (on edges, not nodes) (λ1, . . . , λn) and
a right distribution (ρ1, . . . , ρn), where λi (resp. ρi) is the fraction of edges in the graph
of left degree i (resp. right degree i), for some appropriate integer n. The number of left
nodes of degree i is eλi/i and k = e

∑
i λi/i and similarly for the right nodes. The average

left degree of the information nodes is 1/(
∑
i λi/i), denoted by a` and similarly for right

degrees ar = 1/(
∑
i ρi/i). If the graph has e edges, k left information nodes and βk right

check nodes, then a` = arβ. As discussed below, it is possible to choose the left and right
distributions to ensure complete decoding with high probability.

15.5.7 Remark Code construction: With the terminology of the previous remark, the construction
of the bipartite graph, B, is described, given the left and right distributions. Consider a



Algebraic coding theory 729

sequence of four columns of nodes. The first column has k information nodes, the second
and third e nodes each, and the fourth βk check nodes. Edges appear only between adjacent
columns. A fraction λi of the e edges have left degree i. For each i, connect i of the nodes of
the second column to a node of the first column, eλi/i times (truncated to form integers), to
give this number of left nodes of degree i. Similarly, connect eρi/i of the nodes in the third
column to a node in the fourth column to give this number of right vertices of this degree.
Nodes in the second and third columns are all of degree 1. To complete the process connect
the e nodes of the second and third columns by a random matching (permutation). The
second and third columns of nodes are removed with edges now connecting the information
and check nodes. The process may yield a small number of multiple edges between an
information and check node. These are replaced with a single edge with negligible effect.
The graph B is the random bipartite graph.

15.5.8 Remark The two distributions are chosen from the analysis of the probability of successful
decoding of the algorithm of Remark 15.5.4. The decoding algorithm is a Markov process
that leads to a certain differential equation. It is convenient for the analysis to define the
two distribution polynomials

λ(x) =
∑
i

λix
i−1, ρ(x) =

∑
i

ρix
i−1.

The use of xi−1 rather than xi is for convenience in the analysis. The analysis leads to the
following important results.

15.5.9 Theorem [1975, Proposition 2] Let B be a bipartite graph with k information nodes that
is chosen at random with edge degree distributions λ(x) and ρ(x), and suppose that δ is
fixed such that

ρ(1− δλ(x)) > 1− x for all 0 < x ≤ 1. (15.5.1)

For all η > 0 there is some k0 such that for all k > k0, if the message symbols of C(B) are
erased independently with probability δ, then with probability at least 1−k2/3 exp(−k3/2/2)
the decoding algorithm terminates with at most ηk information symbols erased.

15.5.10 Remark While not quite enough to show the decoding terminates successfully, with a slight
modification of the conditions [1975] it can be shown:

15.5.11 Lemma [1975, Lemma 1] Let B be a bipartite graph with k left information nodes, chosen
at random according to the distributions λ(x) and ρ(x) satisfying Condition (15.5.1) such
that λ1 = λ2 = 0. Then there is some η > 0 such that, with probability 1 − O(k−3/2),
the decoding process restricted to the subgraph induced by any η-fraction of the left nodes
terminates successfully.

15.5.12 Remark Condition (15.5.1) was relaxed in [1972] to:

δλ(1− ρ(1− x)) < x for x ∈ (0, δ].

It remains to show that distributions satisfying (15.5.1) exist. Distributions that satisfy this
condition are referred to as capacity achieving (CA). Numerous works have addressed the
problem of finding CA sequences of distributions including [1976, 2340, 2457, 2618, 2620].
A variety of techniques are used. One such example is given in the following.

15.5.13 Example This example is taken from [1975]. Let D be a positive integer which is chosen
to trade off average left degree with how well the decoding process works. Let H(D) be the

truncated Harmonic series: H(D) =
∑D
i=1 1/i ≈ ln(D). Let

λi =
1

(H(D)(i− 1))
, i = 2, 3, . . . , D + 1, and hence λD(x) =

1

H(D)

D∑
i=1

xi

i
.
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The average left degree is then a` = H(D)(D + 1)/D. For the right distribution choose

ρi =
e−ααi−1

(i− 1)!
, i = 1, 2, . . . , ρD(x) = eα(x−1),

i.e., the Poisson distribution, where α is chosen so that ar = αeα/(eα − 1) = a`/β, i.e.,
to make the fractions of nodes on the left and the right the same. It can be shown [1975]
that the two distributions satisfy (15.5.1) for δ ≤ β/(1 + 1/D) and hence are CA. These
distributions are referred to as heavy tail/Poisson or tornado [1975, 2619].

15.5.14 Remark It is to be noted that CA sequences lead to a graph having a high probability of
successfully completing decoding on the graph.

15.5.15 Theorem [1975, Theorem 3] For any rate R, 0 < R < 1, and any ε with 0 < ε < 1, and
sufficiently large block length n, there is a linear code and decoding algorithm that, with
probability 1 − O(n−3/4), is able to correct a random (1 − R)(1 − ε) fraction of errors in
time proportional to n ln(1/ε).

15.5.16 Remark The original construction of tornado codes involved a cascade of m+ 1 sections of
random bipartite graphs, the i-th section having βik left nodes and βi+1k check nodes, with
a final code C as a good erasure correcting code. Works subsequent to [1975] typically used
only a single section (and no final erasure correcting code) and perhaps this is the important
impact of the work on tornado codes. The ideas of tornado codes (although not always
referred to as tornado codes) first appeared in [1974]. Reference [1972] simplified the analysis.
The notion of the graph construction and CA distribution sequences has proved important
and a rather large set of papers on this subject now exists, many giving new techniques,
including linear programming, for finding CA distributions. These include [2457, 2618, 2620].
The influence of the paper [1975] is evident in subsequent work on the problem. The ability
to encode and decode codes on the BEC in linear time is a remarkable achievement (recall
the initial comments on the equivalence of this problem to matrix reduction and Gaussian
elimination).

15.5.17 Definition Define a bipartite graph B0 with k information nodes and βk check nodes,
0 < β < 1. Recursively form the bipartite graph Bi whose left nodes are the βik right
nodes of Bi−1, with βi+1k right nodes, 1 ≤ i ≤ m, for an integer m chosen so that
βm+1k is roughly

√
k. Choose a final code C as a good erasure correcting code of rate

1−β with βm+1k information nodes. The resulting cascaded code, C(B0, B1, · · · , Bm, C)
has k information symbols (the leftmost k symbols as input to the graph B0) and

m+1∑
i=1

βik + βm+2k/(1− β) = kβ/(1− β)

check nodes. The code C(B0, B1, . . . , Bm, C) is a tornado code.

15.5.2 LT and fountain codes

15.5.18 Remark The notion of fountain codes first appears in the work [470]. The term “fountain”
refers to the process whereby k information symbols (either bits or packets) are encoded
into coded symbols by XOR’ing subsets of information symbols in such a way that a receiver
may collect any k(1+ε) coded symbols, for some ε appropriate to the system, to recover all k
information symbols. The image is of a coder producing a digital fountain of coded symbols
and a receiver collects a sufficient number of such symbols to retrieve the information. Codes
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with such a property can be described as universal rateless erasure codes. The codes are
rateless since there is no concept of code dimension. LT codes are the first realization of
such erasure codes. The term “LT” refers to “Luby transform.” The codes were devised for
a situation where packets are lost, or dropped, on the Internet and there was no efficient
way a receiver could request a retransmission for such a missing packet. This is a typical
situation for a multicast internet protocol where a single information source transmits a
large amount of data to a large user community. For a typical block erasure correcting
code, each user would have to receive a specific set of codeword symbols in order to decode
the remaining erasures. In the LT scenario, any sufficiently large collection of coded symbols
will do. While often thought of as erasure correcting codes, there are no erasures in this
situation - in effect erased packets are those that are lost.

15.5.19 Remark As a matter of notation, the terms used in this section are information symbols
and coded symbols. Many papers use the terms input and output symbols which are also
natural but in some situations, where more than one level of graphs is considered, they
might be ambiguous.

15.5.20 Remark In constructing bipartite graphs for coding, two forms appear in the literature. In
the first form, there are n nodes on the left, and n − k check nodes on the right. This is
often called the Tanner graph of the code. The other form is the one used above with k
information nodes on the left and n− k check nodes on the right.

15.5.21 Definition (The LT encoding process) To encode k information symbols a probability
distribution {ρi, i = 1, 2, . . . , k} is chosen. For each coded symbol, the distribution is
sampled. If the integer d is produced, this number of information symbols, chosen uni-
formly at random from among the k, are XOR’ed together to produce a coded symbol.
Information as to how the symbol was produced is included in a symbol header. Such
information is a negligible fraction for practical systems and is ignored in the analysis.
Note that for the remainder of the section {ρi} denotes a node degree distribution, as
opposed to the edge distribution of the previous section.

15.5.22 Definition (The LT decoding rule) [1971] From a collection of K (slightly larger than
k) received coded symbols, a bipartite graph is formed with k left information nodes
(initially of unknown value) and K right received code nodes. Edge connections are
formed from the header information of the received coded symbols. All coded symbols
of degree one are said to cover their unique information neighbors and this set of covered
information symbols is the ripple. Information symbols in the ripple are determined as
they are the same as the coded symbols covering them. At the first stage an information
symbol in the ripple is XOR’ed with all of its coded neighbors and all edges to the
coded neighbors removed. This might produce coded nodes of degree one and their
unique information symbols are added to the ripple. The process continues iteratively
until either all information symbols are recovered or there are no coded symbols of
degree one. If at the end some information symbols remain uncovered, decoding failure
is declared.

15.5.23 Remark The decoding process above has a complexity proportional to the number of edges
in the graph. The number K of coded symbols required to have a reasonably high probability
of decoding success is typically in the range of 1.01 to 1.05 times k, for sufficiently large k.
From a balls in bins analysis it can be shown that for such a coding process it is necessary
that at least k ln(k/δ) balls must be thrown into the k (information) bins in order to have
a probability of δ that each of the bins has at least one ball (i.e., that each information
symbol is used (covered) by at least one of the coded symbols - for if one is not covered it
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could not be recovered). Thus in the encoding process the average degree of an information
symbol must be at least ln(k/δ) no matter what distribution is used for producing the coded
symbols.

15.5.24 Remark The random behavior of the LT decoding process is determined entirely by the
distribution {ρi}, the number of information symbols k, and the number of coded symbols
K obtained, which are typically slightly larger than k. The desirable properties for the
distribution are

1. to ensure the fewest possible number of coded symbols to be able to complete
the decoding with high probability and

2. the average degree of the coded symbol nodes is as small as possible (although,
as noted, at least ln(k)).

15.5.25 Remark In analyzing the LT decoding process, a desirable feature is to have the rate at
which information symbols are added to the ripple to be about the same as the rate they
are processed. The ripple size should be large enough to ensure the decoding process can
continue to completion, but not so large that a coded symbol has too high a probability
of covering an information node already in the ripple. A distribution that has desirable
properties in terms of this and other properties is the soliton distribution given by:

ρi =

{
1/k i = 1,
1/(i(i− 1)) i = 2, 3, . . . , k,

(15.5.2)

and ρS(x) =
∑
i ρix

i. (The name derives from physics where it arises from a similar property

in a refraction problem.) The expected value of this distribution is H(k) =
∑k
i=1 1/i, the

harmonic sum to k. In [2621], a different analysis of the decoding process of Definition 15.5.22
is given. It is shown there that if, at each step of the decoding process one wants an expected
number of degree one coded nodes, the degree distribution must satisfy the (asymptotic)
equation

(1− x)η′′(x) = 1, 0 < x < 1

where η(x) =
∑
i ηix

i. The solution of this equation is almost the soliton distribution
- except that η1 = 0 and the range is infinite. The fact that such a distribution yields
no coded symbols of degree one is a problem since the decoding algorithm cannot start.
While this distribution is ideal in the sense that the expected number of coded symbols
needed to recover the information in the ripple is one, in practice it performs poorly as the
probability the ripple disappears before completion is high. The robust soliton distribution
{µi} is proposed to correct these defects. It is defined in the following manner. Let δ be
the probability of decoder failure for k information symbols and K coded symbols and
R = c ln(kδ)

√
k for some suitable constant c:

µi = (ρi + τi)/β, where β =
k∑
i=1

(ρi + τi) (15.5.3)

and where {ρi} is the ideal soliton distribution (15.5.2), {µi} is the robust soliton distribu-
tion, and µRS(x) =

∑
i µix

i, with

τi =

 R/(ik) i = 1, . . . , k/R− 1,
R ln(R/δ)/k i = k/R,
0 i = k/R+ 1, . . . , k.

The intuition is that the probability a random walk of length k deviates by more than
ln(k/δ)

√
k from its mean is at most δ [1971]. With this background it is possible to show

the following theorem.
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15.5.26 Theorem [1971, Theorems 12, 13 and 17] With the above notation, the average degree of
a coded symbol is D = O(ln(k/δ)), and the number of coded symbols required to achieve a
decoding failure probability of at most δ is K = k +O(

√
k ln2(k/δ)).

15.5.3 Raptor codes

15.5.27 Remark While the LT codes represent a remarkable step forward for coding on an erasure
channel, such as the Internet, its complexity or running time is not linear in the number
of input information symbols. The following result emphasizes this. For a code with k
information symbols, we say a decoding algorithm is reliable if it fails to decode with a
probability at most 1/kc for some positive constant c. The overhead of the code and decoding
algorithm is ε if the decoder needs (1+ε)k coded symbols in order for the decoder to succeed
with high probability. The term space complexity refers to the amount of memory required
to implement decoding. The reference [2621] is followed closely here, although the terms
information and coded symbols are used rather than input and output symbols. The term
raptor derives from RAPid TORnado although the tornado and LT codes have very different
constructions.

15.5.28 Lemma [2621, Proposition 1] If an LT code with k information symbols possesses a reliable
decoding algorithm, then there is a constant c such that the graph associated to the decoder
has at least ck log(k) edges.

15.5.29 Remark Recall that if K coded symbols are gathered to decode for the k information
symbols, then Gaussian elimination is maximum likelihood and has a complexity of O(Kk2),
i.e., from the K coded symbols a K × k matrix equation can be set up to be solved for
the k information symbols. The decoding algorithm for LT codes is able to improve on
this complexity considerably by choosing an appropriate distribution {ρi} and decoding
algorithm, as noted above. An LT code generated in this manner is referred to as a (k, ρ(x))
LT code.

15.5.30 Remark The idea behind the raptor codes is to first add parity check symbols to the
information symbols, by use of an efficient linear block erasure correcting code, to form the
set of intermediate symbols and then LT encoding this set. This relieves the LT decoder
from having to correct all the erasures. A few can be left to the block code to correct and
this eases the burden of the LT decoder considerably and allows a linear decoding time,
for a good choice of code. Let Cn be a linear code of dimension k and block length n. It is
called the precode of the raptor code. The intermediate symbols are then the k information
symbols and n− k parity checks of the precode Cn. For the LT code, a modification of the
above soliton like distribution is suggested [2621]:

ρD(x) =
1

µ+ 1

(
µx+

D∑
i=2

xi

(i− 1)i
+
xD+1

D

)

where D = d4(1 + ε)/εe for a given real number ε and µ = (ε/2) + (ε/2)2. Thus this is a
soliton-like distribution with a positive probability of degree 1 and truncated at D+ 1. The
LT code is designated a (n, ρD(x)) code. The entire code is the raptor code and designated
a (k, Cn, ρD(x)) raptor code. A key result on the way to the final one is the following lemma.

15.5.31 Lemma [2621, Lemma 4] There exists a positive number c (depending on ε) such that with
an error probability of at most e−cn any set of (1 + ε/2)n+ 1 coded symbols of the LT code
with parameters (n, ρD(x)) are sufficent to recover at least (1 − δ)n information symbols,
where δ = (ε/4)(1 + ε).
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15.5.32 Remark Two extreme cases of raptor codes are noted. If ρw =
(
k
w

)
/2k, corresponding to the

distribution polynomial ρ(x) = (1 + x)k/2k, it leads to the probability that any particular
binary k-tuple being chosen as 1/2k, i.e., a uniform distribution over Fk2 since a vector of
weight w is chosen with probability

(
k
w

)
/2k and each of the

(
k
w

)
are chosen equally likely. If

such a distribution was used in the LT process, performance would be very poor. The degree
distribution is too large to permit the process to succeed. At the other extreme, suppose
the LT process of the raptor code (k, Cn, ρ(x)) uses a trivial distribution ρ1 = 1, i.e., after
the precoding, the coder chooses an intermediate symbol at random and declares it a coded
symbol. Such a code is referred to as a precode only (PCO) raptor code. One can see that
such a code can achieve a low overhead only for very low rate codes Cn.

15.5.33 Remark A suitable precode has the properties:

1. The rate R of Cn is (1 + ε/2)(1 + ε).

2. The BP decoder can decode Cn on a BEC with erasure probability

δ = (ε/4)/(1 + ε) = (1−R)/2,

in O(n log(1/ε)) operations. (Note this is half of capacity for the rate of the code.)

It is suggested that several types of codes meet these criteria, such as tornado codes and
right regular codes (coded symbol nodes have the same degree).

15.5.34 Theorem [2621, Theorem 5] Let ε be a positive real number, k the number of information
symbols, D = d4(1 + ε)/εe, R = (1 + ε/2)/(1 + ε), n = dk/(1 − R)e, and let Cn be a code
with properties described above. Then the raptor code (k, Cn, ρD(x)) has space complexity
1/R, overhead ε and a cost of O(log(1/ε)) with respect to BP decoding of both the precode
and LT code.

15.5.35 Remark A problem with raptor codes is that they are not systematic. A technique is given
in [2621] to generate systematic raptor codes but is not discussed here. Many applications
of raptor codes in practice prefer systematic codes. Raptor codes have been incorporated
into numerous standards for the reliable delivery of data objects. The codes are described in
IETF RFC 5053 and IETF RFC 6330 for such applications as the DVB-H IPDC (IP datacast
to handheld devices) and 3GPP TS for multimedia broadcast/multicast service (MBMS)
and future standards of IEEE P2220 (a draft standard protocol for stream management in
media client devices) and 3GPP eMBMS, among others. The latter standards use RaptorQ
codes defined over the finite field F28 . All of these standards use systematic raptor codes.
The monograph [2622] has an extensive discussion of these codes for standards.

15.5.36 Remark A good erasure correcting (linear) code should have a good minimum distance.
Thus a reasonable question to ask is how such a code would perform on a noisy channel,
such as a binary symmetric channel (BSC). The performance of raptor codes on such a
channel is considered in [991]. Many of the results for the erasure channel are generalized
there. It builds on the landmark paper [2458] which considered more general classes of low
density parity check codes and introduced such fundamental concepts as density evolution.
The application of these ideas to raptor codes generalizes many of the results for the erasure
channel.

References Cited: [470, 991, 1971, 1972, 1973, 1974, 1975, 1976, 2340, 2457, 2458, 2618,
2619, 2620, 2621, 2622]
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15.6 Polar codes

Simon Litsyn, Tel Aviv University

15.6.1 Space decomposition

15.6.1 Definition Let F = Fq be the field of cardinality q. For a positive integer ` decomposition
of F` is defined recursively. Let T0 = F`, |T0| = q`, and

T0 =
⋃
a0∈F

T
(a0)
1 =

⋃
a0∈F

⋃
a1∈F

T
(a0,a1)
2 = · · · =

⋃
a0∈F

⋃
a1∈F
· · ·

⋃
a`−1∈F

T
(a0,a1,...,a`−1)
` ,

where ∣∣∣T (a0,a1,...,ai−1)
i

∣∣∣ = q`−i, i = 1, . . . , `.

15.6.2 Remark Each of the sets T
(a0,a1,...,a`−1)
` of the last level consists of a single vector from F`.

15.6.3 Example Let q = 2 and ` = 2. Then

T0 = {00, 01, 10, 11},

T
(0)
1 = {00, 11}, T

(1)
1 = {01, 10},

T
(0,0)
2 = {00}, T (0,1)

2 = {11}, T (1,0)
2 = {01}, T (1,1)

2 = {10}.
15.6.4 Remark A decomposition may be defined by a linear transform, with T

(a0,...,ai−1)
i being

cosets of a linear code Ti = T
(0,...,0)
i spanned by the first i rows of a full-rank `× ` matrix

over F.

15.6.5 Definition Let G be an `× ` matrix with rows gi ∈ F`, i = 0, 1, . . . , `− 1. Define

T
(a0,...,ai−1)
i = (a0g0 + · · ·+ ai−1gi−1) +

⋃
ai∈F
· · ·

⋃
a`∈F

(aigi + · · ·+ a`−1g`−1).

15.6.6 Example The decomposition of Example 15.6.3 is linear, use

G =

(
0 1
1 1

)
.

15.6.7 Remark Cosets of extended Reed-Solomon codes can be used for space decomposition when
` = q [2161].

15.6.8 Example Let α be a primitive element of F, then a decomposition of Fq can be defined
using the following matrix

G =


0 1 1 1 . . . 1
0 1 αq−2 α2(q−2) . . . α(q−2)(q−2)

...
...

...
...

...
...

0 1 α α2 . . . αq−2

1 1 1 1 . . . 1

 .
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15.6.9 Definition Let
di = min d

(
T

(a0,...,ai−1)
i

)
,

where the minimum is taken over all possible choices of a0, . . . , ai−1, and d(·) is the
minimum Hamming distance of the code. Then the distance hierarchy of a space decom-
position is the vector

d = (d0 = 1, d1, . . . , d`−1).

15.6.10 Remark The distance hierarchy of a decomposition is a parameter used to determine the
decay rate of decoding error probability.

15.6.11 Example The distance hierarchy of the decomposition from Example 15.6.3 is (1, 2). The
distance hierarchy of the decomposition from Example 15.6.8 is (1, 2, 3, . . . , q).

15.6.12 Definition A space decomposition is proper if for at least one vector (a0, . . . , a`−1) ∈ F`,

d
(
T (a0,...,a`−1)

)
≥ 2.

15.6.2 Vector transformation

15.6.13 Remark Given a space decomposition and a vector a = (a0, . . . , a`−1) ∈ F`, one may define
a transform g : F` → F` associated to the decomposition as

g(a) = T
(a0,a1,...,a`−1)
` .

Recall that T
(a0,a1,...,a`−1)
` here is a vector from F`. An extended transform of vectors of

lengths greater than ` can be defined as follows.

15.6.14 Definition Let b = (b0, . . . , b`s−1) ∈ F`s be a vector, and B be the matrix of size `× s,

B =


b0 b1 . . . bs−1

bs bs+1 . . . b2(s−1)

...
...

...
...

b(`−1)s b(`−1)s+1 . . . b`s−1

 = (b0, . . . ,bs−1),

where b0, . . . ,bs−1 are the columns of B. Then

ĝ(b) = (g(b′0), . . . , g(b′s−1)),

where b′i is the transposition of bi.

15.6.15 Example Using the decomposition from Example 15.6.3 with s = 4 we have for
b = (01011100),

B =

(
0 1 0 1
1 1 0 0

)
,

and
ĝ(b) = (g(01), g(11), g(00), g(10)) = (11100001).
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15.6.16 Definition An `-step transform G : F`m → F`m is defined as follows. Let b(0) = b ∈ F`m .
At the i-th step of the transform, i = 0, . . . ,m− 1, the vector b(i) is partitioned to the
successive sub-vectors of length `i+1,

b(i) =
(
b

(i)
0 ,b

(i)
1 , . . . ,b

(i)
`m−i−1−1

)
,

where
b

(i)
j = (b

(i)
j` , b

(i)
j`+1, . . . , b

(i)
(j+1)`i+1−1), j = 0, ..., `m−i−1 − 1.

Then
b(i+1) =

(
ĝ(b

(i)
0 ), ĝ(b

(i)
1 ), . . . , ĝ(b

(i)
`m−i−1−1)

)
.

The resulting vector of the transform is

c = G(b) = b(m).

15.6.17 Example Let q = 2, ` = 2, m = 3 and the space decomposition is defined by Example
15.6.3. Then for b = b(0) = (01011100) we have the following sequence of results:

b(1) = (g(01), g(01), g(11), g(00)) = (11111000),

b(2) = (g(11), g(11), g(10), g(00)) = (10100100),

b(3) = (g(10), g(01), g(10), g(00)) = (01110100).

Thus,
G(01011100) = (01110100).

15.6.18 Definition Let n = `m, and J ⊆ {0, 1, . . . , n− 1}, |J | = n− k. The polar code C ⊆ F`m of
size qk is defined as

C =
⋃
G(b),

where the union is taken over all qk choices of b ∈ Fn such that the components of b
are set to zero in the coordinates having index belonging to J .

15.6.19 Remark The way to choose the set J will be discussed later.

15.6.20 Lemma If the space decomposition is linear, the polar code is a linear code.

15.6.3 Decoding

15.6.21 Lemma Encoding of a polar code requires m steps each having complexity linear in the
length of the code. The complexity of encoding a polar code is O(n log n).

15.6.22 Remark Let c = G(b) be transmitted over a memoryless channel. At the output of the
channel we obtain for each of the n coordinates a set of q probabilities, one for each of the
field elements, that has been transmitted at this position. Based on this we have to conclude
what is the most likely code vector that had been transmitted.

15.6.23 Remark Decoding polar codes can be done recursively. The algorithm is called Successive
Cancelation. The defined transform G implies a natural order of the elements of b. The
elements of b are processed in this order under the assumption that the previous elements
of b have been determined. It can be shown that asymptotically in the length of the code
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a subset J of the elements have negligible probability of being wrongly decoded, while the
rest of elements are correctly decoded only with probability tending to 1/q. This allows to
employ the following encoding: place the encoded information on the positions of J , while
the values of the rest of the symbols are fixed to some prescribed value, e.g., to 0. The
code rate, equal to the proportion |J |/n, asymptotically achieves the symmetric capacity of
memoryless channels. A detailed description of the algorithm is given below.

15.6.24 Remark Noticing that the last step of the transform G is just a concatenation of transfor-
mations g of the transposed columns of a matrix of size `× `m−1, we may reconstruct the
rows of the matrix row by row. Moreover, we use knowledge from the previously decoded
rows.

15.6.25 Remark The last step of transform G is ĝ(bm−1
0 ), i.e., if

bm−1
0 = (bm−1

0 , bm−1
1 , . . . , bm−1

n−1 ),

then it is a concatenation of the transformations of columns of the matrix

Bm−1 =


bm−1
0 bm−1

1 . . . bm−1
`m−1−1

bm−1
`m−1 bm−1

`m−1+1 . . . bm−1
2`m−1−1

...
...

...
...

bm−1
`m−` bm−1

`m−`+1 . . . bm−1
`m−1

 =


a0,0 a0,1 . . . a0,n/`−1

a1,0 a1,1 . . . a1,n/`−1

...
...

...
...

a`−1,0 a`−1,1 . . . a`−1,n/`−1

 .

Given that we managed to decode the first (i−1) rows, we may compute the q probabilities
for the entries of the i-th row from the channel output as follows: the probability of ai,j ,
i = 0, . . . , `−1, j = 0, . . . , n/`−1, to be β ∈ F, is just the probability that in the j-th segment
of length ` in the transmitted code word was a vector belonging to T (a0,j ,...,a(i−2),j ,β), where
a0,j , . . . , a(i−2),j are known from the previous decoded rows.

15.6.26 Remark The problem of decoding a polar code of length `m is thus reduced to ` decodings
of polar codes of length `m−1, encoding the rows of the matrix. Decoding of each row could
be split into ` decodings of codes of length `m−1, etc. Finally, we arrive at decodings of
single symbols, being the entries of the initial vector b. If this entry has index belonging
to the set J , then it is zero, otherwise we may choose the most probable element of F as
our decision. It was shown in [119] that when the rate of the code is less than the channel
capacity, there exists a choice of set J allowing negligible probabilities of errors in the entries
where we make a choice.

15.6.27 Theorem The complexity of the successive cancellation decoding is O(n log n).

15.6.28 Theorem Let the polar code be based on a proper space decomposition and g be the
corresponding transform. Let d = (d0, d1, . . . , d`−1) be its distance hierarchy. Then for any
rate less than the capacity of the channel and growing code length n, the probability of

decoding error decays as O(q−n
E(g)

), where the decomposition exponent E(g) satisfies

E(g) ≥ 1

`

`−1∑
i=0

log` di.

15.6.29 Remark The theorem is a consequence of [122, 2161].

15.6.30 Example For the binary decomposition from Example 15.6.3, E(g) = 0.5. For the quater-
nary (q = 4, ` = 4) decomposition from Example 15.6.8, E(g) = 0.573120 . . ..
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15.6.4 Historical notes and other results

15.6.31 Remark Polar codes were proposed by Arikan [119] and provided a scheme for achieving
the symmetric capacity of binary memoryless channels (BMC) with polynomial encoding
and decoding complexity. The original construction by Arikan yields a binary code of block
length n = 2m, and a flexible rate.

15.6.32 Remark Different decompositions were considered in [1796, 2161, 2163, 2428, 2429, 2531,
2776]. For the binary case the decomposition from Example 15.6.3 gives the best expo-
nent for all lengths up to 13, see [1796]. In [2428] non-linear decompositions of lengths 14,
15, and 16 based on partitions of a Hamming code to cosets of the Nordstrom-Robinson
code, which in turn is partitioned to cosets of the first-order Reed-Muller codes, are de-
scribed. These decompositions provide a better exponent than any linear ones. However,
for linear decompositions the smallest ` for which the exponent is greater than 0.5 is 16,
for which E(g) = 0.51828; see [1796]. In [2163], along with extended Reed-Solomon codes,
nested families of algebraic-geometric codes are used to construct non-binary decomposi-
tions. In [1796] it was suggested to use nested families of BCH codes and codes achieving the
Gilbert-Varshamov bound to construct efficient decompositions. It was shown that when `
increases, the best error exponent tends to 1. A construction of polar codes using several
decompositions over different fields is proposed in [2429].

15.6.33 Remark As mentioned in [119, Section I.D] the notion of polar coding is strongly related to
previous ideas in coding theory, such as multi-level coding and Reed-Muller codes. Another
strong origin of polar coding is a previous paper by Arikan [117] where the channel combining
and splitting were used to demonstrate that improvements can be obtained for the sum
cutoff rate of some appropriate channels.

15.6.34 Remark In [118, 119, 1442, 2162, 2531] the problem of optimizing the choice of the infor-
mation subset was considered for different channels.

15.6.35 Remark The tradeoff between the block length, the gap to capacity and the asymptotic
decoding error probability was considered in [1795]. Decoding implementations were con-
sidered in [119, 120, 1906] A list decoding for polar codes was introduced in [2772]. Using
polar codes in concatenated schemes was discussed in [181, 1814].

15.6.36 Remark Use of polar codes in other areas of information theory was considered in [2, 103,
121, 314, 753, 1520, 1685, 1794, 1797, 1993, 2532].

References Cited: [2, 103, 117, 118, 119, 120, 121, 122, 181, 314, 753, 1442, 1520, 1685, 1794,
1795, 1796, 1797, 1814, 1906, 1993, 2161, 2162, 2163, 2428, 2429, 2531, 2532, 2772, 2776]
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16.1.1 Goals of cryptography

The fundamental goals of cryptography are to provide the following information security
services:

1. Confidentiality : Keeping data secret from all but those who are authorized to see
it.

2. Authentication: Corroborating the source of data, and that the data has not been
altered by unauthorized means.

3. Non-repudiation: Preventing the denial of a previous commitment to being the
source of some data.

Cryptography has been used throughout the ages to encrypt (scramble) data, so that
only the intended recipient can decrypt (descramble) thereby recovering the original data.
Traditional encryption schemes can be classified as symmetric-key because the sender and
intended recipient share secret keying material that can be used to encrypt as well as
decrypt.

In 1975, Diffie, Hellman, and Merkle invented the concept of public-key cryptography,
wherein each party A has a pair of keys — a public key that is available to everyone and
a private key that is kept secret. Any party can use A’s public key to encrypt a message
for A in such a way that decryption requires knowledge of the corresponding private key,
thus ensuring that only A can decrypt. Furthermore, A can use her private key to generate
a message-dependent signature on a message in such a way that any user in possession
of A’s public key can verify that A indeed signed the message; this facilitates provision
of non-repudiation services. Note that unlike the case with symmetric-key cryptography
where communicating parties must possess shared secret keys, users of a public-key cryp-
tosystem only need to possess authentic copies of each other’s public keys thus simplifying
the management and distribution of keying material.

Subsection 16.1.2 provides some examples of symmetric-key encryption schemes; a more
extensive treatment can be found in Section 16.2. Subsection 16.1.3 introduces the RSA
public-key encryption and signature schemes and some fundamental discrete logarithm-
based cryptosystems. Discrete logarithm cryptosystems based on elliptic curves, hyperellip-
tic curves, and abelian varieties are covered in Sections 16.4, 16.5, and 16.6, respectively.
Subsection 16.1.4 introduces the relatively new field of pairing-based cryptography. Finally,
Subsection 16.1.5 describes a public-key encryption scheme that may be resistant to attacks
by a quantum computer.

16.1.2 Symmetric-key cryptography

16.1.1 Definition Symmetric-key encryption schemes, also called ciphers, are usually classified as
being a stream cipher in which encryption is performed one character (or bit) at a time,
or a block cipher in which encryption is performed on a block of characters (or bits).

16.1.2 Remark Stream ciphers are generally preferred over block ciphers in applications where
buffering is limited and message characters must be individually processed as they are
received.

16.1.2.1 Stream ciphers

16.1.3 Example A classical example of a stream cipher is the simple substitution cipher. The secret
key is a randomly selected permutation π of the English alphabet. An English plaintext
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message m = m1,m2,m3, . . . (where each mi is a letter of the English alphabet) is encrypted
one letter at a time, to produce the ciphertext c = c1, c2, c3, . . . where ci = π(mi). Decryption
is performed by applying the inverse permutation to the ciphertext letters: mi = π−1(ci).
The total number of possible keys is 26! ≈ 288.4, which is sufficiently large that exhaustively
searching through the set of all keys for the secret key is computationally infeasible. However,
an adversary who has captured a sufficiently long ciphertext (say, of length 500) can easily
use statistical knowledge of the English language (such as the relative frequency of letters)
to determine the secret key π.

16.1.4 Example The one-time pad is a stream cipher that perfectly hides all statistical information
that may be present in the plaintext message. The secret key is a randomly selected binary
string k = k1, k2, k3, . . .. The plaintext is written as a binary string m = m1,m2,m3, . . ..
Encryption is performed one bit at a time — the ciphertext is c = c1, c2, c3, . . ., where
ci = mi⊕ki. Here, ⊕ denotes bitwise addition modulo 2. Decryption is similarly performed:
mi = ci ⊕ ki. As shown by Shannon [2609], the one-time pad achieves perfect secrecy in
the sense that an adversary — even one having infinite computational resources — who
intercepts a ciphertext c is unable to determine anything whatsoever about the plaintext
m except for its length.

16.1.5 Remark While perfectly secure, the one-time pad has a serious deficiency that the secret
key must have the same length as the plaintext message. Note that the secret key cannot be
reused to encrypt a second message. Indeed, if k is used to encrypt two plaintext messages
m and m′, then the resulting ciphertexts c = m⊕ k and c′ = m′⊕ k′ can be added together
to obtain c⊕ c′ = m⊕m′, from which information about m and m′ might be deduced.

16.1.6 Remark To overcome the aforementioned deficiency, stream ciphers have been designed that
take an initial secret key k that is relatively small (e.g., 128 bits), and use a deterministic
algorithm called a keystream generator KG to produce a much longer binary string KG(k).
The bits of KG(k) are then added to the plaintext bits to produce ciphertext, in this way
simulating the one-time pad. Since KG(k) is no longer a truly random string, the stream
cipher does not achieve perfect secrecy. However, the hope is that the bits of KG(k) are
“sufficiently random” so that a computationally bounded adversary will be unable to deduce
any information about the plaintext from the ciphertext.

16.1.7 Remark Stream ciphers are further studied in Section 16.2.

16.1.2.2 Block ciphers

16.1.8 Definition A block cipher consists of a family of encryption functions Ek : {0, 1}n →
{0, 1}n parameterized by an `-bit key k. Each function in the family is invertible. The
inverse of Ek is the decryption function Dk.

16.1.9 Remark If two parties wish to communicate securely, they first agree upon a secret key
k ∈ {0, 1}`. Then, to transmit a message m ∈ {0, 1}n, a party computes c = Ek(m) and
sends c. The recipient computes m = Dk(c).

16.1.10 Example Feistel ciphers [1048] are a general class of block ciphers. The parameters of a
Feistel cipher are n (the block length), ` (the key length), and h (the number of rounds).
The ingredients are a key scheduling algorithm that determines subkeys k1, k2, . . . , kh from
k, and component functions fi : {0, 1}n/2 → {0, 1}n/2 for 1 ≤ i ≤ h, where fi depends on
ki.

A plaintext block m ∈ {0, 1}n is encrypted as follows:

1. Write m = (m0,m1), where m0,m1 ∈ {0, 1}n/2.
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2. Compute mi+1 = mi−1 ⊕ fi(mi) for i = 1, 2, . . . , h.

3. The ciphertext is c = (mh,mh+1).

The ciphertext block c is decrypted as follows:

1. Write c = (mh,mh+1).

2. Compute mi−1 = mi+1 ⊕ fi(mi) for i = h, h− 1, . . . , 1.

3. The plaintext is m = (m0,m1).

16.1.11 Example The Data Encryption Standard (DES) is the most well-known example of a Feis-
tel cipher [1068]. DES was developed in the mid 1970s and has been widely deployed in
commercial applications. The DES parameters are n = 64, ` = 56, and h = 16. The set of
all possible keys has cardinality only 256, whereby exhaustive key search can be performed
in a few hours on a network of workstations. Hence, DES is considered to be insecure today.

16.1.12 Example Although DES is no longer recommended in practice, Triple-DES is considered
secure and widely deployed. In Triple-DES, the secret key is comprised of a triple k =
(k′, k′′, k′′′) of DES keys. A plaintext block m ∈ {0, 1}n is encrypted as

c = DESk′′′(DESk′′(DESk′(m))),

where DES denotes the DES encryption function. The ciphertext block c can be decrypted
as follows:

m = DES−1
k′ (DES−1

k′′ (DES−1
k′′′(c))),

where DES−1 denotes the DES decryption function. The secret key has bitlength 168 ren-
dering exhaustive key search infeasible. Given a few plaintext-ciphertext pairs, the secret
key can be recovered by a meet-in-the-middle attack that has running time approximately
2112 steps; however, this attack is considered infeasible in practice.

16.1.13 Example Block ciphers encrypt a long message n bits at a time. The drawback of this
method is that identical plaintext blocks result in identical ciphertext blocks, and hence
the ciphertext may leak information about the plaintext. To circumvent this weakness, long
messages can be encrypted using the cipher-block-chaining (CBC) mode of encryption. A
long message m is first broken up into blocks m1,m2, . . . ,mt, each of bitlength n. Then,
a random initialization vector c0 ∈ {0, 1}n is chosen, and ci = Ek(mi ⊕ ci−1) is computed
for i = 1, 2, . . . , t. The ciphertext is c = (c0, c1, . . . , ct). Decryption is accomplished by
computing mi = DES−1

k (ci)⊕ ci−1 for i = 1, 2, . . . , t.

16.1.3 Public-key cryptography

16.1.3.1 RSA

16.1.14 Remark The RSA encryption and signature schemes were introduced in a 1978 paper by
Rivest, Shamir, and Adleman [2462].

16.1.15 Algorithm [RSA key generation] Each party does the following:

1. Randomly select two (distinct) primes p and q of the same bitlength.

2. Compute n = pq and φ = (p− 1)(q − 1).

3. Select an arbitrary integer e, 1 < e < φ, with gcd(e, φ) = 1.

4. Compute the integer d, 1 < d < φ, with ed ≡ 1 (mod φ).

5. The party’s public key is (n, e); her private key is d.
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16.1.16 Remark The adversary’s task of computing the private key d corresponding to a public key
(n, e) can be shown to be equivalent to the problem of factoring n. As of 2012, factoring 1024-
bit RSA moduli n is out of reach of the fastest integer factorization algorithms. However,
2048-bit moduli and 3072-bit moduli are recommended for medium- and long-term security.

16.1.17 Remark Presented next are the basic versions of the RSA encryption and signature schemes.
In the signature scheme H : {0, 1}∗ → [0, n − 1] is a cryptographic hash function (Re-
mark 16.1.23).

16.1.18 Remark In what follows, a = b mod n is understood to mean that a is the reminder of b
when divided by n, and as usual, a ≡ b (mod n) means a and b are congruent modulo n.

16.1.19 Algorithm (RSA encryption scheme) To encrypt a message m ∈ [0, n− 1] for party A, do
the following:

1. Obtain an authentic copy of A’s public key (n, e).

2. Compute c = me mod n.

3. Send c to A.

To decrypt c, party A does the following:

1. Compute m = cd mod n.

16.1.20 Algorithm (RSA signature scheme) To sign a message m, party A with public key (n, e)
and private key d does the following:

1. Compute h = H(m).

2. Compute s = hd mod n.

3. A’s signature on m is the integer s.

To verify A’s signature s on the message m, do the following:

1. Obtain an authentic copy of A’s public key (n, e).

2. Compute h = H(m).

3. Accept the signature if and only if se ≡ h (mod n).

16.1.21 Remark The RSA encryption and signature schemes work because

(me)d ≡ m (mod n)

for all m ∈ [0, n− 1], a property that can easily be verified using Fermat’s little theorem.

16.1.22 Remark Security is based on the intractability of the problem of computing e-th roots
modulo n. While it is clear that this problem is no harder than that of factoring n, the
equivalence of the two problems has not been proven.

16.1.23 Remark A hash function H : {0, 1}∗ → {0, 1}` is an efficiently-computable function that
meets some cryptographic requirements such as one-wayness given a randomly chosen ele-
ment h ∈ {0, 1}` it is computationally infeasible to find anym ∈ {0, 1}∗ withH(m) = h) and
collision resistance (it is computationaly infeasible to find distinct m1,m2 ∈ {0, 1}∗ with
H(m1) = H(m2)). Examples of commonly-used hash functions are SHA-1 and SHA-256
[1065].
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16.1.3.2 Discrete logarithm cryptosystems

16.1.24 Definition Let G be a multiplicatively-written group of prime order n, and let g be a
generator of G. The discrete logarithm problem in G to the base g is the following
problem: Given y ∈ G, find the integer x ∈ [0, n− 1] such that y = gx.

16.1.25 Remark The fastest generic algorithm known for solving the discrete logarithm problem is
Pollard’s rho algorithm [2413] which has a running time of O(

√
n) and its parallelization

by van Oorschot and Wiener [2852].

16.1.26 Example The first example of a discrete logarithm cryptographic system was the Diffie-
Hellman key agreement protocol [859]. The purpose of this protocol is to enable two parties
A and B to agree upon a shared secret by exchanging messages over a communications
channel whose contents are authenticated but not secret. Given a cyclic group G = 〈g〉 of
order n, party A randomly selects an integer a ∈ [1, n − 1] and sends ga to B. Similarly,
party B randomly selects an integer b ∈ [1, n − 1] and sends gb to A. Both parties can
compute the shared secret k = gab. An eavesdropper is faced with the task of determining
gab given g, ga and gb. This is the Diffie-Hellman problem, whose intractability is assumed
to be equal to that of the discrete logarithm problem in G [2039].

16.1.27 Example ElGamal designed a closely-related scheme for public-key encryption [965]. In this
scheme, party A’s private key is a randomly selected integer a ∈ [1, n − 1] and her public
key is the group element ga. To encrypt a message m ∈ G for A, a party selects a random
integer k ∈ [1, n − 1], computes c1 = gk and c2 = m(ga)k, and sends (c1, c2) to A. Party
A decrypts by computing m = c2/c

a
1 . The basic security requirement is that an adversary

should be unable to compute m given the public key ga and ciphertext (c1, c2). It is easy
to see that the adversary’s task is equivalent to solving an instance of the Diffie-Hellman
problem.

16.1.28 Remark The main criteria for selecting a suitable group G for implementing a discrete
logarithm cryptosystem are that (i) the group operation can be efficiently computed (so
that cryptographic operations can be efficiently performed); and (ii) the discrete logarithm
problem should be intractable. Over the years, several families of groups have been proposed
for cryptographic use including subgroups of:

1. The multiplicative group of a finite field.

2. The group E(Fq) of Fq-rational points on an elliptic curve E defined over a finite
field Fq [1771, 2102].

3. The divisor class group of a genus-g hyperelliptic curve defined over a finite field
Fq [1772].

4. The group of Fq-rational points on an abelian variety defined over a finite field
Fq (Section 16.6).

5. The class group of an imaginary quadratic number field [440].

16.1.29 Remark Public-key cryptosystems designed using elliptic curves, hyperelliptic curves, and
abelian varieties are studied in Sections 16.4, 16.5, and 16.6, respectively. An example of a
discrete logarithm cryptographic scheme that employs a multiplicative subgroup of a finite
field is presented next.

16.1.3.3 DSA

16.1.30 Remark The digital signature algorithm (DSA) was proposed by the U.S. government’s
National Institute of Standards and Technology in 1991 [1067]. It was the first digital
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signature scheme to be recognized by a government.

16.1.31 Algorithm (DSA key generation) System parameters are (p, q, g), where p is a prime, q is
a prime divisor of p − 1, and g ∈ Z/pZ has multiplicative order q. To generate a key pair,
each party does the following:

1. Randomly select an integer a from [1, q − 1].

2. Compute y = ga mod p.

3. The party’s public key is y; her private key is a.

16.1.32 Algorithm (DSA signature scheme) To sign a message m, party A with system parameters
(p, q, g), public key y, and private key a does the following:

1. Randomly select an integer k ∈ [1, q − 1].

2. Compute r = (gk mod p) mod q.

3. Compute h = H(m) and s = k−1(h+ ar) mod q.

4. A’s signature on m is the pair of integers (r, s).

To verify A’s signature (r, s) on the message m, do the following:

1. Obtain an authentic copy of the system parameters (p, q, g) and A’s public key
y.

2. Verify that r ∈ [1, q − 1] and s ∈ [1, q − 1].

3. Compute h = H(m) and w = s−1 mod q.

4. Compute u1 = w · h mod q and u2 = r · w mod q.

5. Compute v = (gu1yu2 mod p) mod q.

6. Accept the signature if and only if v = r.

16.1.33 Remark A correctly-generated signature (r, s) on a message m will always be accepted
because

gu1yu2 ≡ gwh+war ≡ gs−1(h+ar) ≡ gk (mod p).

16.1.34 Remark Security of DSA is based on the intractability of the discrete logarithm problem
in the order-q multiplicative subgroup of Z/pZ. The fastest algorithms known for solving
this problem are summarized in Section 11.6. As of 2012, DSA is considered to be secure
if the bitlengths of the primes p and q are 1024 and 160, respectively. However, 2048-bit p
and 224-bit q are recommended for medium-term security, and 3072-bit p and 256-bit q are
recommended for long-term security.

16.1.4 Pairing-based cryptography

16.1.35 Definition Let G1 = 〈g1〉, G2 = 〈g2〉 and G3 be multiplicatively-written groups of prime
order n. A pairing on (G1, G2, G3) is a map e : G1×G2 → G3 that satisfies the following
three conditions:

1. Bilinearity : For all r1, r2 ∈ G1 and s1, s2 ∈ G2, e(r1r2, s1) = e(r1, s1) · e(r2, s1)
and e(r1, s1s2) = e(r1, s1) · e(r1, s2).

2. Non-degeneracy : e(g1, g2) 6= 1.

3. Computability : e(r, s) can be efficiently computed for all r ∈ G1 and s ∈ G2.

16.1.36 Remark Since 2000, pairings have been widely used to design cryptographic protocols that
attain objectives not known to be achievable using conventional methods. The first such
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protocol was a one-round three-party key agreement scheme due to Joux [1624]. Recall that
the Diffie-Hellman key agreement scheme is a two-party protocol where the two exchanged
messages are independent of each other, and therefore can be simultaneously exchanged.
Joux showed how pairings can be used to construct an analogous one-round key agreement
scheme for three parties.

16.1.37 Example Suppose that e is a symmetric pairing, i.e., G1 = G2. In Joux’s protocol, each of
the three communicating parties A, B, C, randomly selects integers a, b, c ∈ [1, n− 1], and
simultaneously broadcasts the group elements ga1 , gb1, gc1, respectively. The shared secret
is k = e(g1, g1)abc which party A, for example, can compute as k = e(gb1, g

c
1)a. A passive

adversary’s task is to compute k given g1, g
a
1 , g

b
1 and gc1. This problem is the bilinear Diffie-

Hellman problem, and is assumed to be no easier than the discrete logarithm problems in
G1 and G3.

16.1.38 Example A fundamental pairing-based protocol is the Boneh-Franklin identity-based en-
cryption scheme [344]. The scheme has the feature that a party B can encrypt a message for
a second party A using only A’s identifier (such as A’s email address) and some publically-
available system parameters. Party A decrypts the message using a secret key that it must
obtain from a trusted third party (TTP). Unlike symmetric-key cryptography, A and B
do not have to share secret keying material. Also, unlike public-key cryptography, it is not
necessary for A to have a public key before B can encrypt a message for A.

16.1.39 Remark A basic version of the Boneh-Franklin scheme is described next using symmetric
pairings. The scheme uses a bilinear pairing e on (G1, G1, G3) and two cryptographic hash
functions H1 : {0, 1}∗ → G1 and H2 : G3 → {0, 1}`, where ` is the length of the message to
be encrypted.

16.1.40 Algorithm (Boneh-Franklin identity based encryption) In the setup stage, a trusted third
party (TTP) generates keying material for itself.

1. The TTP randomly selects an integer t ∈ [1, n− 1].

2. The TTP’s public key is T = gt1 and its private key is t.

At any time, a party A with identifier IDA can request its private key dA from the TTP:

1. The TTP computes dA = H1(IDA)t and securely delivers dA to A.

To encrypt a message m ∈ {0, 1}` for A, do the following:

1. Randomly select an integer r ∈ [0, n− 1].

2. Compute R = gr1 and C = m⊕H2(e(H1(IDA), T )r).

3. Send (R,C) to A.

To decrypt (R,C), party A does the following:

1. Obtain the private key dA from the TTP.

2. Compute m = C ⊕H2(e(dA, R)).

16.1.41 Remark Decryption works because

e(dA, R) = e(H1(IDA)t, gr1) = e(H1(IDA), gt1)r = e(H1(IDA), T )r.

16.1.42 Remark Security is based on the hardness of the bilinear Diffie-Hellman problem.

16.1.43 Example Another fundamental pairing-based protocol is the Boneh-Lynn-Shacham (BLS)
short signature scheme [346]. Unlike the DSA signature scheme (Subsection 16.1.3.3), BLS
signatures have only one component and thus can be shorter if suitable parameters are
chosen.
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16.1.44 Remark The BLS signature scheme is described next using asymmetric pairings. The
scheme uses a bilinear pairing e on (G1, G2, G3) and a cryptographic hash function
H : {0, 1}∗ → G∗1.

16.1.45 Algorithm (BLS key generation) To generate a key pair, each party does the following:

1. Randomly select an integer x from [1, n− 1].

2. Compute X = gx2 .

3. The party’s public key is X; her private key is x.

16.1.46 Algorithm (BLS signature scheme) To sign a message m, party A with public key X and
private key x does the following:

1. Compute M = H(m) and S = Mx.

2. A’s signature on m is the group element S.

To verify A’s signature S on the message m, do the following:

1. Obtain an authentic copy of A’s public key X.

2. Verify that S ∈ G∗1.

3. Compute M = H(m).

4. Accept the signature if and only if e(S, g2) = e(M,X).

16.1.47 Remark A correctly-generated signature S on a message m will always be accepted because

e(S, g2) = e(Mx, g2) = e(M, gx2 ) = e(M,X).

16.1.48 Remark Security is based on the hardness of the following variant of the Diffie-Hellman
problem: given M ∈ G1 and X ∈ G2, compute Mx where X = gx2 .

16.1.49 Remark Pairings that are suitable for implementing Joux’s key agreement scheme, the
Boneh-Franklin identity-based encryption scheme, and the BLS short signature scheme can
be constructed from the Weil and Tate pairings defined on certain elliptic curves over finite
fields. For further details, see Section 16.4.

16.1.5 Post-quantum cryptography

16.1.50 Remark Shor [2623] showed that integer factorization and discrete logarithm problems can
be efficiently solved on a quantum computer, thus rendering RSA and all discrete logarithm
cryptosystems insecure. As of 2012, the feasibility of building large-scale quantum computers
is far from certain. Nonetheless, cryptographers have been designing and analyzing public-
key cryptosystems that potentially resist attacks by quantum computers, and which could
serve as replacements to RSA and discrete logarithm cryptosystems in the event that large-
scale quantum computers become a reality. Among these post-quantum cryptosystems are
quantum key distribution [227] and conventional cryptosystems based on hash functions,
error-correcting codes, lattices, and multivariate quadratic equations [245]. Cryptosystems
based on multivariate quadratic equations are examined in Section 16.3. A code-based
cryptosystem is described next.

16.1.51 Remark In 1978, McEliece introduced a public-key encryption scheme based on error cor-
recting codes [2048]. The security of McEliece’s scheme is based on the hardness of the
general decoding problem, a problem that is known to be NP-hard [235].

16.1.52 Algorithm (McEliece key generation) Each party does the following:
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1. Select a k × n generator matrix G for a t-error correcting binary (n, k)-code for
which there is an efficient decoding algorithm.

2. Randomly select a k × k binary invertible matrix S.

3. Randomly select a n× n permutation matrix P .

4. Compute the k × n matrix Ĝ = SGP .

5. The party’s public key is (n, k, t, Ĝ); her private key is (S,G, P ).

16.1.53 Algorithm (McEliece encryption scheme) To encrypt a message m ∈ {0, 1}k for party A,
do the following:

1. Obtain an authentic copy of A’s public key (n, k, t, Ĝ).

2. Randomly select an error vector z of length n and Hamming weight t.

3. Compute c = mĜ+ z.

4. Send c to A.

To decrypt c, party A does the following:

1. Compute ĉ = cP−1.

2. Use the decoding algorithm for the code generated by G to decode ĉ to m̂.

3. Compute m = m̂S−1.

16.1.54 Remark Decryption works because

ĉ = cP−1 = (mĜ+ z)P−1 = (mSGP + z)P−1 = (mS)G+ zP−1.

Since zP−1 is a vector of Hamming weight t, the decoding algorithm for the code generated
by G decodes ĉ to m̂ = mS, whence m̂S−1 = m.

16.1.55 Remark McEliece’s original paper [2048] proposed using a Goppa code with parameters
n = 1024, n = 524, and t = 50. However, it has recently been shown that the McEliece
encryption scheme with these parameters is insecure [250]. Research is ongoing to determine
parameter sets for which one can have a high confidence that the McEliece encryption
scheme will remain resistant to both classical and quantum attacks for the forseeable future.

See Also

[1521], [1694], Textbooks on cryptography.
[2080], [2720]

References Cited: [227, 235, 245, 250, 344, 346, 440, 965, 1048, 1065, 1067, 1068, 1521,
1624, 1694, 1771, 1772, 2039, 2048, 2080, 2102, 2413, 2462, 2609, 2623, 2720, 2852]
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16.2.1 Remark We present some algorithms for stream ciphers and block ciphers. In stream cipher
cryptography a pseudorandom sequence of bits of length equal to the message length is gen-
erated by a pseudorandom sequence generator (PSG). This sequence is then bitwise XOR-ed
(addition modulo 2) with the message sequence and the resulting sequence is transmitted.
At the receiving end, deciphering is done by generating the same pseudorandom sequence
and bitwise XOR-ing the cipher bits with this sequence. The seed for the pseudorandom
bit generator is the secret key. A general algorithm for a pseudorandom sequence generator
is based on a recursive relation over a finite field, a finite state machine in general and
a feedback shift register sequence in particular, with a filtering function or some control
units.

16.2.2 Remark In block cipher cryptography, the message bits are divided into blocks and each
block is separately provided as an input to a permutation, i.e., encryption, using the same
key and transmitted. A block cipher basically is a permutation of a finite field (or a finite
ring), which is a composition of multiple permutations in a subfield (or subring) of the
finite field (or the finite ring). Most modern day block ciphers are iterated ciphers and use
substitution boxes (S-boxes) (i.e., permutations) as the nonlinear part in the scheme.

16.2.3 Remark We consider stream ciphers like RC4 [2001] and the WG stream cipher [2217],
and block ciphers like RC6 [2461] and AES [762]. The aim is to explain the underlying ideas
rather than describing complete solutions.

16.2.1 Basic concepts of stream ciphers

16.2.4 Remark Stream ciphers are a very important class of cryptographic primitives for encryp-
tion, authentication, and key derivation. The basic principle behind stream cipher encryp-
tion is simple.

16.2.5 Definition (One-time pad) Let zt, for t ≥ 0, be a random key bit sequence which is known
to both the sender and the receiver. Suppose the sender wants to send a message bit
sequence mt. The cipher bit sequence is computed as ct = mt ⊕ zt, and transmitted to
the receiver. The receiver knowing zt, computes mt = ct ⊕ zt.

16.2.6 Remark This simple scheme provides the highest level of security, called perfect secrecy.
It is unbreakable under the assumption that each key is used only for one encryption.

16.2.7 Remark The main problem with the one-time pad is that the key sequence is as long as the
message sequence and for each encryption we need a new random key sequence which has to
be shared by sender and receiver. This creates serious key management and key distribution
problems. One remedy is to use a pseudorandom sequence generator (PSG) also known as
keystream generator. A PSG is a deterministic algorithm which starts with a reasonably
short random bit string (called a seed) and expands it into a very long bit string which is
used as the keystream. The seed is the secret key shared between sender and receiver. The
security of the stream cipher depends on the security of the PSG. Informally a PSG is secure
if given a segment of the generated key bits it is hard to predict the next bit. Equivalently,
it must be computationally very hard to distinguish the generated pseudorandom sequence
from a random sequence.

16.2.8 Remark Most modern stream ciphers use an initialization vector (IV) which is not secret.
The PRG is seeded by the (key, IV) pair. The same key may be used with distinct IVs and
the constraint on the protocol usage is that a (key, IV) pair should not be repeated. Current
stream ciphers have a similar structure which can be described by a finite state machine
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(FSM). The Ecrypt home page [989] contains thorough information and may be referred to
by anybody who is interested in the design and analysis of stream ciphers.

16.2.9 Definition (Security assumptions) It is assumed that the adversary knows everything
except the secret key. This is known as Kerckhoff’s principle. A few details are:

1. Algorithms in a stream cipher are public.

2. The only secret information in the system is the pre-shared key.

3. An attacker can intercept communications (ciphertext) among communicating
entities.

16.2.10 Remark From Assumption 3, attackers can always obtain ciphertext. If an attacker
manages to obtain a certain amount of the corresponding plaintext, then this portion of
keystream is exposed. This is referred to as a known plaintext attack. Thus the security
of stream cipher is reduced to randomness of PSG. The attacker’s goal may be to recover
the secret key or partial information about the secret key using a portion of the known
keystream, i.e., using the known portion of the output of PSG.

16.2.11 Definition (The two phases in stream cipher) A stream cipher consists of two phases:
one is the key initialization phase, for which the algorithm is key initialization algorithm
(KIA), and the other is the PSG running phase and the algorithm is PSG. Usually, the
algorithms used in these two phases are similar.

16.2.12 Remark More specifically, KIA is the same as PSG without outputs or it may be a slightly
different function. Figure 16.2.1 shows a general model of a stream cipher.

16.2.13 Remark In the initialization phase, a key initialization algorithm (KIA) is employed, which
has two inputs, one is an initial vector (IV), which is public information, and the other is a
secret key, k, which is a pre-shared encryption key. The goal of KIA is to scramble key bits
with IV in order to get a complex nonlinear function of k and IV. The output of KIA is
provided as an initial value to the PSG. KIA only executes once for each encryption session.
After the key initialization, PSG starts to output a keystream which is used in encryption.

IV

k
KIA PSG

+

zi
mi ci

Encryption

IV

k
KIA PSG

+

zi
ci mi

Decryption

Figure 16.2.1 Two algorithms in stream ciphers: KIA and PSG.

16.2.14 Definition (Stream cipher modeled as a Finite State Machine (FSM)) In general, any PSG
can be considered as a finite state machine (FSM) or some variant of it which may be
defined as follows. Suppose Y and Z are finite fields (or finite rings) and the elements
of Z are represented by m bits. An FSM is a 5-tuple (S0, F,G, n,m) where S0 ∈ Yn is
the initial state, F : Yn × Z → Yn is the state update function and G : Yn × Z → Z
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is the output function. At time instant t ≥ 0, state St is represented by an n-tuple
(st, st+1, . . . , st+n−1) where si ∈ Y and the output zt ∈ Z. The state update function
and output function are given respectively by

St+1 = F (St, zt) and zt+1 = G(St, zt).

16.2.15 Remark In modeling practical stream ciphers, in many cases it is seen that, for any St,
F (St, zt) and G(St, zt) do not depend on zt. In this situation we write

St+1 = F (St) and zt+1 = G(St).

16.2.2 (Alleged) RC4 algorithm

16.2.16 Remark RC4 was designed by Rivest in 1987 and kept as a trade secret until it was leaked
in 1994. It is widely used in Internet communications. In the open literature, RC4 is one
of the very few proposed keystream generators that are not based on shift registers. A
design approach of RC4 which has originated from the exchange-shuffle paradigm, is to use
a relatively big array/table that slowly changes with time under the control of itself. For a
detailed discussion on RC4 see the Master’s thesis of Mantin [2001].

16.2.17 Definition RC4 has an N -stage register S, which holds a permutation of all N = 2n

possible n-bit integers, where n is typically chosen as 8. The initial state is derived from
a key (whose typical size is between 40 and 256 bits) by a Key-Scheduling Algorithm
(KSA), i.e., Key initialization algorithm (KIA). The PSG is referred to as the Pseudo-
Random Generation Algorithm (PRGA) in RC4.

16.2.18 Remark In what follows, a = b (mod n) is understood to mean that b is the reminder of a
when divided by n.

16.2.19 Definition (KSA of RC4) FSM for KSA for a given secret key K of length l bytes is a

4-tuple (Q0, FK , r,m). The secret key is used to scramble S by shuffling the words in S.

Suppose S = (x0, x1, . . . , xN−1); we denote a state of RC4 by (i, j, S) or equivalently by

(i, j, x0, x1, . . . , xN−1). Let (i, j, x0, x1, . . . , xN−1) ∈ R be a state at some time instant

and let (e, d, y0, y1, . . . , yN−1) = FK(i, j, x0, x1, . . . , xN−1) ∈ R be the next state. In the

initialization process, i and j are initialized to 0, the identity permutation (0, 1, . . . , N−
1) is loaded in the array S. Thus we have the initial state Q0 = (0, 0, 0, 1, 2, . . . , 255) of

KSA.

FSM for KSA: (Q0, FK , r,m)

Parameters: N = 28 = 256, m = 8, r = N + 2 = 258 and R = ZN+2
N .

Initial State: Q0 = (0, 0, 0, 1, 2, . . . , 255) ∈ R
Input: K = (k0, . . . , kl−1), ks ∈ Z8

2 for s = 0, . . . , l− 1.
State update function: FK : R → R, given by e = i + 1 (mod N), d = (j + xe + ke (mod l) (mod N),

yd = xe, ye = xd and yv = xv , for all v 6= e or d.
Final State: F 256

K (Q0) := (i, j, S) which will provide the initial state I0 = (0, 0, S) of PRGA.
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16.2.20 Definition (PRGA of RC4.) RC4 keystream generator (PRGA) can also be represented

as a finite state machine (I0, F,G, r,m) where F is the state updating function and G

is the output function. Let (i, j, x0, x1, . . . , xN−1) ∈ R be a state at some time instant

and let (e, d, y0, y1, . . . , yN−1) = F (i, j, x0, x1, . . . , xN−1) ∈ R be the next state. Figure

16.2.2 shows the state transition of PRGA.

FSM for PRGA: (I0, F,G, r,m)

Parameters: N = 28 = 256, m = 8, r = N + 2 = 258 and R = ZN+2
N .

Initial state: I0 ∈ R from KSA
State update function: F : R→ R, given by e = i+1 (mod N), d = j+xe (mod N), yd = xe, ye = xd

and yv = xv , for all v 6= e or d.
Output: The output function is G : R→ ZN and output is given by

xt where t = xe + xd (mod N).

d · · · xe · · · xt · · · xd · · · x0 e

j + · · · xd

d = j + xe

· · · xt

t = xe + xd (mod N)

· · · xe

e = i+ 1

· · · x0 i+

1

Figure 16.2.2 State transition of PRGA.

16.2.21 Remark (Attacks on RC4) RC4 has a huge internal state of 8×258 = 2064 bits. We observe
that in RC4, the state update function is invertible. If the size of the internal state is s in
bits (s = (N + 2)(logN) = 2064 in RC4) and the next state update function is randomly
chosen, then the average cycle length is about 2s−1 [1082]. However, it is hard theoretically
to determine any randomness properties for RC4. Cryptanalysis of RC4 attracted a lot
of attention in the cryptographic community after it was made public in 1994. Numerous
significant weaknesses were discovered and notable weakness include weak initialization
vectors, classes of weak keys, patterns that appear twice the expected number of times (the
second byte bias), and biased distribution of RC4 initial permutation. Weaknesses in the
key scheduling algorithm in RC4 led to a practical attack on the security protocol WEP.
Currently, it has been proposed to use AES in WEP due to these weaknesses of RC4.

16.2.3 WG stream cipher

16.2.22 Remark We now introduce the WG stream cipher which was submitted to the eSTREAM
project in 2005 by Nawaz and Gong [989]. The cipher is based on WG (Welch-Gong)
transformations. WG cipher has desired randomness properties, like long periods, large
linear complexity, two level autocorrelation and ideal t-tuple distribution. It is resistant to
Time/Memory/Data tradeoff attacks, algebraic attacks, and correlation attacks. The cipher
can be implemented with a small amount of hardware [1835].
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16.2.23 Definition A WG cipher can be regarded as a nonlinear filter generator over an exten-
sion field, filtered by a WG transformation. As shown in Figure 16.2.3, it consists of a
linear feedback shift register, followed by a WG permutation transform. The LFSR
is based on an l degree primitive polynomial p over the finite field F2m given by,
p(x) =

∑l
i=0 cix

i, ci ∈ F2m . The LFSR generates a maximal-length sequence (an m-
sequence) over F2m . This simple design generates a keystream whose period is 2n − 1,
where n = lm, and it is easy to analyze various cryptographic properties of the gener-
ated keystream. The feedback signal Init is used only in the key initialization phase. In
PSG running phase, the feedback is only from the LFSR. The output of the cipher is
one bit. We denote a WG cipher with an LFSR of l stages over F2m as WG(m, l).

16.2.24 Remark The version of the WG submitted to eSTREAM [989] is denoted by WG(29, 11).

T r

WGperm

al−1 al−2 · · · a1 a0

cl−1 cl−2 c1 c0

+ + +

+

m

1

Init
m

Update of LFSR

ak+l =


∑l−1
i=0 ciai+k +WGperm(ak+l−1),
0 ≤ k < 2l (in KIA phase)∑l−1
i=0 ciai+k, k ≥ 2l (in PSG)

Output : sk = WG(ak+l−1), k ≥ 2l

Figure 16.2.3 A diagram for WG ciphers.

16.2.25 Definition For x ∈ F2m , WGperm(x) and WG(x) are defined by

WGperm(x) = t(x+ 1) + 1
t(x) = x+ xr1 + xr2 + xr3 + xr4

WG(x) = Tr(WGperm(x))

where r1 = 2k + 1, r2 = 22k + 2k + 1, r3 = 22k − 2k + 1, and r4 = 22k + 2k − 1 where
3k ≡ 1 (mod m).

16.2.26 Remark Note that a WG transformation exists only if m 6≡ 0 (mod 3) (see [864]). In
practice, we consider a value of m to be a reasonable choice for a WG cipher where m 6≡ 0
(mod 3) and either of the following holds: m is small enough to allow an efficient lookup
table implementation of the permutation (m ≤ 11), or m ≡ 2 (mod 3) and m has an
optimal normal basis for efficient implementation in hardware; see Sections 5.3 and 16.7.
The suitable values of m for 7 ≤ m ≤ 29 are 7, 8, 10, 11, 23, and 29.

16.2.27 Remark Here we compute exponents, i.e., ri’s from [864] so that t is a permutation poly-
nomial. The exponents used in [2217] which are taken from [2294] are different. But WG
sequences are identical for both representations.
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16.2.28 Theorem [1303] The linear span of the WG cipher can be determined by the following
formula

LS = m×
∑
i∈I

lw(i) where w(i) is the Hamming weight of i,

I = I1 ∪ I2 for m = 3k − 1 where I1 = {22k−1 + 2k−1 + 2 + i : 0 ≤ i ≤ 2k−1 − 3} and
I2 = {22k + 3 + 2i : 0 ≤ i ≤ 2k−1 − 2}; and I = {1} ∪ I3 ∪ I4 for m = 3k − 2 where
I3 = {2k−1 + 2 + i : 0 ≤ i ≤ 2k−1 − 3} and I4 = {22k−1 + 2k−1 + 2 + i : 0 ≤ i ≤ 2k−1 − 3}.

16.2.29 Remark The linear span of WG(7, 23), WG(8, 20), WG(11, 16), and WG(29, 11) are
230, 233, 224, and 245, respectively. Here the linear spans for m = 7 and m = 8 are computed
by using WG(x−1) instead of WG(x), because they have the same autocorrelation, but
possess the highest algebraic degree, resulting in larger linear spans.

16.2.30 Remark (Resilient basis) The WG transformation form F2m → F2 can be regarded as a
Boolean function inm variables. The exact Boolean representation depends on the basis used
for computation in F2m . The basis can be selected in such a way that the corresponding
Boolean representation of WG transformation is 1-order resilient. For an algorithm for
finding resilient bases, see [1317].

16.2.31 Remark The WG transformation sequences have been widely investigated in the literature
on sequence design. These sequences were discovered by Golomb et al. [2294], and the
randomness properties were proved by Dobbertin and Dillon [864]. In 2002, Gong and
Youssef [1317] presented several cryptographic properties of WG transformation sequences.

16.2.32 Theorem The randomness properties of WG transformation sequences [864] and crypto-
graphic properties of the WG transformations [1317] as Boolean functions are presented in
Table 16.2.4.

Randomness Properties of Keystreams Cryptographic Properties of WG

Period is 2n − 1 1-order resilient
Balanced Algebraic degree dm/3e+ 1
Ideal 2-level autocorrelation Nonlinearity = 2m−1 − 2(m−1)/2 for odd m
Linear span increases exponentially with Additive autocorrelation between f(x+ a)

m, which can be determined exactly and f(x) has three values: 0,±2
m+1

2

Ideal t-tuple distribution (1 ≤ t ≤ l) 1-order propagation property

Table 16.2.4 Randomness and cryptographic properties of WG.

16.2.33 Example (A concrete design of WG(29, 11))

1. General description [2217]:

a. synchronous stream cipher submitted in Profile 2 of eSTREAM (for hard-
ware applications);

b. key lengths of 80, 96, 112, and 128 bits;

c. IVs of 32, 64 bits and also the same lengths as the key are allowed;

d. estimated strength 2128 (exhaustive key search)

2. Parameters of WG(29, 11) [2217]: The LFSR is of degree 11 and generates an m-
sequence over the extension field F229 . Then the elements of the m-sequence are
filtered by a WG transformation: F229 → F2, to produce a keystream sequence.
WG transformation operations can be implemented using the optimal normal
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basis in the finite field F229 . The parameters for implementation are listed in
Table 2.

m l WG and Polynomials

29 11 WG(x) = Tr(t(x+ 1) + 1) where
t(x) = x+ xr1 + xr2 + xr3 + xr4 and

r1 = 210 + 1, r2 = 220 + 210 + 1
r3 = 220 − 210 + 1, r4 = 220 + 210 − 1

g(x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17 +
x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1

p(x) = x11 + x10 + x9 + x6 + x3 + x+ γ
where γ = α464730077 and g(α) = 0

Table 16.2.5 Parameters for WG(29, 11) implementation using a optimal normal basis.

3. Key Initialization Phase for WG(29, 11): An initial state of the LFSR contains
319 bits where each register holds 29 bits. For a 128-bit key and 128-bit IV
(initial vector), the rule for loading the LFSR is shown in Table 3. Here x||y =
(x0, . . . , xr−1, y0, . . . , ys−1) is the concatenation of two vectors x = (x0, · · · , xr−1)
and y = (y0, . . . , ys−1). Once the LFSR has been loaded with the key and IV,
the key stream generator is run for 22 clock cycles. This is the key-initialization
phase of the cipher operation. During this phase the 29 bit vector of the output
of the WG permutation is added to the feedback of the LFSR which is then used
to update the LFSR.

Registers 29-bit Format

0,2,4,6,8 16 bits from the key||8 bits from IV||padding zeros
1,3,5,7,9 8 bits from the key||16 bits from IV||padding zeros

10 8 bits from the key||8 bits from IV||padding zeros

Table 16.2.6 Initializing the LFSR.

4. PSG phase: After running the KIA for 2l = 22 clock cycles, PSG starts to give
1 bit output for each clock cycle. At this phase, the feedback to LFSR from the
output of the WG permutation stops.

16.2.34 Remark Security against known attacks [2217].

1. Randomness and cryptographic properties of WG(29, 11) can be computed from
Table 16.2.4.

2. Time/memory/data tradeoff attacks: Size of the internal state is 2319. Thus this
attack is not applicable.

3. Algebraic attacks: the number of linear equations is approximately
(

319
11

)
and the

attack has complexity approximately 2182.

4. Correlation attacks: WG transformation is 1-order resilient, and nonlinearity is
very high 228 − 214. Thus the correlation between the WG transformation and
any linear or affine function is very small.

16.2.35 Remark We note that the WG Stream Cipher was not selected for Phase III of the e-Stream
Project since, although no attacks against WG were reported, the cipher is compromised
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if a relaxation of at most 245 bits are generated from a single key. Also the hardware
implementation seems to be larger than desirable; see [990]. However, the linear span can
be increased up to at least 29 × 1128 = 2101.722 using the decimation method as it is done
for WG7 in [1982]. A hardware implementation has recently been reported in [1835], which
shows different implementation methods and optimizations.

16.2.4 Basic structures of block ciphers

16.2.36 Definition A block cipher consists of a pair of encryption and decryption operators E
and D. For a fixed key K, E maps an n bit plaintext m = (m0, . . . ,mn−1) to an n bit
ciphertext c = (c0, . . . , cn−1), namely encryption, and D maps the ciphertext back to
the plaintext, i.e., decryption. In other words,

E : K × Fn2 → Fn2
(D ◦ E)(m) = m

where m is an n-bit message, K is the set of possible keys and Fn2 is the set consisting
of all n-bit vectors.

16.2.37 Remark E is an invertible function, i.e., E is a permutation of Fn2 , and D is the inverse of
E. The encryption operator E consists of several rounds which are applied to the plaintext
one after another. The secret key K is expanded using a key scheduling algorithm into a
set of round keys K1, . . . ,Kr. Each round function takes as input the round key and the
output of the previous round and produces an output. For a fixed round key, the encryption
function is a bijective map.

16.2.38 Remark For a plaintext M , let M0 = M and Mi−1 denote the input to the i-th round
and let Mr = C be the final output of EK(M). If we denote by Ri the i-th round function,
then we have Mi = Ri(Ki,Mi−1). This reduces the task of designing a block cipher to the
task of designing the round functions and the key scheduling algorithm. Usually the round
functions are identical or very similar. Two standard methods for designing round functions
are Feistel Structure and Substitution-Permutation Network (SPN).

16.2.39 Definition (Feistel Structure) [2080] The Feistel Structure is a feedback shift register with
time varying feedback function. In other words, the round function is a time varying
feedback function. For example, DES is of a Feistel structure, the input Mi−1 to the
i-th round is divided into two equal halves Li−1 and Ri−1, i.e., Mi−1 = Li−1||Ri−1. The
output Mi = (Li, Ri) is defined as follows

Li = Ri−1, and Ri = Li−1 ⊕ f(Ri−1,Ki).

16.2.40 Remark Note that for the invertibility of the round function, f(·, ·) need not be invert-
ible. The security of the encryption algorithm depends on the design of f(·, ·) and the key
scheduling algorithm. The block cipher RC6 and many other block ciphers have this struc-
ture. Here we consider RC6 as an example of a block cipher based on the Feistel structure.

16.2.41 Definition (Substitution-Permutation Network (SPN)) [2080] In an SPN, each round func-
tion consists of a few successive layers. The input to a substitution layer is divided into
small blocks of bits say blocks of eight bits each. An S-box is applied to each block.
Each S-box is a bijective map, so that entire substitution layer is also a bijective map.
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The effect of a substitution layer is local in the sense that an output bit in a particular
position depends only on a few of the input bits in its nearby positions. This local effect
is compensated by having a permutation layer which permutes its input bits. The round
key is usually incorporated at the beginning or at the end of the round function.

16.2.42 Remark We consider AES Rijndael as an example of a block cipher based on the SPN
structure; see Subsection 16.2.6.

16.2.5 RC6

16.2.43 Remark This section is mainly from [2461]. RC6 is a symmetric key block cipher which
encrypts 128-bit plaintext blocks to 128-bit ciphertext blocks and supports key sizes of
128, 192, and 256 bits. It was designed by Rivest, Robshaw, Sidney, and Yin to meet the
requirements of the Advanced Encryption Standard (AES) competition [2461].

16.2.44 Remark In general RC6 is specified as RC6-w/r/l where the word size is w bits, encryption
consists of r rounds (generally r is 20), and l denotes the length of the encryption key in
bytes.

16.2.45 Definition The encryption process involves three types of operations. Let
x = (x0, . . . , xw−1) ∈ Fw2 and y = (y0, . . . , yw−1) ∈ Fw2 (note that x and y can be treated
as binary vectors or binary numbers depending on the context).

1. Integer operations, i.e., (x+y) (mod 2w), (x−y) (mod 2w) and (x·y) (mod 2w).

2. Bitwise exclusive-or x⊕ y.

3. The rotation to the left and rotation to the right. Let L and R be the circular
left and right shift operators respectively, i.e., L(x) = (x1, . . . , xw−1, x0) and
R(x) = (xw−1, x0, . . . , xw−2). We denote

(x≪ y) = Ly(x) = (xt, xt+1, . . . , xw−1, x0, x1, . . . , xt−1),
(x≫ y) = Ry(x) = (xw−t, . . . , xw−1, x0, x1, . . . , xw−t−1),

where t = σ(y0, . . . , y(lgw)−1), lgw is the logarithm of w to the base
2, and σ(y0, . . . , y(lgw)−1) is the integer representation of binary string
(y0, . . . , y(lgw)−1).

16.2.46 Remark The block cipher RC6 has the following features [2461]. It is fast and simple and
the best attack on RC6 appears to be exhaustive key search.

16.2.47 Definition (Encryption and decryption) RC6 is of the Feistel structure. In details, RC6 is a
feedback shift register with time varying feedback and four w-bit registers which contain
the input plaintext (a0, a1, a2, a3) and the output ciphertext (ar, ar+1, ar+2, ar+3) at
the end of encryption. Round keys S0, . . . , S2r+3 are obtained from the key schedule
algorithm, where each array element Si is of w bits (see Definition 16.2.49 and Figure
16.2.7). The state updating is done as follows:

(ai, ai+1, ai+2, ai+3) = gi(ai−1, a(i−1)+1, a(i−1)+2, a(i−1)+3), for i = 1, . . . , r,

where gi is defined in the for loop of the Algorithm Enc(); see Figure 16.2.7.
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16.2.48 Remark From the encryption algorithm, it can be easily seen that the process is invert-
ible. The decryption algorithm is very similar to the encryption algorithm. It is a good
exercise to write the decryption algorithm from the encryption algorithm. The input is
(ar, ar+1, ar+2, ar+3), the round keys are in the reversed order (S2r+3, . . . , S0), ≪ is re-
placed by ≫ and + is replaced by − in proper places of the encryption algorithm. See
[2461] for a detailed description of the decryption algorithm.

Algorithm Enc() for RC6-w/r/l

Inputs : Plaintext (a0, a1, a2, a3),
number of rounds r,
round keys S0, . . . , S2r+3.

Output : Ciphertext (ar, ar+1, ar+2, ar+3).

Procedure :
a1 = a1 + S0

a3 = a3 + S1

For i = 1 to r do
t = f(a(i−1)+1)
u = f(a(i−1)+3)
ai−1 = ((ai−1 ⊕ t) ≪ u) + S2i

a(i−1)+2 = ((a(i−1)+2 ⊕ u) ≪ t) + S2i+1

The i-th state: (ai, ai+1, ai+2, ai+3)
= (a(i−1)+1, a(i−1)+2, a(i−1)+3, ai−1)

End For
ar = ar + S2r+2

ar+2 = ar+2 + S2r+3

End Algorithm.
(Here f(x) = x(2x+ 1) ≪ lgw)

Key Schedule for RC6-w/r/l

Inputs : Secret key loaded in the array
L0, . . . , Lc−1, number of rounds r.

Output : Round keys S0, . . . , S2r+3.

Procedure :
S0 = Pw.
For i = 1 to 2r + 3 do

Si = Si−1 +Qw
End For
A = B = i = j = 0
v = 3×max{c, 2r + 4}
For s = 1 to v do

A = Si = (Si +A+B) ≪ 3
B = Lj = (Lj +A+B) ≪ (A+B)
i = (i+ 1) (mod (2r + 4))
j = (j + 1) (mod c)

End For
End Algorithm.

Figure 16.2.7 Encryption and key schedule algorithm for RC6 [2461].

16.2.49 Definition (Key schedule) The user supplies a key of l bytes, where 0 ≤ l ≤ 255. Sufficient
zero bytes are appended to give a key length equal to an integral number (say c) of
words, and it is stored in L0, . . . , Lc−1. From this key, 2r + 4 words are derived and
stored in the array S0, . . . , S2r+3. The constants P32 = B7E15163 and Q32 = 9E3779B9
(hexadecimal) are derived from the binary expansion of e − 2 (e is the base of natural
logarithm) and φ− 1 (φ is the Golden Ratio).

16.2.50 Remark Figure 16.2.7 gives a description of the key schedule algorithm.

16.2.6 Advanced Encryption Standard (AES) RIJNDAEL

16.2.51 Remark Some of the features of AES are as follows; see [762] for a more detailed description
of AES. There are some differences between Rijndael and AES. Rijndael provides for several
choices of block and key sizes. AES adopted only a subset of these parameter choices. Here
we are ignoring these differences.

1. There are three allowable block lengths: 128, 192, and 256 bits.

2. There are three allowable key lengths (independent of selected block length): 128,
192, and 256 bits.
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3. The number of rounds is 10, 12, or 14, depending on the key length.

4. Each round consists of three functions, which are in four “layers” as

a. 8-bit inverse permutation (sub-byte transform),

b. 32-bit linear transformation (mix columns operation),

c. 128-bit permutation (shift rows operation) and

d. round key addition.

16.2.52 Definition (High level description of AES) A plaintext m of 128 bits is the initial state
which is represented as a four by four array of bytes (see Figure 16.2.8).

1. For a given plaintext m, the initial state is m. Perform an AddRoundKey op-
eration which is xor of the RoundKey with the initial State.

2. For each of the r − 1 rounds perform a SubByte operation on State using an
S-box; perform a ShiftRows on State; perform an operation called MixColumns
on State; and perform an AddRoundKey operation.

3. For the r-th round, perform SubByte; perform ShiftRows and perform Ad-
dRoundKey.

4. The final State y is the ciphertext.

S S S S S S S S S S S S S S S S

XOR with K0 (0-th round key)

Shift Rows and Mix Columns

128-bit message M

8-bit

8-bit

S S S S S S S S S S S S S S S S

XOR with Ki (i-th round key)

Shift Rows

XOR with Kr (r-th round key)

128-bit ciphertext C

8-bit

8-bit

0-th round

repeat
for r − 1
rounds

r-th round

Figure 16.2.8 Round operations for AES Rijndael.

16.2.53 Remark (Algebraic structure of AES Rijndael) [762] Rijndael uses a finite field F28 defined
by the primitive polynomial p(x) = x8 +x4 +x3 +x+ 1. Let α be a root of p, i.e., p(α) = 0
in F28 . We use classical polynomial representation and the elements of F28 are considered
as a set consisting of all polynomials of degree less than or equal to 7 with coefficients from
F2. So we can identify an element of F28 by an 8-bit vector.

16.2.54 Remark We introduce the following ring of matrices:

M4(F28) = {X = (xij)4×4|xij ∈ F28}.
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In other words, for each matrix inM4(F28), the entries are taken from F28 , i.e., each element
of the matrix has 8-bit or one byte representation, and each row or column can be considered
as a 32-bit word.

16.2.55 Remark For 128-bit version of Rijndael block cipher, a message M of 128 bits is parsed as
16 bytes and then further parsed as a 4 by 4 matrix:

M = (m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15),

where mi ∈ F28 , and the initial state M0 ∈M4(F28) is given as

M0 =


m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

 .

16.2.56 Remark Three basic operators for AES are SubByte, ShiftRow, and MixColumn.

16.2.57 Definition SubByte is a map S :M4(F28)→M4(F28). Let c = (1, 1, 0, 0, 0, 1, 1, 0) and

A =


1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

.
For y = (y0, y1 . . . , y7) ∈ F28 , define T (y) = Ayt + ct and σ(y) = y−1. So we have
T−1(y) = A−1(yt + ct) and σ−1(y) = y−1. For X = (xij) ∈ M4(F28), S is defined
as S(X) = (S(xij))4×4 where S(xij) = (T ◦ σ)(xij). The inverse of S is given by
S−1(X) = (S−1(xij))4×4 = ((σ−1 ◦ T−1)(xij))4×4.

16.2.58 Definition ShiftRow transform R and its inverse on a state X are given as follows

R(X) =


x00 x01 x02 x03

x11 x12 x13 x10

x22 x23 x20 x21

x33 x30 x31 x32

 , R−1(X) =


x00 x01 x02 x03

x13 x10 x11 x12

x22 x23 x20 x21

x31 x32 x33 x30

 .

16.2.59 Definition MixColumn transform L is a linear transform on F4
28 . Recall that α is a root

of p(x) in F28 . Given a state X, L(X) = LX where LX is the matrix multiplication of
L and X over F28 . The linear transform L and its inverse are given as follows

L =


α 1 + α 1 1
1 α 1 + α 1
1 1 α 1 + α

1 + α 1 1 α

 , L−1 =


β0 β3 β2 β1

β1 β0 β3 β2

β2 β1 β0 β3

β3 β2 β1 β0

 ,

where β0 = α3 + α2 + α, β1 = α3 + 1, β2 = α3 + α2 + 1, and β3 = α3 + α+ 1.

16.2.60 Definition Composition of operators is defined as follows:

G(X) = (R ◦ S)(X) G−1(X) = (S−1 ◦R−1)(X)
H(X) = (L ◦G)(X) H−1(X) = (G−1 ◦ L−1)(X)
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16.2.61 Remark The total number of round key bits is equal to the block length times the number
of rounds plus 1. The 128-bit version needs 10 rounds. Thus 1408 bits, or 44 words of round
key bits are needed. Thus, the key schedule should extend a 128-bit key to round keys, a
total of 1408 key bits. Let {ki}43

i=0 be a sequence of words, ki ∈ F4
28 , which consists of 4

bytes. Let (k0,k1,k2,k3) be the 128-bit session key. The sequence {ki} is used as the round
keys. The expansion of the key is shown in Table 16.2.9.

Input: (k0,k1,k2,k3),kj ∈ F4
28 , 128-bit key.

Output Ki = (k4i,k4i+1,k4i+2,k4i+3), i = 0, 1, . . . , 10, the i-th round key
where each kj is a 32-bit word.

Procedure. For i = 1, 2, . . . , 10, compute
k4i = k4i−4 + (S(k4i−1,3) + αi−1, S(k4i−1,0), S(k4i−1,1), S(k4i−1,2));

k4i+j = k4i+j−4 + k4i+j−1, in F 4
28 , j = 1, 2, 3.

Return Ki = (k4i,k4i+1,k4i+2,k4i+3), i = 0, 1, . . . , 10

Table 16.2.9 Key scheduling, where ki = (ki0, ki1, ki2, ki3), i = 0, 1, . . . , 43 and kij ∈ F28 .

16.2.62 Definition (Rijndael encryption and decryption) For 128-bit version of Rijndael, a message
M of 128 bits is parsed as a 4 by 4 matrix. The number of rounds is equal to 10. The
process of computation of the cipher C (again written as a 4 by 4 matrix) is shown in
Table 16.2.10. When viewed as an FSM, the initial state of the Rijndael block cipher is
M0, the final state is M10 (which is the output, i.e., ciphertext) and the state update
function is a map : F16

28 → F16
28 as shown in Table 16.2.10.

Encryption Decryption
M0 = M +K0, in M4(F28)
Mi = H(Mi−1) +Ki, 1 ≤ i ≤ 9
M10 = G(M9) +K10

C0 = C +K10,
C1 = G−1(C0) +K9

Ci = H−1(Ci−1) +K10−i, 2 ≤ i ≤ 10
The ciphertext is C = M10. The plaintext is M = C10.

Table 16.2.10 Encryption and decryption processes of Rijndael.

See Also

§16.1 For goals of cryptography and symmetric-key cryptography.

[762] For a thorough description of the design of Rijndael: AES.
[864], [1303], For cryptographic properties of the WG stream cipher.
[1317]
[989] Contains information about the design and analysis of stream ciphers.
[1835] For hardware implementations of the WG stream cipher.
[2001] For information on RC4.
[2217] Develops the theory of WG stream cipher.
[2461] For information on the RC6 block cipher.

References Cited: [762, 864, 989, 990, 1082, 1303, 1317, 1835, 1982, 2001, 2080, 2217, 2294,
2461]
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16.3 Multivariate cryptographic systems

Jintai Ding, University of Cincinnati

16.3.1 Remark Due to limited space only a few key areas more directly related to the theory of
finite fields are covered. For a more complete reference, readers should consult [894, 882].
This section grows out of [894] but with new materials from the last two years added.

16.3.2 Remark Multivariate public key cryptosystems are motivated by the need to develop new
cryptosystems that have the potential to resist future quantum computer attacks. In ad-
dition, multivariate public key cryptosystems are also motivated by the need to develop
efficient public key cryptosystems that could be used in small computing devices with lim-
ited computing and memory capacities like sensors, radio-frequency identification (RFID)
tags, and other similar small devices.

16.3.3 Remark The foundation of any public key cryptosystem is a class of “trapdoor one-way
functions.” The fundamental mathematical structure of such a class of functions determines
all the basic characteristics of a public key cryptosystem. In the case of multivariate (public-
key) cryptosystems (MPKCs), the trapdoor one-way function is usually in the form of a
multivariate quadratic polynomial map over a finite field.

16.3.4 Definition For a MPKC, the public key is, in general, given by a set of quadratic polyno-
mials:

P(x1, ..., xn) = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)),

where each pi is a (usually quadratic) nonlinear polynomial in X = (x1, . . . , xn):

yk = pk(X) :=
∑
i

Pikxi +
∑
i

Qikx
2
i +

∑
i>j

Rijkxixj + Sk. (16.3.1)

with all coefficients and variables in Fq.

16.3.5 Remark The evaluation of these polynomials corresponds to either the encryption procedure
or the verification procedure.

16.3.6 Remark Most of the constructions are quadratic constructions due to the consideration of
the efficiency of encryption determined by the key size.

16.3.7 Remark Inverting a multivariate quadratic map is generally equivalent to solving a set of
quadratic equations over a finite field, or the following multivariate quadratic (MQ) problem.

16.3.8 Definition (MQ problem) Solve a system p1(X) = p2(X) = · · · = pm(X) = 0, where each
pi is a quadratic polynomial in X = (x1, . . . , xn). All coefficients and variables are in
Fq.

16.3.9 Remark MQ is an NP-complete problem, which are believed to be hard generically. A
set of random quadratic polynomials cannot be a trapdoor. Since one does not deal with
“random” or “generic” systems, but systems using specific trapdoors, the security MPKCs
is then not guaranteed by the NP-hardness of the MQ problem, and effective attacks may
exist for any chosen trapdoor. The history of MPKCs therefore evolves as we understand
better about how to design efficient secure multivariate trapdoors.

16.3.10 Remark The mathematical structure behind a system of polynomial equations is the ideal
generated by those polynomials. Multivariate cryptography is based mainly on mathemat-
ics that handles polynomial ideals, namely algebraic geometry but over a finite field. In
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contrast, the security of RSA-type cryptosystems relies on the hardness of integer factor-
ization and is based on number theory developed in the 17th and 18th centuries. Elliptic
curve cryptosystems employ the mathematical theory developed in the 19th century. This
is a remark from Whitfield Diffie at the RSA Europe conference in Paris in 2002. Algebraic
geometry, the mathematics that MPKCs depend on, was developed in the 20-th century.

16.3.11 Remark This section is organized as follows: Subsection 16.3.1 provides a sketch of how
MPKCs work in general; Subsection 16.3.2 describes the known trapdoor constructions in
more detail; Subsection 16.3.3 describes the most important modes of attacks; the last
subsection is about future research directions in this area.

16.3.1 The basics of multivariate PKCs

16.3.12 Remark After Diffie-Hellman [860], cryptographers proposed many trapdoor functions. The
earliest published proposal of MPKC schemes seemed to have arisen in Japan [2029, 2822,
2823] in the early 1980s. These papers were published in Japanese, and remained largely
unknown outside Japan.

16.3.13 Remark The first article in English describing a public key cryptosystem with more than
one independent variable may be the one from Ong et al [2320], and the first use of more than
one equation is by Fell and Diffie [1049]. The earliest attempt bearing some resemblance to
today’s MPKCs (with 4 variables) seems to be [2029]. In 1988, the first MPKC in the current
form appeared in [2028], and the basic construction described below (Subsection 16.3.1.1)
has not really changed much since.

16.3.1.1 The standard (bipolar) construction of MPKCs

16.3.14 Definition A usual MPKC has a private map Q, which is the central map and it belongs
to a certain class of quadratic maps each of which can be efficiently inverted.

16.3.15 Definition The basic construction of the public key is derived via composition with two
affine maps S, T .

P = T ◦ Q ◦ S : Fnq → Fmq ,

where the maps S, T are affine (sometimes linear) invertible maps on Fnq and Fmq , respec-
tively.

16.3.16 Remark The purpose of T and S is to hide the trap door Q. The key of a MPKC is indeed
the design of the central map.

16.3.17 Remark

The public key consists of the polynomials in P.

The secret key consists of the information in S, T , and Q.

To verify a signature or to encrypt a block, one simply computes

Y = P(X),

where Y = (y1, . . . , ym) and X = (x1, . . . , xn).

To sign or to decrypt a block, one computes

X = P−1(Y ) = S−1 ◦ Q−1 ◦ T−1(Y ),
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which is computed via the composition factors in turn. Notice that by the inverse
of a map here, we mean finding one of possibly many pre-images, not necessarily
an inverse function in the strict mathematical sense.

16.3.18 Remark The basics of MPKCs are provided below so that the reader has a basic sense
about how these schemes can work in practice:

Cipher block or message digest size: m elements of Fq;
Plaintext block or signature size: n elements of Fq;
Public key size: mn(n+ 3)/2 elements of Fq;
Secret key size: Usually

(
n2 +m2 + [size of P]

)
elements of Fq;

Secret map time complexity: (n2 +m2) Fq-multiplications, plus the time it is needed
to invert Q;

Public map time complexity: About mn2/2 Fq-multiplications.

16.3.19 Remark In terms of computational complexity, MPKCs usually have strong advantages as
we shall see below. But a disadvantage with MPKCs is that their keys are large compared
to number-theory-based systems like RSA or ECC. For example, the public key size of
RSA-2048 is not much more than 2048 bits, but a current version of the Rainbow signature
scheme has n = 42, m = 24, q = 256, i.e., the size of the public key is 22,680 bytes.

16.3.20 Remark There are other alternative forms in which multivariate polynomials can be used
for public key cryptosystems, as we discuss next.

16.3.1.2 Implicit form MPKCs

16.3.21 Definition The public key of an implicit form MPKC is a system of l equations:

P (W,Z) = P (w1, . . . , wn, z1, . . . , zm) = (p1(W, Z), . . . , pl(W,Z)) = (0, . . . , 0), (16.3.2)

where each pi is a polynomial in W = (w1, . . . , wn) and Z = (z1, . . . , zm). This P is
built from the secret Q:

Q(X,Y ) = q(x1, . . . , xn, y1, . . . , ym) = (q1(X,Y ), . . . , ql(X,Y )) = (0, . . . , 0),

where qi(X,Y ) is polynomial in X = (x1, . . . , xn), Y = (y1, . . . , ym) such that

1. for any given specific element X ′, we can easily solve the equation

Q(X ′, Y ) = (0, . . . , 0), (16.3.3)

2. for any given specific element Y ′, we can easily solve the equation

Q(X, Y ′) = (0, . . . , 0), (16.3.4)

3. Equation (16.3.3) is linear and Equation (16.3.4) is nonlinear but can be solved
efficiently.

16.3.22 Remark The public key is built as

P = L ◦ Q(S(W ), T−1(Z)) = (0, . . . , 0),

where S, T are invertible affine maps and L is linear.
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16.3.23 Remark To verify a signature W with the digest Z, one checks that P (W,Z) = 0. If one
wants to use P to encrypt the plaintext W , one would solve P (W,Z) = (0, . . . , 0), and find
the ciphertext Z. To invert (i.e., to decrypt or to sign) Z, one first calculates Y ′ = T−1(Z),
then substitutes Y ′ into the Equation (16.3.4) and solves for X. The final plaintext or
signature is given by W = S−1(X).

16.3.24 Remark In an implicit-form MPKC, the public key consists of the l polynomial components
of P and the field structure of F. The secret key mainly consists of L, S, and T . Depending
on the case, the equation Q(X,Y ) = (0, . . . , 0) is either known or has parameters which are
a part of the secret key.

16.3.25 Remark The maps S, T , L serve to hide the equation Q(X,Y ) = 0, which otherwise could
be easily solved for any Y . Mixed schemes are relatively rare, one example being Patarin’s
Dragon [2365].

16.3.1.3 Isomorphism of polynomials

16.3.26 Remark The isomorphism of polynomials problem originated from trying to attack MPKCs
by finding the secret keys.

16.3.27 Definition Let F̄1, F̄2 with

F̄i(x1, . . . , xn) = (f̄i1, . . . , f̄im), (16.3.5)

be two polynomial maps from Fn to Fm. The Isomorphism of Polynomials (IP) problem
is to find two invertible affine linear transformations S on Fn and T over Fm (if they
exist) such that

F̄1(x1, . . . , xn) = T ◦ F̄2 ◦ S(x1, . . . , xn). (16.3.6)

16.3.28 Remark The system based on the IP problem was first proposed by Patarin [2366], where
the verification process is performed by showing the equivalence (or isomorphism) of two
different maps. A simplified version is the isomorphism of polynomials with one secret
(IP1s) problem, where we only need to find the map S (if it exists), while the map T
is known to be the identity map. This problem is used to build identification schemes
[1044, 1266, 1914, 2371, 2387].

16.3.29 Remark Mathematically, this problem can be viewed from the perspective of the problem
of classification of quadratic maps from Fnq to Fmq under the action of the group GLn(Fq)×
GLm(Fq), namely to describe precisely the orbit space of all the quadratic maps from Fnq to
Fmq under the action of the group GLn(Fq)×GLm(Fq); a very hard mathematical problem
we do not know much about, except the case when m = 1, which is the classification of
quadratic (or bilinear) forms, a problem we know very well.

16.3.30 Remark Since the vast majority of MPKCs are in standard form, we deal with mainly such
systems in the rest of this section.

16.3.2 Main constructions and variations

16.3.2.1 Historical constructions

16.3.31 Remark The first attempt to construct a multivariate signature [2320, 2321] utilizes a
quadratic equation with two variables.

y ≡ x2
1 + αx2

2 (mod n), (16.3.7)
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where n = pq is an RSA modulus, a product of two large primes. The public key is essen-
tially the integer n and Equation (16.3.7). Since the security is supposed to be based on
the factorization of n, this system can really be viewed as a derivative of RSA, though it
indeed initiated the idea of multivariate cryptosystems. This system was broken by Pollard
and Schnorr in [2415], where they gave a probabilistic algorithm to solve Equation (16.3.7)
for any y without even knowing the factors of n. Assuming the generalized Riemann hy-
pothesis, a solution can be found with a computational complexity of O((log n)2 log log |k|)
in O(log n)-bit integer operations.

16.3.32 Remark Diffie and Fell [1049] tried to build a cryptosystem using the composition of in-
vertible linear maps and simple tame maps of the form

T (x1, x2) = (x1 + g(x2), x2),

where g is a polynomial. Tame maps, well known in algebraic geometry, are easily invert-
ible but hard to hide when composed with each other, [1049] used only two variables and
equations; not surprisingly, the authors concluded that it appeared very difficult to build
such a cryptosystem with any real practical value that is both secure and has a public key
of practical size, therefore practically useful.

16.3.33 Remark An attempt to build a true multivariate (with four variables) public key cryp-
tosystem was also made by Matsumoto, Imai, Harashima, and Miyagawa [2029], where the
public keys are given by quadratic polynomials. However it was soon broken [2312]. People
soon realized that more than 4 variables are needed and new mathematical ideas are needed
to make MPKCs work.

16.3.2.2 Triangular constructions

16.3.34 Remark The tame maps used in [1049] are a special case of the “triangular” or de Jonquières
maps from algebraic geometry.

16.3.35 Definition A de Jonquières map is a polynomial map in the following form:

J(x1, . . . , xn) = (x1 + g1(x2, . . . , xn), . . . , xn−1 + gn−1(xn), xn), (16.3.8)

where the gi are arbitrary polynomial functions.

16.3.36 Remark A de Jonquières map J can be efficiently inverted as long as gi is not too compli-
cated. The invertible affine linear maps over Fnq together with the de Jonquières maps belong
to the family of tame transformations from algebraic geometry, including all transformations
that are in the form of a composition of elements of these two types of transformations.
Tame transformations are elements of the group of automorphisms of the polynomial ring
Fq[x1, . . . , xn]. Elements in this automorphism group that are not tame are wild. Given a
polynomial map, it is in general very difficult to decide whether or not the map is tame,
or even if there is indeed any wild map [2213], a question closely related to the famous
Jacobian conjecture. This problem was solved in 2003 when [2613] proves that the Nagata
map is indeed wild.

16.3.37 Remark The first attempt in the English literature with a clear triangular form is the
birational permutations construction by Shamir [2606]. However, triangular constructions
were earlier pursued in Japan under the name “sequential solution type systems” [1440,
2822, 2823]. Their construction is actually even more general in the sense that they use
rational functions instead of just polynomials. These works in Japanese are not so well-
known.
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16.3.38 Remark Triangular maps are extremely fast to evaluate and to invert if gi are very simple
functions. However, they do have certain strong definitive characteristics. On the small end
of a triangular system, so to speak, the variable xn is mapped to the simple function of
itself. On the bigger end, the variable xi appears only once in a single equation. The other
equations involve successively more variables.

16.3.39 Proposition If we write the quadratic portion of the central polynomials yi = qi(X) as
bilinear forms, or take the symmetric matrix denoting the symmetric differential of the
central polynomials as in

qi(X +B)− qi(X)− qi(B) + qi(0) := BTMiX, (16.3.9)

then the rank of the matrix Mi in general increases monotonically as i increases. If q = 2k,
the equation dealing with x1 always has rank zero. Let kerMi be the kernel of the linear
map associated with Mi. Then kerM1 ⊂ kerM2 ⊂ · · · , which is a chain of kernels [722].

16.3.40 Remark This matrix rank and the chain structure of kernels is invariant under compo-
sition with an invertible map, S. That is, considering yi as a function of X, the corre-
sponding differential is BT

(
MT
SMiMS

)
X. For the most part, MS is full-rank, and hence

rank
(
MT
SMiMS

)
= rankMi. This leads to what is known as rank attacks based on linear

algebra [722, 1339]. Therefore triangular/tame constructions cannot be used alone. Some
ways to design around this problem are lock polynomials (Subsection 16.3.2.9), solvable
segments (Subsection 16.3.2.4), and plus-minus (Subsection 16.3.2.6).

16.3.2.3 Big-field families: Matsumoto-Imai (C∗) and HFE

16.3.41 Remark Triangular (and Oil-and-Vinegar, and variants thereof) systems are usually called
“single-field” or “small-field” approaches to MPKC design, in contrast to the approach
taken by Matsumoto and Imai in 1988 [2028]. In the “big-field” constructions, a totally new
type of mathematical construction, the central map is really a map in a larger field L, a
degree n extension of a finite field K. One builds an invertible map Q : L→L, and picks
a K-linear bijection φ : L→Kn. Then we have the following multivariate polynomial map,
which should presumably be quadratic in general:

Q = φ ◦ Q ◦ φ−1, (16.3.10)

and, we “hide” this map Q by composing from both sides by two invertible affine linear
maps S and T in Kn.

16.3.42 Definition Matsumoto and Imai built a scheme C∗ by choosing a field K of characteristic
2 and the map Q

Q : X 7−→ Y = X1+qα , (16.3.11)

where q is the number of elements in K, X is an element in L, and gcd(1+qα, qn−1) = 1.

16.3.43 Theorem We have
Q−1

(X) = Xh, (16.3.12)

where h(1 + qα) ≡ 1(mod(qn − 1)).

16.3.44 Remark In the rest of this section, for the purpose of simplicity, we simply identify the
vector space Kn with the large field L, and Q with Q, omitting the isomorphism φ from
formulas. When necessary to distinguish the inner product in a vector space over K and the
larger field L, the former is denoted by a dot (·) and the latter by an asterisk (∗).
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16.3.45 Remark The map Q is always quadratic due to the linearity of the Frobenius map
Fα(X) = Xqα .

16.3.46 Remark A significant algebraic implication of C∗ and Equation (16.3.11) is Y q
α−1 = Xq2α−1

or
XY q

α

= Xq2α

Y. (16.3.13)

Patarin [2364] used this bilinear relation to cryptanalyze the original C∗ (see Subsec-
tion 16.3.3.1). Though the original idea of C∗ failed, it has inspired many new designs.

16.3.47 Definition An HFE (Hidden Field Equations) system, as the most significant of the C∗

derivatives, is constructed by replacing Q, the monomial used by C∗, by the extended
Dembowski-Ostrom polynomial map:

Q : X ∈ L = Fqn 7−→ Y =
∑

0≤i≤j<r

aijX
qi+qj +

∑
0≤i<r

biX
qi + c. (16.3.14)

16.3.48 Remark This map is, in general, not one-to-one and we need additional structure to identify
the real inverse from one of a number of possible candidates for decryption.

16.3.49 Remark Inverting Q is equivalent to solving a univariate equation of a certain degree in L.
It is well-studied and straightforward to implement but depends very much on the degree
of the polynomial, using some version of the Berlekamp (or Cantor-Zassenhaus) algorithm
[230, 499]; see Section 11.4. Typically, the cost of this solution is O(nd2 log d + d3), where
d is the maximum degree of Q.

16.3.50 Remark For practical applications, one might conclude right away that we should have as
small a d as possible, or as small an r as possible, since usually d = 2qr or qr + 1. But the
situation actually becomes very subtle. Just as Equation (16.3.11) intrinsically meant that
the C∗ map in some form has a rank of 2 and leads to Equation (16.3.13) and all the known
cryptanalysis of C∗ related systems, Equation (16.3.14) fundamentally is responsible for all
the algebraic properties of the HFE.

16.3.51 Remark A critical fact is that the intrinsic rank of the map is bounded by r, and usually
achieves that value for randomly chosen parameters. This rank essentially determines the
complexity of current attacks [737, 1042]. For example, the HFE Challenge 1 solved by
Faugère and Joux [1042] has an intrinsic rank of 4.

16.3.52 Remark An HFE with a high d is unbroken, although it can be really slow to decrypt/invert.
Quartz [2369] probably sets a record for the slowest cryptographic algorithm when submitted
to NESSIE — on a Pentium III 500MHz, it took half a minute to do a signature, but has
been improved substantially since.

16.3.53 Remark Recent research progress in [878, 884, 890] shows that the HFE still has great
potential if we explore the cases using finite fields with odd characteristics.

16.3.54 Remark Schemes C∗ and HFE each can be modified by techniques mentioned later (Plus-
Minus, vinegar variables, and internal perturbation). Also related are the `IC system and
probabilistic big-field based MPKCs [1340].

16.3.2.4 Oil and vinegar (unbalanced and balanced) and variations

16.3.55 Remark The Oil and Vinegar (OV) and later unbalanced Oil and Vinegar (UOV) schemes
[1737, 2367] are designed only for signatures. This construction is inspired by the idea of
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linearization equations (Subsection 16.3.2.3). In some sense, this construction uses a method
where ones transforms an attacking method into a designing method.

16.3.56 Definition Let v < n and m = o = n − v. The variables x1, . . . , xv are vinegar variables
and xv+1, . . . , xn oil variables. An oil-vinegar map Q : Kn → Km is a map in the form
Y = Q(X) = (q1(X), . . . , qo(X)), where

ql(X) =
v∑
i=1

n∑
j=i

α
(l)
ij xixj , l = 1, · · · , o

and all coefficients are randomly chosen from the base field K.

16.3.57 Remark In each qi, there are no quadratic terms of oil variables, which means the oil
variables and vinegar variables are not fully mixed (like oil and vinegar in a salad dressing),
which is the origin of the name of this scheme.

16.3.58 Definition The public key map P for an Oil-Vinegar scheme is constructed as

P = Q ◦ S,

where S is an invertible linear map.

16.3.59 Remark The change of basis by the transformation S is a process to “mix” fully oil and
vinegar, so one cannot tell what are oil variables and what are the vinegar variables. With
OV and UOV constructions, there is no need to compose another affine map T .

16.3.60 Remark The original Oil and Vinegar signature scheme has m = o = v = n/2. When o < v,
it becomes the unbalanced Oil and Vinegar signature scheme.

16.3.61 Remark The public key for an OV or an UOV is P = (p1, . . . , po), the polynomial compo-
nents of P. The secret key consists of the linear map S and the map Q.

16.3.62 Remark Given a message Y = (y1, . . . , yo), to sign it, one needs to find a vector W =
(w1, . . . , wn) such that P(W ) = Y . With the secret key, this can be done efficiently. First,
one guesses values for each vinegar variable x1, . . . , xv, and obtains a set of o linear equations
with the o oil variables xv+1, . . . , xn. With high probability, it has a solution. If the linear
system does not have a solution, one may repeatedly assign random values to the vinegar
variables until one finds a pre-image of a given element in Ko. Then one applies S−1.

16.3.63 Remark To check if W is indeed a legitimate signature for Y , one only needs to get the
public map P and check if indeed P(W ) = Y .

16.3.64 Remark The algebraic property that is most significant in an unbalanced Oil-and-Vinegar
system is the absence of pure oil cross-terms. Equivalently, if we have an UOV polynomial,
then the quadratic part of each component qi in the central map from X to Y , when viewed
as a bilinear form using a matrix, see Equation (16.3.9), looks like

Mi :=



α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0


, (16.3.15)
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or in the block form:

[
∗ ∗
∗ 0

]
.

16.3.2.5 UOV as a booster stage

16.3.65 Remark There have been different attempts to make UOV more efficient such as [1687,
1686], which were promptly broken [2998].

16.3.66 Remark A new way to make the UOV type construction more efficient is the Rainbow
construction by stacking several layers of Unbalanced Oil-Vinegar systems together for an
easily invertible central map [889].

16.3.67 Definition For a u-stage Rainbow 0 < v1 < v2 < · · · < vu+1 = n, the construction of
central map over any finite field is given by

yk = qk(X) =

vl∑
i=1

n∑
j=i

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi, if vl < k ≤ vl+1. (16.3.16)

16.3.68 Remark In the signing process, we first choose randomly the values for the vinegar variables
x1, . . . , xv1 in the first layer, and solve for the oil variables xv1+1, . . . , xv2 . Then we use the
known values of xi in the second layer and find the values for the oil variables in the second
layer. We continue like this layer by layer until we have all the xi’s.

16.3.69 Remark The components of Y in a Rainbow-type construction are typically written to have
indices v1 + 1, . . . , n. In the pure Rainbow scheme, S and T and the coefficients α and β
are totally randomly chosen. The essential structure of the Rainbow instance is determined
by 0 < v1 < v2 < · · · < vu+1 = n or the “Rainbow structure sequence” (v1, o1, o2, . . . , ou),
where oi := vi+1 − vi.

16.3.70 Remark The Rainbow construction is a special case of the UOV; however, the structure of

the system, consist of ou equations with the associated bilinear maps of the form

[
∗ ∗
∗ 0

]
following m− ou equations with the associated bilinear maps of the form

[
∗ 0
0 0

]
leads to

a different attack; see Subsection 16.3.3.10).

16.3.71 Remark Aside from attacks peculiar to the UOV and Rainbow systems, the Rainbow-type
constructions also share certain characteristics of triangular schemes, therefore there is a
need to account for rank-based attacks (Subsection 16.3.3.8), such as the two improved
attacks in [280, 895]. None of these attacks are considered essentially effective.

16.3.72 Remark If one wants to make the computation of the central map and its inverse fast,
another direct way is to make the Oil-vinegar polynomials sparse, such as in the case of the
TTS (Tame Transformation Signatures) schemes, [604, 3023, 3024]. The TRMS [2931] of
Wang et al. are also a TTS instance. Due to the sparsity, there also exist certain extra pos-
sibilities of linear algebra and related vulnerabilities, principally UOV-type vulnerabilities
such as described in [891].

16.3.2.6 Plus-Minus variations

16.3.73 Remark Minus and Plus are simple but useful ideas, earliest mentioned by Matsumoto,
Patarin, and Shamir (probably found independently [2370, 2606]).
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16.3.74 Remark For the Minus method [2370], several (r) polynomials are removed from the public
keys. When inverting the public map, the legitimate users take random values for the missing
variables. Minus is very suitable for signature schemes without any performance loss, since
a document need not have a unique signature.

16.3.75 Remark For encryption, Minus causes significant slowdown, since the missing coordinates
must be searched. In theory the public map of an encryption method should be injective.
If we have to search through r variables in Fq, we effectively have qn+r results, only qn of
which should represent valid ciphertexts, hence the expected number of guesses taken per
decryption is qr. Thus, decryption is slowed by that same factor of qr.

16.3.76 Remark Minus or removing some public equations makes a C∗-based system much harder
to solve. SFLASH [67, 739, 2368], a C∗− instance with (q, n, r) = (27, 37, 11), was accepted
as an European security standard for low-cost smart cards by the New European Schemes
for Signatures, Integrity, and Encryption [2220].

16.3.77 Remark In 2007, the SFLASH family of cryptosystems [924, 925] was defeated. The attack
uses the symmetry and the invariants of the differential of the public map P (Subsec-
tion 16.3.3.4) inspired by the attack on internal perturbation. Making a secure C∗-based
signature scheme may require a new modifier called Projection [880].

16.3.78 Remark Plus is the opposite of Minus: add random central equations to the original central
map, and this can be used to mask the high-end of the triangle system. For encryption
methods, this again does not affect performance much; for digital signatures there is a
slowdown as the extra variables again need to be guessed. Regardless, Plus-Minus variations
defend against attacks that are predicated on the rank of equations.

16.3.79 Remark Plus-Minus alone does not make triangular constructions secure. Paper [1339] dis-
cusses this in detail and concludes exactly the opposite: Triangle-Plus-Minus constructions
can be broken by very straightforward attacks using simple linear algebra. Therefore one
must use more elaborate variations [280, 895, 3023].

16.3.2.7 Internal perturbation

16.3.80 Remark Internal perturbation is a general method of improving the security of MPKCs
by adding some perturbation or controlled noise. Internal perturbation was first applied to
Matsumoto-Imai systems, which produce the variation [876].

16.3.81 Remark Take V = (v1, . . . , vr) to be an r-tuple of random affine forms in the variables X.
Let f = (f1, . . . , fn) be a random r-tuple of quadratic functions in V . Let our new Q be
defined by

X 7→Y = (X)q
α+1 + f(V (X))

where the power operation assumes the vector space to represent a field. The number of
Patarin relations decreases quickly down to 0 as r increases. For every Y , we may find
Q−1(Y ) by guessing at V (X) = B, finding a candidate X = (Y + B)h and checking the
initial assumption that V (X) = X. Since we repeat the procedure qr times, we are almost
forced to let q = 2 and make r as small as possible.

16.3.82 Remark In this system, there are possible extraneous solutions just as in the system HFE.
Therefore, we must manufacture some redundancy in the form of a hash segment or check-
sum. The original perturbation system was broken [1094] via a surprising differential crypt-
analysis (cf. Sec. 16.3.3.4). Internal perturbation is usually coupled with the plus variation,
and this is one of the best multivariate encryption schemes.
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16.3.2.8 Vinegar as an external perturbation and projection

16.3.83 Remark The idea of vinegar variables had been introduced earlier with UOV, and was
used as a defense in Quartz. The idea is to use an auxillary variable that occupies only a
small subspace of the input space. It was pointed out [888] that internal perturbation is
almost exactly equal to both vinegar variables and projection, or fixing the input to an
affine subspace. We basically set one, two, or more variables of the public key to be zero to
create the new public key. In the case of signature schemes, each projected dimension will
slow down the signing process by a factor of q.

16.3.84 Remark Projection is a very useful simple method. Since (Sec. 16.3.3.4) structural attacks
usually start by looking for an invariant or a symmetry, it is a good idea that we should
try to remove both. Restricting to a subspace of the original space breaks the symmetry.
Something like the Minus modifier destroys an invariant. Hence the use of projection by
itself prevents some attacks, such as [924, 925, 1095]. The differential attack against C∗

(and `IC) derivatives uses the structure of the big field L. Hence projection is expected to
prevent such an attack [880].

16.3.2.9 TTM and related schemes: “lock” or repeated triangular

16.3.85 Remark MPKCs based only on triangular constructions were not pursued again until a
much more complex defense against rank attacks was proposed, with the tame transforma-
tion method (TTM) of Moh [2113].

16.3.86 Remark de Jonquières maps can be viewed either as upper triangular or lower triangular.
Moh [2113] suggested a construction where the central map Q is given by

Q = Ju ◦ Jl ◦ I(x1, . . . , xn), (16.3.17)

where Ju is a Km upper triangular de Jonquières map and Jl is a Km lower triangular de
Jonquières map and the linear map I is the embedding of Kn into Km: I(x1, . . . , xn) =
(x1, . . . , xn, 0, 0, . . . , 0). The main achievement of such a construction is how to make Q
quadratic. Moh’s trick is actually in using the map I. One can see that

Jl ◦ I(x1, . . . , xn) = (x1, x2 + g1(x1), . . . , xn + gn−1(x1, . . . , xn−1),

gn(x1, . . . , xn), . . . , gm−1(x1, . . . , xn)),

which presents the freedom to choose any gi, i = n, . . . ,m − 1. When decrypting, one
evaluates the de Jonquières maps from x1 up.

16.3.87 Remark The extremely low rank of central polynomials presented in published TTM in-
stances [603, 2113] is the main source of weakness and therefore of effective attacks.

16.3.88 Remark Courtois and Goubin [1339] used the MinRank method (Subsection 16.3.3.8) to
attack this system.

16.3.89 Definition A MinRank problem is to look for non-zero matrices with minimum rank in a
space of matrices.

16.3.90 Remark The Minrank problem is NP-hard in general but can be easy for special cases, in
particular, when the minimum rank is very low.

16.3.91 Remark The idea of sequentially solvable equations (or stages) can also be used in conjunc-
tion with other ideas. Some of the more notable attempts are from Wang, who had written



Cryptography 775

about a series of schemes called “Tractable Rational Map Cryptosystems” (TRMC). TRMC
v1 is essentially no different from early TTM [603]. The central map of TRMC v2 [2929]
has a small random overdetermined block on one end and the rest of the variables are de-
termined in the triangular (tame) style. Versions 3 and 4 [2930, 2932] use a similar trick as
3IC [892].

16.3.92 Remark The TTM construction is a truly original and very intriguing idea. So far existing
constructions of the TTM cryptosystem and related schemes do not work for public-key
encryption [883, 886, 887, 2226]. Most of the schemes proposed are not presented in any
systematic way, and no explanation is yet given why and how they work. More sophistication
is needed and we suspect that to create a successful TTM-like scheme will probably require
deep insight from algebraic geometry.

16.3.93 Remark A TTS (tamed transformation signature) scheme can be viewed as a similar but
simpler construction. This system is essentially the result of an application of the Minus
method in [2606] for a tame transformation. A few of them were suggested mainly by Chen
and Yang [604, 605]. These systems can also be defeated by the method used by Stern and
Vaudenay [722, 896].

16.3.2.10 Intermediate fields: MFE and `IC

16.3.94 Remark In C∗ and HFE, we use one big field L = Kn. In Rainbow/TTS or similar schemes,
each component is as small as the base field. We can use something in between, as seen in
MFE (Medium Field Encryption) and `IC (`-Invertible Cycles). These two constructions
use a standard Cremona transformation from algebraic geometry.

16.3.95 Definition A standard Cremona transformation is defined as: L∗ := L\{0} for some field
L:

(X1, X2, X3) ∈ (L∗)3 7−→ (Y1, Y2, Y3) := (X1X2, X1X3, X2X3) ∈ (L∗)3. (16.3.18)

16.3.96 Proposition This transformation is a bijection for any field L, and inverts via

X1 :=
√
Y1Y2/Y3.

16.3.97 Remark MFE’s central map uses structure related to matrix multiplications to defend
against linearization relations, but it does not avoid all the problems, as can be seen in
Subsection 16.3.3.3.

16.3.98 Remark The `-invertible cycle [892] also uses an intermediate field L = Kk and extends C∗

by using the following central map from (L∗)` to itself:

Q : (X1, . . . , X`) 7→ (Y1, . . . , Y`) (16.3.19)

:= (X1X2, X2X3, . . . , X`−1X`, X`X
qα

1 ).

16.3.99 Remark This is much faster computationally than computing the inverse of C∗. But these
have so much in common with C∗ that we need the same variations. In other words, we
need to do 3IC−p (with minus and projection) and 2IC+i (with internal perturbation and
plus), paralleling C∗−p and C∗+i (also known as PMI+) [881].
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16.3.2.11 Odd characteristic

16.3.100 Remark Initially all the MPKCs were constructed over fields of characteristic 2. But in
the work of [890], they notice that a very good idea would be the usage of fields of odd
characteristic. The rationale is that in the case of relatively large odd characteristic, the
field equations in the form of xqi − xi = 0, cannot be effectively used, therefore it forces
one to find all the solutions in the algebraic closure instead of the small field itself. This
would make the MPKCs much more secure in terms of direct attacks by polynomial solvers.
Recent results on the degree of regularity [878, 884] further confirms this notion.

16.3.2.12 Other constructions

16.3.101 Remark There are also other new constructions using different new ideas. One interesting
one is a construction using Diophantine equations over certain function rings [1461]. Another
is the MQQ construction using quasi-groups, although it has been defeated [1285, 2115].

16.3.3 Standard attacks

16.3.102 Remark To attack an MPKC directly as an MQ problem instance is usually not very
effective, and cryptanalysts generally try to attack MPKCs utilizing the structure of the
central map by either finding the private key directly, or finding extra polynomial relations
to enhance the polynomial solver.

16.3.3.1 Linearization equations

16.3.103 Definition For a given MPKC, a linearization equation is a relation between the compo-
nents of the ciphertext Y and plaintext X in the following form:∑

aijxiyj +
∑

bixi +
∑

cjyj + d = 0. (16.3.20)

16.3.104 Remark The key property of these equations is that when substituted with the actual
values of Y , we get an affine (linear) relation between the xi’s. In general, each equation
should effectively eliminate one variable from the system.

16.3.105 Remark The key and first example is the attack against C∗ by Patarin [2364]. For any C∗

public key, we can compute Y from X, and substitute enough (X,Y ) pairs and solve for
aij , bi, cj , and d. A basis for the solution space gives us all the linearization relations.

16.3.106 Remark If we are given any ciphertext, i.e., the values of yi, these n bilinear relations will
produce linear equations satisfied by components of the plaintext X, and in the case of C∗,
it gives us enough linearly independent linear equations to help us to find the plaintext
with the help of the public equations. In similar systems like 3IC, for example, linearization
equations are also present in large numbers, which need to be eliminated to make the system
secure.

16.3.3.2 Critical bilinear relations

16.3.107 Remark If the number of linearization equations is high enough, we can defeat the system
efficiently. However, it is shown in [883, 886, 887] that even when the number of linearization
equations (or special form of bilinear relations) is not so large, their existence can be lethal.
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16.3.108 Remark Ding and Schmidt [887] found that the low-rank central polynomials — often
rank 2 — in currently existing implementation schemes for the TTM cryptosystems make
it possible to extend the linearization method by Patarin [2364] to attack all current TTM
implementation schemes (Subsection 16.3.3.1).

16.3.109 Remark For the Ding-Schmidt attack [887], the number of linearization equations is not
that high, but they manage to eliminate the “lock polynomial” that defends a TTM instance
against a simple rank attack.

16.3.3.3 HOLEs (higher-order linearization equations)

16.3.110 Definition A Higher-Order Linearization Equation (HOLE) is a linearization relation that
is higher degree in the components of Y only. In particular, a SOLE (second order
linearization equation) would look like∑

i<j

aijk yiyjxk +
∑
i≤j

bij yiyj +
∑

cij yixj +
∑

di yi +
∑

ej xj + f = 0.

16.3.111 Remark This is the key to break the MFE systems. There are at least 8k linear dependencies
derived from the SOLE out of a total of 12k variables in an MFE system, which makes the
cryptanalyst’s task much easier. Paper [885] used another trick – the fact that squaring is
linear in a characteristic two field – to get it down to 2k remaining variables at most and
concluded that solving for the remaining variables is easy.

16.3.112 Remark The existence of linearization relations of higher degrees shows multivariate en-
cryption schemes designed in the triangular style are full of traps and to design a secure
system is very difficult without an intrinsically sophisticated algebraic structure.

16.3.3.4 Differential attacks

16.3.113 Remark Structural attacks on MPKC systems to recover private keys (or equivalently useful
keys) are of two related types:

Invariants: invariants (mostly subspaces) that can be tracked.

Symmetries: transformations that leave certain structures invariant and hence can be
computed by a system of equations.

These two methods are closely related since invariants are defined according to symmetry.
Earlier designers were not yet fully aware of the importance of symmetry. We will present
the symmetry or invariants used in the new differential attacks on the C∗ family of cryp-
tosystems as exemplified by the differential attacks developed by Stern and collaborators in
[1094].

16.3.3.5 Attacking internal perturbations

16.3.114 Remark The cryptanalysis of the PMI (perturbed Matsumoto-Imai) [1094] was a true
novelty for a technique usually associated with symmetric key cryptography.

16.3.115 Remark Using the notation in a PMI system, we know that for a randomly chosen vector b,
the probability is q−r that it lies in the kernel K of the linear part of V . When that happens,
V (X + b) = V (X) for any X. Since q−r is not too small, if we can use this to distinguish
between a vector b ∈ T−1K (back-mapped into the original space) and b 6∈ T−1K, we can
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bypass the protection of the perturbation, find our bilinear relations and accomplish the
cryptanalysis.

16.3.116 Remark In [1094], Fouque, Granboulan, and Stern built a distinguisher using a test on the
kernel of the symmetric difference

DP(W,b) = P(b +W )− P(b)− P(W ).

We say that t(b) = 1 if dim kerW DP(b,W ) = 2gcd(n,α) − 1, and t(b) = 0 otherwise. If
b ∈ K, then t(b) = 1 with probability one, otherwise it is less than one. If gcd(n, α) > 1, it
is a nearly perfect distinguisher. If not, we can employ two other tricks. For one of them, we
observe K is a vector space, so Pr(t(b + b′) = 0|t(b′) = 0) will be relatively high if b ∈ K
and relatively low otherwise.

16.3.117 Remark There is a surprisingly simple defense dating back to [2370] (which introduced
SFLASH). By using the “plus” variant, i.e., appending a random quadratic polynomial to
P, enough false positives are generated to overwhelm the distinguishing test of [1094]. The
extra equations also serve as a distinguisher when there are extraneous solutions. Basically,
the more “plus” equations, the less discriminating power of the above mentioned test. Based
on empirical results of Ding and Gower [881], when r = 6, a = 12 should be sufficient, and
a = 14 would be a rather conservative estimate for the amount of “plus” needed to mask
the PMI structure.

16.3.3.6 The skew symmetric transformation

16.3.118 Remark The symmetry found in [1094] can be explained by considering the case of the C∗

cryptosystem. The symmetric differential of any function G, defined formally just like in
Equation (16.3.21):

DG(a, X) := G(X + a)−G(X)−G(a) +G(0),

is bilinear and symmetric in its variables a and X. In the first version of this attack [925],
we look at the differential of the public map P, and look for skew-symmetric maps with
respect to this bilinear function, namely, the linear maps M such that

DP(c,M(W )) +DP(M(c),W ) = 0.

16.3.119 Remark The reason that this works is that the central map Q and the public key, which
encapsulates the vital information in the central map, unfortunately have very strong sym-
metry in the sense that all the differentials from these maps share some common nontrivial
skew-symmetric map M . Since Q(X) = X1+qα , its differential is

DQ(a, X) = aq
α

X + aXqα .

16.3.120 Theorem The maps M skew-symmetric with respect to this DQ(a, X) [925] are precisely
those induced from multiplication by some element ζ satisfying the condition

ζq
α

+ ζ = 0.

16.3.121 Remark This skew-symmetry survives under change of basis. It can be seen that the skew-
symmetry continues to hold even when we remove some components of P. In terms of the
public key, this means that if we write

DP(c,W ) := (cTH1W, cTH2W, . . . , cTHmW )
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and try to solve MTHi +HiM = 0 for all i = 1, . . . ,m simultaneously, we should find just
k-multiples of the identity if n and α are co-prime, and a d-dimensional subspace in the
space of linear maps if d = gcd(n, α) > 1.

16.3.122 Remark For a randomly chosen map G, it is expected that only trivial solutions M = u1n,
where u ∈ K, will satisfy this condition. This means that there is a very strong condition
on C∗− cryptosystems. This symmetry can be utilized to break C∗− systems for which
d = gcd(n, α) > 1.

16.3.3.7 Multiplicative symmetry

16.3.123 Remark The second symmetry is multiplicative symmetry, which comes also from the
differential DP(c,W ) [924].

16.3.124 Proposition Let ζ be an element in the big field L. Then we have

DQ(ζ · a, x) +DQ(a, ζ · x) = (ζq
α

+ ζ)DQ(a, x).

16.3.125 Theorem Let
Mζ = M−1

S ◦ (X 7→ ζX) ◦MS

be the linear map in Kn corresponding to multiplication by ζ, then

span{MT
ζ Hi +HiMζ : i = 1, . . . , n} = span{Hi : i = 1, . . . , n},

i.e., the space spanned by the quadratic polynomials from the central map is invariant under
the skew-symmetric action.

16.3.126 Remark The public key of C∗− inherits some of that symmetry. Note that not ev-
ery skew-symmetric action by a matrix Mζ corresponding to an L-multiplication re-
sults in MT

ζ Hi + HiMζ being in the span of the public-key differential matrices, because
S := span{Hi : i = 1, . . . , n− r} as compared to span{Hi : i = 1, . . . , n} is missing r of the
basis matrices. However, as the authors of [924] argued heuristically and backed up with
empirical evidence, if we just pick the first three MT

ζ Hi + HiMζ matrices, or any three

random linear combinations of the form
∑n−r
i=1 bi(M

T
ζ Hi+HiMζ) and demand that they fall

in S, then there is a good chance to find a nontrivial Mζ corresponding to a multiplication
by ζ, which can be used to break the C∗− scheme.

16.3.127 Remark For a set of public keys from C∗, tests [924] show that the above strategy almost
surely eventually recovers the missing r equations and breaks the scheme. The only known
attempted defense is [880].

16.3.3.8 Rank attacks

16.3.128 Remark Given a quadratic polynomial, we can always associate it with a symmetric matrix.
By a rank attack, we mean an attack using the rank of those matrices. There are two types of
rank attacks, attacks that specifically target high rank or low rank. Let Hi be the symmetric
matrix corresponding to the quadratic part of public polynomials.

16.3.129 Remark Since rank attack usually means attacking via finding low rank matrices, some
also call the high rank attack the dual rank attack. The high rank attack first appeared with
[722] where Coppersmith et al. defeated a triangular construction.

16.3.130 Remark The high rank attacks of Goubin-Courtois and Yang-Chen [1339, 3023] work for
“plus”-modified triangular systems; it is also easier to understand than the formulation in
[722]. Against UOV, we might possibly do even better on this attack with differentials [895].
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16.3.131 Remark The first Minrank attack is the Goubin-Courtois version against TTM. Let r be the
smallest rank in linear combinations of central equations, which without loss of generality
we take to be the first central equation itself in TTM. Goubin and Courtois outline how to
find the smallest ranked combination (and hence break the Triangle-Plus-Minus system) in
expected time O(qd

m
n erm3). Yang and Chen have extended the effectiveness of this attack

[3023] related to the number of distinct kernels of the same rank.

16.3.3.9 MinRank attacks on big-field schemes

16.3.132 Remark The defeat of the HFE Challenge 1 by Faugère and Joux [1042], a direct solution
of the 80 equations in 80 variables, is not the first serious attempt on HFE systems. That
credit goes to a rank-based attack by Kipnis and Shamir [1739]. The attack proceeds by
moving the problem back to the extension field, where all the underlying structure can be
seen. This is a very natural approach if we intend to exploit the design structure of HFE in
the attack. They transform the problem of finding the secret key into a problem of finding
the minimum rank of linear combinations of certain matrices, which is exactly r (as in
Subsection 16.3.2.3). This is the MinRank problem [467] and is in general exponential, but
can be easy if r is small.

16.3.133 Remark Kipnis and Shamir [1739] suggested using determinants of all (r + 1) × (r + 1)
sub-matrices to derive a huge assortment of equations to solve the problem. To solve this
system, they introduce an idea which they call relinearization, which led to the well-known
XL paper [740]. It has been argued that using a Lazard-Faugère solver on this system of
equations is effective [737] and equally effective as the direct attack, however the situation
is still not very clear due to a recent observation in [1610].

16.3.3.10 Distilling oil from vinegar and other attacks on UOV

16.3.134 Remark To forge a signature for a UOV scheme as in Subsection 16.3.2.4, one needs to
solve the equation P(W ) = Y .

16.3.135 Remark When o = v as with the original Oil-and-Vinegar, this is fairly easy due to the
attack by Kipnis and Shamir [1738]. The basic idea is to treat each component yi = pi(W )
of the public key P as a bilinear form. Namely, take their associated symmetric matrices
via the symmetric differential as follows:

Dpi(W, c) := pi(W + c)− pi(W )− pi(c) + pi(0) := cTHiW. (16.3.21)

A basic fact of OV: each matrix Mi, see Equation (16.3.9) is in the rough form of

[
∗ ∗
∗ 0

]
but not the matrices Hi associated to the public key. This reduces a cryptanalysis to the
algebraic problem of finding a basis change for a set of bilinear forms into a common form.

16.3.136 Remark Assume v = o = n/2 = m. The vectors X that have all vinegar coordinates
x1, . . . , xv equal to zero, form the Oil Space O, i.e., the collection of X-vectors looking like[

0
∗

]
, and similarly an X-vector in the Vinegar Space V has all oil coordinates xv+1, . . . , xn

equal to zero and looks like

[
∗
0

]
. Clearly, if each Mi is nonsingular, we have

[
∗ ∗
∗ 0

] [
0
∗

]
=

[
∗
0

]
, or MiO = V for all i.
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16.3.137 Proposition If Mj , Hj are invertible,(
M−1
j Mi

)
O = O;(

H−1
j Hi

)
(S−1O) = (S−1O).

16.3.138 Remark This proposition states that any H−1
j Hi has the common invariant subspace of

S−1O. Knowing S−1O is sufficient to find an equivalent form for S. Kipnis et al. [1737]
claim that the same argument works if v < o; even if v > o it can be done in time directly
proportional to qv−o, and hence v−o cannot be too small. However the situation about this
claim is also not very clear due to recent observations in [500]. When there are two or three
times more vinegar variables than oil variables the method appears to be secure, despite
the claims of [390].

16.3.3.11 Reconciliation

16.3.139 Remark We could also attempt to find a sequence of change of basis that would lead to
the inversion of the public map as an improvement to a brute force attack [895]. In the case
of an attack on the UOV scheme with o oil and v = n − o vinegar variables, the attack
becomes a problem of solving m equations in v variables, which could be much easier than
solving m equations in n variables in a direct attack. The reconciliation attack fails with a
probability of approximately 1

q−1 .

16.3.140 Remark Reconciliation attack can be applied to Rainbow systems, which have multiple
layer structure (Subsection 16.3.2.4). This attack works for all constructions with a UOV
construction in the final stage, including all Rainbow and TTS constructions. This affects
how the current proposed parameters of Rainbow [895] are selected.

16.3.3.12 Direct attacks using polynomial solvers

16.3.141 Remark To mount a direct attack, we try to solve the m equations P (W ) = Z in the n
variables w1, . . . , wn. If m ≥ n, we are (over-)determined. If m < n, we are underdetermined.
For most cases (n cannot be too large compared to m), we cannot do much more than to
fix values for m− n variables randomly and continue with m = n [738].

16.3.142 Remark Due to the NP-hardness the the MQ problem [1214], the difficulty of solving
“generic” or randomly chosen systems of nonlinear equations is generally conceded. But, it
is very hard to quantify exactly how hard it is to solve a non-generic system. Often many
techniques in algebraic cryptanalysis require solving a system of polynomial equations at the
end for more or less generic systems. So we must solve the system p1 = p2 = · · · = pm = 0,
where each pi is a quadratic polynomial. Coefficients and variables are in the field K = Fq.

16.3.143 Remark The standard methods for solving equations are Buchberger’s algorithm [437]
to compute a Gröbner basis, and its descendents investigated by Lazard’s group [1877].
Macaulay generalized Sylvester’s matrix to multivariate polynomials [1985]. The idea is to
construct a matrix whose rows are from the coefficients of the multiples of the polynomials
of the original system, the columns representing all the monomials up to a given degree.
Lazard [1877] observed that for a large enough degree, ordering the columns according to
a monomial ordering and performing usual row reduction on the matrix is equivalent to
Buchberger’s algorithm.

16.3.144 Remark Faugère proposed an improved Gröbner bases algorithm called F4 [1040]. A later
version, F5 [1041] made headlines [1042] when it was used for solving HFE Challenge 1 in
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2002, but we do not really know what the real F5 is, since no one else, as far as we know,
has repeated any of the many results claimed by F5. A version of F4 is implemented in the
computer algebra system MAGMA [2798] and is publicly available.

16.3.145 Remark Lazard’s idea was rediscovered in 1999 by Courtois, Klimov, Patarin, and Shamir
[740] as XL. Courtois et al. proposed several adjuncts [736, 742, 743] to XL.

16.3.146 Remark Recently based on the concept of mutant, much work has been done to improve the
XL algorithms, which produced a family of mutant XL algorithms [438, 877, 879, 2114, 2116].

16.3.147 Remark For a system of equations p1(x1, . . . , xn) = · · · = pm(x1, . . . , xn) = 0, if we look at
the ideal generated by pi, then each element f of the ideal can be expressed in the form:

f =
n∑
1

fipi,

which is not unique.

16.3.148 Definition For each such expression, we define the level of this expression to be the
max(deg(gi) + deg(pi), 1 = 1, . . . ,m). If deg(f) is lower than any of the levels of f ,
f is a mutant.

16.3.149 Remark The key idea of mutants [877] is that we try to mathematically describe the
degeneration of the systems, which is critical for the solving process to work. Currently, the
best mutant algorithms beat all other algebraic solvers, including F4.

16.3.150 Remark A key question for understanding the security of the MPKCs is the complexity
of those algebraic solvers. Using generating functions, there are heuristic estimates on the
complexity of solving generic systems [201, 3022]. These works are used to estimate the
complexity of algebraic attack on the HFE systems [1349] based on the concept of degree of
regularity. Recently new breakthroughs have led us to mathematically prove new estimates
for the degree of regularity of HFE [878, 884, 926], which provide theoretical support for
the apparent security benefits of using fields of odd characteristics.

16.3.151 Theorem Let P be a HFE polynomial of degree D. If Rank(P ) > 1, the degree of regularity
of the associated HFE system is bounded by

(q − 1)Rank(P )

2
+ 2.

In particular, this is less than or equal to

(q − 1)(blogq(D − 1)c+ 1)

2
+ 2.

If Rank(P ) = 1, then the degree of regularity is less than or equal to q. Here Rank is the
rank of the quadratic form associated to P .

16.3.152 Remark The concept of degree of regularity and mutant are also closely related. Mutants
can appear only at a degree equal to or higher than the degree of regularity [472].

16.3.4 The future

16.3.153 Remark What really drives the development of the designs in MPKCs are indeed new
mathematical ideas that bring new mathematical structures and insights in the construction
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of MPKCs. The mathematical ideas we have used are just some of the very basic ideas
developed in mathematics and there is great potential in advancing this idea further with
some of the more sophisticated mathematical constructions in algebraic geometry. One
particularly interesting problem would be to make the TTM cryptosystems [2113] work
with the establishment of some new systematic approach. This definitely demands some
deep insights and the usage of some intrinsically combinatorial structures from algebraic
geometry.

16.3.154 Remark Though a lot has been done in studying the efficiency of different attacks, we
still do not fully understand the full potential or the limitations of some of the attack
algorithms. We still need to understand both the theory and practice of how efficiently
general attack algorithms work and how to implement them efficiently. From the theoretical
point of view, to answer these problems, the foundation again lies in modern algebraic
geometry. One critical step would be to prove the maximum rank conjecture postulated
in [853], the theoretical basis used to estimate the complexity of the polynomial solving
algorithms, and the F4 algorithm. Another interesting problem is to mathematically prove
some of the commonly used complexity estimate formulas in [3022].

16.3.155 Remark MPKCs interact more and more with other topics like algebraic attacks. Algebraic
attacks are a very popular research topic in breaking symmetric block ciphers like AES [743]
and stream ciphers [128] and analyzing hash functions [2740]. The origin of such an idea is
from MPKCs, and in particular Patarin’s linearization equation attack method. New ideas
in MPKCs will have much more broad applications in the area of algebraic attacks. The idea
of multivariate constructions was also applied to the symmetric constructions [281, 893].
Similar ideas may have further applications in designing stream ciphers and block ciphers.
The theory of functions on a space over a finite field (multivariate functions) will play an
increasingly important role in the unification of the research in all these related areas.

16.3.156 Remark Research in MPKCs has already developed new challenges that need new methods
and ideas. A mutually beneficial interaction between MPKCs and algebraic geometry [748]
will grow rapidly. MPKCs will provide excellent motivation and critical problems for the
development of the theory of functions over finite fields, and new mathematical tools and
insights are critical for MPKCs’ future development.

See Also

§11.4 For algorithms to compute the roots of HFE polynomials.
§13.4 For the fast linear algebra used in multivariate polynomial solving algorithms.
§16.1 For public key cryptography and post-quantum cryptography.
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16.4 Elliptic curve cryptographic systems

Andreas Enge, INRIA Bordeaux–Sud-Ouest

16.4.1 Cryptosystems based on elliptic curve discrete logarithms

16.4.1 Remark The Fq-rational points on an elliptic curve E defined over a finite field Fq form a
finite abelian group according to Subsection 12.2.2; its group order is close to q by Theo-
rem 12.2.46. This group can be used to implement the discrete logarithm based cryptosys-
tems introduced in Subsection 16.1.3.2, as first observed in [1771, 2102].

16.4.2 Remark For reasons of efficiency, elliptic curve cryptosystems are usually implemented
over prime fields Fp or fields F2m of characteristic two. Supersingular curves over fields
F3m of characteristic three have attracted some attention in the context of pairing based
cryptography, see Section 16.4.2.

16.4.1.1 Key sizes

16.4.3 Remark To resist generic attacks on the discrete logarithm problem, elliptic curve cryp-
tosystems are implemented in the prime order cyclic subgroup of maximal cardinality n
inside E(Fq). For representing group elements with the minimum number of bits, it is desir-
able that the curve order itself be prime. Except for special cases (see Section 16.4.1.3 and
[2535, 2581, 2682]), only generic attacks are known on the elliptic curve discrete logarithm
problem (ECDLP), with a running time on the order of

√
n. A security level of m bits,

corresponding to a symmetric-key cryptosystem (see Section 16.1.2) with 2m keys, thus
requires an order n of 2m bits. Extrapolating the theoretical subexponential complexity of
Remark 11.6.38 for factoring or the DLP in finite fields allows to derive heuristic security
estimates for the corresponding public key cryptosystems of Sections 16.1.3.1 and 16.1.3.2.
Several studies have been carried out in the literature, taking added heuristics on techno-
logical progress into account, see [1276]. They are summarized in the following table; the
figures for the factorization based RSA system essentially carry over to systems based on
discrete logarithms in finite fields; see Remark 11.6.38. The 80 bit security level is a historic
figure.

security (bits) symmetric ECC RSA RSA RSA
[1276, 1894] [2426, §7.2.2.3] [2684, Table 7.2]

80 — 160 1513 1536 1248
112 Triple DES 224 4509 4096 2432
128 AES-128 256 6669 6000 3248
192 AES-192 384 22089 — 7936
256 AES-256 512 49562 — 15424

16.4.1.2 Cryptographic primitives

16.4.4 Remark Some cryptographic primitives (encryption, signatures, etc.) have been adapted
and standardized specifically for elliptic curves. As other discrete logarithm based systems
(see Section 16.1.3.2), they require a setup of public domain parameters, a cyclic subgroup
G of prime order n of some curve E(Fq), with a fixed base point P such that G = 〈P 〉.
Moreover, the bit patterns representing elements of Fq and E(Fq) need to be agreed upon.
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16.4.5 Example (Elliptic Curve Integrated Encryption Scheme, ECIES) This cryptosystem is es-
sentially the same as ElGamal’s, see Example 16.1.27; but the encryption of elements of
G is replaced by symmetric key encryption of arbitrary bit strings with a derived secret
key. So the scheme is hybrid, using symmetric key and public key elements. An additional
message authentication code (MAC) prevents alterations of the encrypted message during
transmission and authenticates its sender. (A MAC is essentially a hash function, see Re-
mark 16.1.23, depending additionally on a symmetric key, and can indeed be constructed
from hash functions; for more details, see [2080, Subsection 9.5.2].)

Besides the domain parameters for the elliptic curve group, the setup comprises a sym-
metric key scheme with an encryption function Ek1

and inverse decryption function Dk1
,

using keys k1 of length `1 bits; and a message authentication code Mk2
using keys k2 of

length `2. Party A has the private key a ∈ [0, n− 1] and the related public key Q = aP .
To encrypt a message m ∈ {0, 1}∗, party B selects a random integer r ∈ [0, n − 1],

computes R = kP , S = kQ and (k1, k2) = f(S), where f : G → {0, 1}`1 × {0, 1}`2 is a key
derivation function (for instance, a cryptographic hash function; see Remark 16.1.23). He
computes c1 = Ek1

(m) and c2 = Mk2
(c1); the ciphertext is (R, c1, c2).

To decrypt such a ciphertext, party A recovers S = aR and (k1, k2) = f(S). If
Mk1(c1) 6= c2, she rejects the ciphertext as invalid; otherwise, she obtains the clear text
as m = Dk1(c1).

16.4.6 Remark The scheme has been first described in a generic discrete logarithm setting (and
in a slightly different form) in [221], and standardized under the name Elliptic Curve Aug-
mented Encryption Scheme in [109]. For arguments supporting its security under suitable
assumptions on the underlying primitives, see [221, 2683] and [313, Chapter III].

16.4.7 Example (Elliptic Curve Digital Signature Algorithm, ECDSA) The algorithm is a simple
transposition of the DSA of Section 16.1.3.3 to the elliptic curve setting.

Besides the domain parameters for the elliptic curve group, the setup comprises a hash
function H : {0, 1}∗ → [0, n − 1] and the reduction function f : G → [0, n − 1], (x, y) 7→ x
(mod n).

Party A has the private key a ∈ [0, n− 1] and the related public key Q = aP .
To sign a message m, party A randomly selects an integer k ∈ [1, n − 1], computes

R = kP , r = f(R), h = H(m), and s ≡ k−1(h + ar) (mod n). The signature is the pair
(r, s).

To verify such a signature, party B computes h = H(m), w ≡ s−1 (mod n), u1 ≡ wh
(mod n), u2 ≡ wr (mod n), and R = u1P + u2Q. He accepts the signature as valid if and
only if r = f(R).

16.4.8 Remark The scheme has been standardized in [108], see also [1133], [1567, Subsections
7.2.7–7.2.8], and [2292, Section 6]. For arguments supporting its security under suitable
assumptions on the underlying primitives, see [313, Chapter II] and [420]. The fact that the
function f depends only on the x-coordinate of its argument has raised doubts about the
security of the scheme [2712]; in particular, it implies weak malleability: From a signature
(r, s) on a given message, another signature (r,−s) on the same message may be obtained.

16.4.1.3 Special curves

16.4.9 Remark A necessary condition for the security of an elliptic curve cryptosystem is that the
order of E(Fq) be prime, or a prime multiplied by a small cofactor. Some special curves
for which this condition is easily tested have been suggested in the literature. These are
more and more deprecated in favor of random curves (see Section 16.4.1.4) in conventional
discrete logarithm settings, [458]. Supersingular and especially CM curves are still needed,
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however, in pairing based cryptography; see Section 16.4.2.

16.4.10 Example (Supersingular curves) The orders of supersingular elliptic curves are known by
Theorem 12.2.51: Over Fp, the only occurring order is p + 1. Over Fpm with p ∈ {2, 3},
the orders pm + 1− t with t ∈ {0,±pm/2,±p(m+1)/2,±2pm/2} may occur depending on the
parity of m. The ECDLP on supersingular curves over Fpm may be reduced to the DLP in
the multiplicative group of Fp2 for curves over Fp; of Fp, Fp2 , Fp3 or Fp4 for curves over F2m ;
and of Fp, Fp2 , Fp3 or Fp6 for curves over F3m . Thus, supersingular curves are deprecated
except for low security pairing based cryptosystems.

16.4.11 Example (Curves over extension fields) If E is defined over a finite field Fq with q small,
then |E(Fq)| can be obtained by exhaustively enumerating all points; and |E(Fqm)| is easily
computed by Remark 12.2.105. In particular, the case q = 2 has been suggested in the
literature. However, since E(Fqm) contains the subgroup E(Fq) (and further subgroups if
m is not prime), the group order cannot be prime anymore.

16.4.12 Remark The existence of the additional Frobenius automorphism of order m, together with
the negation automorphism of order 2, may be used to speed up the generic algorithms of
Sections 11.6.6 and 11.6.7 by a factor of

√
2m [1165, 2978], which reduces the effective

security level.

16.4.13 Remark (Weil descent) If E is defined over an extension field Fqm , then E(Fqm) can be
embedded into A(Fq), where A is an abelian variety of dimension m, called the Weil restric-
tion or restriction of scalars of E. There is reason to believe that the discrete logarithm
problem in A(Fq) may be easier to solve than by a generic algorithm, relying on an ap-
proach of representing the group A(Fq) by a set of generators (called the factor base) and
relations which are solved by linear algebra, cf. Section 11.6.8, leading to a potential attack
described first in [1104, Section 3.2]. Cases where A contains the Jacobian of a hyperelliptic
curve of genus close to m have been worked out for curves over fields of characteristic 2
in [1160, 1250], and fields of odd characteristic in [852]. So far, the attack has been made
effective for certain curves with prime m ≤ 7.

Another algorithm for discrete logarithms, working directly with curves over Fqm and
specially adapted factor bases, is described in [1247]; heuristically, it is faster than the
generic algorithms for m ≥ 3 fixed and q → ∞. Since it involves expensive Gröbner basis
computations, it has been made effective only for m ≤ 3.

Combinations of these approaches are also possible and have led to an attack on curves
of close to cryptographic size over Fp6 [1629]. Moreover, isogenies may be used to transport
the discrete logarithm problem from a seemingly secure curve to one that may be attacked
by Weil descent [1156].

It thus appears cautious to prefer for cryptographic applications curves over prime fields
Fp or, if even characteristic leads to significant performance improvements, fields F2m of
prime extension degree m.

16.4.14 Example (Complex multiplication curves) All ordinary elliptic curves over a finite field Fq =

Fpm have complex multiplication by some order OD =
[
1, D+

√
D

2

]
Z

of discriminant D < 0

in the imaginary-quadratic field Q(
√
D); see Remark 12.2.98. For small |D|, this can be

exploited to explicitly construct curves with a known number of points as follows.

1. Let D < 0, D ≡ 0 or 1 (mod 4), p prime and m minimal such that 4pm = t2−v2D
has a solution in integers t, v.

2. Compute the class polynomial HD ∈ Z[X], the minimal polynomial of j
(
D+
√
D

2

)
,

where j is the absolute elliptic modular invariant function.
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3. HD splits completely over Fpm (and no subfield), and its roots are the j-invariants
of the elliptic curves defined over Fpm with complex multiplication by OD. For
each such j-invariant, one easily writes down a curve with pm + 1 − t points by
solving the expression of j in Definition 12.2.2 for the curve coefficients (up to
isomorphisms and twists, see Section 12.2.5, the solution is unique).

16.4.15 Remark It is easy to see that a prime number of points is only possible for D ≡ 5 (mod 8).

16.4.16 Remark The degree of the class polynomial is the class number of OD, and its total bit
size is of the order of O(|D|1+ε) under GRH. Several quasi-linear algorithms of complexity
O(|D|1+ε) for computing class polynomials have been described in the literature, by floating
point approximations of its roots [978], lifting to a local field [744] or Chinese remaindering
[220]. Nevertheless, the algorithms are restricted to small values of |D|, while random curves
correspond to |D| of the order of q, so that only a negligible fraction of curves may be reached
by the CM approach.

16.4.17 Remark While no attack on this particular fraction of curves has been devised so far,
random curves are generally preferred where possible; note, however, that pairing-based
cryptosystems require the use of either supersingular curves or ordinary curves obtained
with the CM approach; see Section 16.4.2.4.

16.4.18 Example (NIST curves) The USA standard [2292] suggests a prime field Fp and a pseu-
dorandom curve (assuming that the hash function SHA-1 is secure) of prime order over Fp
for p of 192, 224, 256, 384, and 521 bits. (The largest example is for the Mersenne prime
p = 2521 − 1.) For the binary fields F2163 , F2233 , F2283 , F2409 and F2571 , a pseudo-random
curve (of order twice a prime) and a curve defined over F2 (of order twice or four times a
prime) are given. As recommended in Remark 16.4.13, the extension degrees are prime for
curves defined over F2.

16.4.19 Remark We note that the generic discrete logarithm algorithms of Subsections 11.6.6
and 11.6.7 allow for a trade-off between precomputations and the breaking of a given
discrete logarithm: In a group of size about 2m, a precomputation of 2k group elements
yields additional logarithms in time 2m−k. As a precaution, one may thus wish to avoid
predetermined curves, especially at lower security levels.

16.4.1.4 Random curves: point counting

16.4.20 Remark Algorithms for counting points on random elliptic curves currently come in two
flavours. The first algorithm, SEA, is of polynomial complexity; for curves over extension
fields Fpm , there are a variety of algorithms using p-adic numbers, with a much better
polynomial exponent in m, but which are exponential in log p.

16.4.21 Algorithm (Schoof) In [2560], Schoof describes the first algorithm of complexity polynomial
in log q for counting the number of points on an arbitrary elliptic curve E(Fq). The algorithm
is deterministic and computes the trace of Frobenius aq of Definition 12.2.47 and thus the
zeta function of Section 12.2.10. Given a prime ` not dividing q, by Theorem 12.2.66 the
value of aq modulo ` can be determined by checking for all possible values whether the
numerator of the zeta function annihilates the `-torsion points. Chinese remaindering for
sufficiently many primes yields the exact value of aq, which is bounded by Theorem 12.2.46.
The algorithm has a complexity of O

(
(log q)5+ε)

)
, due in part to the fact that the `-torsion

points generate an Fq-algebra of dimension O(`2).

16.4.22 Algorithm (Schoof–Elkies–Atkin, SEA) Improvements are due to Atkin and Elkies [970].
When there is an Fq-rational separable isogeny (see Definition 12.2.26) of degree ` from
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E(Fq) to another curve, then the `-torsion points may be replaced by the kernel of the
isogeny, generating an algebra of dimension O(`) over Fq. By the complex multiplication
theory of Example 16.4.14, this happens when ` is coprime to the conductor of the ring of
endomorphisms OD of E and ` is not inert in the quadratic number field Q(

√
D), which

holds for about half of the primes. The complexity of the algorithm becomes O
(
(log q)4+ε)

)
[312, Chapter VII], [661, Section 17.2].

16.4.23 Remark The practical bottleneck of the algorithm used to be the computation of bivariate
modular polynomials, of size O(`3+ε), needed to derive isogenies of degree `. A quasi-linear
algorithm is described in [979]; eventually limited by space, it has been used for ` up to
around 10000. A more recent algorithm [2752] computes the polynomial, reduced modulo
the characteristic p of Fq and instantiated in one variable by an element of Fq, also in
time O(`3+ε), but in space O(`(` + log q)); it has been used for ` up to about 100000.
Further building blocks of the SEA algorithm have also been optimized [366, 1251, 2098].
The current record is for a prime field Fp with p having about 5000 decimal digits [2751].

16.4.24 Remark The SEA algorithm is implemented in several major computer algebra systems,
and random elliptic curves of cryptographic size with a prime number of points are easily
found, be it as domain parameters, be it in a setting where each user has his own elliptic
curve as part of his public key.

16.4.25 Algorithm (p-adic point counting) For an elliptic curve E over an extension field Fpm ,

Satoh [2533] introduced an algorithm computing its canonical lift to a curve Ê over Qpm ,

the unramified extension of degree m of the p-adic numbers Qp. The curve Ê has the
same endomorphism ring OD (Example 16.4.14) as E and reduces modulo the maximal
ideal of Qpm to E. More precisely, an approximation to Ê may be computed by Newton
iterations on a function derived from the modular polynomial of level p, Algorithm 16.4.21,
at arbitrary p-adic precision. In a second step, the trace of the Frobenius map is computed
in this characteristic 0 setting by the action of its dual isogeny (the reduction of which is
separable) on a holomorphic differential; for this, the isogenies are computed explicitly. After
a precomputation of O(p3+ε) for the p-th modular polynomial (see Algorithm 16.4.21), the
complexity of the algorithm is O(p2m3+ε).

16.4.26 Remark Satoh’s algorithm is not immediately applicable in characteristic two. Mestre sug-
gests in [2088] to use arithmetic-geometric mean (AGM) iterations, a sequence of isogenies
of degree 2, to obtain the canonical lift and the trace of the Frobenius map, also in time
O(m3+ε).

16.4.27 Remark Later work concentrates on lowering the complexity in m: to quasi-quadratic for
finite fields Fqm with a Gaussian normal basis [1904] or in the general case [1422]; or on
lowering the complexity in p: to quasi-linear [1248] or even quasi-square root [1429]. The
record in [1904] for a curve over F2100002 goes beyond all practical cryptographic needs.

16.4.28 Remark For a more thorough account, see [313, Chapter VI] or [661, Section 17.3].

16.4.2 Pairing based cryptosystems

16.4.29 Remark While conventional elliptic curve cryptography relies on the map x 7→ xP , which
is a group homomorphism or, equivalently, a linear map of Z/nZ-modules, pairing based
cryptography requires a bilinear map e : G1 × G2 → G3, see Definition 16.1.35. This
introduces an additional degree of freedom and a wealth of new cryptographic primitives
following the first applications described in Section 16.1.4. Since 2007, a series of conferences,
Pairing-Based Cryptography — Pairing, has been devoted to the topic [1159, 1630, 2601,
2766].
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16.4.2.1 Cryptographic pairings

16.4.30 Definition Let E be an elliptic curve defined over a finite field Fq, and let n be the largest
prime divisor of the cardinality of E(Fq). Assume that n does not divide q. (This is
required in a cryptographic setting due to anomalous curves.) Then the embedding degree
of E is the smallest integer k such that E(Fqk) contains E(Fq)[n], the n2 points of n-

torsion of E(Fq); see Theorem 12.2.60, i.e., k is minimal such that E(Fqk)[n] = E(Fq)[n].

16.4.31 Theorem [183, Theorem 1] If n does not divide q − 1, then the embedding degree is the
smallest integer k such that n divides qk − 1.

16.4.32 Definition A cryptographic elliptic pairing is a map e : G1 × G2 → G3 satisfying the
conditions of Definition 16.1.35, where E is an elliptic curve defined over Fq, n is the
largest prime factor of |E(Fq)|, n divides neither q− 1 nor q, k is the embedding degree
of E, and G1 ⊆ E(Fq) and G2 ⊆ E(Fqk) (denoted additively) and G3 ⊆ F∗qk (denoted

multiplicatively) are subgroups of order n.

16.4.33 Remark In this setting, G1 = E(Fq)[n] and G3 are in fact fixed, while there are n + 1
possible choices for G2; see Subsection 16.4.2.3. Diagonalizing the matrix of the Frobenius
endomorphism on E(Fq)[n] by Theorem 12.2.66 yields a mathematically canonical choice
also for G2, which is given by the following theorems.

16.4.34 Theorem G1 is the subgroup of E(Fqk)[n] generated by the points having eigenvalue 1
under the Frobenius endomorphism φq of Example 12.2.31. There is a unique subgroup
G2 ⊆ E(Fqk) of order n generated by the points having eigenvalue q under the Frobenius
endomorphism.

16.4.35 Theorem Let Tr : E(Fq) → E(Fq), P 7→
∑k−1
i=0 φ

i
q(P ), denote the trace endomorphism of

level k on E. Then the endomorphisms Tr and π2 = id− φq, restricted to E(Fqk)[n], yield

surjective group homomorphisms Tr : E(Fqk)[n]→ G1 with kernel G2 and π2 : E(Fqk)[n]→
G2 with kernel G1.

16.4.36 Definition For a point P on E defined over some extension field Fqm and an integer r, let
fr,P be the function with divisor r(P )− (rP )− (r− 1)(O) that is defined over Fqm and
has leading coefficient 1 in O, see Definitions 12.1.21 and 12.1.23.

For finite points R and S 6= −R, denote by vR = x − x(R) the line with divisor
(R) + (−R) − 2(O) and by `R,S = (y − y(R)) − λR,S(x − x(R)) the line with divisor
(R) + (S) + (−R− S)− 3(O), where

λR,S =

{
y(S)−y(R)
x(S)−x(R) if R 6= S,
3x(R)2+2a2x(R)+a4−a1y(R)

2y(R)+a1x(R)+a3
if R = S,

see Algorithm 12.2.21; additionally, `R,−R = vR and vO = 1.

16.4.37 Definition An addition-negation chain for an integer r is a sequence r1, . . . , rs such that
r1 = 1, rs = r and each element ri is either

1. the negative of a previsously encountered one: there is 1 ≤ j(i) < i such that
ri = −rj(i); or

2. the sum of two previously encountered ones: there are 1 ≤ j(i) ≤ k(i) < i such
that ri = rj(i) + rk(i).
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16.4.38 Algorithm

Require: A point P on E and an integer r
Ensure: fr,P = L

V , where L and V are given as products of lines
Compute an addition-negation chain r1, . . . , rs for r.
P1 ← P , L1 ← 1, V1 ← 1
for i = 2, . . . , s do
j ← j(i), k ← k(i)
if ri = −rj then
Pi ← −Pj
Li ← Vj
Vi ← LjvPi

else
Pi ← Pj + Pk
Li ← LjLk`Pj(i),Pk(i)

Vi ← VjVkvPi
end if

end for
return L = Ls, V = Vs

16.4.39 Example The Weil pairing en of Theorem 12.2.70 is a cryptographic pairing as long as

G2 6= G1. If P , Q ∈ E(Fqk)[n], then en(P,Q) = (−1)n
fn,P (Q)
fn,Q(P ) .

16.4.40 Example Assume that E(Fqk) does not contain a point of order n2, or, equivalently, that n3

does not divide |E(Fqk)|. Then the map E(Fqk)[n]→ E(Fqk)/nE(Fqk), Q 7→ Q+ nE(Fqk),
is a group isomorphism, and the Tate pairing T of Theorem 12.2.75 yields a non-degenerate
pairing

e′T : E(Fqk)[n]× E(Fqk)[n]→ F∗qk/(F
∗
qk)n, (P,Q) 7→ T(P,Q+ nE(Fqk)).

Since e′T |G1×G1 takes values in F∗q/(F∗q)n = {1}, the restriction e′T |G1×G2 is non-degenerate
for any G2 6= G1.

The reduced Tate pairing

eT : G1 ×G2 → G3, (P,Q) 7→
(
T(P,Q+ nE(Fqk))

)(qk−1)/n
,

is a cryptographic pairing for any G2 6= G1. It is computed as

eT (P,Q) = (fn,P (Q))
(qk−1)/n

.

16.4.41 Remark We observe that during the computation of the reduced Tate pairing by Algo-
rithm 16.4.38, all factors lying in a subfield of Fqk may be omitted due to the final expo-
nentiation. In particular, if the x-coordinate of Q lies in a subfield, then all vPi may be
dropped, a technique known as denominator elimination; see Remark 16.4.51.

16.4.42 Definition A distortion map is an effectively computable endomorphism ψ : E(Fq) →
E(Fq) that restricts to an isomorphism ψ : G1 → G2 for some subgroup G2 6= G1.

16.4.43 Remark Since G1 is invariant under the Frobenius φq, but G2 is not, the endomorphisms
ψ and φq cannot commute. So the existence of ψ implies that E is supersingular; see
Theorems 12.2.82 and 12.2.87. Conversely, for supersingular curves, there are distortion
maps ψ : G1 → G2 for any G2 6= G1 [2869, Theorem 5].
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16.4.44 Example Let E be a supersingular curve with distortion map ψ and G2 = ψ(G1). Let
e : G1 ×G2 → G3 be a cryptographic pairing. Then

e′ : G1 ×G1 → G3, (P,Q) 7→ e(P,ψ(Q)),

is a cryptographic pairing in which both arguments come from the same group G1. This
setting is sometimes called a symmetric pairing in the literature, although it does not in
general satisfy e(P,Q) = e(Q,P ); see also Section 16.4.2.3.

16.4.45 Remark Further work has produced a variety of pairings with a shorter loop in Algo-
rithm 16.4.38, that is, defined by some function fr,P with r < n. In general, this is obtained
by choosing special curves and restricting to the subgroups G1 and G2 of Theorem 16.4.34.
Since all involved groups are cyclic, such pairings are necessarily powers of the Tate pairing.

16.4.46 Example (Eta pairing) Let E be a supersingular curve with even k = 2a and distortion
map ψ as in Definition 16.4.42. Let T = t − 1, where t is the trace of the Frobenius map,
see Definition 12.2.47. Then T ≡ q (mod n) and n | (T a + 1). Assume that n2 - (T a + 1).
Then the map

G1 ×G1 → G3, (P,Q) 7→ fT,P (ψ(Q))aT
a−1 qk−1

n ,

is a cryptographic pairing. For a proof, see [203, Section 4] and [1494, Section III]. By Exam-
ple 16.4.62, only curves over fields of characteristic two or three may satisfy the assumptions
of the theorem. Notice that T is of order

√
q by Theorem 12.2.46, so that in the best case

ρ ≈ 1 (see Definition 16.4.66) the loop length in Algorithm 16.4.38 is reduced by a factor
of about 2, while the final exponentiation becomes more expensive.

16.4.47 Example (Ate pairing) Let T = t−1, where t is the trace of the Frobenius map, and assume
that n2 - (T k − 1). Then the map

G2 ×G1 → G3, (Q,P ) 7→ fT,Q(P )
qk−1
n ,

is a cryptographic pairing [1494]. Notice that the roles ofG1 andG2 are inverted compared to
the reduced Tate pairing of Example 16.4.40. Thus, as a price to pay for the loop shortening
in Algorithm 16.4.38, the number of operations in G2 and thus Fqk increases.

16.4.48 Conjecture (Optimal ate pairing) A loop length of essentially log2 n
ϕ(k) , where ϕ is Euler’s

function, may be obtained for a pairing of the previous type, for instance via a product of

functions fci,Q(P )q
i qk−1

n with
∑

log2 ci of the desired magnitude; concrete instances have
been obtained using lattice reduction [1492, 2868].

16.4.2.2 Pairings and twists

16.4.49 Theorem Assume that E is defined over the field Fq of characteristic at least 5 and that
d ∈ {2, 3, 4, 6} is such that d | gcd(k,# Aut(E)). By Proposition 12.2.59, there is, besides E
itself and up to equivalence, precisely one twist E′ of degree d such that n | #E′(Fqk/d). As
can be seen from Proposition 12.2.57, there is an isomorphism ϕ : E′ → E which is defined
over Fqd . The subgroup G′2 of order n of E′(Fqk/d) satisfies ϕ(G′2) = G2.

16.4.50 Remark Theorem 16.4.49 implies that in the presence of twists, elements of G2 are more
compactly represented by elements of G′2; or otherwise said, any cryptographic pairing
e : G1 × G2 → G3 yields an equivalent cryptographic pairing e′ : G1 × G′2 → G3,
(P,Q′) 7→ e(P,ϕ(Q′)).
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16.4.51 Remark Theorem 16.4.49 and the explicit form of ϕ given in Proposition 12.2.57 show that
the x-coordinates of elements in G2 lie in Fqk/2 for d even and that the y-coordinates lie
in Fqk/3 when 3 | d. This may allow for simplifications of Algorithm 16.4.38 in conjunction
with the final exponentiation; see Remark 16.4.41.

16.4.52 Example (Twisted ate pairing) Under the hypotheses of Theorem 16.4.49, let T = t − 1,
where t is the trace of the Frobenius map, and assume that n2 - (T k − 1). Then the map

G1 ×G2 → G3, (P,Q) 7→ fTk/d,P (Q)
qk−1
n ,

is a cryptographic pairing [1494]. Here, the roles of G1 and G2 are again as in the reduced
Tate pairing of Example 16.4.40. However, compared to the ate pairing of Example 16.4.47,
the loop length in Algorithm 16.4.38 is increased by a factor of k

d . Unless t is smaller than
generically expected, the twisted ate pairing is in fact less efficient to compute than the
reduced Tate pairing.

16.4.2.3 Explicit isomorphisms

16.4.53 Remark For the sake of giving security arguments for pairing based systems, the crypto-
logic literature has taken to distinguishing pairings according to the possibility of moving
efficiently between the groups G1 and G2. For instance, if G1 = G2, then the decisional
Diffie-Hellman problem is easy in G1: Given P , aP , bP and R ∈ G1, one has R = abP if
and only if e(P,R) = e(aP, bP ).

16.4.54 Definition Let e be a cryptographic pairing in the sense of Definition 16.4.32. It is of

1. type 1 if G1 = G2;

2. type 2 if there is an efficiently computable isomorphism ψ : G2 → G1, but no
such isomorphism G1 → G2 is known;

3. type 3 if no efficiently computable isomorphisms G1 → G2 or G2 → G1 are
known.

16.4.55 Remark We note that since G1 and G2 are cyclic of the same order n, they are trivially
isomorphic; but exhibiting an effective isomorphism may require to compute discrete loga-
rithms. In general, an efficiently computable isomorphism will be given by an endomorphism
of the elliptic curve.

16.4.56 Example The pairing of Example 16.4.44 on supersingular curves with distortion map is of
type 1. Any pairing with G2 6= G1, G2 is of type 2: The isomorphism is given by the trace
map Tr of Theorem 16.4.35. To the best of our knowledge, pairings with G2 = G2 are of
type 3; at least the trace is trivial on G2.

16.4.57 Remark The terminology type 4 has been used for pairings in which the second argument
comes from the full n-torsion group; in this case, G2 can be seen as the group generated by
this argument, which may vary with each use of the cryptographic primitive. As it is then
unlikely that G2 = G1 or G2, a type 4 pairing essentially behaves as a type 2 pairing.

16.4.58 Remark Type 1 pairings, being restricted to supersingular curves, offer a very limited choice
of embedding degrees, see Example 16.4.62. Type 2 pairings are sometimes preferred in the
cryptographic literature since they appear to facilitate certain security arguments. On the
other hand, the existence of ψ implies that the decisional Diffie-Hellman problem is easy in
G2, and it is apparently not possible to hash into any subgroup G2 different from G1 and
G2; see Subsection 16.4.2.5. Recent work introduces a heuristic construction to transform a
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cryptographic primitive in the type 2 setting, together with its security argument, into an
equivalent type 3 primitive [597].

16.4.59 Remark Some cryptographic primitives have been formulated with a pairing on subgroups
of composite order n. More precisely, n is the product of two primes that are unknown to
the general public, but form part of the private key as in the RSA system of Section 16.1.3.1.
Such pairings can be realized either with supersingular curves [345, Section 2.1] or using
Algorithm 16.4.64; the former leads to a ρ-value (Definition 16.4.66) at least 2, the latter to
a ρ-value close to 2. There is a heuristic approach to transform such cryptosystems, together
with their security proofs, into the setting of prime order subgroups [1098].

16.4.2.4 Curve constructions

16.4.60 Remark The existence of a cryptographic pairing e : G1 × G2 → G3 reduces the discrete
logarithm problem in G1 or G2 to that of G3: For instance, given a point P ∈ G1 and a
multiple xP , choose a point Q ∈ G2 such that ζ = e(P,Q) 6= 1. Then ξ = e(P, xQ) =
e(P,Q)x, and x is the discrete logarithm of ξ ∈ G3 to the base ζ [1108, 2079].

16.4.61 Remark Thus to balance the difficulty of the discrete logarithm problems in the elliptic
curve groups G1 and G2 over Fq and G3 ⊆ F∗qk , the embedding degree k should be chosen
according to the security equivalences in Section 16.4.1.1. For instance, if one follows the
recommendations of [2684], for a system of 256 bit security one would choose n ≈ 2512 and
thus q ≈ 2512, and k ≈ 15425

512 ≈ 30. Since by Theorem 16.4.31 the embedding degree k
equals the order of n in Fq, it will be close to q for random curves. Hence one needs special
constructions to obtain pairing-friendly curves, curves with a prescribed, small value of k.
For a comprehensive survey, see [1101].

16.4.62 Example (Supersingular curves) As first noticed in [2079], the embedding degree is always
exceptionally small for supersingular curves. The following table gives the possible cardi-
nalities according to Theorem 12.2.51, the maximal size n of a cyclic subgroup by [2497]
and the embedding degree k with respect to n.

|E(Fq)| n k
q + 1 q + 1 2

q + 1±√q q + 1±√q 3
q + 1±√2q q + 1±√2q 4
q + 1±√3q q + 1±√3q 6
q + 1± 2

√
q

√
q ± 1 1

16.4.63 Remark All algorithms for finding ordinary pairing-friendly curves rely on complex multi-
plication constructions, cf. Example 16.4.14, and construct curves over prime fields only.

16.4.64 Algorithm A very general method is due to Cocks and Pinch [1101, Section 4.1]. It allows
to fix the desired group order n beforehand; choosing a low Hamming weight in the binary
decomposition of n or more generally a value of n with a short addition-subtraction chain
speeds up Algorithm 16.4.38.

Require: An integer k ≥ 2, a quadratic discriminant D < 0 and a prime n such that
k | (n− 1) and the Legendre symbol

(
D
n

)
= 1

Ensure: A prime p and an elliptic curve E(Fp) (with complex multiplication by OD)
having a subgroup of order n and embedding degree k
repeat
ζ ← an integer such that ζ modulo n is a primitive k-th root of unity in F∗n
t← ζ + 1
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v ← an integer such that v ≡ t−2√
D

(mod n)

p← t2−v2D
4

until p is an integer and prime
Then p ≡ t− 1 (mod n)
Construct the curve E over Fp with p+ 1− t points as in Example 16.4.14

16.4.65 Remark Generically, in this construction t and v will be close to n, so that p will be close
to n2. This motivates the following definition.

16.4.66 Definition The ρ-value of a pairing-friendly curve is given by

ρ =
log p

log n
.

16.4.67 Remark By Theorem 12.2.46, the superior limit of ρ is at least 1 for p → ∞. Values of ρ
larger than 1 result in a loss of bandwidth when transmitting elements of G1, which is a
log2 n-bit subgroup embedded into a ρ log2 n-bit group, and a less efficient arithmetic in the
elliptic curve. The security equivalences of Section 16.4.1.1 do in fact not fix the value of k,
but that of ρk; so different values of k may lead to comparable security levels.

16.4.68 Remark Further research has concentrated on finding families of pairing-friendly curves,
the parameters of which are given by values of polynomials.

16.4.69 Algorithm [413] The following is a direct transcription of Algorithm 16.4.64 to polynomials.

Require: An integer k ≥ 2 and a quadratic discriminant D < 0
Ensure: Polynomials p and n ∈ Q(x) such that if the values p(x0) and n(x0) are

simultaneously prime integers, then there is an elliptic curve E(Fp(x0)) (with complex
multiplication by OD) having a subgroup of order n(x0) and embedding degree k
n ← an irreducible polynomial in Q[x] such that the number field K = Q[x]/(n)
contains

√
D and a primitive k-th root of unity

z ← a polynomial in Q[x] that reduces to a primitive k-th root of unity ζ in K
t← z + 1
v ← a polynomial in Q[x] that reduces to the element ζ−1√

D
in K

s← a polynomial in Q[x] that reduces to
√
D in K

v ← (z−1)s
D mod n

p← t2−Dv2

4

16.4.70 Remark The polynomials p and n need not represent primes or even integers; choosing
small values of |D|, and n such that z, s ∈ Z[X] may help. Let d = deg(n) be the degree of
K. While it is always possible to choose n such that either z or v is of low degree (as low
as 1 if n is the minimal polynomial of the corresponding algebraic number), it is a priori not
clear whether both can be chosen of low degree. Generically, p is of degree 2(d− 1), and the
asymptotic ρ-value of the family is 2− 2

d , a small improvement over Algorithm 16.4.64. In
many cases, however, actual ρ-values are much closer to 1, as demonstrated by the following
example.

16.4.71 Example [413, p. 137] Let k be odd, D = −4 and K = Q(ζ,
√
−1) = Q[x]/(Φ4k(x)) where

Φ4k(x) = Φk(−x2) is the 4k-th cyclotomic polynomial. Choose ζ(x) = −x2, t(x) = −x2 +1,
s(x) = 2xk, v(x) = 1

2 (xk+2 + xk), p(x) = 1
4 (x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1). The

polynomial p takes integral values in odd arguments and, conjecturally, represents primes
if it is irreducible (since p(1) = 1, there is no local obstruction to representing primes).
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Asymptotically for p → ∞, ρ → k+2
ϕ(k) , and ρ → 1 if furthermore k → ∞ with a fixed

number of prime factors.

16.4.72 Remark Similar results hold for even k, and for D = −3 since
√
−3 ∈ Q[x]/(Φ3(x)).

16.4.73 Remark The following table, taken from [1101], gives the current best values of ρ = deg p
degn for

polynomial families of pairing-friendly curves for k ≥ 4. (Smaller values of k may be obtained
for prime fields using supersingular curves; see Example 16.4.62.) For the constructions
behind each family, see [1101].

k deg p deg n ρ kρ
4 2 2 1.00 4.0
5 14 8 1.75 8.8
6 2 2 1.00 6.0
7 16 12 1.33 9.3
8 10 8 1.25 10.0
9 8 6 1.33 12.0

10 4 4 1.00 10.0
11 24 20 1.20 13.2
12 4 4 1.00 12.0
13 28 24 1.17 15.2
14 16 12 1.33 18.7
15 12 8 1.50 22.5
16 10 8 1.25 20.0
17 36 32 1.12 13.8
18 8 6 1.33 24.0
19 40 36 1.11 21.1
20 22 16 1.38 27.5
21 16 12 1.33 28.0
22 26 20 1.30 28.6
23 48 44 1.09 25.1
24 10 8 1.25 30.0
25 52 40 1.30 32.5
26 28 24 1.17 30.3
27 20 18 1.11 30.0

k deg p deg n ρ kρ
28 16 12 1.33 37.3
29 60 56 1.07 31.1
30 12 8 1.50 45.0
31 64 60 1.07 33.1
32 34 32 1.06 34.0
33 24 20 1.20 39.6
34 36 32 1.12 38.2
35 72 48 1.50 52.5
36 14 12 1.17 42.0
37 76 72 1.06 39.1
38 40 36 1.11 42.2
39 28 24 1.17 45.5
40 22 16 1.38 55.0
41 84 80 1.05 43.0
42 16 12 1.33 56.0
43 88 84 1.05 45.0
44 46 40 1.15 50.6
45 32 24 1.33 60.0
46 50 44 1.14 52.3
47 96 92 1.04 49.0
48 18 16 1.12 54.0
49 100 84 1.19 58.3
50 52 40 1.30 65.0

16.4.2.5 Hashing into elliptic curves

16.4.74 Remark Hashing into elliptic curve groups is often required for pairing-based cryptosystems,
see for instance Algorithms 16.1.40 and 16.1.46. Standard cryptographic hash functions (see
Remark 16.1.23) {0, 1}∗ → {0, 1}` of sufficient length ` are easily modified to yield values in
Z/nZ (by reduction modulo n) and to arbitrary finite fields (by hashing to coefficients with
respect to a fixed basis). One would like to extend such constructions to elliptic curves.

16.4.75 Remark In the setting of Definition 16.4.32, if H : {0, 1}∗ → Z/nZ is a collision-resistant
hash function and G1 is generated by a point P of order n, then the function {0, 1}∗ → G1,
m 7→ H(m)P , is trivially collision-resistant. However, this simple construction reveals the
discrete logarithm of the hash value, which in general renders the cryptosystem totally
insecure.

16.4.76 Remark In the following, let E be an elliptic curve defined over Fq as in Definition 16.4.32,
and assume that n3 - |E(Fqk)|. If one can hash into E(Fq), then one can also hash into

G1 = E(Fq)[n]: It suffices for that to multiply the result by the cofactor
|E(Fq)|
n . The

same argument holds for E(Fqk)[n]. However, it is then in general not possible to project

into an arbitrary group G2. For G2 as in Theorem 16.4.35, that is, type 3 pairings as in



796 Handbook of Finite Fields

Definition 16.4.54, the trace Tr : E(Fqk)[n] → G2 can be used to obtain a hash function

with values in G2. Alternatively, in the presence of twists as described in Theorem 16.4.49,
one may more efficiently hash into the subgroup G′2 on the twisted curve, for which the
cofactor is smaller.

To hash into E(k) where k = Fq or k = Fqk , one may use a hash function H : {0, 1} → k
to obtain the x-coordinate of a point. As not all elements of k occur as x-coordinates, one
may need several trials. A possibility is to concatenate the message m with a counter i,
denoted by m||i, and to increase the counter until H(m||i) is the x-coordinate of a point
on E. An additional hash bit may be used to determine one of the generically two points with
the given x-coordinate. The algorithm is deterministic and, if H is modeled as a random
function, it needs an expected number of two trials averaged over all input values. However,
for |k| → ∞, there is a doubly exponentially small fraction of the input values that will
take exponential time. Several recent results exhibit special cases in which polynomial time
hashing is possible uniformly for all input values.

16.4.77 Example [312, Section 4.1] If q ≡ 2 (mod 3), then E : y2 = x3 + 1 is a supersingular curve
over Fq with q + 1 points and k = 2. Precisely, since third powering is a bijection on Fq
with inverse z 7→ z1/3 = z(2q−1)/3, the map Fq → E(Fq)\{O}, y 7→

(
(y2 − 1)(2q−1)/3, y

)
, is

a bijection.

16.4.78 Example [2604] Let E : y2 = f(x) = x3 + a2x
2 + a4x + a6 over Fq of characteristic at

least 3. There are explicit rational functions u1(t), u2(t), u3(t), and v(t) such that v(t)2 =
f(u1(t2))f(u2(t2))f(u3(t2)) [2675]. So for any t there is at least one i(t) such that ui(t)(t

2)

is a square in Fq, which yields a map Fq → E(Fq), t 7→
(
ui(t)(t

2), f(ui(t)(t
2))1/2

)
. In a

cryptographic context, we may assume that a non-square in F∗q is part of the input, and
then Tonelli-Shanks’s algorithm computes square roots in deterministic polynomial time;
see [660, Section 1.5.1] and [2813]. The argument is refined in [2604] to give a deterministic
procedure for computing points on the curve without knowing a non-square and to show
that at least q−4

8 different points may be reached. The case of characteristic two is also
handled.

16.4.79 Example [1566] Let Fq with q ≡ 2 (mod 3) be of characteristic at least 5, and let E : y2 =

x3+ax+b be an elliptic curve over Fq. Let v(t) = 3a−t4
6t and x(t) =

(
v(t)2 − b− t6

27

)1/3

+ t2

3 .

Then 0 7→ O, 0 6= t 7→ (x(t), tx(t) + v(t)) is a map Fq → E(Fq) with image size at least q
4 ,

and conjecturally close to 5q
8 . A similar result holds for curves over F2m with odd m.

16.4.80 Remark Alternative encodings for elliptic curves in Hessian form over Fq with q ≡ 2
(mod 3) and odd are given in [1039, 1672]; see also [745]. They have an image of proven
size about q/2.

See Also

[312], [313], [661] Give comprehensive accounts of elliptic curve cryptography.
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1165, 1247, 1250, 1251, 1276, 1422, 1429, 1492, 1494, 1566, 1567, 1629, 1630, 1672, 1771,
1894, 1904, 2079, 2080, 2088, 2098, 2102, 2292, 2426, 2497, 2533, 2560, 2601, 2604, 2675,
2683, 2684, 2712, 2751, 2752, 2766, 2813, 2868, 2869, 2978]
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16.5 Hyperelliptic curve cryptographic systems

Nicolas Thériault, Universidad del Bio-Bio

16.5.1 Cryptosystems based on hyperelliptic curve discrete logarithms

16.5.1 Remark As stated in Definition 12.4.17, the set of Fq-rational reduced divisors of degree
zero of a hyperelliptic curve C defined over a finite field Fq form a finite abelian group, the
Picard group Pic0Fq (C).

16.5.2 Remark The Picard group can be used as a substitute for the group of points on an el-
liptic curve to implement cryptosystems based on the difficulty of the discrete logarithm
problem [1772, 661]. For efficiency reasons, imaginary curves are usually preferred over real
curves since their group operation is slightly faster in practice. We note that for real hyperel-
liptic curves, the cryptosystems rely on the infrastructure discrete logarithm problem which
can be reduced to a discrete logarithm problem in the Picard group (see Definition 12.4.81
and Remark 12.4.82).

16.5.3 Remark For an imaginary hyperelliptic curve defined over the finite field Fq, the Picard
group is isomorphic to the ideal class group of the curve (the quotient group of the ideals
in the polynomial ring of the curve modulo the principal ideals). For a curve of genus g,
this group has order close to qg (to be precise the group order is between (

√
q − 1)2g and

(
√
q + 1)2g, see Remark 12.4.62). In practice, Mumford’s representation (Theorem 12.4.34)

is used to construct divisors (or rather the corresponding ideals).

16.5.2 Curves of genus 2

16.5.4 Remark As is the case for groups obtained from elliptic curves, the fastest known attacks
on the discrete logarithm problem for hyperelliptic curves of genus two are generic attacks
which require O(

√
n) group operations to compute the discrete logarithm. Because the group

order is n ≈ q2, solving the discrete logarithm problem requires O(q) group operations.

16.5.5 Remark Following the ideas of Harley [1421], efficient implementations of hyperelliptic
curve group operations are usually done via explicit fomulae which replace the polynomial
operations of Cantor’s algorithm [497] with a sequence of field operations on the coefficients
of these polynomials [147, 1246, 1854].

16.5.6 Remark For efficiency reasons, for curves in odd characteristic the curve is usually assumed
to be reduced (via isomorphisms) to the form y2 = x5 + f3x

3 + f2x
2 + f1x+ f0. For curves

in characteristic two, the curve is usually assumed to be reduced to either y2 + h1xy =
x5 + f3x

3 + f2x
2 + f0 (with h1 = 1 in extensions of odd degree) or y2 + (x2 + h1x+ h0)y =

x5 + f4x
4 + f1x+ f0.

16.5.7 Remark Genus two curves of the form y2 + y = f(x) over a field of characteristic two are
supersingular. The discrete logarithm in these curves is much easier to compute (via the
Weil or Tate pairings) than for other curves of genus two. For this reason, these curves are
avoided for cryptographic applications.

16.5.8 Remark For curves in characteristic two, the binary field structure can be used to easily
solve quadratic equations. It becomes possible to compute “halving” operations, giving
performance advantages over doubling operations in some cases [286, 287, 1038].
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16.5.9 Remark As for elliptic curves, there are various coordinate systems to represent divisors,
and more precisely to represent reduced divisors of weight two (divisors of the most com-
mon case). In particular, projective coordinates are sometimes used to obtain inversion-free
explicit formulae. Two basic types of projective coordinates are used in practice:

1. “standard” projective coordinates [2110, 661], [U1, U0, V1, V0, Z], which corre-
spond to the Mumford representation (in affine coordinates) [x2 + (U1/Z)x +
(U0/Z), (V1/Z)x+ (V0/Z)];

2. new projective coordinates [1853], [U1, U0, V1, V0, Z1, Z2], which correspond
to the Mumford representation (in affine coordinates) [x2 + (U1/Z

2
1 )x +

(U0/Z
2
1 ), (V1/Z

3
1Z2)x+ (V0/Z

3
1Z2)].

16.5.10 Remark In some cases, extended (or redundant) coordinates are used since they can save
some field operations in further group operations. For example, the recent coordinates of
Lange [1852] use the coordinates [U1, U0, V1, V0, Z, Z

2] for curves over fields of characteristic
two. Similarly, new coordinates are usually used in the form [U1, U0, V1, V0, Z1, Z2, Z

2
1 , Z

2
2 ]

(in odd characteristic) or [U1, U0, V1, V0, Z1, Z2, Z1Z2, Z
2
1 , Z

2
2 , Z

2
1Z2] (in characteristic two).

16.5.3 Curves of genus 3

16.5.11 Remark Just as curves of genus two, hyperelliptic curves of genus three can be used to
construct cryptosystems based on the discrete logarithm problems, however, evaluating
the security of these cryptosystems is more complicated. There are two algorithms that
must be considered when evaluating the difficulty of the discrete logarithm problem on a
specific hyperelliptic curve: the index calculus algorithm and Smith’s trigonal mapping to
non-hyperelliptic curves.

16.5.12 Remark Index calculus algorithms are used to map the discrete logarithm problem to
computing non-trivial solutions of a system of linear equations. The algorithm proceeds in
two steps: a relation search (to build the system) and a (sparse) linear algebra solver.

Under the right conditions, the overall complexity of the relation search and linear
algebra solver is lower than generic attacks. For curves of genus one and two, index calculus
attacks appear to be slower than generic attacks, but for genus three and higher, index
calculus does indeed reduce the cost of computing discrete logarithms.

16.5.13 Remark A number of variants of the index calculus relation search have been pro-
posed [1245, 1256, 2212, 2802]. Currently, the most efficient algorithms are those of Gaudry
et al. [1256] and Nagao [2212]. Both of these algorithm require the equivalent of O(q4/3+ε)
group operations to compute the discrete logarithm. It should be noted that index calculus
algorithms have the same (estimated) running time for all genus three curves over the field
Fq.

16.5.14 Remark For curves of genus three over fields of odd characteristic, there exists a specialized
attack against the discrete logarithm problem. This attack is due to Smith [2688] and uses a
trigonal map to send the Picard group of a hyperelliptic curve of genus three to the Picard
group of a non-hyperelliptic curve (also of genus three).

As was shown by Diem [854, 856], it is easier to solve the discrete logarithm in the Picard
group of a non-hyperelliptic curve than a hyperelliptic one, the running time decreasing to
an equivalent of O(q1+ε) group operations for genus three curves. If the trigonal map in
Smith’s attack is successful, the security of the curve is then no better than that of a genus
two curve (but with a higher cost for the group operation).

Smith’s attack depends heavily on the structure of the 2-torsion group of the curve (over
the algebraic closure of the field Fq). More specifically, it depends on the extension degree
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of the field Fqk in which each of the Weierstrass points of the curve is defined. As a result,
not all curves over Fq are vulnerable to Smith’s attack.

16.5.15 Example For curves of the form y2 = f(x) for which f(x) splits into linear factors, Smith’s
attack has a 1− 2−105 probability of success (i.e., roughly only 1 in 2105 curves will remain
safe from the attack).

However, the probability of success is much lower for other types of factorization of
f(x), and can even reach zero. For imaginary curves, the following factorization types of
f(x) (degrees of the irreducible factors of f(x)) are completely secure against Smith’s attack:
[7], [5, 2], [5, 1, 1], [4, 3], [3, 2, 2], [3, 2, 1, 1], [3, 1, 1, 1, 1]. For real curves, there is one more
factorization type of f(x) which is completely secure against the attack: [5, 3].

16.5.16 Remark There are a number of open problems coming from Smith’s algorithm. First of all,
it is not known how to adapt the trigonal map to curves over fields of characteristic two.
Secondly, the trigonal map exists only for curves of genus three, but similar ideas could be
important to the security of hyperelliptic curves of higher genus.

16.5.17 Remark As with genus two curves, the group operations are performed via explicit formulae
rather than Cantor’s algorithm [149, 1383, 2211]. Once again, curve isomorphisms are used
to reduce the curve equation and improve efficiency. In odd characteristic the preferred form
of the equation is y2 = x7 +f5x

5 +f4x
4 +f3x

3 +f2x
2 +f1x+f0. For curves in characteristic

two, similar reductions can be performed for each form of h(x).

Unlike elliptic curves and curves of genus two, genus three curves of the form
y2 + y = f(x) over F2n are never supersingular [2552] and can be used in cryptographic
applications. These curves allow for much faster doubling operations, giving efficiency ad-
vantages.

16.5.18 Remark As for genus two curves, for genus three curves in characteristic two, the binary field
structure can be used to easily solve quadratic (and some quartic) equations. It becomes
possible to compute “halving” operations, giving performance advantages over doubling
operations, especially when the degree of h(x) increases [288].

16.5.4 Curves of higher genus

16.5.19 Remark The highest genus that is sometimes considered for cryptographic applications is
four [149, 2381]. The running time for solving the discrete logarithm problem in a hyper-
elliptic curve of genus four (using the algorithm of Gaudry et al. [1256]) is equivalent to
O(q3/2+ε) group operations.

16.5.20 Remark For curves of small degree, the cost of computing discrete logarithm grows as
O(q2−2/g+ε) (for a fixed genus and an increasing field size) [1256, 2212]. However, the
complexity of the group operation is at least linear with respect to the genus of the curve
(in practice this growth is closer to quadratic), in practice limiting the range of “small”
genera which are of interest for cryptosystems. At higher genera, the situation is even more
difficult for cryptosystems based on the discrete logarithm. This situation is discussed in
Section 16.6.10.

16.5.5 Key sizes

16.5.21 Remark The security arguments for hyperelliptic curves of genus two are very similar to
those of elliptic curves, with the only distinction that the group order is close to q2 (rather
than q for elliptic curves). The required bit-sizes for the finite fields are therefore half of
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what they are for elliptic curves with the same security level. Once again, the group order
should be a prime or a prime with a small co-factor. Similarly, the secret key should be of
size similar to the group order, which means that secret key sizes for hyperelliptic curves of
genus two are in fact identical to those of elliptic curves.

16.5.22 Remark The following table summarizes these arguments, giving comparisons with sym-
metric key cryptosystems and as in Remark 16.4.3, the 80 bit security level is now considered
a historic figure.

security level ECC field size genus two field size secret key size
80 160 80 160
112 224 112 224
128 256 128 256
192 384 192 384
256 512 256 512

16.5.23 Remark To choose the field size for genus three hyperelliptic curve, the first concern is
the possibility of an index calculus attack. To have m-bits of security level, we ask that
q4/3 ≈ 2m (using the complexity in Remark 16.5.12), hence log q ≈ 3m/4.

It may be noted that index calculus attacks do not obtain any significant speedups from
restrictions on the key size or factorizations of the group order. In some situations it may be
acceptable to allow the group order to factor into a prime with a (relatively) large cofactor,
as long as the largest prime factor is of such size that the subgroup attack of Pohlig and
Hellman [2406] cannot be effective. The cofactor could then take up to one quarter of the
bit size of the group order.

Having large subgroups can still pose a problem for the security of a cryptosystem unless
there is a mechanism in place to ensure the group element is indeed in the desired subgroup,
otherwise an attacker could provide a group element which is outside of the (large-)prime-
order subgroup, and use a subgroup attack to obtain partial information about the scalar,
thus reducing the effective security level. Unfortunately, verifying in which subgroup a given
group element is located is quite expensive (of cost similar to the scalar multiplication
itself), and has a significant impact on the efficiency of the cryptosystem. For this reason,
it is usually preferred to use groups whose order is (close to) a prime, even though larger
cofactors may not directly decrease the security level.

16.5.24 Remark It is possible to choose keys which are significantly smaller than the group size
without necessarily weakening the cryptosystem. This can be of great importance for the
efficiency of the cryptosystem since the cost of the scalar multiplication (the cryptographic
primitive) is directly proportional to the number of bits of the secret key. However, if the
secret key is too small, it may become possible to compute the secret key using a generic
attack. The bit-size of the secret must therefore be equivalent to those used for elliptic
curves at the same security level.

16.5.25 Remark For curves in odd characteristic, it is recommended to ask that f(x) factors into
one of the factorization types given in Example 16.5.15 (to insure no trigonal mapping can
be used to mount a successful attack). This final condition (factorization of the defining
polynomial) can be seen as equivalent to the requirement that the group order be close to
a prime for protection against generic attacks (factorization of the group order).

16.5.26 Remark The following table gives bit sizes for the field of definition and the secret key
for genus three hyperelliptic curve cryptosystems, comparing with symmetric key sizes and
ECC sizes. If large cofactors are allowed in the group order, its largest prime factor should
be at least of the secret key size.
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security level ECC field size genus three field size secret key size
80 160 60 160
112 224 84 224
128 256 96 256
192 384 144 384
256 512 192 512

16.5.6 Special curves

16.5.27 Definition A hyperelliptic Koblitz curve is a hyperelliptic curve defined over F2 that is
used over F2n for n prime (to avoid having too many subgroups).

16.5.28 Remark The following table lists all (isomorphism classes of) non-supersingular hyperel-
liptic Koblitz curves of genus 2 and their characteristic polynomials.

Curve C (reduced) Characteristic polynomial
y2 + xy = x5 + 1 t4 + t3 + 2t+ 4
y2 + xy = x5 + x2 + 1 t4 − t3 − 2t+ 4
y2 + (x2 + x)y = x5 + 1 t4 − t2 + 4
y2 + (x2 + x+ 1)y = x5 + 1 t4 + t2 + 4
y2 + (x2 + x+ 1)y = x5 + x t4 + 2t3 + 3t2 + 4t+ 4
y2 + (x2 + x+ 1)y = x5 + x+ 1 t4 − 2t3 + 3t2 − 4t+ 4

16.5.29 Remark Besides an easier computation of the group order (although computing the group
order of a random hyperelliptic curve over a binary field is quite efficient), the main advan-
tage of Koblitz curves comes from the Frobenius map over F2.

16.5.30 Remark A similar table for genus three can be found in [1850].

16.5.31 Definition The map defined by τ(x, y) = (x2, y2) for points on the curve gives a degree n
endomorphism on the Picard group when applied to (the support of) divisors defined
over F2n . The application of τ on the Mumford representation of a divisor consists of
squaring all the coefficients of the polynomials. A τ -adic expansion of the scalar [2195]
then gives a reduction in the cost of the scalar multiplication (as for Koblitz elliptic
curves).

16.5.32 Remark Since the τ map has order n for divisors over F2n , the security level of the curve
must be adjusted accordingly (generic attacks can be accelerated by a factor of O(

√
n).

16.5.33 Example The curve
y2 + (x2 + x+ 1)y = x5 + x

is a genus two Koblitz curve with characteristic polynomial over F2 given by t4 +
2t3 + 3t2 + 4t + 4 = 0. Over the field F2113 , its Picard group has order 2 · 7 ·
1583 · 476183 · 10218712550205474310417731984747447186313991554764219834409 (i.e.,
10553167646 times a prime). Taking into account the subgroups and the degree 113 en-
domorphism, this curve gives equivalent security to a random elliptic curve over a field of
186 bits.

16.5.34 Definition A subfield curve is a hyperelliptic curve of genus g defined over a field Fq, but
used as a curve over Fqn [1850]. These curves are generalizations of Koblitz curves.
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16.5.35 Remark There are two possible advantages of using subfield curves. First, computing the
group order is easier than for a general curve over the same field: it can be obtained from
knowledge of the characteristic polynomial of the curve over Fq [1850]. This is of particular
interest in odd characteristic since computing the group order is much more expensive for
these fields than for binary fields. Second, the field structure (of Fqn as an extension of Fq)
allows for more efficient arithmetic than for a prime field Fp with p ≈ qn.

16.5.36 Remark One of the main drawbacks of using curves which are defined over a subfield (in
this case of Fqn) is that the Picard group contains at least one large subgroup, namely
the Picard group of the curve over the subfield Fq. This opens the way for attacks on the
discrete logarithm problem based on the algorithm of Pohlig and Hellman [2406]. To avoid
these attacks, it is necessary to implement some techniques to ensure the group elements
used are always in the larger (prime order) subgroup. Furthermore, these curves are at risk
of Weil descent based attacks, in particular the variant of Gaudry [1247].

16.5.37 Definition Given a curve C defined over Fq, the trace-zero subvariety of the curve is the
quotient group T = Pic0Fqn (C)/P ic0Fq (C). This was proposed by Lange for genus two

and n = 3 [1851] as a method to construct a cryptographically viable group on a field
extension without having to deal with subgroups. If the order of the group T is prime
and close to q4 (qg(n−1) in general) this group can be used for cryptosystems based on
the discrete logarithm problem.

16.5.38 Remark As with subfield curves, the group order of trace-zero subvarieties is computed
from the group order of the Picard group of the curve over Fq. Similarly, these curves take
advantage of the subfield structure to make the field arithmetic more efficient. Finally, the
group operations can also be tailored to work on T rather than on the general Picard group.

16.5.39 Remark Just as with any curve on a field extension, trace-zero subvarieties can be subjected
to Weil descent based attacks. For curves of genus greater than two and for n > 3 in genus
two, a Weil descent attack on the whole Picard group with the simplest form of index
calculus attack [1245] is sufficient to solve the discrete logarithm in time O(q2), significantly
faster than through generic attacks [855].

16.5.40 Remark For n = 3, Gaudry’s variant would allow the attack to handle the Picard group
as if it were the Picard group of a genus six curve over Fq, and the discrete logarithm
problem in the trace-zero subvariety can be lifted to a discrete logarithm problem in the
whole Picard group. This attack has running time O(q5/3), instead of the desired O(q2) for
generic attacks on the group T .

Furthermore, it may be possible to adapt Gaudry’s variant to work directly on the
trace-zero subvariety (by selecting a different factor base, more appropriate to this context),
treating it as a genus four curve over Fq. If such an attack is possible, it would have running
time O(q3/2), making it particularly effective. The construction of an appropriate factor
base is an open problem.

16.5.41 Remark Because of these attacks, field sizes for secure cryptosystems would have to be
increased to preserve the security level, which in turns decreases the efficiency of the field
arithmetic. As a result, groups coming from trace-zero subvarieties are now mostly of the-
oretical interest.

16.5.7 Random curves: point counting

16.5.42 Remark Computing the Picard group order of hyperelliptic curves in even characteristic can
be done quite efficiently via p-adic (in this case 2-adic) algorithms. Currently, the fastest
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algorithms are due to Satoh [2534] and Streng [2735]. These algorithms can handle in
reasonable time both curves of high genus and (more interesting for practical applications)
curves of small genus over a large field.

16.5.43 Remark Compared with the characteristic two case, computing the group order of curves in
odd characteristic is mostly an open problem. In curves over prime fields, most algorithms
are based on Pila’s [2394] extension of Schoof’s algorithm. For genus two curves (where such
works are concentrated), the fastest algorithms are due to Gaudry and Schost [1252, 1253],
and Gaudry, Kohel, and Smith for curves with complex multiplication [1254].

16.5.44 Remark At this time, finding a random hyperelliptic curve in characteristic two that corre-
sponds to required security requirements – having a given genus and field size, with a Picard
group whose order is a large prime with a small co-factor – is considered quite practical.

For curves in odd characteristic, this is considerably more difficult. For genus two curves,
such a search is feasible although expensive ([1253] reports such a search at the 128-bit
security level taking over one million CPU-hours). For genus three (or higher), there are
currently no examples of practical searches for such curves.

16.5.8 Pairings in hyperelliptic curves

16.5.45 Remark Since the Tate-Lichtenbaum pairing comes from the divisor class group structure of
elliptic curves, it naturally generalizes to hyperelliptic curves, although some care has to be
taken to properly adapt the definition as well as Miller’s algorithm; see Subsection 12.4.6. A
survey of the different techniques available for pairings on hyperelliptic curves can be found
in [1157]. Actual implementations of cryptosystems using hyperelliptic curve pairings are
much less common than elliptic curve ones, but [2309] demonstrates the potential interest
of hyperelliptic curves for pairing-based cryptography.

16.5.46 Remark For curves of genus two over prime fields, it is possible to construct curves with a
given group order using complex multiplication methods [2087, 2970, 2971]. Such curves may
be of interest for pairing based cryptosystems on hyperelliptic curves [1157]. For cryptosys-
tems based on the discrete logarithm problem, more random curves are usually preferred
for fear the structure coming from complex multiplication could eventually open the way
to new attacks that significantly decreases the difficulty of the discrete logarithm problem
in these curves (although no such attack is currently known).

See Also

[661], [313] Give comprehensive accounts of hyperelliptic curve cryptography.

References Cited: [1, 147, 149, 286, 287, 288, 313, 497, 661, 854, 855, 856, 1038, 1157, 1245,
1246, 1247, 1252, 1253, 1254, 1256, 1383, 1421, 1772, 1850, 1851, 1852, 1853, 1854, 2087,
2110, 2195, 2211, 2212, 2309, 2381, 2394, 2406, 2534, 2552, 2688, 2735, 2802, 2970, 2971]

16.6 Cryptosystems arising from Abelian varieties
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16.6.1 Definitions

16.6.1 Definition An Abelian variety A over a finite field F is a smooth projective algebraic
variety defined over F on which there is an algebraic group operation, also defined over
F. In particular, the identity element O of the group is an F-rational point.

16.6.2 Definition An Abelian subvariety of an Abelian variety A is an Abelian variety that is
contained in A. Trivial Abelian subvarieties are {0} and A itself. A non-trivial Abelian
subvariety is proper.

16.6.3 Definition An Abelian variety is simple over F if it contains no proper Abelian subvarieties
defined over F. It is absolutely simple if it is simple over the algebraic closure F of F.

16.6.4 Definition Two Abelian varieties A1 and A2 are isogenous if there is a surjective morphism
A1 −→ A2 with finite kernel.

16.6.2 Examples

16.6.5 Example Abelian varieties of dimension one are elliptic curves.

16.6.6 Remark Elliptic curves are the only curves that are also Abelian varieties. This follows
from the result below which is a consequence of the Riemann-Roch theorem.

16.6.7 Proposition If C is an algebraic curve of genus g which is also an Abelian variety, then
necessarily g = 1 and C is an elliptic curve.

16.6.8 Example Given two Abelian varieties A1 and A2, there is a natural structure of Abelian
variety on the product A1 ×A2.

16.6.9 Example In particular, one can take a power of an elliptic curve En = E × · · · × E and
products of powers of different elliptic curves En1

1 × · · · × Enkk .

16.6.10 Theorem An Abelian variety over F is isogenous to a product of simple Abelian varieties
defined over F.

16.6.3 Jacobians of curves

16.6.11 Theorem Given a curve C defined over F, there is an Abelian variety J(C), the Jacobian
of C, which is also defined over F. It has the following properties:

1. The dimension of J(C) is the genus of C.

2. If g is the genus of C, there is a surjective map Cg = C × · · · × C −→ J(C).

16.6.12 Theorem The F points on J(C) are given by D0/P where D0 is the Abelian group of
divisors of degree zero and P is the subgroup of divisors of degree zero which are divisors
of functions.

16.6.4 Restriction of scalars

16.6.13 Remark Let A be an Abelian variety defined over an extension field F′ over F. Suppose
that [F′ : F] = r and that A is of dimension d. Then there is an Abelian variety RF′/FA
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(called the restriction of scalars of A) defined over F of dimension rd with the property that
RF′/FA(F) = A(F′).

16.6.5 Endomorphisms

16.6.14 Remark The fundamental theorem is due to Tate.

16.6.15 Theorem Let A be an Abelian variety of dimension g defined over a finite field F. Let π be
the Frobenius endomorphism of A relative to F and P its characteristic polynomial.

1. The algebra F = Q[π] is the center of the semisimple algebra E = EndF(A)⊗Q.

2. E contains a semisimple Q-subalgebra M of rank 2g which is maximal and com-
mutative.

3. The following are equivalent:

a. [E : Q] = 2g;

b. P has no multiple roots;

c. E = F ;

d. E is commutative.

4. The following are equivalent:

a. [E : Q] = (2g)2;

b. P is a power of a linear polynomial;

c. F = Q;

d. E is isomorphic to the algebra of g× g matrices over the unique quaternion
division algebra Dp over Q which splits at all primes ` 6= p,∞;

e. A is F-isogenous to the g-th power of a supersingular elliptic curve, all of
whose endomorphisms are defined over F.

5. A is F-isogenous to a power of an F-simple Abelian variety if and only if P is a
power of a Q-irreducible polynomial. When this is the case, E is a central simple
algebra over F which splits at all finite primes v of F not dividing p, but does
not split at any real primes of F .

16.6.6 The characteristic polynomial of an endomorphism

16.6.16 Definition Let φ : A −→ A be an endomorphism. Then, there is a polynomial Pφ(T ) with
the property that for every integer n ≥ 1, we have Pφ(n) = deg(n−φ). This polynomial
is the characteristic polynomial of φ.

16.6.17 Remark An important case of this is the Frobenius endomorphism x 7→ xq on F. It induces
an endomorphism of A.

16.6.7 Zeta functions

16.6.18 Definition Denote by Fn the unique extension of F of degree n contained in F. The zeta
function Z(A, T ) of an Abelian variety A defined over a finite field F is the power series

Z(A, T ) = exp

∑
n≥1

|A(Fn)|Tn/n

 .
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16.6.19 Theorem There are polynomials P0(T ), . . . , P2d(T ) (where d = dim(A)) such that

Z(A, T ) =
2d∏
i=0

Pi(T )(−1)i+1

.

16.6.20 Example The zeta function of an elliptic curve E is of the form

Z(E, T ) = P1(T )/(1− T )(1− qT ).

Here, P1(T ) is a polynomial of degree 2 and is of the form 1 − aqT + qT 2 with
|E(F)| = 1− aq + q. Moreover, aq is an integer with aq = π+π and π is a complex number
of absolute value q1/2. We have |E(Fn)| = 1− (πn + πn) + qn.

16.6.21 Remark The single integer aq determines the number of points on E over Fn for every n.

16.6.22 Theorem The polynomials Pi(T ) of the previous result have the following properties:

1. We have Pi(T ) ∈ Z[T ].

2. The degree of Pi is
(

2d
i

)
.

3. The polynomial P1(T ) is the characteristic polynomial of the Frobenius endo-
morphism.

4. The factorization of P1 is of the form
∏2d
j=1(1 − πjT ) where for 1 ≤ j ≤ d,

πj+d = πj and πjπj+d = q.

5. The roots of Pi are i-fold products of the πj .

6. We have P0(T ) = 1− T and P2d(T ) = 1− qdT .

16.6.23 Theorem [2783] The polynomial P1(T ) determines the isogeny class of A.

16.6.24 Remark The above theorem is a fundamental result of Tate.

16.6.25 Theorem Given a set of 2d complex numbers {πj : 1 ≤ j ≤ 2d}, with πj+d = πj and
πjπj+d = q for 1 ≤ j ≤ d, there is an Abelian variety A defined over F for which

P1(T ) =
∏2d
j=1(1− πjT ).

16.6.26 Remark This is a fundamental result of Honda and Tate.

16.6.27 Definition The Newton polygon of an Abelian variety A is the Newton polygon of P1(T ).
In particular, if we write P1(T ) = 1 + a1T + · · ·+ a2dT

2d, then the Newton polygon is
the convex hull of the points (j, ordpaj) for 1 ≤ j ≤ 2d. A slope of the Newton polygon
is (d− b)/(c−a) where (a, b) and (c, d) are two vertices. The length of the slope is c−a.

16.6.28 Proposition [2438, Theorem 9.1] The slopes of the Newton polygon are (counting multi-
plicities) the p-adic ordinals of the reciprocal roots of P1(T ). More precisely, if λ is a slope
of length m, then precisely m of the numbers ordpπi are equal to λ.

16.6.29 Remark Given the condition that for every j, we have πjπj+d = q, at most d of the πj can
be prime to q (that is, have ordpπj = 0).

16.6.30 Definition An Abelian variety A is ordinary if exactly d of the πj satisfy ordpπj = 0. An
Abelian variety is supersingular if none of the πj satisfy ordpπj = 0.

16.6.31 Theorem A supersingular Abelian varietyA over F is isogenous to a power of a supersingular
elliptic curve over F.
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16.6.8 Arithmetic on an Abelian variety

16.6.32 Remark There are efficient algorithms to compute on elliptic curves as well as on Jacobians
of hyperelliptic curves. These have been described in earlier sections. There is an interesting
class of curves (called Ca,b curves) which generalizes these. We describe them below.

16.6.33 Definition Let a and b be positive integers. A Ca,b curve over F is one that is defined by
an equation of the form

F (x, y) = αb,0x
b + α0,ay

a +
∑

ia+jb<ab

αi,jx
iyj

where the coefficients αi,j are elements of F and the leading coefficients αb,o and α0,a

are nonzero.

16.6.34 Remark Such a curve has the property that it is has exactly one F-rational point (Q say)
at infinity and the polar divisors of the functions x and y are aQ and bQ, respectively.

16.6.35 Example An elliptic curve is a C2,3 curve and more generally, a hyperelliptic curve given
by

y2 = f(x)

with f a polynomial of degree 2g + 1 is a C2,2g+1 curve.

16.6.36 Example A superelliptic curve, in other words one of the form

ya = f(x)

where f has degree g (say) is a Ca,g curve.

16.6.37 Proposition Let C be a Ca,b curve. Any element of the Jacobian J(C) can be expressed
(not necessarily uniquely) by a divisor of the form E − nQ where E is a positive divisor
whose support is disjoint from Q and 0 ≤ n ≤ g. Here g is the genus of C.

16.6.38 Remark A divisor as in the proposition is called semi normal. It is possible that two
semi normal divisors are equivalent (that is, represent the same point in the Jacobian).
To get a unique representation, start with a semi normal divisor D = E − nQ with E as
above. Find a nonzero function f whose polar divisor is supported at Q, whose zero divisor
satisfies (f)0 ≥ E, and which has the smallest possible order pole at Q. Then consider the
divisor −D + (f). Applying this process once more yields a divisor equivalent to D which
is unique. Every divisor class contains a divisor of this form, henceforth called the normal
representative of the class.

16.6.39 Proposition Let C be a Ca,b curve. Every point in the Jacobian J(C) (and hence every
divisor class) can be represented uniquely by a normal divisor.

16.6.40 Remark With a canonical representative of each divisor class, arithmetic is now explicit.

16.6.41 Remark [1582] By expressing the above normal form using Gröbner bases, the complexity
of addition is estimated to be O(g3(log q)2).

16.6.42 Remark A special case of Ca,b curves is the family of diagonal curves. They are repre-
sented by an equation of the form ya = cxb + d with c, d ∈ F×q . This curve has genus
1
2 ((a− 1)(b− 1)− gcd(a, b) + 1). By explicitly computing the zeta function of J(C) in terms
of Jacobi sums, Blache, Cherdieu, and Sarlabous [294] show that for F = Fp, the Jacobian
J(C) is simple if p ≡ 1, 2, 4, 7, 8, 11, 13 (mod 15). Moreover, it is supersingular if p ≡ 14
(mod 15). Moreover, they develop an analogue of Cantor’s addition algorithm in J(C).
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16.6.43 Remark Addition on the Jacobian of a general curve has been described by Volcheck but
this method does not seem to be practical over fields of cryptographic size.

16.6.44 Remark Arita, Miura, and Sekiguchi [123] have shown how to use a singular plane model of
a general curve to obtain an algorithm for addition on the Jacobian. However, the complexity
of this algorithm has not been analyzed.

16.6.9 The group order

16.6.45 Remark For cryptographic applications, we want the group A(F) to be “nearly” of prime
order. In particular, we want A to be simple (and perhaps even absolutely simple). This
rules out supersingular Abelian varieties as (by a result stated above) they are isogenous to
a power of a supersingular elliptic curve.

16.6.10 The discrete logarithm problem

16.6.46 Definition Let A be an Abelian variety over the finite field F. Let P ∈ A(F) and Q an
element of the subgroup of A(F) generated by P . The discrete logarithm problem for
this subgroup is to determine an integer n so that Q = nP .

16.6.47 Remark In the case of hyperelliptic curves, we have the following result of Enge and Gaudry
based on an index calculus approach.

16.6.48 Theorem [980] The discrete logarithm problem on J(C) (where C is a hyperelliptic curve
of genus g defined over a finite field of q elements) is of complexity

O(exp{(
√

2 + o(1))
√

(log qg)(log log qg)}).

16.6.49 Remark This result assumes that the group order is known and that the group itself can
be computed in polynomial time. Several authors have studied analogues of this result for
the Jacobian of a non-hyperelliptic curve. In particular, one has the following results.

16.6.50 Theorem [854] Fix positive integers d (the degree) and g ≤ (d − 1)(d − 2)/2 (the genus).
Denote by S(q) the set of all instances of the discrete logarithm problem in curves of
genus g over Fq represented by plane models of degree d. Then there is a subset S1(q)
with |S1(q)|/|S(q)| → 1 (as q → ∞) such that the instances in S1(q) can be solved in an

“expected” time of O(q(2− 2
d−2 )(log q)A) for some integer A ≥ 1.

16.6.51 Remark The analysis in [854] involves several heuristic assumptions (including assumptions
on the group order and structure) and the power of the logarithm is not specified. The
result, in particular, applies to non-hyperelliptic curves of genus 3 (which by the canonical
embedding, may be represented by a plane quartic (d = 4)). This particular case is further
analyzed by Diem and Thomé [856].

16.6.52 Remark In the case studied by Diem and Thomé, the heuristic assumptions can be made
explicit in graph-theoretic terms. Choose a subset F ⊂ C(F) (called the factor base) of
cardinality O(

√
q) and let L denote the complement of F in C(F). A graph G is constructed

with vertices L∪{∗} where ∗ is a special root vertex. The edges in this graph are determined
as follows. For each pair F1, F2 ∈ F , compute the line L through these points. Consider the
divisor D = F1 + F2 +D1,2 representing the intersection of C with L. If P,Q are points in
the support of D1,2, at least one of which is in L, construct an edge joining P and Q (or P
and ∗ or Q and ∗).
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16.6.53 Theorem [856] Suppose that C is a non-hyperelliptic curve of genus 3 with the property
that J(C)(F) is cyclic. Suppose also that the graph G constructed above has a tree rooted
at ∗ of depth O((log q)2) and having at least O(q5/6) elements. Then the discrete logarithm
problem in J(C) can be solved in O(q(log q)A) steps.

16.6.54 Remark We say that the discrete logarithm problem for the pair (A,P ) consisting of the
Abelian variety A and the subgroup generated by a point P on A is difficult if it is compu-
tationally infeasible to solve the problem.

16.6.55 Remark Let A and P be as above and suppose that the discrete logarithm problem for
(A,P ) is difficult. Then we can perform a key exchange using the Diffie Hellman protocol
with the group G generated by P .

16.6.56 Remark In order for such a key exchange scheme to be useful and secure against known
attacks, we require:

1. arithmetic on A should be efficient;

2. the group order A(F) should be nearly prime.

16.6.57 Remark There is a vast literature on the discrete logarithm problem. The reader is referred
to the surveys [1495, 1586] for some results that are not mentioned here.

16.6.58 Remark The motivation for considering higher dimensional Abelian varieties as the basis of
a cryptographic scheme is based on the fact that if A has dimension d, the number of points
A(F) is of order qd. Thus, we should expect the difficulty of the discrete logarithm problem to
be of the order qd/2. In particular, a 2-dimensional Abelian variety has a discrete logarithm
problem of difficulty O(q) whereas an elliptic curve has a discrete logarithm problem of
difficulty O(q1/2). This means that there is the possibility of achieving the same level of
security that an elliptic curve over a field of 2163 offers by using a two dimensional Abelian
variety over a field of 282. The fact that we can work over a field of smaller size may mean
that there is a reduction in the overhead of time and memory required to do computations.
Whether this is actually the case is a matter of current research.

16.6.11 Weil descent attack

16.6.59 Remark Frey [1104] suggested that it might be possible to use Weil descent to attack the
discrete logarithm problem on elliptic curves defined over Fpn where n is composite. This
idea was explicitly developed and analyzed by Gaudry, Hess, and Smart [1250] in the case
p = 2.

16.6.60 Definition Let ` and n be positive integers. Set q = 2`, k = Fq, and K = Fqn . Let E be a
non-supersingular elliptic curve defined over K by the equation

y2 + xy = x3 + ax+ b

with a, b ∈ K and b 6= 0. Suppose that |E(K)| = dr where d is small and r is prime.
Let b0 = b, b1, . . . , bn−1 be the conjugates of b (under the Frobenius automorphism
σ(x) = xq).

Let m(b) be the dimension of the vector space over F2 spanned by the set

{(1, b1/20 ), . . . , (1, b
1/2
n−1)}.
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16.6.61 Theorem [1250] There is a hyperelliptic curve C of genus g = 2m(b)−1 or 2m(b)−1 − 1
defined over k so that the discrete logarithm problem on E(K) can be solved in J(C)(k).
In particular, the complexity of the discrete logarithm problem is O(qg/2).

16.6.62 Theorem [2078] Let n be an odd prime and t the multiplicative order of 2 modulo n. Set
s = (n− 1)/t.

1. The polynomial xn + 1 factors over F2 as (x + 1)f1f2 · · · fs where the fi are
distinct irreducible polynomials of degree t.

2. The set

B = {b ∈ Fqn\Fq : (σ + 1)fi(σ)(b) = 0 for some 1 ≤ i ≤ s}

has cardinality qs(qt − 1).

3. For all b ∈ B, the curves y2 + xy = x3 + ax2 + b has m(b) = t+ 1.

16.6.63 Example

1. If n = 3 we have s = 1 and t = 2. Then B has cardinality q(q2−1) so B = Fq3\Fq
and m(b) = 3.

2. If n = 5, we have s = 1 and t = 4. Then again, B = Fq5\Fq and m(b) = 5.

3. If n = 31 we have t = 5 and s = 6. Then B has cardinality 6q(q5 − 1) and
m(b) = 6.

16.6.64 Example The following special case was analyzed in detail by Jacobson, Menezes, and Stein
[1585]. For the elliptic curve

y2 + xy = x3 + x+ b

defined over the field F2[z]/(z155 + z62 + 1) of 2155 elements, and with b = z16 + z2 + z,
instances of the discrete logarithm problem can be reduced to the discrete logarithm problem
on the Jacobian J(C) of a hyperelliptic curve C of genus 31 over the field F25 .

16.6.65 Remark The case of odd characteristic was developed by Diem [852]. In particular, he
showed that the Weil descent attack is not effective for elliptic curves defined over Fpn
when n ≥ 11 is prime. On the other hand, if n = 5, 7 and p is replaced by q = pm, in
general, the discrete logarithm problem on an elliptic curve E over Fqn can be reduced to
a discrete logarithm problem in the Jacobian of a curve of genus 5 or 7 over Fq.

16.6.66 Remark Weil descent attacks can also be mounted on the discrete logarithm problem for
Jacobians of hyperelliptic curves. See the discussion in [148].

16.6.12 Pairings based cryptosystems

16.6.67 Remark Besides the Weil pairing described above, Frey and Rück [1108] introduced the
Lichtenbaum-Tate pairing. Suppose that A is the Jacobian of the curve C defined over F.
If ` is a prime not dividing q (the cardinality of F) and k is the order of q modulo `, there
is a pairing

A[`](F) × A(F)/`A(F) −→ F×
qk
/(F×

qk
)`.

16.6.68 Theorem [1108] This pairing is non-degenerate. Using it, the discrete logarithm problem
in A[`](F ) can be reduced to the corresponding problem in F×

qk
in probabilistic polynomial

time in log q.
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16.6.69 Definition The number k above is the embedding degree.

16.6.70 Remark If the embedding degree is small, then solving the discrete logarithm problem in
F×
qk

is practical. Several authors have found examples of Abelian varieties for which the
embedding degree is small.

16.6.71 Theorem [1097] Given a CM field K of degree 2g ≥ 4, a primitive CM-type Φ of K, a
positive integer k and a prime r ≡ 1 (mod k) that splits completely in K, there exists a
prime p and a simple, ordinary Abelian variety A defined over Fp with embedding degree k
with respect to r, and an element π ∈ K so that |A(Fp)| = NK/Q(π − 1).

16.6.72 Remark The construction of A is not explicit. Rather the polynomial P1(T ) is constructed
explicitly and an appeal is made to the theorem of Honda and Tate. Moreover, heuristic
analysis suggests that P1(T ) can be found in O(log r) steps.

16.6.73 Remark Galbraith, McKee, and Valenca [1158] produce examples of ordinary Abelian sur-
faces with embedding degrees 5, 10, and 12. Again, the construction appeals to the Honda-
Tate theorem.

16.6.74 Remark The embedding degree and security parameters in the case of supersingular Abelian
varieties is analyzed carefully by Rubin and Silverberg [2494].

See Also

§16.4 For elliptic curve cryptosystems.
§16.5 For hyperelliptic curve cryptosystems.

References Cited: [123, 148, 294, 852, 854, 856, 980, 1097, 1104, 1108, 1158, 1250, 1495,
1582, 1585, 1586, 2078, 2438, 2494, 2783]

16.7 Binary extension field arithmetic for hardware imple-
mentations

M. Anwarul Hasan, University of Waterloo

Haining Fan, Tsinghua University

We consider algorithms and architectures for hardware realization of arithmetic opera-
tions over binary extension fields F2n . In particular, we focus on arithmetic algorithms and
architectures suitable for implementation in hardware for today’s cryptographic applica-
tions. For representation of elements of F2n , we consider polynomial and normal bases over
F2.

16.7.1 Preamble and basic terminologies

16.7.1 Remark Common choices for hardware are configurable semiconductor devices, such as field
programmable gate arrays (FPGAs) and application specific integrated circuits (ASICs).
FPGAs have a very low non-recurring engineering cost and can generally be re-configured
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many times. On the other hand, ASICs require a high non-recurring engineering cost, but
the unit cost is relatively lower for large quantity production, and are considered to be more
suitable for applications requiring high-speed, low area, or low power designs.

16.7.2 Remark An arithmetic algorithm for hardware can be evaluated based on one or more
of the following: (i) number of arithmetic operations over the underlying field (hence it is
essentially arithmetic complexity of the algorithm), (ii) amount of storage, e.g., flip-flops
for temporary storage and memory for pre-computed values, and (iii) number of accesses
to memories used.

16.7.3 Remark An arithmetic algorithm can be mapped onto different types of hardware archi-
tectures, e.g., serial, parallel, pipelined, systolic, etc. Two important figures of merit to
characterize the performance of an architecture are space and time complexities. Generally,
trade-offs between space and time are possible. Main components of a hardware architecture
include: logic gates, temporary storage (flip-flops, registers, etc.), and memories.

16.7.4 Definition The space complexity of an architecture is its number of logic gates (e.g., AND

and XOR) and the amount of storage (i.e., flip-flops and memories). For simplicity, only
two-input logic gates are assumed and interconnections are ignored.

16.7.5 Definition The critical path of an architecture is the path that represents the longest time
delay. We approximate the delay as the delay caused by the logic gates in the critical
path. In actual hardware realization, other factors such as interconnections contribute
to the delay.

16.7.6 Definition The time complexity of an architecture is the amount of time needed by the
architecture to complete the required arithmetic operation upon receiving any portion of
the input. For a fully bit-parallel architecture, the time complexity is simply the delay in
the critical path. For architecture that requires multiple clock cycles for the arithmetic
operation, the time complexity is approximated as the product of the number of clock
cycles and the gate delays in the critical path.

16.7.7 Remark At the architectural level, various design components can be used, for example, a
two-input XOR gate for an addition over F2 and a two-input AND gate for a multiplication
over F2. The time delay of a component is denoted as T along with a suitable subscript. For
example, we denote the time delay for a two-input XOR gate as TX , and that of a two-input
AND gate as TA.

16.7.2 Arithmetic using polynomial operations

16.7.8 Definition The elements of F2n can be represented as polynomials over F2 of degree n− 1
or less. Thus, for a ∈ F2n we can write a =

∑n−1
i=0 aix

i, where ai ∈ F2 and 0 ≤ i ≤ n−1.
The set {1, x, . . . , xn−1} is a polynomial basis of F2n over F2; see Section 2.1.

16.7.9 Definition Let a =
∑n−1
i=0 aix

i and b =
∑n−1
i=0 bix

i be two elements of F2n . Then the

addition of a and b is a+ b :=
∑n−1
i=0 (ai + bi)x

i, where ai + bi is over F2.
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16.7.10 Proposition Using n XOR gates in parallel, a+ b can be computed with a delay of one TX
only. On the other hand, a+ b can be be computed in bit serial fashion using only one XOR

gate and a delay of nTX .

16.7.11 Definition Let a and b be two elements of F2n represented using polynomials as stated
above. Then the product of a and b is ab := a(x)b(x) (mod f(x)), where f is an irre-
ducible polynomial of degree n over F2 and defines the representation of the field.

16.7.12 Remark Various algorithms exist for computing ab. One class of algorithms involves the
following two steps: first the multiplication of the two n-term polynomials, a and b, is
performed, and then the resulting (2n − 1)-term polynomial is reduced modulo f . In the
straightforward or schoolbook method, the multiplication ab is performed by repeated shift-
and-add operations and requires O(n2) additions and multiplications over F2. A more effi-
cient method is known as the Karatsuba algorithm and it is based on the following.

16.7.13 Theorem [1684] Assume that n is even and the n-term polynomial a is split as aHx
n/2 +aL,

where aH and aL are each (n/2)-term polynomials in x over F2. Similarly, b is split as
bHx

n/2 + bL. Then

ab = aHbHx
n + [(aH + aL)(bH + bL)− aHbH − aLbL]xn/2 + aLbL. (16.7.1)

16.7.14 Remark We note that addition and subtraction are the same in fields of characteristic two.
In case n is not even, a zero coefficient can be padded at the higher degree end of a and b
allowing an even splitting. This technique can be applied recursively and the following can
be proven.

16.7.15 Lemma [2342] Assuming that n is a power of 2, then a recursive application of Theorem
16.7.13 for the multiplication of a and b requires no more than nlog2 3 multiplications and
6nlog2 3 − 8n+ 2 additions over F2.

16.7.16 Corollary [1026, 2342] A fully bit parallel implementation of the Karatsuba algorithm for
the multiplication of two n-term F2 polynomials requires 6nlog2 3 − 8n+ 2 XOR and nlog2 3

AND gates, and its time complexity is (3 log2 n− 1)TX + TA.

16.7.17 Remark Since log2 3 ≈ 1.58 < 2, the Karatsuba algorithm, which first appeared in [1684]
for integer multiplication, has a subquadratic arithmetic complexity. In the context of poly-
nomial multiplication, a generalization of the Karatsuba algorithm can be found in [2963].

16.7.18 Remark The main rationale behind designing a fully parallel multiplier is to achieve a
higher speed. For multiplication of polynomials a and b, one way to achieve a time com-
plexity that is lower than that of the Karatsuba algorithm is to split the polynomials
according to the parity of the x’s exponent [1028], i.e., a(x) = ae(y)+xao(y), where y = x2,

ae(y) =
∑n/2−1
i=0 a2iy

i and ao(y) =
∑n/2−1
i=0 a2i+1y

i. Similarly, b(x) = be(y) + xbo(y). Then
the product a(x)b(x) is computed using the following Karatsuba-like formula

a(x)b(x) = {[ae(y)be(y) + yao(y)bo(y)]}+

x{[(ae(y) + ao(y))(be(y) + bo(y))]− [ae(y)be(y) + ao(y)bo(y)]}.

If n is a power of 2, then a recursive application of the above splitting can lead to a fully
bit parallel polynomial multiplication hardware that has the same space complexity as the
Karatsuba algorithm, but is about 30% faster - the main gate delays are 2 log2 nTX vs.
(3 log2 n− 1)TX .
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16.7.19 Remark An improvement to the original F2[x] Karatsuba algorithm in terms of space
complexity is given in [3064]. The main idea of this method can also be described using the
following refined Karatsuba identity [243, p. 325]:

ab = aHbHx
2n + {[(aH + aL)(bH + bL)]− [aHbH + aLbL]}xn + aLbL

= (aHbHx
n − aLbL)(xn − 1) + (aH + aL)(bH + bL)xn.

This identity is in fact closer to Karatsuba’s original squaring identity ([1684, p. 595]) than
identity 16.7.1. Table 16.7.1 summarizes complexities of the Karatsuba algorithm and its
two variants.

Algorithm #AND #XOR Gate delay

Karatsuba [32, 2342] nlog2 3 6nlog2 3 − 8n+ 2 (3 log2 n− 1)TX + TA
Overlap-free Karatsuba [1028] nlog2 3 6nlog2 3 − 8n+ 2 (2 log2 n)TX + TA
Refined Karatsuba [243, 3064] nlog2 3 5.5nlog2 3 − 7n+ 1.5 (3 log2 n− 1)TX + TA

Table 16.7.1 Asymptotic complexities of three Karatsuba algorithms.

16.7.20 Remark The Winograd short convolution algorithm may be viewed as a generalization
of the original Karatsuba-based algorithm [241, 2747, 2988]: while the original Karatsuba
algorithm performs evaluation and interpolation using linear factors x −∞, x and x − 1,
the Winograd method also uses nonlinear factors, i.e., irreducible polynomials of degrees
greater than 1. For n = 3i (i > 0), the algorithm yields an asymptotic time complexity of
(4 log3 n−1)TX +TA ≈ (2.52 log2 n−1)TX +TA, which is better than that of the Karatsuba
algorithm. However, the Winograd method has a higher asymptotic space complexity than
the Karatsuba algorithm.

16.7.21 Remark Other subquadratic arithmetic complexity algorithms exist, e.g., [164, 243]. How-
ever, when mapped onto hardware architectures, they yield a higher time complexity, e.g.,
[243] is linear to n for a fully bit parallel implementation [574].

16.7.22 Theorem [3006] Let d be a binary polynomial of degree at most 2n− 2 (i.e., d could be the
product of two binary polynomials - each of degree at most n− 1). Let Wf be the number
of nonzero coefficients of f of degree n. Then d (mod f) can be computed with at most
(Wf − 1)(n− 1) bit operations.

16.7.23 Remark In addition to the class of algorithms mentioned in Remark 16.7.12 which performs
polynomial multiplication ab and reduction modulo f in two separate steps, another class
exists that combines these two steps. The latter class of algorithms is often used with
sequential architectures. To this end, we first look at the shift-and-reduce operation for
hardware.

16.7.24 Lemma Let a and f be as defined above. Then the i-th coordinate of xa modulo f is given
as follows:

(xa)i =

{
an−1 i = 0,
an−1 + fiai−1 1 ≤ i ≤ n− 1.

(16.7.2)

16.7.25 Remark Equation (16.7.2) can be realized using an n-stage linear feedback shift register
(LFSR) that has feedback connections corresponding to the coefficients of f . If the LFSR
is initialized with the coordinates of a then after one shift the LFSR will contain the
coordinates of xa modulo f ; see Section 10.2.
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16.7.26 Lemma Let a polynomial f be as defined above. Let a, b ∈ F2n be represented as polynomials
of degree at most n − 1 over F2. Then ab =

∑n−1
i=0 bia

(i), where a(i) ∈ F2n and a(i) = xia
(mod f).

16.7.27 Remark Note that a(0) = a and, for 1 ≤ i ≤ n− 1, a(i) = xa(i−1) (mod f). Thus, an LFSR
can be used to obtain a(i) from a(i−1) as stated in Lemma 16.7.24. This along with Lemma
16.7.26 leads to the following algorithm for multiplication of two elements a and b of F2n .
The algorithm scans the coordinates of b from the low to the high end.

16.7.28 Algorithm (Bit-level F2n multiplication - low to high)

Input: a, b ∈ F2n and reduction polynomial f

Output: ab (mod f)

1. g ← a, c← 0

2. For i from 0 to n− 1 do

3. c← c+ big

4. g ← xg (mod f)

5. Return c

16.7.29 Corollary Algorithm 16.7.28 requires O(n2) arithmetic operations over F2. For a bit-serial
architecture of the algorithm, where the computations of one iteration are performed in one
clock cycle, the space complexity is 2n flip-flops, n two-input AND gates, and n + Wf − 2
two-input XOR gates. The gate delay in the critical path of the architecture is TX and the
computation time is nTX .

16.7.30 Remark A multiplication algorithm that scans the coordinates of b from the high to the
low can be easily obtained by writing out ab using Horner’s rule, i.e., ab = (· · · (abn−1x +
abn−2)x+ · · · )x+ ab0 (mod f).

16.7.31 Definition Algorithm 16.7.28 can be modified so that in each iteration a digit is processed,
reducing the number of iterations to dn/de, where d is the number of bits in each digit.
We refer to the modified algorithms as digit-level multiplication algorithms.

16.7.32 Remark Compared to bit-level algorithms (e.g., Algorithm 16.7.28), the number of arith-
metic operations in each iteration of a digit-level algorithm is higher and so is the space
complexity of the corresponding digit-serial architecture, typically by a factor of d. This is
because the x multiplication operation of Algorithm 16.7.28 is replaced by a multiplication
with xd, and each AND operation by a multiplication of two polynomials of degree d − 1
over F2. A number of digit-serial multiplier architectures have been proposed, see for ex-
ample, [107] and [2695]. For resource constrained applications, digit-serial multipliers may
offer suitable trade-offs between space and time requirements.

16.7.33 Remark For applications that demand high throughput (in terms of number of operations
per second), multipliers can be designed based on pipeline or systolic array architecture.
Examples of such multipliers include [2055, 3035]. Pipeline and systolic array multipliers
usually require extra flip-flips for storing intermediate results.

16.7.34 Remark Using a polynomial basis, squaring of a ∈ F2n is a2 =
∑n−1
i=0 aix

2i (mod f). Thus,
unlike a normal basis (see Subsection 16.7.4), the use of a polynomial basis to implement an
F2n squaring requires bit operations or logic gates. However, the number of gates required
can be quite low. For example, if the reduction polynomial f is a trinomial in some special
form, then a bit parallel squaring unit can be implemented with about n/2 XOR gates
[3007]. Like squaring, a square root in polynomial basis is also very efficient.
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16.7.35 Remark Let a be a nonzero element of F2n and b be the multiplicative inverse of a.
Then in polynomial notation we have ab ≡ 1 (mod f), where f is as defined earlier. Since
gcd(f, a) = 1, the extended Euclidean algorithm can be used to obtain b. By simply chang-
ing the initialization, the extended Euclidean algorithm can also be used for computing the
division b = c/a in F2n , which in polynomial notation can be written as ab ≡ c (mod f).

16.7.36 Algorithm (F∗2n inversion using the extended Euclidean algorithm)

Input: a ∈ F∗2n and reduction polynomial f

Output: b ∈ F∗2n such that ab ≡ 1 (mod f)

1. r ← f , s← a, u← 0, v ← 1

2. while s 6= 0 do

3. q ← br/sc
4. (r, s)← (s, r − q · s)
5. (u, v)← (v, u− q · v)

6. b← u

7. Return b

16.7.37 Remark Other algorithms for computing inverses that use polynomial operations and are
suitable for hardware realization include the binary GCD [2953] and the Berlekamp-Massey
algorithm [1431, 2316]. Additional inversion algorithms that rely on matrix operations over
subfields or multiplications and squaring operations over F2n (e.g., the Itoh-Tsujii algorithm)
are mentioned in the following two subsections.

16.7.38 Remark For arithmetic over F2n , the algorithms stated earlier use operations of polynomials
over F2. In the following subsection, we consider arithmetic algorithms that use matrix
operations over F2.

16.7.3 Arithmetic using matrix operations

16.7.39 Remark Let a polynomial f be as defined above and an element a ∈ F2n in polynomial form
be represented as a =

∑n−1
i=0 aix

i. Using the coordinates of a, we write the corresponding
column vector as A = (a0, a1, . . . , an−1)T .

16.7.40 Theorem [2014] Let a, b, and c ∈ F2n and c = ab. For 0 ≤ i ≤ n− 1, let Zi be the column
vector corresponding to axi. Denote the column vectors corresponding to b and c by B and
C, respectively. Then, the following holds:

C = ZB, (16.7.3)

where Z is an n× n matrix over F2 and is given by Z = (Z0, Z1, . . . , Zn−1).

16.7.41 Remark Theorem 16.7.40 is an algorithm for multiplication of two elements of F2n using
matrix operations over F2 and has two main steps: first form the matrix Z, which is a
function of input a and f , and then compute a matrix-vector product (MVP) over F2.

16.7.42 Remark The matrix Z is the Mastrovito matrix [2014]. Given Zi−1, one can obtain Zi using
an LFSR operation and hence it requires Wf − 2 additions over F2. Thus, the formation
of matrix Z requires no more than (n− 1)(Wf − 2) additions over F2 [1434]. For arbitrary
a and b, a straightforward approach to compute the matrix vector product ZB requires
O(n2) arithmetic operations over F2.
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16.7.43 Definition Consider an n × n matrix T = [ti,j ]
n−1
i,j=0. If ti,j = ti+1,j+1 for 0 ≤ i < n − 1,

then T is a Toeplitz matrix. Thus a Toeplitz matrix can be uniquely defined by its 2n−1
entries that are in the top row and the left most column.

16.7.44 Lemma [1026] The sum of two n× n Toeplitz matrices is also an n× n Toeplitz matrix. If
the matrix entries belong to F2, then the sum requires no more than 2n− 1 additions over
F2.

16.7.45 Lemma [1026, 2988] Let n = 2i (i > 0), T be an n× n Toeplitz matrix and V be a column
vector over F2. Then the Toeplitz matrix-vector product (TMVP) TV can be computed
with nlog2 3 multiplications and 5.5nlog2 3 − 6n+ 0.5 additions over F2.

16.7.46 Proposition [2988] The matrix T and vector V can be split as follows:

T =

(
T1 T0

T2 T1

)
and V =

(
V0

V1

)
,

where T0, T1 and T2 are (n/2)× (n/2) matrices and are individually in Toeplitz form, and
V0 and V1 are (n/2) × 1 column vectors. Now the following noncommutative formula can
be used to compute the TMVP TV recursively:

TV =

(
T1 T0

T2 T1

)(
V0

V1

)
=

(
P0 + P2

P1 + P2

)
, (16.7.4)

where P0 = (T0 + T1)V1, P1 = (T1 + T2)V0 and P2 = T1(V0 + V1).

16.7.47 Theorem [1432] Let matrix Z be as defined in Theorem 16.7.40. Then there exists an n×n
nonsingular matrix U over F2 such that UZ is an n× n Toeplitz matrix. Furthermore, let
D = UC and T = UZ. Then we have

D = TB. (16.7.5)

16.7.48 Remark A class of transformation matrices U is given in [1434]. Special cases exist for which
T = UZ and C = U−1D can be computed efficiently. In particular, when the reduction
polynomial is a trinomial, these transformations can be done by simple permutations. For
such special cases, the cost of multiplication of two elements of F2n is essentially the cost
of the multiplication of a Toeplitz matrix and a vector over F2 [1026].

16.7.49 Remark Let a, b, c ∈ F2n and a 6= 0. Then the division b = c/a over F2n can be performed by
solving the matrix equation (16.7.3) over F2 for B, which is the column vector corresponding
to the coordinates of b [1434]. Hardware architectures are available for solving such matrix
equations [1433].

16.7.50 Remark The division b = c/a over F2n can also be performed by solving equation (16.7.5)
over F2 for B. Since the matrix in (16.7.5) is Toeplitz, algorithms for solving (16.7.5) are
more efficient that those for (16.7.3). The use of (16.7.5) however requires pre- and post-
processing. As stated in Remark 16.7.48, such processing can be as simple as a permutation
when f is a trinomial.

16.7.4 Arithmetic using normal bases

16.7.51 Remark Below we consider arithmetic in binary extension finite fields F2n using normal
bases. Definition and various properties of normal bases can be found in Section 5.2.
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16.7.52 Remark Let γ ∈ F2n and N = {γ, γ2, γ22

, . . . , γ2n−1} be a normal basis of F2n over F2. An

element a ∈ F2n can be represented as a = a0γ + a1γ
2 + · · · + an−1γ

2n−1

, where ai ∈ F2

and 0 ≤ i ≤ n − 1. It is easy to see that a2 = an−1γ + a0γ
2 + · · · + an−2γ

2n−1

. Thus the
coordinates of a2 are obtained by a simple cyclic shift of the coordinates of a. In other
words, ai = (a2)(i+1) = (a2j )(i+j), where subscripts are evaluated modulo n.

16.7.53 Remark Let a be a nonzero element of F2n . Then we can write a−1 = a2n−2 = a2(2n−1−1).
Noting that since 2n−1−1 = 1+2+22 + · · ·+2n−2, the inverse can be computed with O(n)
multiplication and squaring operations. Using a normal basis, squaring does not require any
gates. For practical applications, this method however requires a high speed multiplier.

16.7.54 Remark Consider an integer m > 1. Denote m̃ = bm/2c and m0 = m (mod 2). Then

2m−1 = 2m0(2m̃−1)(2m̃+1)+m0 = 2m0{(2m̃−1)2m̃+(2m̃−1)}+m0. Thus, given a2m̃−1,
one can compute a2m−1 using 1 + m0 multiplications (disregarding other operations). By
recursively applying this technique, the inverse of a nonzero a ∈ F2n can be computed with
blog2(n−1)c+W (n−1)−1 multiplications over F2n , where W (n−1) is the number of nonzero
bits in the binary representation of n − 1. Inversion algorithms incurring only these many
multiplications have been independently proposed by Itoh-Tsujii [1576] and Feng [1052],
and have been subsequently implemented in hardware for cryptographic applications, see
for example [1361, 2441, 2466, 2489].

16.7.55 Lemma [2196] Let a, b, c ∈ F2n be represented with respect to a normal basis N as defined
above and c = ab. Let A = (a0, a1, . . . , an−1)T denote the column vector representing the

coordinates of a = a0γ + a1γ
2 + · · · + an−1γ

2n−1

. Similarly, let B be the column vector
corresponding to b. Then

c =

(
n−1∑
i−0

aiγ
2i

)(
n−1∑
i−0

biγ
2i

)
= ATGB,

where G = [gi,j ]
n−1
i,j=0 is an n× n matrix over F2n and gi,j = γ2i+2j .

16.7.56 Remark Note that G depends only on N and is fixed or constant for a given basis. As

each entry of G can be represented with respect to N , one can write G =
∑n−1
k=0 Gkγ

2k ,
where Gk is an n × n matrix over F2. Using Lemma 16.7.55, for 0 ≤ k ≤ n − 1 we can

write ck = ATGkB. Consider Gn−1 and denote ATGn−1B as g(a, b). Since c2
k

= (ab)2k ,

for 0 ≤ k ≤ n − 1 we have cn−1−k = g(a2k , b2
k

). This leads to the following algorithm for
multiplication using normal basis N .

16.7.57 Algorithm (Multiplication over F2n using a normal basis)

Input: a, b ∈ F2n represented with respect to a normal basis N

Output: c = ab

1. s← a, t← b

2. For i from 0 to n− 1 do

3. cn−1−i ← g(s, t)

4. s← s2, t← t2

5. Return c

16.7.58 Remark The multiplication scheme described above is due to Massey and Omura [2012].
For an arbitrary normal basis, half of the entries of Gn−1 are expected to be nonzero. Thus,
up to O(n2) arithmetic operations over F2 are needed for each iteration of Algorithm 16.7.57
or O(n3) for the entire algorithm.
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16.7.59 Remark The number of nonzero entries in Gn−1, which is denoted by CN , determines the
complexity of the normal basis multiplier. It has been shown by Mullin et al. that the
number of non-zeros in Gn−1 is ≥ 2n− 1 [2196]. The normal bases that satisfy the equality
are known as optimal normal bases (ONB). There are two types of ONB (Types I and II).
Section 5.3 presents more details on ONB.

16.7.60 Remark If Algorithm 16.7.57 is mapped onto a sequential architecture that requires n
clock cycles, then its space complexity is O(n2) logic gates and the critical path has a gate
delay of O(log2 n). The algorithm can be easily unrolled and mapped onto a fully parallel
architecture, especially since the squaring operation in N does not require any logic gates.
The space and the time complexities for such a fully parallel realization are O(n3) gates
and O(log2 n) gate delays, respectively.

16.7.61 Remark The Massey-Omura multiplication scheme has some redundancy in the sense that
there are common terms in the expressions of product coordinates ck, 0 ≤ k ≤ n− 1 [2451].
By removing the redundancy, a bit parallel multiplier (referred to as Reyhani-Hasan-1)
that offers reduced space complexity and is applicable to any arbitrary normal basis has
been reported in [2451]. By exchanging one AND gate for one XOR gate, the multiplier
(referred to as Reyhani-Hasan-2) of [2452] reduces the number of AND gates to n(n+ 1)/2.
Because the complexity of subfield multiplication is higher than that of subfield addition,
this technique is shown to be quite effective for composite field multiplications [2452].

Scheme #AND #XOR Gate delay

Wang et al. 1985 [2926] nCN n(CN − 1) dlog2 CNeTX + TA
Reyhani-Hasan-1 [2451] n2 n(CN + n− 2)/2 dlog2 CNeTX + TA
Reyhani-Hasan-2 [2452] n(n+ 1)/2 n(CN + 2n− 3)/2 dlog2 CNeTX + TA

Table 16.7.2 Complexities of quadratic F2n general normal basis parallel multipliers.

16.7.5 Multiplication using optimal normal bases

16.7.62 Proposition [2196] Let X̂ = {x20

, x21

, . . . , x2n−1} be a Type I optimal normal basis of F2n

over F2. Because 2 is a primitive root of prime n+ 1, the following two sets are equal

{20, 21, . . . , 2n−1} = {1, 2, . . . , n}. (16.7.6)

Therefore, X = {x1, x2, . . . , xn} is also a basis of F2n over F2.

16.7.63 Remark Given a field element a represented in the above two bases, i.e., a =
∑n−1
i=0 âix

2i

and a =
∑n
i=1 aix

i, it is easy to obtain the following coordinate transformation formula:

a2i = âi, (16.7.7)

where 0 ≤ i ≤ n− 1 and the subscript 2i is reduced modulo n+ 1. Equations (16.7.6) and
(16.7.7) reveal that the basis conversion operation between X and X̂ is simply a permutation
and can be performed in hardware without using any logic gates.

16.7.64 Lemma [1027] Let a, b, c ∈ F2n be represented with respect to basis X, c = ab and
B = (b1, b2, . . . , bn)T be the column vector corresponding to coordinates of b with respect to
X. Similarly, C = (c1, c2, . . . , cn)T . Then C = (Z1, . . . , Zn)B = ZB, where Zi (1 ≤ i ≤ n)
is the column vector corresponding to the coordinates of field element xia with respect to
basis X, and Z is an n× n matrix over F2.
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16.7.65 Proposition [1027] Using the identity xn+1 = 1 =
∑n
j=1 x

j , we have the following decom-
position of the matrix Z = Z1 + Z2:

Z =



0 an an−1 · · · a3 a2

a1 0 an · · · a4 a3

a2 a1 0 · · · a5 a4

...
...

...
. . .

...
...

an−2 an−3 an−4 · · · 0 an
an−1 an−2 an−3 · · · a1 0


+



an an−1 an−2 · · · a2 a1

an an−1 an−2 · · · a2 a1

an an−1 an−2 · · · a2 a1

...
...

...
. . .

...
...

an an−1 an−2 · · · a2 a1

an an−1 an−2 · · · a2 a1


.

(16.7.8)
Therefore, MVP ZB may be computed via ZB = Z1B + Z2B.

16.7.66 Remark The straightforward computation of the TMVP Z1B requires n(n−1) AND gates
and n(n − 2) XOR gates. Clearly, computing Z2B requires only n AND gates and n − 1
XOR gates since all the rows in Z2 are the same. However, this fact was not noticed in the
original Massey-Omura [2012] normal basis multiplier, where n AND gates and n× (n− 1)
XOR gates were used to compute MVP Z2B [2926]. After removing the above redundancy
in Z2B, Hasan et al. presented a multiplier with the following complexities: n(n−1)+n = n2

AND gates, n(n−2)+(n−1)+n = n2−1 XOR gates, and a gate delay of d1+log2 neTX+TA
[1439]. The structure of Sunar-Koç’s Type I optimal normal basis multiplier is based on their
polynomial basis multiplier [1776] and its space complexity is the same as that in [1439],
but its gate delay is d2 + log2 neTX +TA. Another design that has the same complexities as
the multiplier in [1439] is Reyhani-Hasan-1 multiplier [2451]. These multipliers all belong to
the class of quadratic parallel multipliers, and their complexities are summarized in Table
16.7.3.

Scheme #AND #XOR Gate delay

Wang et al. [2926] n2 2n2 − 2n d1 + log2 neTX + TA
Hasan et al. [1439] n2 n2 − 1 d1 + log2 neTX + TA
Sunar-Koç [1776] n2 n2 − 1 d2 + log2 neTX + TA
Reyhani-Hasan-1 [2451] n2 n2 − 1 d1 + log2 neTX + TA
Reyhani-Hasan-2 [2452] n(n+ 1)/2 1.5n2 − 0.5n− 1 d1 + log2 neTX + TA

Table 16.7.3 Complexities of quadratic F2n Type I optimal normal basis parallel multipliers.

16.7.67 Remark By exchanging one AND gate for one XOR gate, Reyhani-Hasan-2 Type I optimal
normal basis multiplier reduces the number of AND gates to n(n+1)/2 [2452], while keeping
the total number of AND and XOR gates unchanged. This technique is also used in the
Elia-Leone-2 Type II optimal normal basis parallel multiplier listed in Table 16.7.4 [966].

16.7.68 Proposition [1188] Let x = y+y−1 generate a Type II optimal normal basis of F2n over F2,
where y is a primitive (2n+ 1)-st root of unity in F22n . Define xi = yi + y−i for 0 ≤ i ≤ n,
we have

{x20

, x21

, . . . , x2n−1} = {x1, x2, . . . , xn}. (16.7.9)

Therefore, X = {x1, x2, . . . , xn} is also a basis of F2n over F2.

16.7.69 Proposition [1188] Given a field element a represented with respect to the above two bases,

i.e., a =
∑n−1
i=0 âix

2i and a =
∑n
i=1 aixi, the coordinate transformation formula between

these two bases is given as follows:

as(2i) = âi, (16.7.10)

where 0 ≤ i ≤ n − 1 and s(j) is defined as the unique integer such that 0 ≤ s(j) ≤ n and
j ≡ s(j) (mod 2n+ 1) or j ≡ −s(j) (mod 2n+ 1).
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16.7.70 Remark From (16.7.9) and (16.7.10), it follows that the basis conversion operation between
X and X̂ is simply a permutation and hence may be performed in hardware without using
any logic gates.

16.7.71 Proposition [1884, 2750] The product ab can be computed via an MVP ZB using basis X,
and the matrix Z can be decomposed as the summation of two matrices i.e., Z = Z1 + Z2:

Z =


a2 a3 · · · an an
a3 a4 · · · an an−1

...
...

. . .
...

...
an an · · · a3 a2

an an−1 · · · a2 a1

+


0 a1 · · · an−2 an−1

a1 0 · · · an−3 an−2

...
...

. . .
...

...
an−2 an−3 · · · 0 a1

an−1 an−2 · · · a1 0

 . (16.7.11)

Here, Z1 is a Hankel matrix, i.e., entries at (i, j) and (i − 1, j + 1) are equal, and Z2 is a
circulant matrix.

16.7.72 Remark The straightforward computation of the above matrix-vector product ZB results
in the following quadratic parallel multipliers: Sunar-Koç multiplier [2750], Elia-Leone-1
multiplier [966] and Reyhani-Hasan-1 multiplier [2451]. Their gate counts and delay com-
plexities are equal, and are summarized in Table 16.7.4.

Scheme #AND #XOR Gate delay

Sunar-Koç [2750] n2 3n(n− 1)/2 d1 + log2 neTX + TA
Elia-Leone-1 [966] n2 3n(n− 1)/2 d1 + log2 neTX + TA
Elia-Leone-2 [966] n(n+ 1)/2 2n(n− 1) d1 + log2 neTX + TA
Reyhani-Hasan-1 [2451] n2 3n(n− 1)/2 d1 + log2 neTX + TA

Table 16.7.4 Complexities of quadratic F2n Type II optimal normal basis parallel multipliers.

16.7.73 Remark After being converted from a Type I optimal normal basis into basis X using
(16.7.6), the computation of ab becomes a modular multiplication operation, which can be
divided into two steps. The first step, i.e., the polynomial multiplication operation step,
can be performed using the Karatsuba algorithm. This results in Leone’s subquadratic
multiplier [1902]. Fan-Hasan’s Type I optimal normal basis subquadratic multiplier is based
on (16.7.8). For Type II optimal normal basis multiplication, Fan and Hasan use the TMVP
formula (16.7.4) and the decomposition (16.7.11). By exploiting vector and matrix symmetry
properties that exist in the matrix vector expressions of Types I and II optimal normal basis
multiplications, Hasan et al. use the block recombination technique to design subquadratic
parallel multipliers in [1437]. Table 16.7.5 gives gate counts and gate delays for the above-
mentioned optimal normal basis parallel multipliers of subquadratic space complexity.

ONB Scheme #AND #XOR Gate delay

Leone [1902] nlog2 3 6nlog2 3 − 8n+ 2 d3 log2 n− 1eTX + TA
Type I Fan-Hasan [1027] nlog2 3 + n 5.5nlog2 3 − 4n− 0.5 d1 + 2 log2 neTX + TA

Hasan et al. [1437] 4
3n

log2 3 + 1.5n 14
3 n

log2 3 − 4n+ 1 d2 + 2 log2 neTX + TA

Type II
Fan-Hasan [1027] 2nlog2 3 11nlog2 3 − 12n+ 1 d1 + 2 log2 neTX + TA

Hasan et al. [1437] 2nlog2 3 + 0.5n 41
6 n

log2 3 − 7.5n+ 1.5 d1 + 2 log2 neTX + TA

Table 16.7.5 Complexities of subquadratic F2n Types I and II optimal normal basis parallel

multipliers.

16.7.74 Remark For Type II optimal normal bases, multiplication over F2n can be expressed in
terms of one or more multiplications of n-term polynomials over F2 [1180, 1238]. Then one
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can use any suitable method for polynomial multiplication such as the Karatsuba algorithm.
The scheme presented in [1180] uses two polynomial multiplications and that in [1238]
uses only one. Both schemes however incur computational overhead to express the Type II
optimal normal basis multiplication into polynomial multiplication(s). The overheads are
O (n) for [1180] and O (n log2 n) for [1238]. In [248], the computational overhead of [1238]
has been reduced by a factor of about two.

16.7.6 Additional notes

16.7.75 Remark For efficient hardware realization of field multiplication using polynomial bases,
examples of architectures that use low weight field defining polynomials, i.e., trinomials and
pentanomials, include [2453, 2465, 2749]. Other types of polynomials that have been used
in multiplier architectures include all-one, nearly all-one, and equally-spaced polynomials.

16.7.76 Remark The field F2n can be embedded into a cyclotomic ring. This embedding technique
leads to a redundant representation, i.e., each field element is represented using more that
n bits. Several multiplier architectures have been reported using such redundant represen-
tation [923, 2216, 3009]. The best scenario for redundant representation is when only one
extra bit is needed and it occurs where a Type I optimal normal basis exists, the conditions
for which are the same as those for an irreducible all-one polynomial.

16.7.77 Remark Optimal normal bases do not exist for every field, so that alternatives that allow
efficient squaring operations include the use of Gaussian normal bases and Dickson polyno-
mials for the representation of field elements. Examples of multiplier architectures that use
such representation include [1438, 1885].

16.7.78 Remark Besides polynomial and normal bases, hardware multiplier architectures have been
reported using bases like shifted polynomial, dual, and triangular; see for example [1025,
1060, 1435, 3008].

16.7.79 Remark The Montgomery multiplication algorithm [2132] and Residue Number System
(RNS) [2691] have been extensively studied for hardware implementations of arithmetic over
prime fields; see for example [614, 2221, 2325, 2541]. These schemes have also been applied
to arithmetic over binary extension fields [164, 1775, 2787]. For multiplication over F2n , the
main cost of a straightforward realization of the Montgomery algorithm is a multiplication
of two binary polynomials of degree n− 1 [1775], and the RNS based multiplication scheme
has been shown to have O(n1.6) bit operations for a special form of reduction polynomials
[164].

16.7.80 Remark Some cryptographic systems use exponentiation ae, where a ∈ F2n and e is a
nonzero positive integer of up to n bits long. A straightforward method for exponentiation
is to use the well-known square-and-multiply algorithm [2080]. This method requires blog2 ec
squaring operations and W (e) − 1 multiplications over F2n , where W (e) is the number of
nonzero bits in the binary representation of e. Many improvements have been proposed
that require some re-coding of the exponent e and/or creation of look-up tables based on a
[2080].

See Also

§5.2 For definition and properties of normal bases.
§5.3 For definition and properties of Types I and II optimal normal bases.



Cryptography 823

References Cited: [32, 107, 164, 241, 243, 248, 574, 614, 923, 966, 1025, 1026, 1027, 1028,
1052, 1060, 1180, 1188, 1238, 1361, 1431, 1432, 1433, 1434, 1435, 1437, 1438, 1439, 1576,
1684, 1775, 1776, 1884, 1885, 1902, 2012, 2014, 2055, 2080, 2132, 2196, 2216, 2221, 2316,
2325, 2342, 2441, 2451, 2452, 2453, 2465, 2466, 2489, 2541, 2691, 2695, 2747, 2749, 2750,
2787, 2926, 2953, 2963, 2988, 3006, 3007, 3008, 3009, 3035, 3064]



This page intentionally left blankThis page intentionally left blank



17
Miscellaneous applications

17.1 Finite fields in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Polynomial dynamical systems as framework for
discrete models in systems biology • Polynomial
dynamical systems • Discrete model types and their
translation into PDS • Reverse engineering and
parameter estimation • Software for biologists and
computer algebra software • Specific polynomial
dynamical systems

17.2 Finite fields in quantum information theory . . . . . 834
Mutually unbiased bases • Positive operator-valued
measures • Quantum error-correcting codes • Period
finding • Quantum function reconstruction • Further
connections

17.3 Finite fields in engineering . . . . . . . . . . . . . . . . . . . . . . . . . 841
Binary sequences with small aperiodic
autocorrelation • Sequence sets with small aperiodic
auto- and crosscorrelation • Binary Golay sequence
pairs • Optical orthogonal codes • Sequences with
small Hamming correlation • Rank distance codes •

Space-time coding • Coding over networks

17.1 Finite fields in biology

Franziska Hinkelmann, Virginia Tech

Reinhard Laubenbacher, Virginia Tech

17.1.1 Polynomial dynamical systems as framework for discrete
models in systems biology

The goal of molecular systems biology is to understand the functionality of biological sys-
tems as a whole by studying interactions among the components, e.g., genes, proteins, and
metabolites. Modeling is a vital tool in achieving this goal. It allows the simulation of differ-
ent types of interactions within the system, leading to testable hypotheses, which can then
be experimentally validated. This process leads to a better understanding of the underlying
biological system.

Discrete models are increasingly used in systems biology [74, 2514, 2515, 3010]. They
can reveal valuable insight about the qualitative behavior of a system when it is infeasible
to estimate enough parameters accurately to build a quantitative model. Many discrete
models can be formulated as polynomial dynamical systems, that is, state and time discrete

825
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dynamical systems described by polynomial functions over a finite field. This provides ac-
cess to the algorithmic theory of computational algebra and the theoretical foundation of
algebraic geometry, which help with all aspects of the modeling process. Polynomial dynam-
ical systems provide a unifying framework for many discrete modeling types. The algebraic
framework allows for efficient construction and analysis of discrete models.

17.1.2 Polynomial dynamical systems

17.1.1 Remark Definitions and theorems can be found in [2864].

17.1.2 Definition A Polynomial Dynamical System (PDS) is a time-discrete dynamical system
f = (f1, . . . , fn) : Fn → Fn where each coordinate function fi is a function of the n
variables x1, . . . , xn, each of which takes on values in a finite field F, and each fi can be
assumed polynomial.

17.1.3 Remark Two directed graphs are usually assigned to each such system.

17.1.4 Definition The dependency graph (or wiring diagram) D(f) of f has n vertices 1, . . . , n,
corresponding to the variables x1, . . . , xn of f . There is a directed edge i → j if there
exists x = (x1, . . . , xi, . . . , xn) ∈ Fn such that fj(x) 6= fj(x1, . . . , xi + 1, . . . , xn). That
is, D(f) encodes the variable dependencies in f .

17.1.5 Definition The dynamics of f is encoded by its phase space (or state space), denoted
by S(f). It is the directed graph with vertex set Fn and a directed edge from u to v if
f(u) = v.

17.1.6 Definition For each u ∈ Fn, the orbit of u is the sequence {u, f(u), f2(u), . . .}, where fk

means k-th composition of f . The sequence {u, f(u), f2(u), . . . , f t−1(u)} is a limit cycle
of length t and u is a periodic point of period t if u = f t(u) and t is the smallest such
number. Since Fn is finite, every orbit must include a limit cycle.

17.1.7 Definition The point u is a fixed point (or steady state) if f(u) = u.

17.1.8 Lemma [748] (Limit cycle analysis) For a polynomial dynamical system f = (f1, . . . , fn) :
Fn → Fn, states in a limit cycle of length t are elements of the algebraic variety
V (f t1 − x1, . . . , f

t
n − xn), defined by the polynomials f t1 − x1, . . . , f

t
n − xn, but not of the

variety V (fs1 − x1, . . . , f
s
n − xn) for any s < t. In particular, fixed points are the points in

the variety V (f1 − x1, . . . , fn − xn).

17.1.9 Definition A component of the phase space S(f) consists of a limit cycle and all orbits of
f that contain it. Hence, the phase space is a disjoint union of components.

17.1.10 Definition A polynomial dynamical system can be iterated using different update sched-
ules:

• synchronous: all variables are updated at the same time;
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• sequential : variables are updated sequentially according to the order spec-
ified by an update schedule. A sequential system with a given update
schedule can be translated into a synchronous system with the same dy-
namics;

• asynchronous: at every time step, one variable is chosen according to a
probability distribution (usually uniform) to be updated. Asynchronous
systems are non-deterministic;

• delays.

17.1.11 Remark Synchronous and asynchronous systems have the same fixed points.

17.1.12 Remark For visualization and analysis of PDS, the Web-based tool ADAM is available, see
Section 17.1.5 [1502]. PDS can be used to represent dynamic biological systems.

17.1.13 Example The lac(tose) operon is a functional unit of three genes, LacZ, LacY, and LacA,
transcribed together, responsible for the metabolism of lactose in the absence of glucose in
bacteria. In the presence of lactose this genetic machinery is disabled by a repressor pro-
tein. The genes in the lac operon encode several proteins involved in this process. Lactose
permease transports extracellular lactose into the cell, where the protein β-galactosidase
breaks the lactose down into glucose, galactose, and allolactose. The allolactose binds to
the repressor protein and deactivates it, which results in the transcription of the three lac
genes, resulting in the production of permease and β-galactosidase. This positive feedback
loop allows for a rapid increase of lactose when needed [1583]. The result is a bistable
dynamical system. This process can be modeled by a polynomial dynamical system. Each
variable can take on two states: 0 denotes the absence (or low concentration) of a substrate
or the inactive state of a variable, and 1 denotes presence or activity. As there are only
two states, the system is modeled over the finite field F2. Permease (xP ) transports ex-
ternal lactose (xeL) inside the cell, and the update function for intracellular lactose (xL)
is xL(t+ 1) = xeL(t) AND xP (t), or as a polynomial over F2, fL = xeLxP . Using xB for
β-galactosidase, xM for mRNA, xA for allolactose, the functionality of the lac operon can
be modeled by the polynomial dynamical system f = (fL, fA, fM , fP , fB) : F5

2 → F 5
2 :

fL = xeLxP ,

fA = xLxB ,

fM = xA,

fP = xM ,

fB = xM .

Figure 17.1.1 denotes the dependency graph and phase space of the above model [1504].

17.1.3 Discrete model types and their translation into PDS

17.1.14 Remark Continuous models of biological systems, such as ordinary or partial differential
equation models, rely on exact rate parameters, for which it is oftentimes impossible to
obtain exact measurements. When not enough information is available to build a quantita-
tive model, discrete models can give valuable insight about the qualitative behavior of the
system. Such models are state- and time-discrete. For example, in the most simple case, one
distinguishes only between two states, ON and OFF, or active and inactive, present and
absent, etc.
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Figure 17.1.1 PDS for lac operon: state space in the absence (top) and presence (bottom left) of glucose,

and dependency graph (bottom right). Each 5-tuple represents the states of lactose, allolactose, mRNA,

permease, and β-galactosidase, (L,A,M,P,B).
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17.1.15 Remark Model types include (probabilistic) Boolean networks, logical networks, Petri nets,
cellular automata, and agent-based (individual-based) models, to name the most commonly
found ones [343, 1859, 2215, 2512, 2617, 2704]. All these model types can be translated into
PDS [1505, 2864].

17.1.3.1 Boolean network models

17.1.16 Remark In a Boolean network model every variable is either ON or OFF, and the state
of each variable at time t+ 1 is determined by a Boolean expression that involves some or
all of the variables at time t. Boolean models were first introduced in 1969 by Kauffman
for gene regulatory networks, in which each gene (variable) is either expressed (ON) or not
expressed (OFF) at every time step [1715].

17.1.17 Algorithm For Boolean network models, where there are two states (TRUE and FALSE),
F = F2, 0 denotes FALSE and 1 TRUE. Table 17.1.17 lists the Boolean expressions and the
corresponding polynomials. All Boolean expressions can be translated to polynomials using
this correspondence.

Boolean expression polynomial
X x
NOT X x+ 1
X AND Y xy
X OR Y xy + x+ y

Table 17.1.2 Correspondence of Boolean expressions and polynomials over F2.

17.1.3.2 Logical models

17.1.18 Remark Logical models are a generalization of Boolean models, in which variables can
take on more than two states, e.g., to represent the three states low, medium, and high
concentration of a substrate. The rules governing the temporal evolution are switch-like
logical rules for the different states of each variable. Updates in logical models are specified
via parameters rather than by a (Boolean) expression.

17.1.19 Definition A logical model is a triple (V, E ,K), where:

1. V = {v1, . . . , vn} is the set of vertices or nodes. Each vi has a maximum expres-
sion level, mi. The set S = {0, . . . ,m1}× · · ·×{0, . . . ,mn} (Cartesian product)
is the state space of the logical model and its elements are states.

2. E is the set of arcs. The elements of E have the form (vi, vj , θ), where 1 ≤ θ ≤ mi

is a threshold for (vi, vj). Let I(j) = {v : (v, vj , θ) ∈ E}, the input of vj , be
the set of vertices that have an edge ending in vj . Notice that an arc (vi, vj) is
allowed to have multiplicity corresponding to different thresholds; the number of
thresholds is denoted by mi,j . These thresholds are indexed in increasing order,
1 ≤ θi,j,1 < · · · < θi,j,mi,j ≤ mi; θi,j,k is the k-th threshold for the arc (vi, vj). By
convention, we define θi,j,mi,j+1 = mi+ 1 (actually, θi,j,mi,j+1 can be defined as
any number greater than mi) and θi,j,0 = 0. Let x = (x1, . . . , xn) be a state; we
say that the k-th interaction for input vi of vj is active if θi,j,k ≤ xi < θi,j,k+1;
we denote this by Θi,j(xi) = k.

3. K = {Ki :
∏
vj∈I(i){0, . . . ,mi,j} → {0, . . . ,mi}, i = 1, . . . , n} is the set of

parameters.
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17.1.20 Example (Logical model of lambda phage [2431]) Lambda phage is a virus that injects its
DNA into a bacterial host. Once injected, it enters either a lytic cycle or a lysogenic cycle.
In the lytic cycle, its DNA is replicated, the host cell lyses, and new viruses are released. In
the lysogenic cycle, the virus DNA is copied into the hosts DNA where it remains without
any apparent harm to the host. A number of bacterial and viral genes takes part in the
decision process between lysis and lysogenisation. The core of the regulatory network that
controls the life cycle consists of two regulatory genes, cI and cro. Lysogeny is maintained
if cI proteins dominate, the lytic cycle if cro proteins dominate. CI inhibits cro, and vice
versa. At high concentrations, cro downregulates its own production, see Figure 17.1.3.
This regulatory network can be encoded in the following logical model: V = {c1, cro},

Figure 17.1.3 Logical model of lambda phage, blunt ended arrows indicate an inhibitory effect.

E = {(c1, cro, 1), (cro, c1, 1), (cro, cro, 2)}, and K = {Kc1,Kcro}, where Kc1 : {0, 1, 2} →
{0, 1} is defined as Kc1(0) = 1, Kc1(1) = Kc1(2) = 0 and Kcro : {0, 1} × {0, 1, 2} →
{0, 1, 2} as Kcro(0, 2) = Kcro(1, 2) = 1, Kcro(1, 0) = Kcro(1, 1) = 0, Kcro(0, 0) = 1, and
Kcro(0, 1) = 2.

17.1.21 Algorithm [2864] Logical models are translated into a PDS by the following algorithm.
Let (V, E ,K) be a logical model as in Definition 17.1.19. Choose a prime number p
such that p ≥ mi + 1 for all 1 ≤ i ≤ n ({0, . . . ,mi} has mi + 1 elements), and let
F = Fp = {0, 1, . . . , p− 1} be the field with p elements. Note that we may consider the set S
to be a subset of Fn. Consider a vertex vi and let gi be its coordinate function. Our goal is to
represent gi as a polynomial in terms of its inputs, say xi1 , . . . , xir . That is, we need a poly-
nomial function defined on Fr with values in F. Denote a∧ b = min{a, b}, using the natural
order on the set F, viewed as integers. To extend the domain of g from

∏
vj∈I(i){0, . . . ,mj,i}

to Fr, we define g(xi1 , . . . , xir ) = gi(xi1 ∧mi1 , . . . , xir ∧mir ) for (xi1 , . . . , xir ) ∈ Fr. The
polynomial form of gi : Fr → F is then

gi(x) =
∑

(ci1 ,...,cir )∈Fr
gi(ci1 , . . . , cir )

∏
vj∈I(i)

(1− (xj − cj)p−1),

where the right-hand side is computed modulo p; see also the Lagrange Interpolation For-
mula (Theorem 2.1.131).

17.1.22 Example The logical model of the lambda phage presented in Example 17.1.22 corresponds
to the PDS over F3: c1 = x1, cro = x2, and the polynomials are

f1 = −x2
2 + 1,

f2 = −x2
1x

2
2 + x2

1x2 + x2
1 + x2

2 − x2 − 1.

17.1.23 Remark The logical model can be converted manually or with the software package ADAM
[1502]. Instead of analyzing the logical model, the corresponding PDS can be analyzed for
its dynamic features.
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17.1.3.3 Petri nets and agent-based models

17.1.24 Remark Petri nets are bipartite graphs, consisting of places and transitions. Places can
be marked with tokens, usually representing concentration levels or number of molecules
present. Transitions fire in a non-deterministic way and move tokens between places. Petri
nets have been used extensively to model chemical reaction networks, where places represent
species and transitions interactions. Analysis of the Petri net can reveal which species are
persistent, i.e., which species can become extinct if all species are present at the initial time.
For the translation algorithm of Petri nets into polynomial dynamical systems, see [2864].

17.1.25 Remark Agent-based models (ABM) (or individual-based models) are computational models
consisting of individual agents, each agent having a set of rules that defines how it interacts
with other agents and the environment. Simulation is used to assess the evolution of the
system as a whole. Sophisticated agent-based models have been published that simulate
biological systems including tumor growth and the immune system [90, 976, 2000]. For
conversion of agent-based models into polynomial dynamical systems, see [1505].

17.1.4 Reverse engineering and parameter estimation

17.1.26 Remark A central problem in systems biology is the construction of models based on
system-level experimental data and biological input. When the wiring diagram is known
but not the combinatorial effect of the different regulatory inputs, the process of identify-
ing models that fit the data is analogous to parameter estimation for continuous models:
estimate a function that fits the experimental data and satisfies some optimality criterion.

17.1.27 Remark Typically, the set of possible models is very large. Tools from computer algebra
allow the identification of all models that fit a given experimental data set, and furthermore
allow one to identify those models that satisfy a given optimality criterion [867, 1860]. Sub-
section 17.1.4.1 introduces an algorithm that identifies possible wiring diagrams, with the
optimality criterion that every variable is affected by a minimal number of other variables,
and Subsections 17.1.4.2 and 17.1.6.2 introduce parameter estimation algorithms.

17.1.4.1 The minimal-sets algorithm

17.1.28 Remark The minimal-sets algorithm [1597] constructs the set of all “minimal” wiring
diagrams such that a model that fits the experimental data exists for each wiring dia-
gram. Given m observations stating that the inputs ti result in the state si for a variable,
i.e., (s1, t1), . . . , (sm, tm), where si ∈ Fn and ti ∈ F, the minimal-sets algorithm identi-
fies all inclusion minimal sets S ∈ {1, . . . , n} such that there exists a polynomial function
f ∈ F[{xi|i ∈ S}] with f(si) = ti. The algorithm is based on the fact that one can define
a simplicial complex ∆ associated to the experimental data, such that the face ideal for
the Alexander dual of ∆ is a square-free monomial ideal M , and the generating sets for
the minimal primes in the primary decomposition of the ideal M are exactly the desired
minimal sets.

17.1.4.2 Parameter estimation using the Gröbner fan of an ideal

17.1.29 Remark Typically, there are many models that fit experimental data, even when restricting
the model space to minimal models. The minimal sampling algorithm is used to sample the
subspace of minimal models; it returns a set of weighted functions per node, assigning
a higher weight to functions that are candidates for several monomial orders [868]. The
algorithm is based on the Gröbner fan of an ideal.
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17.1.5 Software for biologists and computer algebra software

17.1.30 Remark The methods described in this section heavily rely on computer algebra systems,
e.g., Macaulay2 [1355]. A major advantage of translating other discrete modeling types
into polynomial systems is that efficient implementations of algorithms such as Gröbner
basis calculations or primary decomposition are already implemented, and can be used
independently of the underlying model type. On the other hand, an algorithm implemented
to analyze a Petri net cannot be re-used to analyze a logical model. As many biologists
are not familiar with computer algebra systems and the mathematical theory, software
packages have been developed that allow the construction and analysis of discrete models
using methods described in this section, without requiring understanding of the underlying
mathematics [866, 1502].

17.1.6 Specific polynomial dynamical systems

17.1.31 Remark Sections 17.1.6.1 to 17.1.6.4 describe specific classes of polynomial dynamical sys-
tems, and theorems that relate the structure of the PDS to its dynamics.

17.1.6.1 Nested canalyzing functions

17.1.32 Remark Certain polynomial functions are very unlikely to represent an interaction in a bi-
ological system. For example, in a Boolean system, x+ y, i.e., the exclusive OR, is unlikely
to represent an actual biological process. In addition, there are classes of functions that are
biologically more relevant than other functions. One such class consists of nested canalyz-
ing functions, named after the genetic concept of canalization, identified by the geneticist
Waddington in the 1940s. Networks consisting of nested canalyzing functions are robust
and stable [1714, 2887].

17.1.33 Definition A Boolean function f(x1, . . . , xn) is canalyzing if there exists an index i and a
Boolean value a for xi such that f(x1, . . . , xi−1, a, xi+1, . . . , xn) = b is constant. That is,
the variable xi, when given the canalyzing value a, determines the value of the function
f , regardless of the other inputs. The output value b is the canalyzed value.

17.1.34 Definition Let f be a Boolean function in n variables.

• Let σ be a permutation on {1, . . . , n}. The function f is a nested canalyzing
function (NCF) in the variable order xσ(1), . . . , xσ(n) with canalyzing input
values a1, . . . , an and canalyzed output values b1, . . . , bn, respectively, if it
can be represented in the form

f(x1, x2, . . . , xn) =



b1 if xσ(1) = a1,
b2 if xσ(1) 6= a1 and xσ(2) = a2,
b3 if xσ(1) 6= a1 and xσ(2) 6= a2 and xσ(3) = a3,
...

...
bn if xσ(1) 6= a1 and · · · and xσ(n−1) 6= an−1

and xσ(n) = an,
bn + 1 if xσ(1) 6= a1 and · · · and xσ(n) 6= an.

• The function f is nested canalyzing if f is nested canalyzing in the variable
order xσ(1), . . . , xσ(n) for some permutation σ.
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17.1.35 Remark Any Boolean function in n variables is a map f : {0, 1}n → {0, 1}. Denote the set
of all such maps by Bn. For any Boolean function f ∈ Bn, there is a unique polynomial
g ∈ F2[x1, . . . , xn] such that g(a1, . . . , an) = f(a1, . . . , an) for all (a1, . . . , an) ∈ Fn2 and such
that the degree of each variable appearing in g is equal to 1. Namely,

g(x1, . . . , xn) =
∑

(a1,...,an)∈Fn2

f(a1, . . . , an)
n∏
i=1

(1− (xi − ai)).

17.1.36 Definition Let S be a a non-empty set whose highest element is rS . The completion of S,
which is denoted by [rS ], is the set [rS ] := {1, 2, . . . , rS}. For S = ∅, let [r∅] := ∅.

17.1.37 Theorem [1599] Let f be a Boolean polynomial in n variables, given by

f(x1, x2, . . . , xn) =
∑
S⊆[n]

cS
∏
i∈S

xi. (17.1.1)

The polynomial f is a nested canalyzing function in the order x1, x2, . . . , xn if and only if
c[n] = 1, and for any subset S ⊆ [n],

cS = c[rS ]

∏
i∈[rS ]\S

c[n]\{i}.

17.1.38 Corollary The set of points in F2n

2 corresponding to coefficient vectors of nested canalyzing

functions in the variable order x1, . . . , xn, denoted by V ncf
id , is given by

V ncf
id =

(c∅, . . . , c[n]) ∈ F2n

2 : c[n] = 1, cS = c[rS ]

∏
i∈[rS ]\S

c[n]\{i}, for S ⊆ [n]

 .

17.1.39 Definition Let σ be a permutation on the elements of the set [n]. We define a new order
relation <σ on the elements of [n] as follows: i <σ j if and only if σ−1(i) < σ−1(j).

Let S be a nonempty subset of [n], say S = {i1, . . . , it}. Let rσS :=
max{σ−1(i1), . . . , σ−1(it)}. The completion of S with respect to the permutation σ, de-
noted by [rσS ]σ is the set [rσS ]σ := {σ(1), . . . , σ(rσS)}.

17.1.40 Corollary Let f ∈ Bn and let σ be a permutation of the set [n]. The polynomial f is a nested
canalyzing function in the order xσ(1), . . . , xσ(n), with input values aσ(i) and corresponding
output values bσ(i), 1 ≤ i ≤ n, if and only if c[n] = 1 and, for any subset S ∈ [n],

cS = c[rσS ]σ

∏
w∈[rσS ]σ\S

c[n]\{w}.

17.1.41 Corollary Let σ be a permutation on [n]. The set of points in F2n

2 corresponding to nested
canalyzing functions in the variable order xσ(1), . . . , xσ(n), denoted by V σid, is defined by

V σid =

(c∅, . . . , c[n]) ∈ F2n

2 : c[n] = 1, cS = c[rσS ]σ

∏
w∈[rσS ]σ\S

c[n]\{w}, for S ⊆ [n]

 .

17.1.42 Corollary Let f ∈ R and let σ be a permutation of the elements of the set [n]. If f is a nested
canalyzing function in the order xσ(1), . . . , xσ(n), with input values ai and corresponding
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output values bi, 1 ≤ i ≤ n, then

ai = c[n]\{σ(i)}, for 1 ≤ i ≤ n− 1,

b1 = c∅ + cσ(1)c[n]\{σ(1)},

bi+1 − bi = c[i+1]σc[n]\{σ(i+1)} + c[i]σ , for 1 ≤ i < n− 1 and

bn − an = bn−1 + c[n−1]σ .

17.1.43 Remark Thus, the family of nested canalyzing polynomials in a given number of variables
can be described as an algebraic variety defined by a collection of binomials. This description
has several useful implications.

17.1.6.2 Parameter estimation resulting in nested canalyzing functions

17.1.44 Remark For given time course data and a wiring diagram, one can identify all nested
canalyzing functions (17.1.6.1) that fit these information. Nested canalyzing functions can
be parameterized by an ideal, and intersecting the variety of this ideal with the variety of
the ideal of all functions that fit the data results in the desired set of models [1503].

17.1.6.3 Linear polynomial dynamical systems

17.1.45 Remark For linear systems, i.e., all polynomials are linear functions, the dynamics of a
system can be determined completely from the structure of the polynomials [975, 2812].

17.1.6.4 Conjunctive/disjunctive networks

17.1.46 Remark Conjunctive (respectively disjunctive) Boolean network models consist of functions
constructed using only the AND (respectively OR) operator. For conjunctive or disjunctive
networks with strongly connected dependency graph, the cycle structure is completely de-
termined by a formula that depends on the loop number, the greatest common divisor of the
lengths of the dependency graph’s simple (no repeated vertices) directed cycles. For general
Boolean conjunctive or disjunctive networks, an upper and lower bound for the number of
cycles of a particular length can be calculated [1598].

See Also

§2.1 For the Lagrange Interpolation Formula.
§10.5 For dynamical systems over finite fields.

References Cited: [74, 90, 343, 748, 866, 867, 868, 975, 976, 1355, 1502, 1503, 1504, 1505,
1583, 1597, 1598, 1599, 1714, 1715, 1859, 1860, 2000, 2215, 2431, 2512, 2514, 2515, 2617,
2704, 2812, 2864, 2887, 3010]

17.2 Finite fields in quantum information theory

Martin Roetteler, NEC Laboratories America

Arne Winterhof, Austrian Academy of Sciences
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In this chapter we mention some topics of the theory of finite fields related to quantum
information theory. However, we will not give any background on quantum information
theory and just refer to the monographs [1742, 2286, 2360]. For a more detailed treatment
of quantum algorithms for algebraic problems we refer to the survey [619].

17.2.1 Mutually unbiased bases

17.2.1 Definition A maximal set of mutually unbiased bases, for short MUBs, is given by a set of
n2 + n vectors in Cn which are the elements of n+ 1 orthonormal bases of Cn:

Bh = {wh,1, . . . ,wh,n}, h = 0, . . . , n.

Hence,
〈wh,i,wh,j〉 = δi,j ,

where δi,j =

{
1, i = j,
0, i 6= j,

and the defining property is the mutual unbiasedness, given

by

|〈wf,i,wg,j〉| =
1√
n

(17.2.1)

for 0 ≤ f, g ≤ n, f 6= g, and 1 ≤ i, j ≤ n, where 〈a,b〉 =
∑n
u=1 aubu denotes the

standard inner product of two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Cn.

17.2.2 Remark Mutually unbiased bases were introduced by Schwinger [2572]. They have applica-
tions in quantum state determination [1577, 3005], quantum cryptography [2401], quantum
error-correcting codes [475, 476, 1337], and the mean king’s problem [981].

17.2.3 Theorem [1743, 3005] Let n = pr be the power of a prime p > 2 and ψ be the additive
canonical character of Fn = {ξ1, . . . , ξn}. Then

wh,k =
1√
n

(
ψ(ξhξ

2
u + ξkξu)

)
u=1,...,n

, h, k = 1, . . . , n,

and w0,j = (δj,u)
n
u=1 is a maximal set of MUBs.

17.2.4 Remark Maximal sets of n + 1 MUBs in dimension n are only known to exist in any
dimension n = pr which is a power of a prime p. For n = 2r a construction based on Galois
rings is given in [1743].

If we relax (17.2.1) to

|〈wf,i,wg,j〉| = O
(
n−1/2(log n)1/2

)
we can construct sets of n+ 1 orthonormal bases for any dimension n [2656]. Elliptic curves
over finite fields can be used to construct sets of n+ 1 orthonormal bases with

|〈wf,i,wg,j〉| = O
(
n−1/2

)
which applies to almost all dimensions n and under some widely believed conjectures about
the gaps between primes to all n.

17.2.5 Theorem [2656] Let E be an elliptic curve over a finite field Fp of prime order p > 3 with
n points. For 2 ≤ d ≤ n− 1 denote by Ad the set of bivariate polynomials over E of degree
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at most d with f(0, 0) = 0. Let X denote the character group of E. For f ∈ Fp[E] we define
the set

Bf = {vf,χ : χ ∈ X},
where for a character χ ∈ X, the vector vf,χ is given by

vf,χ =
1√
n

(ψ(f(P ))χ(P ))P∈E

where ψ denotes the additive canonical character of Fp.
For 2 ≤ d ≤ n − 1 the standard basis and the pd−1 sets Bf = {vf,χ : χ ∈ X}, with

f ∈ Ad, are orthonormal and satisfy

|〈vf,χ,vg,ψ〉| ≤
2d+ (2d+ 1)n−1/2

n1/2
,

where f, g ∈ Ad, f 6= g, and χ, ψ ∈ X.

17.2.6 Remark Maximal sets of MUBs and geometries over finite fields were used to define a
discrete analog of quantum mechanical phase space and the corresponding notion of Wigner
transform [1272, 1360]. The latter is a real valued function that uniquely characterizes a
quantum state and allows one to compute measurement statistics by performing summation
along lines of the underlying finite geometry.

17.2.2 Positive operator-valued measures

17.2.7 Definition For a positive integer n let A = {vi = (vi1, . . . , vin) : i = 1, . . . , n2} be a set of
n2 vectors in Cn. The set of n2 × n2 matrices

E = {Ei = (vijvik/n)n
2

i,k=1 : i = 1, . . . , n2}

is an approximately symmetric informationally complete positive operator-valued mea-
sure (ASIC-POVM) if it satisfies the following conditions:

1.
n2∑
i=1

Ei = In (completeness/POVM condition),

2. the Ei are linearly independent as elements of Cn×n (informational complete-
ness),

3. |〈vi,vj〉|2 ≤ (1 + o(1))n−1, 1 ≤ i < j ≤ n2 (approximate symmetry).

17.2.8 Remark If E satisfies instead of Condition 3 the stronger condition

|〈vi,vj〉|2 =
1

n+ 1
, 1 ≤ i < j ≤ n2,

it is a SIC-POVM.
SIC-POVMs have several very desirable properties, see [568] for a discussion in the con-

text of the quantum de Finetti theorem and more generally in their Bayesian approach to
quantum mechanics and its interpretation [567]. Furthermore, see [1142, 1143] for their role
in establishing the quantumness of a Hilbert space and the related question about optimal
intercept-resend eavesdropping attacks on quantum cryptographic schemes. Explicit ana-
lytical constructions of SIC-POVMs have been given for dimensions n = 2, 3, 4, 5, 6, 7, 8, 19,
see [2450] and references therein. While it has been conjectured that SIC-POVMs exist in all
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dimensions and numerical evidence exists for dimensions up to 45, see [2450], it is a difficult
task to explicitly construct SIC-POVMs. There are no known infinite families and in fact
it is not even clear if there are SIC-POVMs for infinitely many n. However, ASIC-POVMS
can be constructed for any power of an odd prime.

17.2.9 Theorem [1744] Let q be a power of a prime p ≥ 3 and ψ denote the additive canonical
character of Fq. Let

va,b = q−1/2
(
ψ(ax2 + bx))

)
x∈Fq

∈ Cq

for all (a, b) ∈ Fq × F∗q and va,0 = (δa,x)x∈Fq for all a ∈ Fq. We define Ea,b =
(va,b,xva,b,y)x,y∈Fq and

G =
∑
a∈Fq

∑
b∈Fq

Ea,b.

Then the set {Fa,b : a, b ∈ Fq}, with Fa,b = G−1/2Ea,bG
−1/2, is an ASIC-POVM.

17.2.3 Quantum error-correcting codes

17.2.10 Remark Recall that for a matrix A ∈ Cd×d the Hermitian conjugate is defined as
A† = (At)∗, where At denotes transposition and ∗ denotes entry-wise complex conjugation.
For two matrices A, B we denote by A⊗B their (Kronecker) tensor product.

17.2.11 Definition (QECC characterization [1759]) Let C ≤ Cd be a subspace and let E ⊆ Cd×d be
a set of error operators. Then C is a quantum error-correcting code for E if the projector
PC onto the code space C satisfies the identities PCE

†FPC = αE,FPC for all E,F ∈ E
and for some αE,F ∈ C. In this case C can detect all errors in E .

17.2.12 Remark We next give a brief description of the stabilizer formalism which allows connecting
the problem of finding quantum error-correcting codes to the problem of finding isotropic
subspaces over finite fields with respect to a certain symplectic inner product.

17.2.13 Definition Let Fq be the finite field of order q = pr where p is prime. Denote by ψ
an additive character of Fq. For α ∈ Fq denote by eα the corresponding standard
basis vector in Cq, i.e., the vector that has 1 in position α and is 0 elsewhere. We
define the following unitary error operators: Xα :=

∑
x∈Fq ex+αex

t for α ∈ Fq and

Zβ :=
∑
z∈Fq ψ(βz)ezez

t for β ∈ Fq.

17.2.14 Definition For each γ ∈ Fq, α = (α1, α2, . . . , αn) ∈ Fnq , and β = (β1, β2, . . . , βn) ∈ Fnq we
define the corresponding n qudit error operator

Eγ,α,β = ψ(γ)(Xα1
Zβ1

)⊗ (Xα2
Zβ2

)⊗ . . .⊗ (XαnZβn).

The weight of Eγ,α,β is the number of indices i for which not both αi and βi are zero.
The group Gn of all Eγ,α,β has size pq2n and is the Pauli group.

17.2.15 Lemma For (α, β), (α′, β′) ∈ Fnq × Fnq we have that

(XαZβ)(Xα′Zβ′) = ψ((α, β) ∗ (α′, β′))(Xα′Zβ′)(XαZβ),

where the symplectic inner product ∗ is defined by

(α, β) ∗ (α′, β′) :=
n∑
i=1

(α′iβi − αiβ′i). (17.2.2)



838 Handbook of Finite Fields

17.2.16 Definition [140, 477, 1337] A stabilizer code is a quantum code C with parameters [[n, k, d]]
that is the joint eigenspace of a set of n − k commuting Pauli operators S1, . . . , Sn−k,
where 0 ≤ k ≤ n. The distance d is the weight of the smallest error that cannot be
detected by the code.

17.2.17 Remark A stabilizer code corresponds to an additively closed subset C of Fnq × Fnq that is
contained in its dual C∗ := {v : v ∈ Fnq | for all c ∈ C : TrFq/Fp(v ∗ c) = 0}.

17.2.18 Remark In order to characterize the error-correcting properties of the code, it is useful to
introduce the normalizer N of S in the Pauli group Gn of n qudits. The elements of the
normalizer can be seen as encoded logical operations on the code. On the other hand, they
also correspond to undetectable errors.

17.2.19 Definition Let S be an Abelian subgroup of Gn which has trivial intersection with
the center of Gn. Furthermore, let {g1, g2, . . . , g`} where gi = ψ(γi)XαiZβi with
γi ∈ {0, . . . , p− 1} and (αi, βi) ∈ Fnq × Fnq be a minimal set of generators for S. Then a
stabilizer matrix of the corresponding stabilizer code C is a generator matrix of the (clas-
sical) additive code C ⊆ Fnq × Fnq generated by (αi, βi). The corresponding stabilizer
matrix is defined as  α1 β1

...
...

α` β`

 ∈ F`×2n
q .

17.2.20 Remark A special class of stabilizer codes are CSS codes [478, 2702]. These codes are
obtained from a pair of classical linear codes C1 = [n, k1, d1]q and C2 = [n, k2, d2]q over Fq.
The codes have to satisfy the condition that C⊥2 ⊆ C1, where C⊥2 denotes the dual code of
C2 with respect to the standard inner product on Fnq . The basis states of the code space C
are defined as cw := 1√

|C⊥2 |

∑
c∈C⊥2

ec+w, where w ∈ C1. Two states cw and cw′ are identical

if and only if w − w′ ∈ C⊥2 and otherwise they are orthogonal. The dimension of the code
space C is qk, where k = k1 + k2 − n and the minimum distance is d ≥ min(d1, d2).

17.2.21 Remark It can be shown [1338, 1353] that any stabilizer code can be encoded efficiently
by using quantum operations from the Clifford group. A generating set for this group is∑
y∈Fq eγyey

t for γ ∈ Fq\{0}, 1√
q

∑
x,z∈Fq ψ(xz)ezex

t, and
∑
x,y∈Fq exex

t⊗ex+yey
t, where

these gates can be applied to any (pair) of the n qudits.

17.2.22 Remark Several constructions of families of quantum error-correcting codes based on finite
fields are known. Starting from classical Reed-Solomon codes (see Section 15.1) over F2n ,
in [1352] a construction of codes with parameters [[n(2n − 1), n(2n − 1− 2K), d ≥ K + 1]]
was given, where K = 2n− δ and δ > (2n− 1)/2 + 1 is the designed distance of the classical
Reed-Solomon code [2n − 1,K, δ] which is underlying the construction.

For a construction of nonbinary stabilizer codes using arbitrary finite fields see [1729].

17.2.23 Remark Various bounds on the parameters of quantum error-correcting codes are
known, see [476]. Similar to the classical Singleton bound, a quantum Singleton bound of
k + 2d ≤ n+ 2 for any code with parameters [[n, k, d]] can be shown. Codes meeting this
bound with equality are quantum MDS codes and several constructions based on finite fields
Fq for large q are known [1351].

17.2.24 Remark Classical Goppa codes have been used to construct quantum error-correcting codes.
A construction in [2027] is based on towers of Garcia-Stichtenoth function fields (see Section
12.6) Fi = Fq2(x0, z1, . . . , xi, zi+1), defined by equations zqi +zi−xq+1

i−1 = 0 and xi = zi/xi−1,
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i = 0, 1, . . . These quantum codes have been shown to be asymptotically good, i.e., their
parameters [[ni, ki, di]] satisfy lim

i→∞
ni → ∞, lim inf

i→∞
ki/ni > 0, and lim inf

i→∞
di/ni > 0, see

also [601].

17.2.25 Remark The webpage http://www.codetables.de provides tables of the best known quan-
tum error-correcting codes for small parameters. The codes are specified by their stabilizer
matrices and where applicable it is noted that a code is optimal, i.e., achieving the highest
possible d for fixed n and k or the highest possible k for fixed n and d. The table also
contains known bounds on the parameters and contains information about the construction
of the codes. Some of these tables and constructions have also been made available in the
computer algebra system Magma.

17.2.26 Remark For a more detailed survey on quantum error-correcting codes see [1054].

17.2.4 Period finding

17.2.27 Theorem [2623] Let (en) be a periodic sequence over Fp of (unknown) period T . If the
mapping n 7→ en, 0 ≤ n < T , is injective, T can be recovered on a quantum computer in
polynomial time.

17.2.28 Remark No classical polynomial time algorithm is known for period finding.

If g ∈ F∗p is an element of (unknown) order T , Shor’s algorithm [2623] determines T in
quantum polynomial time.

Let (fn) be another sequence over Fp of period T such that n 7→ fn is injective and
the (unknown) pair of positive integers (t1, t2) satisfies en+t1fn+t2 = enfn for all n ≥ 0.
Then Shor’s algorithm also determines (t1, t2). Let a, b ∈ F∗p be such that the order of b
is t and a = bx with 0 ≤ x < t. Then x is the discrete logarithm of a to the base b. If
we choose en = bn and fn = a−n, we get en+xfn+1 = bn+xa−n−1 = enfn for all n and
we have (t1, t2) = (x, 1). Hence, Shor’s algorithm finds the discrete logarithm in quantum
polynomial time.

However, Shor’s algorithm does not provide the period of (en) if n 7→ en is not injective.

17.2.29 Theorem [1400] Given two periodic sequences (en) and (fn) with periods T and t, respec-
tively, we denote by D(en, fn) the number of integers n ∈ [0, T t− 1] with en 6= fn.

For any constant c > 0, there is a quantum algorithm which computes in polynomial
time, with probability at least 3/4, the period of any sequence (en) of period T satisfying

D(en, fn) ≥ Tt

(log T )c
, (17.2.3)

for any sequence (fn) of period t < T .

17.2.30 Remark In [2397], for binary sequences (en) with moderately small autocorrelation (which
includes all cryptographically interesting sequences) it was proved that (17.2.3) is fulfilled
and the algorithm of Hales and Hallgren [1400] determines their period in quantum poly-
nomial time. In [2657] a more general problem was studied of determining the period of
a sequence over an unknown finite field Fp, given a black-box which returns only a few
most significant bits of the sequence elements. A moderately small autocorrelation is again
a sufficient condition such that the condition (17.2.3) is satisfied.
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17.2.5 Quantum function reconstruction

17.2.31 Theorem [2509] Any monic, square-free polynomial f ∈ Fp[X] of degree d can be recon-

structed from an oracle Of : Fp → {−1, 0, 1} given by the Legendre symbol Of (a) =
(
f(a)
p

)
of f(a) after O(d) quantum-queries with probability 1 +O(p−1).

17.2.32 Remark The case f(X) = X + s with an unknown s ∈ Fp is a special case of the hidden
shift problem. In this case in [2840] an efficient quantum algorithm was presented that finds
s with one query to the oracle Of . This algorithm uses the fact that the Legendre symbol
is, essentially, equal to its discrete Fourier transform.

17.2.33 Remark The hidden shift problem has also been studied for functions other than the Leg-
endre symbol. In [2488] the hidden shift problem for Boolean functions was studied and it
was shown that for any bent function (see Section 9.3) B : Fn2 → F2 the hidden shift s can
be found by making O(n) queries to OB(x) = (−1)B(x). If furthermore an efficient circuit is
known to implement the dual bent function B∗, then this can be reduced to a single query.
These results were recently extended to the case of random Boolean functions [1260] where
the shift s can be determined from solving a system of linear equations over F2 that is
obtained from a sampling procedure and to the case of functions that are close to quadratic
bent functions, where closeness is measured using the Gowers U3 norm [2487].

17.2.6 Further connections

17.2.34 Remark Some additive character sums over a finite field (twisted Kloosterman sums) are
closely connected to quantum algorithms for finding hidden nonlinear structures over finite
fields [618].

17.2.35 Remark Schumacher and Westmoreland [2562] investigate a discrete version of quantum
mechanics called modal quantum computing based on a finite field instead of the complex
numbers. Some characteristics of actual quantum mechanics are retained including the no-
tions of superposition, interference, and entanglement.

17.2.36 Remark Exponential sums over finite fields are used to construct quantum finite automata
[88].

17.2.37 Remark Classical and quantum algorithms for solvability testing and finding integer so-
lutions x, y of equations of the form agx + bhy = c over a finite field Fq are studied in
[2841].

17.2.38 Remark Given a group G, a subgroup H ≤ G, and a set X, a function f : G 7→ X hides
the subgroup H if for all g1, g2 ∈ G, f(g1) = f(g2) if and only if g1H = g2H for the cosets
of H. The function f is given via an oracle. The hidden subgroup problem is the problem of
finding H using information gained from evaluations of f via its oracle. In the case of an
Abelian group G an efficient quantum algorithm is known for solving the hidden subgroup
problem. In particular, Shor’s algorithm relies on this fact.

In [2138] the authors showed that the hidden subgroup problem can be also efficiently
solved by a quantum computer in the case of the semi-direct product of the additive groups
of Fp1 and Fp2 where p1 and p2 are primes with p2|(p1 − 1) and (p1 − 1)/p2 is polynomial
in log p2.

Another related problem involving finite fields is the hidden polynomial function graph
polynomial studied in [791].
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17.3 Finite fields in engineering

Jonathan Jedwab, Simon Fraser University

Kai-Uwe Schmidt, Otto-von-Guericke University

17.3.1 Binary sequences with small aperiodic autocorrelation

17.3.1 Definition A sequence of length n over an alphabet A is an n-tuple (aj) =
(a0, a1, . . . , an−1), where each aj is an element of the set A.

17.3.2 Definition Let A = (aj) be a sequence over C of length n. For integer u satisfying 0 ≤
u < n, the aperiodic autocorrelation of A at shift u is Cu(A) =

∑n−u−1
j=0 ajaj+u.

17.3.3 Remark The most important case, from a practical and historical viewpoint, occurs when
the sequence is binary, which means that its alphabet is {1,−1}. A binary sequence for
which all aperiodic autocorrelations at nonzero shifts are small in magnitude relative to the
sequence length is intrinsically suited for the separation of signals from noise, and therefore
has natural applications in digital communications, including radar, synchronization, and
steganography.

17.3.4 Remark The overall goal is to find binary sequences A having the property that, for each
u 6= 0 independently, |Cu(A)| takes its smallest possible value. An ideal binary sequence A
from this viewpoint therefore satisfies |Cu(A)| = 0 or 1 for each u 6= 0, which is known as a
Barker sequence. The longest Barker sequence currently known has length 13 and there is
overwhelming evidence that no longer Barker sequence exists (see [1603] for a survey).

17.3.5 Definition Write F = F2 and E = F2m . An m-sequence (yj) of length n = 2m− 1 satisfies

yj = (−1)TrE/F (cαj) for 0 ≤ j < n and for some primitive element α in E and some
nonzero c in E.
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17.3.6 Theorem [2527] Every m-sequence Y of length n = 2m − 1 satisfies |Cu(Y )| < 1 +
(2/π)

√
n+ 1 log

(
4n/π

)
for each u satisfying 0 < u < n.

17.3.7 Remark The above theorem shows the existence of an infinite family of binary sequences
for which the magnitude of the aperiodic autocorrelation (at nonzero shifts) grows no faster
than order

√
n log n. The only known improvement of this result uses probabilistic methods

and guarantees a growth rate of at most order
√
n log n [2135].

17.3.8 Remark For the following definition we need quadratic characters, see Section 6.1.

17.3.9 Definition For an odd prime p, define λ : Fp → {1,−1} to be the quadratic character on
F∗p and λ(0) = 1. For real r, the r-shifted Legendre sequence of length p is the sequence
(xj) of length p satisfying xj = λ(j + brpc) for 0 ≤ j < p.

17.3.10 Theorem [2037] For all real r, the r-shifted Legendre sequence X of length p satisfies
|Cu(X)| < 1 + 18

√
p log p for each u satisfying 0 < u < n.

17.3.11 Definition The merit factor of a binary sequence A of length n > 1 is F (A) =

n2/(2
∑n−1
u=1[Cu(A)]2).

17.3.12 Theorem [1607] Let Yn be an m-sequence of length n = 2m−1. Then F (Yn)→ 3 as n→∞.

17.3.13 Theorem [1523] For real r satisfying |r| ≤ 1/2, let Xp be the r-shifted Legendre sequence

of length p. Then 1/F (Xp)→ 1/6 + 8
(
|r| − 1/4

)2
as p→∞.

17.3.14 Remark The largest asymptotic merit factor occurring in the above theorem is 6. However,
by modifying the construction as shown below, an asymptotic merit factor of approxi-
mately 6.34 can be achieved, which is the largest known asymptotic merit factor for binary
sequences.

17.3.15 Theorem [1604, 1605] Let t = 1.0578 . . . be the middle root of 4x3 − 30x + 27 and write
r = 3/4− t/2. Let (xj) be the r-shifted Legendre sequence of length p. Define Wp to be the
sequence (wj) of length btpc given by wj = xj for 0 ≤ j < p and wj = xj−p for p ≤ j < btpc.
Then F (Wp)→ 6.3420 . . . , which is the largest root of 29x3 − 249x2 + 417x− 27.

17.3.2 Sequence sets with small aperiodic auto- and crosscorrelation

17.3.16 Definition Let A = (aj) and B = (bj) be sequences over C of length n. For integer u
satisfying 0 ≤ u < n, the aperiodic crosscorrelation of A and B at shift u is Cu(A,B) =∑n−u−1
j=0 ajbj+u and the periodic crosscorrelation of A and B at shift u is Ru(A,B) =∑n−1
j=0 ajbj+u, where indices are reduced modulo n.

17.3.17 Definition A set S of sequences has maximum aperiodic correlation θ if |Cu(A,B)| ≤ θ
for all A,B ∈ S when either A 6= B or u 6= 0.

17.3.18 Remark [2554] Code-division multiple access (CDMA) is a technique that allows multiple
users to communicate over the same medium. For example, direct-sequence CDMA employs
a set S of sequences over C of the same length. Each user is assigned a sequence of S, and
encodes information by sending a modulated version of the assigned sequence in which each
sequence element is multiplied by a complex number drawn from some alphabet. In order to
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allow synchronization at the receiver and to minimize interference between different users,
it is necessary to minimize the maximum aperiodic correlation of S.

17.3.19 Remark It is a notoriously difficult problem to design sequence sets with small maximum
aperiodic correlation directly. The usual approach is therefore to design sequence sets that
have good periodic crosscorrelation properties (see Section 10.3 for constructions using finite
fields), and then analyze their aperiodic crosscorrelation properties using either separate
methods or numerical computation.

17.3.3 Binary Golay sequence pairs

17.3.20 Definition A binary Golay sequence pair is a pair of binary sequences A, B of equal
length n whose aperiodic autocorrelations satisfy Cu(A) + Cu(B) = 0 for 0 < u < n. A
binary Golay sequence is a member of a binary Golay sequence pair.

17.3.21 Remark Binary Golay sequence pairs were introduced to solve a problem in infrared mul-
tislit spectrometry [1293], and have since been used in many other digital information
processing applications such as optical time domain reflectometry [2218] and medical ul-
trasound [2300]. The defining aperiodic autocorrelation property can be exploited to allow
very efficient energy use when transmitting information, or to remove unwanted components
from received signals.

17.3.22 Theorem [967] If there exists a binary Golay sequence pair of length n and p is an odd
prime factor of n, then −1 is a square in Fp and so p ≡ 1 (mod 4).

17.3.23 Theorem [2832] If there exist binary Golay sequence pairs of length n1 and n2, then there
exists a binary Golay sequence pair of length n1n2.

17.3.24 Remark Starting from “seed” binary Golay sequence pairs of length 2, 10, and 26, the
above theorem produces a binary Golay sequence pair of length 2k10`26m for all non-
negative integers k, `, m. Once it is known that a binary Golay sequence of a particular
length exists, it is then important in some applications to find as many such sequences of
this length as possible.

17.3.25 Definition Let A = ((−1)aj ) be a binary sequence of length 2m. The algebraic normal
form of A is the unique function fA(x1, . . . , xm) : Fm2 → F2 satisfying

fA(x1, . . . , xm) = axm+2xm−1+···+2m−1x1
for all (x1, . . . , xm) ∈ Fm2 ,

where indices are calculated in Z.

17.3.26 Theorem [783] Let π be a permutation of {1, . . . ,m} and let e′0, e0, e1, . . . , em ∈ F2. The
binary sequences A and B of length 2m having algebraic normal form fA(x1, . . . , xm) =∑m−1
k=1 xπ(k)xπ(k+1) +

∑m
k=1 ekxπ(k) + e0 and fB(x1, . . . , xm) =

∑m−1
k=1 xπ(k)xπ(k+1) +∑m

k=1 ekxπ(k) + e′0 + xπ(1) form a binary Golay sequence pair.

17.3.27 Example Take m = 3, (π(1), π(2), π(3)) = (2, 1, 3), and (e′0, e0, e1, e2, e3) = (0, 1, 1, 0, 1).
Then fA(x1, x2, x3) = x2x1 + x1x3 + x2 + x3 + 1 is the algebraic normal form of A =
(−+ +−−−−−) (writing + for 1, and − for −1), and fB(x1, x2, x3) = x2x1 + x1x3 + x3

is the algebraic normal form of B = (+ − + − + + −−). The sequences A and B form a
binary Golay sequence pair of length 8.

17.3.28 Corollary For m > 1, there are at least 2mm! binary Golay sequences of length 2m.
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17.3.29 Remark The 2mm! binary Golay sequences arising from the above theorem form m!/2
cosets of the first-order Reed-Muller code RM(1,m) in the second-order Reed-Muller code
RM(2,m); see Section 15.1. When these sequences are used in multicarrier transmission, the
Golay property tightly controls variations in the transmitted power while the code structure
allows powerful error correction [783].

17.3.4 Optical orthogonal codes

17.3.30 Definition An (n,w, λ) optical orthogonal code is a set C of sequences over {0, 1} of length
n and Hamming weight w such that the periodic crosscorrelation satisfies Ru(A,B) ≤ λ
for all A,B ∈ C when either A 6= B or u 6= 0.

17.3.31 Remark [639] Optical orthogonal codes are used in optical CDMA. Each user is assigned a
sequence of the code, and a 1 in the sequence corresponds to a time instant when the user
is allowed to transmit a light pulse. The correlation constraint enables self-synchronization
of the system and controls the interference between different users.

17.3.32 Definition An (n,w, λ) optical orthogonal code of size M is optimal if there is no (n,w, λ)
optical orthogonal code of size greater than M .

17.3.33 Remark Optical orthogonal codes are closely related to other combinatorial objects such
as constant-weight codes and cyclic difference families [639]. There are numerous construc-
tions of optimal optical orthogonal codes. Two important general constructions using finite
geometries are given here.

17.3.34 Construction [2319] Write F = Fq and E = Fqm , and let α be primitive in E. The points in
the affine geometry AG(m, q) are the elements of E; see Section 14.3. A d-flat in AG(m, q)
is a translate of a d-dimensional subspace of E over F . Then the lines in AG(m, q) are
precisely the 1-flats. Two d-flats A and B are equivalent if there exists a ∈ E∗ such that
A = {ax : x ∈ B}. This partitions the d-flats into orbits. Let C be a set containing exactly
one representative from each orbit of a d-flat that does not contain 0. With a d-flat S ∈ C
we associate a sequence over {0, 1} of length qm − 1 by placing a 1 at position i precisely
when αi ∈ S.

17.3.35 Remark The q-binomial coefficient
[
m
k

]
q

=
∏k
i=1

qm−i+1−1
qi−1 equals the number of k-

dimensional subspaces of Fqm over Fq; see Section 13.2.

17.3.36 Theorem [2319] The above code is a (qm − 1, qd, qd−1) optical orthogonal code of size[
m−1
d

]
q
. If d = 1 or d = m− 1, the code is optimal.

17.3.37 Example Take q = 2, m = 3, d = 1, and let α be primitive in F8. There are 21
lines in AG(3, 2) that do not contain 0. These are of the form {x, y}, where x, y ∈
F∗8 and x 6= y. A list of representatives of the orbits is {1, α}, {1, α2}, {1, α3} and
{(1100000), (1010000), (1001000)} is an optimal (7, 2, 1) optical orthogonal code.

17.3.38 Construction [639] Write F = Fq, E = Fqm+1 , and n = qm+1−1
q−1 . The points in the projective

geometry PG(m, q) are the elements of E∗/F ∗ (which is isomorphic to Z/nZ); see Section
14.4. Let α be primitive in E and let [a] denote the coset of F ∗ in E∗ containing a. A
d-space in PG(m, q) is the image under the mapping x 7→ [x] of the nonzero elements
of a (d + 1)-dimensional subspace of E over F . Then the lines in PG(m, q) are precisely
the 1-spaces. Two d-spaces A and B are equivalent if there exists a ∈ E∗/F ∗ such that
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A = {ax : x ∈ B}. This partitions the d-spaces into orbits, whose sizes divide n. Let C be a
set containing exactly one representative from each orbit of size exactly n. With a d-space
S ∈ C we associate a sequence over {0, 1} of length n by placing a 1 at position i precisely
when [αi] ∈ S.

17.3.39 Theorem [639] The above code is a
(
qm+1−1
q−1 , q

d+1−1
q−1 , q

d−1
q−1

)
optical orthogonal code. For

d = 1, the code is optimal and has size qm−1
q2−1 for even m and qm−q

q2−1 for odd m.

17.3.40 Example Take q = 2, m = 3, d = 1, and let α be the primitive element in F16 that satisfies
α4 = α + 1. Then the 2-dimensional subspaces {0, 1, α, α4}, {0, 1, α2, α8}, {0, 1, α5, α10}
of F16 map to the lines {[1], [α], [α4]}, {[1], [α2], [α8]}, {[1], [α5], [α10]} in PG(3, 2). Their
orbits have size 15, 15, and 5, respectively, and exhaust all 35 lines in PG(3, 2). Hence,
{(110010000000000), (101000001000000)} is an optimal (15, 3, 1) optical orthogonal code.

17.3.5 Sequences with small Hamming correlation

17.3.41 Definition Let A = (aj) and B = (bj) be sequences of length n. For integer u satisfying
0 ≤ u < n, the Hamming correlation between A and B at shift u is Hu(A,B) =∑n−1
j=0 h(aj , bj+u), where h(x, y) = 1 if x = y and h(x, y) = 0 otherwise and indices are

reduced modulo n.

17.3.42 Remark [2554] In frequency-hopping spread spectrum communications, several frequencies
are shared by different users. Let q be the number of such frequencies and let M be the
number of users. The system employs a family of M “frequency-hopping” sequences of
the same length, each over the same alphabet of size q. Each user is assigned a sequence
of the family and switches between the q frequencies according to the elements of this
sequence. In order to minimize interference between different users, as well as to support
self-synchronization of the system, the Hamming correlation between every two sequences
in the family should be as small as possible.

17.3.43 Definition Let S be the set of all sequences of length n over some fixed alphabet, and
write

H(A) = max
0<u<n

Hu(A,A),

H(A,B) = max
0≤u<n

Hu(A,B),

M(A,B) = max{H(A), H(B), H(A,B)}.

1. X ∈ S is optimal if H(X) ≤ H(X ′) for all X ′ ∈ S.

2. X,Y ∈ S is an optimal pair if M(X,Y ) ≤M(X ′, Y ′) for all X ′, Y ′ ∈ S.

3. A subset F ⊂ S is an optimal family if every pair of distinct sequences in F is
an optimal pair.

17.3.44 Remark There are numerous constructions of optimal families. Two constructions based
on finite fields are given here.

17.3.45 Construction [1889] Let k and m be integers satisfying 1 ≤ k ≤ m. Let α be primitive
in Fpm and let β be primitive in Fpk . Write F = Fp and E = Fpm . For v ∈ Fpk , define

the sequence Xv = (xj) of length pm − 1 over Fpk by xj = v +
∑k−1
`=0 TrE/F (αj+`)β` for

0 ≤ j < pm − 1. Call {Xv : v ∈ Fpk} the Lempel-Greenberger family.
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17.3.46 Remark The sequence X0 is obtained by mapping k consecutive elements of an m-sequence
over Fp (as defined in Section 10.3) to an element in Fpk . The other sequences are then
translates of X0.

17.3.47 Theorem [1889] Each sequence in the Lempel-Greenberger family F is optimal and F is
an optimal family. Specifically, H(X) = pn−k − 1 and H(X,Y ) = pn−k for all distinct
X,Y ∈ F .

17.3.48 Construction [635] Let p = em + 1 be an odd prime and let α be primitive in Fp. For
integer i, define the i-th cyclotomic class in Fp to be Ci = {αte+i : 0 ≤ t < m}. For integer
v, define the sequence Xv = (xj) of length p over {∞, 0, 1, . . . , e− 1} by x0 =∞ and xj = i
when j ∈ Cv+i for 0 ≤ j < p. Call {Xv : 0 ≤ v < e} the Chu-Colbourn family.

17.3.49 Theorem [635] The Chu-Colbourn family F satisfies H(X) = m− 1 and H(X,Y ) = m for
all distinct X,Y ∈ F . When e ≥ 3m and m ≥ 2, then each sequence in F is optimal and F
is an optimal family.

17.3.50 Example Take e = 3, m = 2, so that p = 7. For α = 3, we have C0 = {1, 6}, C1 = {3, 4},
C2 = {2, 5}, giving X0 = (∞021120), X1 = (∞210012), X2 = (∞102201).

17.3.6 Rank distance codes

17.3.51 Definition An (m,n, d) rank distance code over Fq is a subset C of Fm×nq (the set of m×n
matrices over Fq) such that the rank of X − Y is at least d for all distinct X,Y ∈ C.
Without loss of generality, it is assumed that m ≤ n.

17.3.52 Remark Rank distance codes were introduced independently in [803, 1149, 2485]. Such
codes find applications in correcting crisscross errors in arrays, for example in memory chip
arrays or magnetic tape recording [2485]. Further applications are given in the following
two subsections. Motivated by these applications, the goal is to find (m,n, d) rank distance
codes that have as many elements as possible.

17.3.53 Theorem [803] The size of an (m,n, d) rank distance code over Fq is at most qn(m−d+1).

17.3.54 Definition An (m,n, d) rank distance code over Fq of size qn(m−d+1) is a maximum rank
distance code.

17.3.55 Definition The rank distribution of a rank distance code C is (ai), where ai is the number
of elements in C of rank i, and its distance distribution is (bi), where bi = |{(X,Y ) ∈
C × C : rank(X − Y ) = i}|/|C|.

17.3.56 Theorem [803] The rank distribution (ai) and the distance distribution (bi) of an (m,n, d)
maximum rank distance code over Fq satisfy a0 = b0 = 1 and

ai = bi =

[
m

i

]
q

i−d∑
j=0

(−1)jq(
j
2)
[
i

j

]
q

(qn(i−j−d+1) − 1) for i ∈ {1, 2, . . . ,m},

where
[
m
k

]
q

is the q-binomial coefficient given in Remark 17.3.35.

17.3.57 Theorem [803] Let m,n, d be positive integers satisfying d ≤ m ≤ n. Write F = Fq and
E = Fqn , and let α be primitive in E. For λ = (λ0, λ1, . . . , λm−d) ∈ Em−d+1, let Xλ = (xij)

be the m × n matrix given by xij = TrE/F (αj
∑m−d
k=0 λkα

iqk) for i ∈ {1, 2, . . . ,m} and
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j ∈ {1, 2, . . . , n}. Then {Xλ : λ ∈ Em−d+1} is an (m,n, d) maximum rank distance code
over Fq.

17.3.7 Space-time coding

17.3.58 Definition An (m,n, d) space-time code S over a (finite) alphabet A ⊂ C is a set of m×n
matrices with entries in A such that, for all distinct A,B ∈ S, the rank of A− B is at
least d, which is the diversity of S. Without loss of generality, it is assumed that m ≤ n.

17.3.59 Remark Space-time codes are used in wireless digital communications to transmit a block
of n data symbols over m transmit antennas. The motivation is that, with careful code
design, the transmitter introduces spatial diversity and so can prevent signal loss caused by
shadowing [2782]. The usual goal is to design space-time codes whose diversity equals the
number of transmit antennas m.

17.3.60 Theorem [1963] The size of an (m,n, d) space-time code over an alphabet of size q is at
most qn(m−d+1).

17.3.61 Definition A space-time code that achieves equality above is optimal.

17.3.62 Remark There are different approaches for constructing space-time codes. Algebraic con-
structions based on rank distance codes over finite fields are presented in the following. The
principal difficulty in this approach is to find some “rank-preserving” mapping from a finite
field to a finite subset of C.

17.3.63 Theorem [1964] Let C be an (m,n, d) maximum rank distance code over F2, where we
interpret the elements of C to be in {0, 1}, as a subset of Z. Let h and ` be positive integers.

Write θ = e2π
√
−1/2h , let η be a nonzero element in 2Z[θ], and let κ be a nonzero element

in C. Define

S =

{
κ
`−1∑
u=0

ηuθ
∑h−1
v=0 2vXu,v : Xu,v ∈ C

}
,

where the exponentiation of matrices is understood to be element-wise. Then S is an optimal
(m,n, d) space-time code over an alphabet of size 2h`.

17.3.64 Remark The above construction admits space-time codes over alphabets commonly used
in digital communications. When h = 2, κ = 1 +

√
−1, and η = 2, the resulting alphabet is

known as 4`-QAM. When ` = 1 and κ = 1, and η > 0, the resulting alphabet is known as
2h-PSK.

17.3.65 Remark Let K be a number field (a finite extension of the field of rationals Q), let R be the
ring of algebraic integers in K, and let p be a prime number. The ideal pR factors uniquely
into prime ideals over R. If P is such a factor, then R/P is a finite field of size pk, where k
is the inertial degree of P over pZ (see [2004] for background on number fields and prime
ideal factorization). This is usually applied with K = Q, in which case R = Z and Z/pZ is
a finite field of size p.

17.3.66 Definition Let K be a number field and R the ring of algebraic integers in K. Suppose
that R contains a prime ideal P such that R/P is isomorphic to Fq. Let A ⊂ C be a
set containing exactly one representative from each of the q elements of R/P . Define
φ : Fq → A to be the mapping induced by the isomorphism from Fq to R/P , and extend
φ to act element-wise on matrices over Fq.



848 Handbook of Finite Fields

17.3.67 Theorem [1740] For each matrix X over Fq, we have rank(φ(X)) ≥ rank(X).

17.3.68 Corollary [1740] Let C be an (m,n, d) maximum rank distance code over Fq. Then φ(C) is
an optimal (m,n, d) space-time code over A.

17.3.69 Remark The set A is not uniquely defined for a given K, but from a practical viewpoint it
is advantageous to choose A such that the energy

∑
a∈A |a|2 is minimized.

17.3.70 Example Write i =
√
−1 and take K = Q[i], so that R = Z[i]. Denote the ideal aR by (a)

and let p be a prime satisfying p ≡ 1 (mod 4). Then (p) = (π)(π), where π = a + bi for
some a, b ∈ Z satisfying a2 + b2 = p, and R/(π) is isomorphic to Fp. Identify Fp with Z/pZ
and define φ : Fp → C by φ(x+ pZ) = x− [ xπ ]π, where [ · ] rounds to the nearest element (in
the Euclidean metric) in Z[i]. Take A to be the image of φ. Then A minimizes the energy.
Specifically for p = 5, we have (5) = (2 + i)(2− i) and A = {0, 1,−1, i,−i}.

17.3.8 Coding over networks

17.3.71 Definition [1800] Let P (Fmq ) be the set of subspaces of Fmq over Fq. The subspace distance
dS on P (Fmq ) is defined by dS(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ).

17.3.72 Definition [1800] Let Pk(Fmq ) be the set of k-dimensional subspaces of Fmq over Fq. An
(m, k, 2d) constant-dimension code Ω over Fq is a subset of Pk(Fmq ) such that dS(U, V ) ≥
2d for all distinct U, V ∈ Ω.

17.3.73 Remark Random linear network coding is a technique for communicating efficiently over
networks. The transmitting node injects a basis for a k-dimensional subspace of Fmq into
the network. Each intermediate node relays a randomly chosen linear combination of its
incoming vectors. The receiving node waits until enough linearly independent vectors are
received and then tries to reconstruct the transmitted subspace. If the transmitted subspaces
are taken from an (m, k, 2d) constant-dimension code with d > 1, then the receiver can
reconstruct the transmitted space even if there are (a limited number of) lost or erroneously
inserted vectors. Specifically, a successful reconstruction is always possible if the transmitted
subspace U and the received subspace V satisfy dS(U, V ) < d [1800].

17.3.74 Definition [2666] The mapping Λ : Fk×(m−k)
q → Pk(Fmq ) takes X ∈ Fk×(m−k)

q to the
rowspace of [I X], where I is the identity matrix of order k.

17.3.75 Theorem [2666] We have dS(Λ(X),Λ(Y )) = 2 rank(X − Y ) for all X,Y ∈ Fk×(m−k)
q .

17.3.76 Corollary [2666] Let C be a (k,m − k, d) rank distance code over Fq. Then Λ(C) is an
(m, k, 2d) constant-dimension code over Fq.

17.3.77 Remark If C is a (k,m−k, d) maximum rank distance code, the “lifted” code Λ(C) has size
qk(m−k)−(d−1) max{k,m−k}. This code is almost optimal in the sense that every (m, k, 2d)
constant-dimension code over Fq has fewer than four times as many codewords as Λ(C)
[2666]. In some special cases Λ(C) can be augmented to give an optimal code, as shown
below.

17.3.78 Theorem [1998] Let k and m be positive integers satisfying m = rk for integer r. Let I and
Z be the identity and all-zero matrix over Fq of size k × k, respectively. Let Ω0 ⊂ Pk(Fmq )
contain the rowspace of [Z · · · Z I], and for ` ∈ {1, 2, . . . , r−1}, let Ω` ⊂ Pk(Fmq ) be the set
of rowspaces corresponding to {[Z · · · Z I A] : A ∈ C`}, where C` is a (k, `k, k) maximum
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rank distance code over Fq. Then
⋃
` Ω` is an (rk, k, 2k) constant-dimension code of size

1 + qk + q2k + · · ·+ q(r−1)k.

17.3.79 Remark The above code is a k-spread of Fqm , namely a set of k-dimensional subspaces
of Fqm having the property that each nonzero element of Fqm belongs to exactly one such
subspace. The code therefore has largest possible size.

See Also

§10.3 For more on correlation of sequences.
§15.1 For background on coding theory.
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f(X) est un polynôme irréductibile de Fpn [X], L’ Enseignement Math., IIe Ser.
22 (1976) 305–312. <60, 62, 66>

[35] S. Agou, Factorisation sur un corps fini K des polynômes composés f(Xs) lorsque
f(X) est polynôme irréductibile de K[X], C. R. Acad. Sci. Paris, Sér. A-B 282
(1976) Ai, A1067–A1068. <60, 66>
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[289] A. Biró, On polynomials over prime fields taking only two values on the multiplicative
group, Finite Fields Appl. 6 (2000) 302–308. <233, 236>

[290] R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz and
related systems of linear equations, Linear Algebra Appl. 34 (1980) 103–116.
<533, 535>

[291] R. Blache, First vertices for generic Newton polygons, and p-cyclic coverings of the
projective line, preprint available, http://arxiv.org/abs/0912.2051, 2009.
<484, 487, 488>

[292] R. Blache, Newton polygons for character sums and Poincaré series, Int. J. Number
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[296] R. Blache, É. Férard, and H. J. Zhu, Hodge-Stickelberger polygons for L-functions of
exponential sums of P (xs), Math. Res. Lett. 15 (2008) 1053–1071. <485, 488>

[297] S. R. Blackburn, A generalisation of the discrete Fourier transform: determining the
minimal polynomial of a periodic sequence, IEEE Trans. Inform. Theory 40
(1994) 1702–1704. <328, 336>

[298] S. R. Blackburn, T. Etzion, and K. G. Paterson, Permutation polynomials, de Bruijn
sequences, and linear complexity, J. Combin. Theory, Ser. A 76 (1996) 55–82.
<328, 329, 336>
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[474] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne-Lusztig
curve of Ree type, Acta Arith. 115 (2004) 133–180. <461, 463>

[475] A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, Z4-Kerdock codes,
orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc.,
3rd Ser. 75 (1997) 436–480. <835, 841>

[476] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error
correction and orthogonal geometry, Phys. Rev. Lett. 78 (1997) 405–408. <835,
838, 841>

[477] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error
correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998) 1369–
1387. <838, 841>

[478] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist,
Phys. Rev. A 54 (1996) 1098–1105. <838, 841>

[479] R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London
Math. Soc. 18 (1986) 97–122. <617, 619>

[480] C. Caliskan and G. E. Moorhouse, Subplanes of order 3 in Hughes planes, Electron.
J. Combin. 18 (2011) Paper 2, 8. <570, 574>

[481] C. Caliskan and B. Petrak, Subplanes of order 3 in Figueroa planes, Finite Fields
Appl. 20 (2013) 24–29. <570, 574>

[482] J. Calmet and R. Loos, An improvement of Rabin’s probabilistic algorithm for gen-
erating irreducible polynomials over GF (p), Information Processing Letters 11
(1980) 94–95. <376, 380>

[483] P. J. Cameron and J. J. Seidel, Quadratic forms over GF (2), Proc. Kon. Nederl.
Akad. Wetensch. Ser. A 76 (1973) 1–8. <205, 206>

[484] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Links, volume 22



876 Handbook of Finite Fields

of London Mathematical Society Student Texts, Cambridge University Press,
Cambridge, 1991. <31>

[485] P. Camion, C. Carlet, P. Charpin, and N. Sendrier, On correlation-immune func-
tions, In Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes
in Comput. Sci., 86–100, Springer, Berlin, 1992. <249, 252>

[486] P. Candelas, X. de la Ossa, and F. Rodriguez-Villegas, Calabi-Yau manifolds over
finite fields. II, In Calabi-Yau Varieties and Mirror Symmetry, volume 38 of
Fields Inst. Commun., 121–157, Amer. Math. Soc., Providence, RI, 2003. <472,
479>

[487] R. Canetti, J. Friedlander, S. Konyagin, M. Larsen, D. Lieman, and I. E. Shparlinski,
On the statistical properties of Diffie-Hellman distributions, Israel J. Math. 120
(2000) 23–46. <183, 184, 185>

[488] R. Canetti, J. Friedlander, and I. E. Shparlinski, On certain exponential sums and the
distribution of Diffie-Hellman triples, J. London Math. Soc., 2nd Ser. 59 (1999)
799–812. <183, 185, 189, 192>

[489] A. Canteaut, Analyse et Conception de Chiffrements à Clef Secrète, Mémoire
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les corps finis, Astérisque (2008) Exp. No. 968, vii, 39–90, Séminaire Bourbaki.
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[648] S. M. Cioabă, On the extreme eigenvalues of regular graphs, J. Combin. Theory, Ser.
B 96 (2006) 367–373. <647, 658>
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Birkhäuser, Basel, 2001. <98, 99>

[714] K. Conrad, Jacobi sums and Stickelberger’s congruence, Enseign. Math,. IIe Ser. 41
(1995) 141–153. <152, 161>

[715] K. Conrad, On Weil’s proof of the bound for Kloosterman sums, J. Number Theory
97 (2002) 439–446. <154, 155, 161>

[716] S. Contini and I. E. Shparlinski, On Stern’s attack against secret truncated linear
congruential generators, volume 3574 of Lecture Notes in Comput. Sci., 52–60,
Springer, Berlin, 2005. <338, 344>

[717] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Trans. Inform. Theory 30 (1984) 587–594. <348, 363, 370, 374, 398, 401>

[718] D. Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear
Algebra Appl. 192 (1993) 33–60. <400, 401, 534, 535>

[719] D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiede-
mann algorithm, Math. Comp. 62 (1994) 333–350. <400, 401, 534, 535>

[720] D. Coppersmith, Rectangular matrix multiplication revisited, J. Complexity 13 (1997)



888 Handbook of Finite Fields

42–49. <521, 535>

[721] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1 (1986) 1–15. <399, 401>

[722] D. Coppersmith, J. Stern, and S. Vaudenay, The security of the birational permutation
signature schemes, J. Cryptology 10 (1997) 207–221. <769, 775, 779, 783>

[723] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
J. Symbolic Comput. 9 (1990) 251–280. <382, 521, 535>

[724] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press, Cambridge, MA, second edition, 2001. <46, 49>

[725] C. J. Corrada-Bravo and I. Rubio, Deterministic interleavers for turbo codes with
random-like performance and simple implementation, In Proc. Third Interna-
tional Symposium on Turbo Codes, Brest, France, 2003. <726, 727>

[726] R. S. Coulter, The classification of planar monomials over fields of prime square order,
Proc. Amer. Math. Soc. 134 (2006) 3373–3378. <281, 282>

[727] R. S. Coulter and M. Henderson, The compositional inverse of a class of permutation
polynomials over a finite field, Bull. Austral. Math. Soc. 65 (2002) 521–526.
<229, 230>

[728] R. S. Coulter and M. Henderson, Commutative presemifields and semifields, Adv.
Math. 217 (2008) 282–304. <277, 278, 281, 282>

[729] R. S. Coulter, M. Henderson, and P. Kosick, Planar polynomials for commutative
semifields with specified nuclei, Des. Codes Cryptogr. 44 (2007) 275–286. <276,
278, 282>

[730] R. S. Coulter, M. Henderson, and R. Matthews, A note on constructing permutation
polynomials, Finite Fields Appl. 15 (2009) 553–557. <224, 225, 230>

[731] R. S. Coulter and F. Lazebnik, On the classification of planar monomials over fields
of square order, Finite Fields Appl. 18 (2012) 316–336. <281, 282>

[732] R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti class
II, Des. Codes Cryptogr. 10 (1997) 167–184. <271, 273, 279, 280, 282>

[733] R. S. Coulter and R. W. Matthews, On the permutation behaviour of Dickson poly-
nomials of the second kind, Finite Fields Appl. 8 (2002) 519–530. <226, 230>

[734] R. S. Coulter and R. W. Matthews, On the number of distinct values of a class of
functions over a finite field, Finite Fields Appl. 17 (2011) 220–224. <236, 281,
282>

[735] N. T. Courtois, Fast algebraic attacks on stream ciphers with linear feedback, In Ad-
vances in Cryptology—CRYPTO 2003, volume 2729 of Lecture Notes in Comput.
Sci., 176–194, Springer, Berlin, 2003. <248, 252>

[736] N. T. Courtois, Algebraic attacks over GF(2k), application to HFE Challenge 2 and
Sflash-v2, In Public Key Cryptography—PKC 2004, volume 2947 of Lecture Notes
in Comput. Sci., 201–217, Springer, Berlin, 2004. <782, 783>

[737] N. T. Courtois, M. Daum, and P. Felke, On the security of HFE, HFEv- and Quartz, In
Public Key Cryptography—PKC 2003, volume 2567 of Lecture Notes in Comput.
Sci., 337–350, Springer, Berlin, 2002. <770, 780, 783>

[738] N. T. Courtois, L. Goubin, W. Meier, and J.-D. Tacier, Solving underdefined sys-
tems of multivariate quadratic equations, In PubKeyCrypt 2002, volume 2274 of
Lecture Notes in Comput. Sci., 211–227, Springer, Berlin, 2002. <781, 783>

[739] N. T. Courtois, L. Goubin, and J. Patarin, SFLASH: Primitive specification (second
revised version), 2002, https://www.cosic.esat.kuleuven.be/nessie, Sub-
missions, Sflash, 11 pages. <773, 783>



Bibliography 889

[740] N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations, In Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in Comput. Sci.,
392–407, Springer, Berlin, 2000. <780, 782, 783>

[741] N. T. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear feed-
back, In Advances in Cryptology—EUROCRYPT 2003, volume 2656 of Lecture
Notes in Comput. Sci., 345–359, Springer, Berlin, 2003. <248, 252>

[742] N. T. Courtois and J. Patarin, About the XL algorithm over GF(2), In Topics
in Cryptology—CT-RSA 2003, volume 2612 of Lecture Notes in Comput. Sci.,
141–157, Springer, Berlin, 2003. <782, 783>

[743] N. T. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with overdefined
systems of equations, In Advances in Cryptology—ASIACRYPT 2002, volume
2501 of Lecture Notes in Comput. Sci., 267–287, Springer, Berlin, 2002. <782,
783>

[744] J.-M. Couveignes and T. Henocq, Action of modular correspondences around CM
points, In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture
Notes in Comput. Sci., 234–243, Springer, Berlin, 2002. <787, 796>

[745] J.-M. Couveignes and J.-G. Kammerer, The geometry of flex tangents to a cubic curve
and its parameterizations, J. Symbolic Comput. 47 (2012) 266–281. <796>

[746] J.-M. Couveignes and R. Lercier, Elliptic periods for finite fields, Finite Fields Appl.
15 (2009) 1–22. <121, 122, 123, 128>

[747] J.-M. Couveignes and R. Lercier, Fast construction of irreducible polynomials over
finite fields, Israel Journal of Mathematics 194 (2013) 77–105. <378, 380>

[748] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Undergraduate
Texts in Mathematics. Springer, New York, third edition, 2007. <783, 826, 834>

[749] D. A. Cox, Galois Theory, Pure and Applied Mathematics (New York). Wiley-
Interscience, John Wiley & Sons, Hoboken, NJ, 2004. <3, 9, 11>

[750] R. Crandall, Method and apparatus for public key exchange in a cryptographic system,
United States Patent 5, 159, 632, Date: Oct. 27th 1992. <353, 363>

[751] R. Crandall and C. Pomerance, Prime Numbers, Springer, New York, second edition,
2005, A computational perspective. <346, 354, 355, 362, 363, 496, 500>

[752] R. M. Crew, Etale p-covers in characteristic p, Compositio Math. 52 (1984) 31–45.
<487, 488>

[753] H. S. Cronie and S. B. Korada, Lossless source coding with polar codes, In Proc.
(ISIT) Symp. IEEE Int Information Theory, 904–908, 2010. <739>

[754] E. Croot, Sums of the form 1/xk1 + · · ·+ 1/xkn modulo a prime, Integers 4 (2004) A20,
6. <213>

[755] S. Crozier, J. Lodge, P. Guinand, and A. Hunt, Performance of turbo codes with
relative prime and golden interleaving strategies, In Proc. of the Sixth Inter-
national Mobile Satellite Conference (IMSC ’99), 268–275, Ottawa, Ontario,
Canada, 1999. <726, 727>

[756] C. Culbert and G. L. Ebert, Circle geometry and three-dimensional subregular trans-
lation planes, Innov. Incidence Geom. 1 (2005) 3–18. <568, 574>

[757] T. W. Cusick, Value sets of some polynomials over finite fields GF(22m), SIAM J.
Comput. 27 (1998) 120–131 (electronic). <235, 236>

[758] T. W. Cusick, Polynomials over base 2 finite fields with evenly distributed values,
Finite Fields Appl. 11 (2005) 278–291. <235, 236>

[759] T. W. Cusick, C. Ding, and A. Renvall, Stream Ciphers and Number Theory, volume 66



890 Handbook of Finite Fields

of North-Holland Mathematical Library, Elsevier Science B.V., Amsterdam, re-
vised edition, 2004. <31, 326, 328, 333, 334, 336>

[760] T. W. Cusick and P. Müller, Wan’s bound for value sets of polynomials, In Finite
Fields and Applications, volume 233 of London Math. Soc. Lecture Note Ser.,
69–72, Cambridge Univ. Press, Cambridge, 1996. <233, 235, 236>

[761] S. Czapor, K. Geddes, and G. Labahn, Algorithms for Computer Algebra, Kluwer
Academic Publishers, 1992. <31, 382, 392>

[762] J. Daemen and V. Rijmen, The Design of Rijndael: AES – the Advanced Encryption
Standard, Springer-Verlag, 2002. <31, 751, 760, 761, 763>

[763] Z. Dai, Multi-continued fraction algorithms and their applications to sequences, In
Sequences and Their Applications—SETA 2006, volume 4086 of Lecture Notes
in Comput. Sci., 17–33, Springer, Berlin, 2006. <329, 336>

[764] Z. Dai and X. Feng, Classification and counting on multi-continued fractions and its
application to multi-sequences, Sci. China, Ser. F 50 (2007) 351–358. <329,
336>

[765] Z. Dai, K. Wang, and D. Ye, Multi-continued fraction algorithm on multi-formal
Laurent series, Acta Arith. 122 (2006) 1–16. <329, 336>

[766] Z. Dai and J. Yang, Multi-continued fraction algorithm and generalized B-M algorithm
over Fq, Finite Fields Appl. 12 (2006) 379–402. <329, 336>

[767] F. Daneshgaran and M. Mondin, Design of interleavers for turbo codes: iterative
interleaver growth algorithms of polynomial complexity, IEEE Trans. Inform.
Theory 45 (1999) 1845–1859. <726, 727>

[768] A. Danilevsky, The numerical solution of the secular equation, Matem. Sbornik 44
(1937) 169–171, In Russian. <375, 380>
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[1153] A. Gács, P. Sziklai, and T. Szőnyi, Two remarks on blocking sets and nuclei in planes
of prime order, Des. Codes Cryptogr. 10 (1997) 29–39. <560, 563>

[1154] S. D. Galbraith, Supersingular curves in cryptography, In Advances in Cryptology—
ASIACRYPT 2001, volume 2248 of Lecture Notes in Comput. Sci., 495–513,
Springer, Berlin, 2001. <454, 456>

[1155] S. D. Galbraith, M. Harrison, and D. J. Mireles Morales, Efficient hyperelliptic arith-
metic using balanced representation for divisors, In Algorithmic Number Theory,
volume 5011 of Lecture Notes in Comput. Sci., 342–356, Springer, Berlin, 2008.
<451, 452, 456>

[1156] S. D. Galbraith, F. Hess, and N. P. Smart, Extending the GHS Weil descent attack, In
L. Knudsen, editor, Advances in Cryptology—EUROCRYPT 2002, volume 2332
of Lecture Notes in Comput. Sci., 29–44, Springer-Verlag, Berlin, 2002. <786,
796>

[1157] S. D. Galbraith, F. Hess, and F. Vercauteren, Hyperelliptic pairings, In Pairing-
Based Cryptography—Pairing 2007, volume 4575 of Lecture Notes in Comput.
Sci., 108–131, Springer, Berlin, 2007. <803>

[1158] S. D. Galbraith, J. F. McKee, and P. C. Valença, Ordinary abelian varieties having



Bibliography 911

small embedding degree, Finite Fields Appl. 13 (2007) 800–814. <811>

[1159] S. D. Galbraith and K. G. Paterson, editors, Pairing-based cryptography—Pairing
2008, volume 5209 of Lecture Notes in Comput. Sci., Berlin, 2008. Springer.
<788, 796>

[1160] S. D. Galbraith and N. P. Smart, A cryptographic application of Weil descent, In
M. Walker, editor, Cryptography and Coding, volume 1746 of Lecture Notes in
Comput. Sci., 191–200, Springer-Verlag, Berlin, 1999. <786, 796>
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[1248] P. Gaudry and N. Gürel, Counting points in medium characteristic using Kedlaya’s
algorithm, Experiment. Math. 12 (2003) 395–402. <491, 788>

[1249] P. Gaudry and R. Harley, Counting points on hyperelliptic curves over finite fields,
In Algorithmic Number Theory, volume 1838 of Lecture Notes in Comput. Sci.,
313–332, Springer, Berlin, 2000. <454, 456>

[1250] P. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil
descent on elliptic curves, Journal of Cryptology 15 (2002) 19–46. <786, 796,
809, 810, 811>

[1251] P. Gaudry and F. Morain, Fast algorithms for computing the eigenvalue in the Schoof–
Elkies–Atkin algorithm, In J.-G. Dumas, editor, Proceedings of the 2006 Inter-
national Symposium on Symbolic and Algebraic Computations—ISSAC MMVI,
109–115, ACM, New York, 2006. <788, 796>
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[1253] P. Gaudry and É. Schost, Genus 2 point counting over prime fields, J. Symbolic
Comput. 47 (2012) 368–400. <803>



916 Handbook of Finite Fields

[1254] P. Gaudry, B. A. Smith, and D. R. Kohel, Counting points on genus 2 curves with real
multiplication, In Advances in Cryptology—ASIACRYPT 2011, volume 7073 of
Lecture Notes in Comput. Sci., 504–519, Springer, Berlin, 2011. <803>
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Boston, MA, 1990. <483, 488>

[1572] L. Illusie, Crystalline cohomology, In Motives, volume 55 of Proc. Sympos. Pure
Math., 43–70, Amer. Math. Soc., Providence, RI, 1994. <479>

[1573] K. Imamura, On self-complementary bases of GF (qn) over GF(q)., Trans. IECE
Japan, E 66 (1983) 717–721. <103, 104, 109>

[1574] K. Imamura and M. Morii, Two classes of finite fields which have no self-
complementary normal bases, In 1985 IEEE International Symposium on In-
formation Theory Proceedings (ISIT), Brighton, England, 1985. <114, 116>

[1575] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, vol-
ume 84 of Graduate Texts in Mathematics, Springer-Verlag, New York, second
edition, 1990. <206, 213>

[1576] T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF(2m)
using normal bases, Inform. and Comput. 78 (1988) 171–177. <360, 363, 818,
823>
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et en petit genres, Available at http://www.math.jussieu.fr/~mestre/, 2002.
<454, 456>

[2090] P. Meyer, Eine Charakterisierung vollständig regulärer, abelscher Erweiterungen, Abh.
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[2098] P. Mihăilescu, F. Morain, and E. Schost, Computing the eigenvalue in the Schoof–
Elkies–Atkin algorithm using abelian lifts, In C. W. Brown, editor, Proceedings
of the 2007 International Symposium on Symbolic and Algebraic Computation—
ISSAC 2007, 285–292, ACM, New York, 2007. <788, 796>

[2099] G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci.
13 (1976) 300–317. <346, 363>

[2100] R. L. Miller, Necklaces, symmetries and self-reciprocal polynomials, Discrete Math.
22 (1978) 25–33. <286, 290>

[2101] S. J. Miller and M. R. Murty, Effective equidistribution and the Sato-Tate law for
families of elliptic curves, J. Number Theory 131 (2011) 25–44. <430, 440>

[2102] V. S. Miller, Use of elliptic curves in cryptography, In Advances in Cryptology—
CRYPTO ’85, volume 218 of Lecture Notes in Comput. Sci., 417–426, Springer,
Berlin, 1986. <746, 750, 784, 796>

[2103] D. Mills, Factorizations of root-based polynomial compositions, Discrete Math. 240
(2001) 161–173. <67, 70>

[2104] D. Mills, Existence of primitive polynomials with three coefficients prescribed, JP J.
Algebra Number Theory Appl. 4 (2004) 1–22. <93, 95>

[2105] W. H. Mills, Polynomials with minimal value sets, Pacific J. Math. 14 (1964) 225–241.
<233, 236>

[2106] W. H. Mills and R. C. Mullin, Coverings and packings, In Contemporary Design
Theory, Wiley-Intersci. Ser. Discrete Math. Optim., 371–399, Wiley, New York,
1992. <598, 599>

[2107] J. S. Milne, Elliptic Curves, BookSurge Publishers, Charleston, SC, 2006. <31, 32,
422, 440>

[2108] R. Mines, F. Richman, and W. Ruitenburg, A course in constructive algebra, Univer-
sitext. Springer-Verlag, New York, 1988. <383, 392>

[2109] M. Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic,
Math. Comput. Sci. 3 (2010) 209–224. <490, 491>

[2110] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsuji, A fast addition algorithm
of genus two hyperelliptic curve, In Proc. of SCIS2002, IEICE Japan, 497–502,
2002, in Japanese. <798, 803>

[2111] R. T. Moenck, Another polynomial homomorphism, Acta Informat. 6 (1976) 153–169.
<351, 363>

[2112] R. T. Moenck, On the efficiency of algorithms for polynomial factoring, Math. Comp.
31 (1977) 235–250. <381, 382>

[2113] T. Moh, A public key system with signature and master key functions, Comm. Algebra



Bibliography 961

27 (1999) 2207–2222. <774, 783>

[2114] M. S. E. Mohamed, D. Cabarcas, J. Ding, J. Buchmann, and S. Bulygin, MXL3:
an efficient algorithm for computing Gröbner bases of zero-dimensional ideals,
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volume 11 of Sémin. Congr., 29–40, Soc. Math. France, Paris, 2005. <211, 213>

[2149] O. Moreno and F. N. Castro, Optimal divisibility for certain diagonal equations over
finite fields, J. Ramanujan Math. Soc. 23 (2008) 43–61. <210, 212, 213>

[2150] O. Moreno, F. N. Castro, and H. F. Mattson, Jr., Correction to: “Divisibility prop-
erties for covering radius of certain cyclic codes” [IEEE Trans. Inform. Theory
49 (2003), 3299–3303] by Moreno and Castro, IEEE Trans. Inform. Theory 52
(2006) 1798–1799. <213>



Bibliography 963

[2151] O. Moreno and C. J. Moreno, Improvements of the Chevalley-Warning and the Ax-
Katz theorems, Amer. J. Math. 117 (1995) 241–244. <200, 201, 207, 210, 213,
481, 488>

[2152] O. Moreno and I. Rubio, Cyclic decomposition of monomial permutations, Congr.
Numer. 73 (1990) 147–158. <229, 230>

[2153] O. Moreno, K. W. Shum, F. N. Castro, and P. V. Kumar, Tight bounds for Chevalley-
Warning-Ax-Katz type estimates, with improved applications, Proc. London
Math. Soc., 3rd Ser. 88 (2004) 545–564. <481, 488>

[2154] M. Morf, Doubling algorithms for Toeplitz and related equations, In Proc. 1980
Int’l Conf. Acoustics Speech and Signal Processing, 954–959, Denver, Colo., 1980.
<533, 535>

[2155] I. H. Morgan, Construction of complete sets of mutually equiorthogonal frequency
hypercubes, Discrete Math. 186 (1998) 237–251. <554, 556>

[2156] I. H. Morgan and G. L. Mullen, Primitive normal polynomials over finite fields, Math.
Comp. 63 (1994) 759–765, S19–S23. <88, 90>

[2157] I. H. Morgan and G. L. Mullen, Completely normal primitive basis generators of finite
fields, Utilitas Math. 49 (1996) 21–43. <89, 90, 95, 137, 138>

[2158] I. H. Morgan, G. L. Mullen, and M. Z̆ivković, Almost weakly self-dual bases for finite
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[2265] H. Niederreiter and F. Özbudak, Improved asymptotic bounds for codes using dis-
tinguished divisors of global function fields, SIAM J. Discrete Math. 21 (2007)
865–899. <712>
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“Théorie des Nombres et Applications,” Publ. Math. Besançon Algèbre Théorie
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1–16. <62, 66>

[2570] S̆. Schwarz, On the reducibility of polynomials over a finite field, Quart. J. Math.
Oxford 2 (1956) 110–124. <375, 380>
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[2757] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes, Finite Fields



994 Handbook of Finite Fields

Appl. 3 (1997) 187–202. <561, 563>
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[2808] A. Tietäväinen, On systems of linear and quadratic equations in finite fields, Ann.
Acad. Sci. Fenn. Ser. A I No. 382 (1965) 5. <210, 213>
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Sér. A-B 281 (1975) Aii, A533–A535. <205, 206>

[3001] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields,
J. Number Theory 42 (1992) 247–257. <208, 213>

[3002] J. Wolfmann, New results on diagonal equations over finite fields from cyclic codes,
In Finite Fields: Theory, Applications, and Algorithms, volume 168 of Contemp.
Math., 387–395, Amer. Math. Soc., Providence, RI, 1994. <213>

[3003] J. Wolfmann, Some systems of diagonal equations over finite fields, Finite Fields
Appl. 4 (1998) 29–37. <213>

[3004] “Wolfram Research”, Wolfram Research: Mathematica, technical and scientific soft-
ware, version 8.04, http://www.wolfram.com/, as viewed in July, 2012. <48,
49, 346, 363>

[3005] W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased
measurements, Ann. Physics 191 (1989) 363–381. <835, 841>

[3006] H. Wu, Low complexity bit-parallel finite field arithmetic using polynomial basis, In
Proc. Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of
Lecture Notes Comput. Sci., 280–291, Springer, Berlin, 1999. <814, 823>

[3007] H. Wu, Bit-parallel finite field multiplier and squarer using polynomial basis, IEEE
Trans. Comput. 51 (2002) 750–758. <815, 823>

[3008] H. Wu, M. A. Hasan, and I. F. Blake, New low-complexity bit-parallel finite field
multipliers using weakly dual bases, IEEE Trans. Comput. 47 (1998) 1223–1234.
<822, 823>

[3009] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao, Finite field multiplier using redundant
representation, IEEE Trans. Comput. 51 (2002) 1306–1316. <351, 363, 822,
823>

[3010] M. Wu, X. Yang, and C. Chan, A dynamic analysis of irs-pkr signaling in liver cells:
A discrete modeling approach, PLoS ONE 4 (2009) e8040. <825, 834>

[3011] P.-C. Wu, Random number generation with primitive pentanomials, ACM Trans.
Modeling and Computer Simulation 11 (2001) 346–351. <96, 97>

[3012] Q. Xiang, Maximally nonlinear functions and bent functions, Des. Codes Cryptogr.
17 (1999) 211–218. <239, 240>

[3013] G. Xiao and S. Wei, Fast algorithms for determining the linear complexity of pe-
riod sequences., In Progress in Cryptology—INDOCRYPT 2002, volume 2551 of
Lecture Notes in Comput. Sci., 12–21, Springer, Berlin, 2002. <329, 336>

[3014] G. Xiao, S. Wei, K. Y. Lam, and K. Imamura, A fast algorithm for determining the
linear complexity of a sequence with period pn over GF(q), IEEE Trans. Inform.
Theory 46 (2000) 2203–2206. <329, 336>

[3015] G. Z. Xiao and J. L. Massey, A spectral characterization of correlation-immune com-
bining functions, IEEE Trans. Inform. Theory 34 (1988) 569–571. <247, 252>

[3016] C. Xing and Y. Ding, Multisequences with large linear and k-error linear complexity
from Hermitian function fields, IEEE Trans. Inform. Theory 55 (2009) 3858–
3863. <331, 336>

[3017] C. P. Xing, Goppa geometric codes achieving the Gilbert-Varshamov bound, IEEE
Trans. Inform. Theory 51 (2005) 259–264. <711, 712>

[3018] C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using
global function fields, Acta Arith. 73 (1995) 87–102. <629, 630>



Bibliography 1007

[3019] C. P. Xing, H. Niederreiter, and K. Y. Lam, A generalization of algebraic-geometry
codes, IEEE Trans. Inform. Theory 45 (1999) 2498–2501. <707, 712>

[3020] C. P. Xing and S. L. Yeo, New linear codes and algebraic function fields over finite
fields, IEEE Trans. Inform. Theory 53 (2007) 4822–4825. <707, 712>

[3021] T. Yan, The geobucket data structure for polynomials, J. Symbolic Comput. 25 (1998)
285–293. <382, 392>

[3022] B.-Y. Yang and J.-M. Chen, All in the XL family: theory and practice, In Information
Security and Cryptology—ICISC 2004, volume 3506 of Lecture Notes in Comput.
Sci., 67–86, Springer, Berlin, 2005. <782, 783>

[3023] B.-Y. Yang and J.-M. Chen, Building secure tame-like multivariate public-key cryp-
tosystems: The new TTS, In ACISP 2005, volume 3574 of Lecture Notes in
Comput. Sci., 518–531, Springer, Berlin, 2005. <772, 773, 779, 780, 783>

[3024] B.-Y. Yang, J.-M. Chen, and Y.-H. Chen, TTS: High-speed signatures on a low-cost
smart card, In Proceedings of the Sixth International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), volume 3156 of Lecture Notes in Com-
put. Sci., 371–385, Springer, Berlin, 2004. <772, 783>

[3025] J. Yang and Z. Dai, Linear complexity of periodically repeated random sequences,
Acta Math. Sinica (New Ser.) 11 (1995) 1–7. <331, 336>

[3026] J. Yang, S. X. Luo, and K. Q. Feng, Gauss sum of index 4. II. Non-cyclic case, Acta
Math. Sin. (Engl. Ser.) 22 (2006) 833–844. <150, 161>

[3027] J. Yang and L. Xia, Complete solving of explicit evaluation of Gauss sums in the
index 2 case, Sci. China Math. 53 (2010) 2525–2542. <150, 161>

[3028] R. Yang, Newton polygons of L-functions of polynomials of the form xd + λx, Finite
Fields Appl. 9 (2003) 59–88. <484, 488>

[3029] S. M. Yang and L. L. Qi, On improved asymptotic bounds for codes from global
function fields, Des. Codes Cryptogr. 53 (2009) 33–43. <712>

[3030] T. Yanik, E. Savas, and C. Koc, Incomplete reduction in modular arithmetic, Com-
puters and Digital Techniques, IEE Proceedings - 149 (2002) 46 –52. <351, 363>

[3031] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic
Discrete Methods 2 (1981) 77–79. <532, 535>

[3032] A. C. C. Yao, On the evaluation of powers, SIAM J. Comput. 5 (1976) 100–103.
<357, 363>

[3033] C. K. Yap, Fundamental Problems of Algorithmic Algebra, Oxford University Press,
New York, 2000. <359, 363>

[3034] Y. Ye, A hyper-Kloosterman sum identity, Sci. China, Ser. A 41 (1998) 1158–1162.
<155, 161>

[3035] C. S. Yeh, I. S. Reed, and T. K. Troung, Systolic multipliers for finite fields GF (2m),
IEEE Trans. Comput. 33 (1984) 357–360. <815, 823>

[3036] B. Young and D. Panario, Low complexity normal bases in F2n , Finite Fields Appl.
10 (2004) 53–64. <38, 49, 119, 128>

[3037] H. P. Young, Affine triple systems and matroid designs, Math. Z. 132 (1973) 343–359.
<611, 619>

[3038] A. M. Youssef and G. Gong, Hyper-bent functions, In Advances in Cryptology—
EUROCRYPT 2001, volume 2045 of Lecture Notes in Comput. Sci., 406–419,
Springer, Berlin, 2001. <264, 273>

[3039] J. Yu, Transcendence and Drinfel’d modules, Invent. Math. 83 (1986) 507–517. <546>

[3040] J. Yu, On periods and quasi-periods of Drinfel’d modules, Compositio Math. 74 (1990)



1008 Handbook of Finite Fields

235–245. <546>

[3041] J.-D. Yu, Variation of the unit root along the Dwork family of Calabi-Yau varieties,
Math. Ann. 343 (2009) 53–78. <479, 488>

[3042] J. Yuan, C. Carlet, and C. Ding, The weight distribution of a class of linear codes
from perfect nonlinear functions, IEEE Trans. Inform. Theory 52 (2006) 712–
717. <272, 273>

[3043] J. Yuan and C. Ding, Four classes of permutation polynomials of F2m , Finite Fields
Appl. 13 (2007) 869–876. <226, 230>

[3044] J. Yuan, C. Ding, H. Wang, and J. Pieprzyk, Permutation polynomials of the form
(xp − x+ δ)s + L(x), Finite Fields Appl. 14 (2008) 482–493. <226, 230>

[3045] P. Yuan, More explicit classes of permutation polynomials of F33m , Finite Fields
Appl. 16 (2010) 88–95. <226, 230>

[3046] P. Yuan and C. Ding, Permutation polynomials over finite fields from a powerful
lemma, Finite Fields Appl. 17 (2011) 560–574. <221, 224, 226, 230>

[3047] P. Yuan and X. Zeng, A note on linear permutation polynomials, Finite Fields Appl.
17 (2011) 488–491. <216, 230>

[3048] J. L. Yucas, Irreducible polynomials over finite fields with prescribed trace / prescribed
constant term, Finite Fields Appl. 12 (2006) 211–221. <54, 59>

[3049] J. L. Yucas and G. L. Mullen, Irreducible polynomials over GF(2) with prescribed
coefficients, Discrete Math. 274 (2004) 265–279. <55, 56, 59, 79>

[3050] J. L. Yucas and G. L. Mullen, Self-reciprocal irreducible polynomials over finite fields,
Des. Codes Cryptogr. 33 (2004) 275–281. <56, 59>

[3051] D. Y. Y. Yun, Fast algorithm for rational function integration, In B. Gilchrist,
editor, Information Processing 77—Proceedings of the IFIP Congress 77, 493–
498, North-Holland, Amsterdam, 1977. <381, 382>

[3052] H. Zassenhaus, On Hensel factorization I, J. Number Theory 1 (1969) 291–311. <385,
392>

[3053] H. Zassenhaus, Polynomial time factoring of integral polynomials, ACM SIGSAM
Bull. 15 (1981) 6–7. <387, 392>

[3054] G. Zeng, Y. Yang, W. Han, and S. Fan, Reducible polynomial over F2 constructed by
trinomial σ-lfsr, In Information Security and Cryptology, volume 5487 of Lecture
Notes in Comput. Sci., 192–200, Springer, Berlin, 2009. <70>

[3055] L. Zeng, L. Lan, Y. Y. Tai, S. Song, S. Lin, and K. Abdel-Ghaffar, Constructions
of nonbinary quasi-cyclic LDPC codes: a finite field approach, IEEE Trans.
Communications 56 (2008) 545–554. <718, 719>

[3056] X. Zeng, C. Carlet, J. Shan, and L. Hu, More balanced Boolean functions with optimal
algebraic immunity and good nonlinearity and resistance to fast algebraic attacks,
IEEE Trans. Inform. Theory 57 (2011) 6310–6320. <250, 252>

[3057] X. Zeng, X. Zhu, and L. Hu, Two new permutation polynomials with the form (x2k +
x+ δ)s + x over F2n , Appl. Algebra Engrg. Comm. Comput. 21 (2010) 145–150.
<226, 230>

[3058] Z. Zha and L. Hu, Two classes of permutation polynomials over finite fields, Finite
Fields Appl. 18 (2012) 781–790. <221, 226, 230>

[3059] Z. Zha, G. M. Kyureghyan, and X. Wang, Perfect nonlinear binomials and their
semifields, Finite Fields Appl. 15 (2009) 125–133. <282>

[3060] Z. Zha and X. Wang, New families of perfect nonlinear polynomial functions, J.
Algebra 322 (2009) 3912–3918. <282>



Bibliography 1009

[3061] L. Zhang, Q. Huang, S. Lin, K. Abdel-Ghaffar, and I. Blake, Quasi-cyclic LDPC
codes: an algebraic construction, rank analysis, and codes on Latin squares, IEEE
Trans. Communications 58 (2010) 3126–3139. <718, 719>

[3062] Q. Zhang, Polynomial functions and permutation polynomials over some finite com-
mutative rings, J. Number Theory 105 (2004) 192–202. <229, 230, 232>

[3063] Z. Zhao and X. Cao, A note on the reducibility of binary affine polynomials, Des.
Codes Cryptogr. 57 (2010) 83–90. <69, 70>

[3064] G. Zhou and H. Michalik, Comments on “A new architecture for a parallel finite field
multiplier with low complexity based on composite field,” IEEE Trans. Comput.
59 (2010) 1007–1008. <814, 823>

[3065] K. Zhou, A remark on linear permutation polynomials, Finite Fields Appl. 14 (2008)
532–536. <216, 230>

[3066] G. Zhu and D. Wan, An asymptotic formula for counting subset sums over subgroups
of finite fields, Finite Fields Appl. 18 (2012) 192–209. <213>

[3067] H. J. Zhu, p-adic variation of L functions of one variable exponential sums. I, Amer.
J. Math. 125 (2003) 669–690. <485, 488>

[3068] H. J. Zhu, Asymptotic variation of L functions of one-variable exponential sums, J.
Reine Angew. Math. 572 (2004) 219–233. <485, 487, 488>

[3069] H. J. Zhu, L-functions of exponential sums over one-dimensional affinoids: Newton
over Hodge, Int. Math. Res. Not. (2004) 1529–1550. <483, 484, 488>

[3070] N. Zierler, Linear recurring sequences, J. Soc. Indust. Appl. Math. 7 (1959) 31–48.
<312, 317>

[3071] N. Zierler, Primitive trinomials whose degree is a Mersenne exponent, Information
and Control 15 (1969) 67–69. <96, 97>

[3072] N. Zierler and W. H. Mills, Products of linear recurring sequences, J. Algebra 27
(1973) 147–157. <313, 317>

[3073] M. Zieve, Bivariate factorizations via Galois theory, with application to exceptional
polynomials, J. Algebra 210 (1998) 670–689. <239, 240>

[3074] M. E. Zieve, On a theorem of Carlitz, arXiv:0810.2834, 2008. <238, 240>

[3075] M. E. Zieve, Some families of permutation polynomials over finite fields, Int. J.
Number Theory 4 (2008) 851–857. <223, 224, 230>

[3076] M. E. Zieve, On some permutation polynomials over Fq of the form xrh(x(q−1)/d),
Proc. Amer. Math. Soc. 137 (2009) 2209–2216. <221, 223, 230>

[3077] M. E. Zieve, Classes of permutation polynomials based on cyclotomy and an additive
analogue, In Additive number theory, 355–361, Springer, New York, 2010. <221,
224, 230>

[3078] P. Zimmermann, Avoiding adjustments in modular computations, 2012, preprint
available at http:www.loria.fr/~zimmerma/papers/norm.pdf. <354, 363>

[3079] T. Zink, Degeneration of Shimura surfaces and a problem in coding theory, In Funda-
mentals of Computation Theory, volume 199 of Lecture Notes in Comput. Sci.,
503–511, Springer, Berlin, 1985. <463>

[3080] R. Zippel, Probabilistic algorithms for sparse polynomials, In EUROSAM ’79: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computa-
tion, volume 72 of Lecture Notes in Comput. Sci., 216–226, Springer-Verlag,
Berlin, 1979. <391, 392>

[3081] R. Zippel, Newton’s iteration and the sparse Hensel algorithm (Extended Abstract),
In SYMSAC ’81: Proceedings of the fourth ACM Symposium on Symbolic and



1010 Handbook of Finite Fields

Algebraic Computation, 68–72, ACM, New York, 1981. <391, 392>

[3082] Z. Zlatev, Computational Methods for General Sparse Matrices, volume 65 of Math-
ematics and its Applications, Kluwer Academic Publishers Group, Dordrecht,
1991. <532, 535>
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